1
|
Chen HH, Lin CY, Han YJ, Huang YH, Liu YH, Hsu WE, Tsai LK, Lai HJ, Tsao YP, Huang HP, Chen SL. The Innovative Role of Nuclear Receptor Interaction Protein in Orchestrating Invadosome Formation for Myoblast Fusion. J Cachexia Sarcopenia Muscle 2024. [PMID: 39323088 DOI: 10.1002/jcsm.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Nuclear receptor interaction protein (NRIP) is versatile and engages with various proteins to execute its diverse biological function. NRIP deficiency was reported to cause small myofibre size in adult muscle regeneration, indicating a crucial role of NRIP in myoblast fusion. METHODS The colocalization and interaction of NRIP with actin were investigated by immunofluorescence and immunoprecipitation assay, respectively. The participation of NRIP in myoblast fusion was demonstrated by cell fusion assay and time-lapse microscopy. The NRIP mutants were generated for mechanism study in NRIP-null C2C12 (termed KO19) cells and muscle-specific NRIP knockout (NRIP cKO) mice. A GEO profile database was used to analyse NRIP expression in Duchenne muscular dystrophy (DMD) patients. RESULTS In this study, we found that NRIP directly and reciprocally interacted with actin both in vitro and in cells. Immunofluorescence microscopy showed that the endogenous NRIP colocalized with components of invadosome, such as actin, Tks5, and cortactin, at the tips of cells during C2C12 differentiation. The KO19 cells were generated and exhibited a significant deficit in myoblast fusion compared with wild-type C2C12 cells (3.16% vs. 33.67%, p < 0.005). Overexpressed NRIP in KO19 cells could rescue myotube formation compared with control (3.37% vs. 1.00%, p < 0.01). We further confirmed that NRIP directly participated in cell fusion by using a cell-cell fusion assay. We investigated the mechanism of invadosome formation for myoblast fusion, which depends on NRIP-actin interaction, by analysing NRIP mutants in NRIP-null cells. Loss of actin-binding of NRIP reduced invadosome (enrichment ratio, 1.00 vs. 2.54, p < 0.01) and myotube formation (21.82% vs. 35.71%, p < 0.05) in KO19 cells and forced NRIP expression in KO19 cells and muscle-specific NRIP knockout (NRIP cKO) mice increased myofibre size compared with controls (over 1500 μm2, 61.01% vs. 20.57%, p < 0.001). We also found that the NRIP mRNA level was decreased in DMD patients compared with healthy controls (18 072 vs. 28 289, p < 0.001, N = 10 for both groups). CONCLUSIONS NRIP is a novel actin-binding protein for invadosome formation to induce myoblast fusion.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Yang Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Ju Han
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Hsin Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsiang Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-En Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsing-Jung Lai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Xing J, Wang Y, Peng A, Li J, Niu X, Zhang K. The role of actin cytoskeleton CFL1 and ADF/cofilin superfamily in inflammatory response. Front Mol Biosci 2024; 11:1408287. [PMID: 39114368 PMCID: PMC11303188 DOI: 10.3389/fmolb.2024.1408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Dong San Dao Xiang, Taiyuan, China
| |
Collapse
|
3
|
Lewis M, Ono K, Qin Z, Johnsen RC, Baillie DL, Ono S. The α-arrestin SUP-13/ARRD-15 promotes isoform turnover of actin-interacting protein 1 in Caenorhabditis elegans striated muscle. PNAS NEXUS 2023; 2:pgad330. [PMID: 37869480 PMCID: PMC10590129 DOI: 10.1093/pnasnexus/pgad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Precise arrangement of actin, myosin, and other regulatory components in a sarcomeric pattern is critical for producing contractile forces in striated muscles. Actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), is one of essential factors that regulate sarcomeric assembly of actin filaments. In the nematode Caenorhabditis elegans, mutation in unc-78, encoding one of the two AIP1 isoforms, causes severe disorganization of sarcomeric actin filaments and near paralysis, but mutation in sup-13 suppresses the unc-78-mutant phenotypes to restore nearly normal sarcomeric actin organization and worm motility. Here, we identified that sup-13 is a nonsense allele of arrd-15 encoding an α-arrestin. The sup-13/arrd-15 mutation suppressed the phenotypes of unc-78 null mutant but required aipl-1 that encodes a second AIP1 isoform. aipl-1 was normally expressed highly in embryos and downregulated in mature muscle. However, in the sup-13/arrd-15 mutant, the AIPL-1 protein was maintained at high levels in adult muscle to compensate for the absence of the UNC-78 protein. The sup-13/arrd-15 mutation caused accumulation of ubiquitinated AIPL-1 protein, suggesting that a normal function of sup-13/arrd-15 is to enhance degradation of ubiquitinated AIPL-1, thereby promoting transition of AIP1 isoforms from AIPL-1 to UNC-78 in developing muscle. These results suggest that α-arrestin is a novel factor to promote isoform turnover by enhancing protein degradation.
Collapse
Affiliation(s)
- Mario Lewis
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kanako Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaozhao Qin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shoichiro Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Takayama K, Matsuda K, Abe H. Formation of actin-cofilin rods by depletion forces. Biochem Biophys Res Commun 2022; 626:200-204. [PMID: 35994830 DOI: 10.1016/j.bbrc.2022.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
Abstract
Various stress conditions induce the formation of actin-cofilin rods in either the nucleus or the cytoplasm, although the mechanism of rod formation is unclear. In this study, we constituted actin-cofilin rods using purified actin, cofilin and actin interacting protein 1 (AIP1) in the presence of a physiological buffer containing a crowding agent, 0.8% methylcellulose (MC), which led to bundled actin filaments formed by depletion forces. Most of the F-actin bundles formed with methylcellulose were linear, whereas cofilin-bound F-actin bundles often had bent, looped, and often ring-like shapes. Increasing the amount of AIP1 shortened actin-cofilin bundles into rod-like bundles with tapering at both ends. As much shorter actin-cofilin filaments were formed in the presence of AIP1 before MC was added to the mixture, the rod-like bundle might be a mass of those short filaments. Furthermore, the small rods fused with each other to become larger rods, indicating that these rods were anisotropic liquid droplets. Several minutes after the addition of MC to the F-actin-cofilin-AIP1 mixture, we observed some long bundles in which the thick and thin parts appear alternately, reminiscent of a Plateau-Rayleigh instability observed in fluid columns. Simultaneously, we found images in which thin parts were interrupted, but the thick parts were arranged in a row in the longitudinal direction. These structures were also observed in cytoplasmic actin-cofilin rods in cells overexpressing cofilin-GFP, suggesting that cytoplasmic actin-cofilin rods have the same structure formation process as the rods reconstituted in vitro.
Collapse
Affiliation(s)
- Kohki Takayama
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Kota Matsuda
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Hiroshi Abe
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan; Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan.
| |
Collapse
|
5
|
Bolger-Munro M, Choi K, Cheung F, Liu YT, Dang-Lawson M, Deretic N, Keane C, Gold MR. The Wdr1-LIMK-Cofilin Axis Controls B Cell Antigen Receptor-Induced Actin Remodeling and Signaling at the Immune Synapse. Front Cell Dev Biol 2021; 9:649433. [PMID: 33928084 PMCID: PMC8076898 DOI: 10.3389/fcell.2021.649433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
When B cells encounter membrane-bound antigens, the formation and coalescence of B cell antigen receptor (BCR) microclusters amplifies BCR signaling. The ability of B cells to probe the surface of antigen-presenting cells (APCs) and respond to APC-bound antigens requires remodeling of the actin cytoskeleton. Initial BCR signaling stimulates actin-related protein (Arp) 2/3 complex-dependent actin polymerization, which drives B cell spreading as well as the centripetal movement and coalescence of BCR microclusters at the B cell-APC synapse. Sustained actin polymerization depends on concomitant actin filament depolymerization, which enables the recycling of actin monomers and Arp2/3 complexes. Cofilin-mediated severing of actin filaments is a rate-limiting step in the morphological changes that occur during immune synapse formation. Hence, regulators of cofilin activity such as WD repeat-containing protein 1 (Wdr1), LIM domain kinase (LIMK), and coactosin-like 1 (Cotl1) may also be essential for actin-dependent processes in B cells. Wdr1 enhances cofilin-mediated actin disassembly. Conversely, Cotl1 competes with cofilin for binding to actin and LIMK phosphorylates cofilin and prevents it from binding to actin filaments. We now show that Wdr1 and LIMK have distinct roles in BCR-induced assembly of the peripheral actin structures that drive B cell spreading, and that cofilin, Wdr1, and LIMK all contribute to the actin-dependent amplification of BCR signaling at the immune synapse. Depleting Cotl1 had no effect on these processes. Thus, the Wdr1-LIMK-cofilin axis is critical for BCR-induced actin remodeling and for B cell responses to APC-bound antigens.
Collapse
Affiliation(s)
- Madison Bolger-Munro
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kate Choi
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Faith Cheung
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yi Tian Liu
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - May Dang-Lawson
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Nikola Deretic
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Connor Keane
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Gold
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Wang Q, Yuan W, Yang X, Wang Y, Li Y, Qiao H. Role of Cofilin in Alzheimer's Disease. Front Cell Dev Biol 2020; 8:584898. [PMID: 33324642 PMCID: PMC7726191 DOI: 10.3389/fcell.2020.584898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease and has an inconspicuous onset and progressive development. Clinically, it is characterized by severe dementia manifestations, including memory impairment, aphasia, apraxia, loss of recognition, impairment of visual-spatial skills, executive dysfunction, and changes in personality and behavior. Its etiology is unknown to date. However, several cellular biological signatures of AD have been identified such as synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies which are related to the actin cytoskeleton. Cofilin is one of the most affluent and common actin-binding proteins and plays a role in cell motility, migration, shape, and metabolism. They also play an important role in severing actin filament, nucleating, depolymerizing, and bundling activities. In this review, we summarize the structure of cofilins and their functional and regulating roles, focusing on the synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies of AD.
Collapse
Affiliation(s)
- Qiang Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Wei Yuan
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Xiaohang Yang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yuan Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Yongfeng Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Haifa Qiao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
- Xianyang Key Laboratory of Neurobiology and Acupuncture, Xi’an, China
| |
Collapse
|
7
|
ADF/cofilin regulation from a structural viewpoint. J Muscle Res Cell Motil 2019; 41:141-151. [DOI: 10.1007/s10974-019-09546-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/17/2019] [Indexed: 01/11/2023]
|
8
|
Regulation of Actin Dynamics in the C. elegans Somatic Gonad. J Dev Biol 2019; 7:jdb7010006. [PMID: 30897735 PMCID: PMC6473838 DOI: 10.3390/jdb7010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/25/2022] Open
Abstract
The reproductive system of the hermaphroditic nematode C. elegans consists of a series of contractile cell types—including the gonadal sheath cells, the spermathecal cells and the spermatheca–uterine valve—that contract in a coordinated manner to regulate oocyte entry and exit of the fertilized embryo into the uterus. Contraction is driven by acto-myosin contraction and relies on the development and maintenance of specialized acto-myosin networks in each cell type. Study of this system has revealed insights into the regulation of acto-myosin network assembly and contractility in vivo.
Collapse
|
9
|
Sengupta S, Mangu V, Sanchez L, Bedre R, Joshi R, Rajasekaran K, Baisakh N. An actin-depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:188-205. [PMID: 29851294 PMCID: PMC6330539 DOI: 10.1111/pbi.12957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 05/20/2023]
Abstract
Actin-depolymerizing factors (ADFs) maintain the cellular actin network dynamics by regulating severing and disassembly of actin filaments in response to environmental cues. An ADF isolated from a monocot halophyte, Spartina alterniflora (SaADF2), imparted significantly higher level of drought and salinity tolerance when expressed in rice than its rice homologue OsADF2. SaADF2 differs from OsADF2 by a few amino acid residues, including a substitution in the regulatory phosphorylation site serine-6, which accounted for its weak interaction with OsCDPK6 (calcium-dependent protein kinase), thus resulting in an increased efficacy of SaADF2 and enhanced cellular actin dynamics. SaADF2 overexpression preserved the actin filament organization better in rice protoplasts under desiccation stress. The predicted tertiary structure of SaADF2 showed a longer F-loop than OsADF2 that could have contributed to higher actin-binding affinity and rapid F-actin depolymerization in vitro by SaADF2. Rice transgenics constitutively overexpressing SaADF2 (SaADF2-OE) showed better growth, relative water content, and photosynthetic and agronomic yield under drought conditions than wild-type (WT) and OsADF2 overexpressers (OsADF2-OE). SaADF2-OE preserved intact grana structure after prolonged drought stress, whereas WT and OsADF2-OE presented highly damaged and disorganized grana stacking. The possible role of ADF2 in transactivation was hypothesized from the comparative transcriptome analyses, which showed significant differential expression of stress-related genes including interacting partners of ADF2 in overexpressers. Identification of a complex, differential interactome decorating or regulating stress-modulated cytoskeleton driven by ADF isoforms will lead us to key pathways that could be potential target for genome engineering to improve abiotic stress tolerance in agricultural crops.
Collapse
Affiliation(s)
- Sonali Sengupta
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Venkata Mangu
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Luis Sanchez
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Escuela Superior Politécnica del LitoralCentro de Investigaciones Biotecnológicas del EcuadorGuayaquilEcuador
| | - Renesh Bedre
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Texas A&M AgriLife Research and Extension CenterWeslacoTXUSA
| | - Rohit Joshi
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | | | - Niranjan Baisakh
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| |
Collapse
|
10
|
Li X, Sun M, Men S, Shi Y, Ma L, An Y, Gao Y, Jin H, Liu W, Du Z. The Inflammatory Transcription Factor C/EBPβ Plays a Critical Role in Cardiac Fibroblast Differentiation and a Rat Model of Cardiac Fibrosis Induced by Autoimmune Myocarditis. Int Heart J 2018; 59:1389-1397. [DOI: 10.1536/ihj.17-446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiu Li
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Menghua Sun
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Suzhen Men
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Yanan Shi
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Lijuan Ma
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Yongqiang An
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Yaqing Gao
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Hui Jin
- Department of Cardiology, The Second People's Hospital of Guangdong Province
| | - Wei Liu
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Zuoyi Du
- Department of Cardiology, The Second People's Hospital of Guangdong Province
| |
Collapse
|
11
|
Hayakawa K, Sekiguchi C, Sokabe M, Ono S, Tatsumi H. Real-Time Single-Molecule Kinetic Analyses of AIP1-Enhanced Actin Filament Severing in the Presence of Cofilin. J Mol Biol 2018; 431:308-322. [PMID: 30439520 DOI: 10.1016/j.jmb.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022]
Abstract
Rearrangement of actin filaments by polymerization, depolymerization, and severing is important for cell locomotion, membrane trafficking, and many other cellular functions. Cofilin and actin-interacting protein 1 (AIP1; also known as WDR1) are evolutionally conserved proteins that cooperatively sever actin filaments. However, little is known about the biophysical basis of the actin filament severing by these proteins. Here, we performed single-molecule kinetic analyses of fluorescently labeled AIP1 during the severing process of cofilin-decorated actin filaments. Results demonstrated that binding of a single AIP molecule was sufficient to enhance filament severing. After AIP1 binding to a filament, severing occurred with a delay of 0.7 s. Kinetics of binding and dissociation of a single AIP1 molecule to/from actin filaments followed a second-order and a first-order kinetics scheme, respectively. AIP1 binding and severing were detected preferentially at the boundary between the cofilin-decorated and bare regions on actin filaments. Based on the kinetic parameters explored in this study, we propose a possible mechanism behind the enhanced severing by AIP1.
Collapse
Affiliation(s)
- Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Carina Sekiguchi
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Shoichiro Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology (KIT), Ishikawa 924-0838, Japan.
| |
Collapse
|
12
|
Watanabe N, Tohyama K, Yamashiro S. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization. Biochem Biophys Res Commun 2018; 506:323-329. [PMID: 30309655 DOI: 10.1016/j.bbrc.2018.09.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/30/2018] [Indexed: 01/28/2023]
Abstract
The actin cytoskeleton has two faces. One side provides the relatively stable scaffold to maintain the shape of cell cortex fit to the organs. The other side rapidly changes morphology in response to extracellular stimuli including chemical signal and physical strain. Our series of studies employing single-molecule speckle analysis of actin have revealed diverse F-actin lifetimes spanning a range of seconds to minutes in live cells. The dynamic part of the actin turnover is tightly coupled with actin nucleation activities of formin homology proteins (formins), which serve as rapid and efficient F-actin restoration mechanisms in cells under physical stress. More recently, our two studies revealed stabilization of F-actin either by actomyosin contractile force or by helical rotation of processively-actin polymerizing diaphanous-related formin mDia1. These findings quantitatively explain our proposed anti-mechanostress cascade in that G-actin released from F-actin upon loss of tension triggers frequent nucleation and subsequent fast elongation of F-actin by formins. This formin-restored F-actin may become specifically stabilized over long distance by helical polymerization-mediated filament untwisting. In this review, we discuss how and to what extent formins-mediated F-actin restoration might confer mechanostress resistance to the cell. We also give thought to the possible involvement of helical polymerization-mediated filament untwisting in the formation of diverse actin architectures including chirality control.
Collapse
Affiliation(s)
- Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan.
| | - Kiyoshi Tohyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan
| |
Collapse
|
13
|
Structure, dynamics, and biochemical characterization of ADF/cofilin Twinstar from Drosophilamelanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:885-898. [PMID: 29709602 DOI: 10.1016/j.bbapap.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Twinstar is an ADF/cofilin family protein, which is expressed by the tsr gene in Drosophila melanogaster. Twinstar is one of the main regulators of actin cytoskeleton remodelling and is essential for vital cellular processes like cytokinesis and endocytosis. METHODS We have characterized the structure and dynamics of Twinstar by solution NMR spectroscopy, the interaction of Twinstar with rabbit muscle actin by ITC, and biochemical activities of Twinstar through different biochemical assays using fluorescence spectroscopy and ultra-centrifugation. RESULTS The solution structure of Twinstar shows characteristic ADF-H fold with well-formed G/F-site and F-site for interaction with actin. The structure possesses an extended F-loop, which is rigid at the base, but flexible towards its apical region. Twinstar shares similar dynamics for the G/F-site with C. elegans homologs, UNC-60A and UNC-60B. However, the dynamics of its F-loop are different from its C. elegans homologs. Twinstar shows strong affinity for ADP-G-Actin and ATP-G-Actin with Kds of ~7.6 nM and ~0.4 μM, respectively. It shows mild F-actin depolymerizing activity and stable interaction with F-actin with a Kd of ~5.0 μM. It inhibits the rate of the nucleotide exchange in a dose dependent manner. CONCLUSION On the basis of structure, dynamics, and biochemical activity, Twinstar can be taken to execute its biochemical role by facilitating directional growth and maintenance of length of actin filaments. GENERAL SIGNIFICANCE This study characterizes the structure, backbone dynamics, and biochemical activities of Twinstar of Drosophila, which provides an insight into the regulation of actin dynamics in the member of phylum insecta.
Collapse
|
14
|
Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 2017; 506:315-322. [PMID: 29056508 DOI: 10.1016/j.bbrc.2017.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), are conserved among eukaryotes and play critical roles in dynamic reorganization of the actin cytoskeleton. AIP1 preferentially promotes disassembly of ADF/cofilin-decorated actin filaments but exhibits minimal effects on bare actin filaments. Therefore, AIP1 has been often considered to be an ancillary co-factor of ADF/cofilin that merely boosts ADF/cofilin activity level. However, genetic and cell biological studies show that AIP1 deficiency often causes lethality or severe abnormalities in multiple tissues and organs including muscle, epithelia, and blood, suggesting that AIP1 is a major regulator of many biological processes that depend on actin dynamics. This review summarizes recent progress in studies on the biochemical mechanism of actin filament severing by AIP1 and in vivo functions of AIP1 in model organisms and human diseases.
Collapse
|
15
|
Carlier MF, Shekhar S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat Rev Mol Cell Biol 2017. [PMID: 28248322 DOI: 10.1038/nrm.(2016)172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Various cellular processes (including cell motility) are driven by the regulated, polarized assembly of actin filaments into distinct force-producing arrays of defined size and architecture. Branched, linear, contractile and cytosolic arrays coexist in vivo, and cells intricately control the number, length and assembly rate of filaments in these arrays. Recent in vitro and in vivo studies have revealed novel molecular mechanisms that regulate the number of filament barbed and pointed ends and their respective assembly and disassembly rates, thus defining classes of dynamically different filaments, which coexist in the same cell. We propose that a global treadmilling process, in which a steady-state amount of polymerizable actin monomers is established by the dynamics of each network, is responsible for defining the size and turnover of coexisting actin networks. Furthermore, signal-induced changes in the partitioning of actin to distinct arrays (mediated by RHO GTPases) result in the establishment of various steady-state concentrations of polymerizable monomers, thereby globally influencing the growth rate of actin filaments.
Collapse
Affiliation(s)
- Marie-France Carlier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Gif-sur-Yvette, Paris 91190, France
| | - Shashank Shekhar
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Gif-sur-Yvette, Paris 91190, France
| |
Collapse
|
16
|
Carlier MF, Shekhar S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat Rev Mol Cell Biol 2017; 18:389-401. [DOI: 10.1038/nrm.2016.172] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Int J Mol Sci 2016; 18:ijms18010010. [PMID: 28025492 PMCID: PMC5297645 DOI: 10.3390/ijms18010010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs.
Collapse
|
18
|
Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, Xiang Y, Liu W, Chen J, Yi Z, Li L. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem 2016; 292:1438-1448. [PMID: 27994054 DOI: 10.1074/jbc.m116.759886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Indexed: 01/18/2023] Open
Abstract
Trp-Asp (WD) repeat domain 1 (WDR1) is a highly conserved actin-binding protein across all eukaryotes and is involved in numerous actin-based processes by accelerating Cofilin severing actin filament. However, the function and the mechanism of WDR1 in mammalian early development are still largely unclear. We now report that WDR1 is essential for mouse peri-implantation development and regulates Cofilin phosphorylation in mouse cells. The disruption of maternal WDR1 does not obviously affect ovulation and female fertility. However, depletion of zygotic WDR1 results in embryonic lethality at the peri-implantation stage. In WDR1 knock-out cells, we found that WDR1 regulates Cofilin phosphorylation. Interestingly, WDR1 is overdosed to regulate Cofilin phosphorylation in mouse cells. Furthermore, we showed that WDR1 interacts with Lim domain kinase 1 (LIMK1), a well known phosphorylation kinase of Cofilin. Altogether, our results provide new insights into the role and mechanism of WDR1 in physiological conditions.
Collapse
Affiliation(s)
- Yi Xiao
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Haixia Ma
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Ping Wan
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Dandan Qin
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxiao Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxin Zhang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Yunlong Xiang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Wenbo Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Jiong Chen
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Zhaohong Yi
- the Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, .,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
19
|
Spectroscopic characterization of the effect of mouse twinfilin-1 on actin filaments at different pH values. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:276-282. [PMID: 27718419 DOI: 10.1016/j.jphotobiol.2016.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 11/22/2022]
Abstract
The effect of mammalian twinfilin-1 on the structure and dynamics of actin filaments were studied with steady state fluorescence spectroscopy, total internal reflection fluorescence microscopy and differential scanning calorimetry techniques. It was proved before that the eukaryotic budding yeast twinfilin-1 can efficiently bind and severe actin filaments in vitro at low pH values. In the present work steady-state anisotropy measurements revealed that twinfilin can bind efficiently to F-actin. Dilution-induced depolymerization assay proved that mammalian twinfilin-1 has an actin filament severing activity. This severing activity was more pronounced at low pH values. Total internal reflection fluorescence microscopy measurements could support the severing activity of mouse twinfilin-1. The average rate of depolymerization was more apparent at low pH values. The differential scanning calorimetry measurements demonstrated that mammalian twinfilin-1 could reduce the stiffness within the actin filaments before the detachment of the actin protomers. The structural and dynamic reorganization of actin can support the twinfilin-1 induced separation of actin protomers. The measured data indicated that mammalian twinfilin-1 was able to accelerate the monomers dissociation and/or sever the filaments effectively at low pH values. It was concluded that twinfilin-1 can affect the F-actin in biological processes or under stress situations when the pH is markedly under the physiological level.
Collapse
|