1
|
Upadhyay S, Khan S, Hassan MI. Exploring the diverse role of pyruvate kinase M2 in cancer: Navigating beyond glycolysis and the Warburg effect. Biochim Biophys Acta Rev Cancer 2024; 1879:189089. [PMID: 38458358 DOI: 10.1016/j.bbcan.2024.189089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Pyruvate Kinase M2, a key enzyme in glycolysis, has garnered significant attention in cancer research due to its pivotal role in the metabolic reprogramming of cancer cells. Originally identified for its association with the Warburg effect, PKM2 has emerged as a multifaceted player in cancer biology. The functioning of PKM2 is intricately regulated at multiple levels, including controlling the gene expression via various transcription factors and non-coding RNAs, as well as adding post-translational modifications that confer distinct functions to the protein. Here, we explore the diverse functions of PKM2, encompassing newly emerging roles in non-glycolytic metabolic regulation, immunomodulation, inflammation, DNA repair and mRNA processing, beyond its canonical role in glycolysis. The ever-expanding list of its functions has recently grown to include roles in subcellular compartments such as the mitochondria and extracellular milieu as well, all of which make PKM2 an attractive drug target in the pursuit of therapeutics for cancer.
Collapse
Affiliation(s)
- Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Cruz-Moreno DG, Valenzuela-Soto EM, Peregrino-Uriarte AB, Leyva-Carrillo L, Soñanez-Organis JG, Yepiz-Plascencia G. The pyruvate kinase of the whiteleg shrimp Litopenaeus vannamei: Gene structure and responses to short term hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2023:111468. [PMID: 37355162 DOI: 10.1016/j.cbpa.2023.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The shrimp Litopenaeus vannamei is the main farmed crustaceans worldwide. This crustacean suffers environmental changes in oxygen availability that affect its energy metabolism. Pyruvate kinase (PK) catalyzes the last reaction of glycolysis and is key for the regulation of glycolysis and gluconeogenesis. There is ample knowledge about mammalian PK, but in crustaceans, the information is very scarce. In this study, we analyzed in silico the structures of the PK gene and protein. Also, the effects of hypoxia on gene expression, enzymatic activity, glucose, and lactate in hepatopancreas and muscle were analyzed. The PK gene is 15,103 bp and contains 11 exons and 10 introns, producing four mRNA variants by alternative splicing and named PK1, PK2, PK3 and PK4, and two proteins with longer C-terminus and two with a 12 bp insertion. The promoter contains putative binding sites for transcription factors (TF) that are typically involved in stress responses. The deduced amino acid sequences contain the classic domains, binding sites for allosteric effectors and potential reversible phosphorylation residues. Protein modeling indicates a homotetramer with highly conserved structure. The effect of hypoxia for 6 and 12 h showed tissue-specific patterns, with higher expression, enzyme activity and lactate in muscle, but higher glucose in hepatopancreas. Changes in response to hypoxia were detected at 12 h in expression with induction in muscle and reduction in hepatopancreas, while enzyme activity was maintained, and glucose and lactate decreased. These results show rapid changes in expression and metabolites, while enzyme activity was maintained to cope with short-term hypoxia.
Collapse
Affiliation(s)
- Dalia G Cruz-Moreno
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Jose G Soñanez-Organis
- Universidad de Sonora Unidad Regional Sur, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Navojoa, Sonora CP. 85880, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
3
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Ni L, Lin B, Hu L, Zhang R, Fu F, Shen M, Yang J, Shi D. Pyruvate Kinase M2 Protects Heart from Pressure Overload-Induced Heart Failure by Phosphorylating RAC1. J Am Heart Assoc 2022; 11:e024854. [PMID: 35656980 PMCID: PMC9238738 DOI: 10.1161/jaha.121.024854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Heart failure, caused by sustained pressure overload, remains a major public health problem. PKM (pyruvate kinase M) acts as a rate‐limiting enzyme of glycolysis. PKM2 (pyruvate kinase M2), an alternative splicing product of PKM, plays complex roles in various biological processes and diseases. However, the role of PKM2 in the development of heart failure remains unknown. Methods and Results Cardiomyocyte‐specific Pkm2 knockout mice were generated by crossing the floxed Pkm2 mice with α‐MHC (myosin heavy chain)‐Cre transgenic mice, and cardiac specific Pkm2 overexpression mice were established by injecting adeno‐associated virus serotype 9 system. The results showed that cardiomyocyte‐specific Pkm2 deletion resulted in significant deterioration of cardiac functions under pressure overload, whereas Pkm2 overexpression mitigated transverse aortic constriction‐induced cardiac hypertrophy and improved heart functions. Mechanistically, we demonstrated that PKM2 acted as a protein kinase rather than a pyruvate kinase, which inhibited the activation of RAC1 (rho family, small GTP binding protein)‐MAPK (mitogen‐activated protein kinase) signaling pathway by phosphorylating RAC1 in the progress of heart failure. In addition, blockade of RAC1 through NSC23766, a specific RAC1 inhibitor, attenuated pathological cardiac remodeling in Pkm2 deficiency mice subjected to transverse aortic constriction. Conclusions This study revealed that PKM2 attenuated overload‐induced pathological cardiac hypertrophy and heart failure, which provides an attractive target for the prevention and treatment of cardiomyopathies.
Collapse
Affiliation(s)
- Le Ni
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | - Bowen Lin
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | - Lingjie Hu
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | | | - Fengmei Fu
- Jinzhou Medical University Liaoning China
| | - Meiting Shen
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | - Jian Yang
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China.,Department of Cell Biology Tongji University School of Medicine Shanghai China.,Institute of Medical Genetics Tongji University Shanghai China
| | - Dan Shi
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| |
Collapse
|
5
|
Das R, Ghosh Chowdhury M, Raundal S, Jadhav J, Kumar N, Patel S, Shard A. Objective assessment of adrenocortical carcinoma driver genes and their correlation with tumor pyruvate kinase M2. Gene 2022; 822:146354. [PMID: 35189247 DOI: 10.1016/j.gene.2022.146354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Glandular cancers have a significant share of the total cancer patients all over the world. In the case of adrenocortical carcinomas (ACCs), although the benign form is more frequent and common, the malignant form provides a very less percentage of patients with five or more than five years of survival rate. There are gene alterations that are involved as a crucial factor behind the occurrence of ACCs. Out of these, the most prominent genetic alterations (PRKAR-1A, CTNNB1, ZNRF3, TP53, CCNE1 and TERF2 genes) are linked with a glycolytic enzyme pyruvate kinase M2 (PKM2), which converts phosphoenolpyruvate (PEP) to pyruvate in the glycolytic pathway. The involvementof PKM2 renders a cumulative effect through different pathways that may result in the onset of ACCs. Thus, this review aims to establish a link between ACCs, alterations of specific genes and PKM2.
Collapse
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Sonal Raundal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Jyotika Jadhav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Navin Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India.
| |
Collapse
|
6
|
ANP32B-mediated repression of p53 contributes to maintenance of normal and CML stem cells. Blood 2021; 138:2485-2498. [PMID: 34359074 DOI: 10.1182/blood.2020010400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Proper regulation of p53 signaling is critical for the maintenance of hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs). The hematopoietic cell-specific mechanisms regulating p53 activity remain largely unknown. Here, we demonstrate that conditional deletion of acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) in hematopoietic cells impairs repopulation capacity and post-injury regeneration of HSCs. Mechanistically, ANP32B forms a repressive complex with and thus inhibits the transcriptional activity of p53 in hematopoietic cells, and p53 deletion rescues the functional defect in Anp32b-deficient HSCs. Of great interest, ANP32B is highly expressed in leukemic cells from chronic myelogenous leukemia (CML) patients. Anp32b deletion enhances p53 transcriptional activity to impair LSCs function in a murine CML model, and exhibits synergistic therapeutic effects with tyrosine kinase inhibitors in inhibiting CML propagation. In summary, our findings provide a novel strategy to enhance p53 activity in LSCs by inhibiting ANP32B, and identify ANP32B as a potential therapeutic target in treating CML.
Collapse
|
7
|
Lee YB, Min JK, Kim JG, Cap KC, Islam R, Hossain AJ, Dogsom O, Hamza A, Mahmud S, Choi DR, Kim YS, Koh YH, Kim HA, Chung WS, Suh SW, Park JB. Multiple functions of pyruvate kinase M2 in various cell types. J Cell Physiol 2021; 237:128-148. [PMID: 34311499 DOI: 10.1002/jcp.30536] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
Glucose metabolism is a mechanism by which energy is produced in form of adenosine triphosphate (ATP) by mitochondria and precursor metabolites are supplied to enable the ultimate enrichment of mature metabolites in the cell. Recently, glycolytic enzymes have been shown to have unconventional but important functions. Among these enzymes, pyruvate kinase M2 (PKM2) plays several roles including having conventional metabolic enzyme activity, and also being a transcriptional regulator and a protein kinase. Compared with the closely related PKM1, PKM2 is highly expressed in cancer cells and embryos, whereas PKM1 is dominant in mature, differentiated cells. Posttranslational modifications such as phosphorylation and acetylation of PKM2 change its cellular functions. In particular, PKM2 can translocate to the nucleus, where it regulates the transcription of many target genes. It is notable that PKM2 also acts as a protein kinase to phosphorylate several substrate proteins. Besides cancer cells and embryonic cells, astrocytes also highly express PKM2, which is crucial for lactate production via expression of lactate dehydrogenase A (LDHA), while mature neurons predominantly express PKM1. The lactate produced in cancer cells promotes tumor progress and that in astrocytes can be supplied to neurons and may act as a major source for neuronal ATP energy production. Thereby, we propose that PKM2 along with its different posttranslational modifications has specific purposes for a variety of cell types, performing unique functions.
Collapse
Affiliation(s)
- Yoon-Beom Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung K Min
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kim Cuong Cap
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea.,Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Rokibul Islam
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - Abu J Hossain
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Oyungerel Dogsom
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Amir Hamza
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Shohel Mahmud
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,National Institute of Biotechnology, Ganakbari, Savar, Dhaka, Bangladesh
| | - Dae R Choi
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Young-Ho Koh
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Hyun-A Kim
- Department of Internal Medicine, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Ahnyang, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang W Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
8
|
Li H, Zimmerman SE, Weyemi U. Genomic instability and metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:241-265. [PMID: 34507785 DOI: 10.1016/bs.ircmb.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genomic instability and metabolic reprogramming are among the key hallmarks discriminating cancer cells from normal cells. The two phenomena contribute to the robust and evasive nature of cancer, particularly when cancer cells are exposed to chemotherapeutic agents. Genomic instability is defined as the increased frequency of mutations within the genome, while metabolic reprogramming is the alteration of metabolic pathways that cancer cells undergo to adapt to increased bioenergetic demand. An underlying source of these mutations is the aggregate product of damage to the DNA, and a defective repair pathway, both resulting in the expansion of genomic lesions prior to uncontrolled proliferation and survival of cancer cells. Exploitation of DNA damage and the subsequent DNA damage response (DDR) have aided in defining therapeutic approaches in cancer. Studies have demonstrated that targeting metabolic reprograming yields increased sensitivity to chemo- and radiotherapies. In the past decade, it has been shown that these two key features are interrelated. Metabolism impacts DNA damage and DDR via regulation of metabolite pools. Conversely, DDR affects the response of metabolic pathways to therapeutic agents. Because of the interplay between genomic instability and metabolic reprogramming, we have compiled findings which more selectively highlight the dialog between metabolism and DDR, with a particular focus on glucose metabolism and double-strand break (DSB) repair pathways. Decoding this dialog will provide significant clues for developing combination cancer therapies.
Collapse
Affiliation(s)
- Haojian Li
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Susan E Zimmerman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Urbain Weyemi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
9
|
Verma H, Cholia RP, Kaur S, Dhiman M, Mantha AK. A short review on cross-link between pyruvate kinase (PKM2) and Glioblastoma Multiforme. Metab Brain Dis 2021; 36:751-765. [PMID: 33651273 DOI: 10.1007/s11011-021-00690-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Pyruvate kinase (PK) catalyzes the last irreversible reaction of glycolysis pathway, generating pyruvate and ATP, from Phosphoenol Pyruvate (PEP) and ADP precursors. In mammals, four different tissue-specific isoforms (M1, M2, L and R) of PK exist, which are translated from two genes (PKL and PKR). PKM2 is the highly expressed isoform of PK in cancers, which regulates the aerobic glycolysis via reprogramming cancer cell's metabolic pathways to provide an anabolic advantage to the tumor cells. In addition to the established role of PKM2 in aerobic glycolysis of multiple cancer types, various recent findings have highlighted the non-metabolic functions of PKM2 in brain tumor development. Nuclear PKM2 acts as a co-activator and directly regulates gene transcription. PKM2 dependent transactivation of various oncogenic genes is instrumental in the progression and aggressiveness of Glioblastoma Multiforme (GBM). Also, PKM2 acts as a protein kinase in histone modification which regulates gene expression and tumorigenesis. Ongoing research has explored novel regulatory mechanisms of PKM2 and its association in GBM progression. This review enlists and summarizes the metabolic and non-metabolic roles of PKM2 at the cellular level, and its regulatory function highlights the importance of the nuclear functions of PKM2 in GBM progression, and an emerging role of PKM2 as novel cancer therapeutics.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India
| | - Ravi P Cholia
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India.
| |
Collapse
|
10
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
11
|
Xia L, Jiang Y, Zhang XH, Wang XR, Wei R, Qin K, Lu Y. SUMOylation disassembles the tetrameric pyruvate kinase M2 to block myeloid differentiation of leukemia cells. Cell Death Dis 2021; 12:101. [PMID: 33473116 PMCID: PMC7817830 DOI: 10.1038/s41419-021-03400-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leukemia arises from blockage of the differentiation/maturation of hematopoietic progenitor cells at different stages with uncontrolled proliferation of leukemic cells. However, the signal pathways that block cell differentiation remain unclear. Herein we found that SUMOylation of the M2 isoform of pyruvate kinase (PKM2), a rate-limiting glycolytic enzyme catalyzing the dephosphorylation of phosphoenolpyruvate to pyruvate, is prevalent in a variety of leukemic cell lines as well as primary samples from patients with leukemia through multiple-reaction monitoring based targeted mass spectrometry analysis. SUMOylation of PKM2 lysine 270 (K270) triggered conformation change from tetrameric to dimeric of PKM2, reduced PK activity, and led to nuclear translocation of PKM2. SUMO1 modification of PKM2 recruits and promotes degradation of RUNX1 via a SUMO-interacting motif, resulting in blockage of myeloid differentiation of NB4 and U937 leukemia cells. Replacement of wild type PKM2 with a SUMOylation-deficient mutant (K270R) abrogated the interaction with RUNX1, and the blockage of myeloid differentiation in vitro and in xenograft model. Our results establish PKM2 as an essential modulator of leukemia cell differentiation and a potential therapeutic target, which may offer synergistic effect with differentiation therapy in the treatment of leukemia.
Collapse
Affiliation(s)
- Li Xia
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Jiang
- Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xue-Hong Zhang
- Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xin-Ran Wang
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Wei
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Qin
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Tyrosine pre-transfer RNA fragments are linked to p53-dependent neuronal cell death via PKM2. Biochem Biophys Res Commun 2020; 525:726-732. [PMID: 32143824 DOI: 10.1016/j.bbrc.2020.02.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
Abstract
Fragments of transfer RNA (tRNA), derived either from pre-tRNA or mature tRNA, have been discovered to play an essential role in the pathogenesis of various disorders such as neurodegenerative disease. CLP1 is an RNA kinase involved in tRNA biogenesis, and mutations in its encoding gene are responsible for pontocerebellar hypoplasia type-10. Mutation of the CLP1 gene results in the accumulation of tRNA fragments of several different kinds. These tRNA fragments are expected to be associated with the disease pathogenesis. However, it is still unclear which of the tRNA fragments arising from the CLP1 gene mutation has the greatest impact on the onset of neuronal disease. We found that 5' tRNA fragments derived from tyrosine pre-tRNA (5' Tyr-tRF) caused p53-dependent neuronal cell death predominantly more than other types of tRNA fragment. We also showed that 5' Tyr-tRF bound directly to pyruvate kinase M2 (PKM2). Injection of zebrafish embryos with PKM2 mRNA ameliorated the neuronal defects induced in zebrafish embryos by 5' Tyr-tRF. Our findings partially uncovered a mechanistic link between 5' Tyr-tRF and neuronal cell death that is regulated by PKM2.
Collapse
|
13
|
Isidor MS, Winther S, Markussen LK, Basse AL, Quistorff B, Nedergaard J, Emanuelli B, Hansen JB. Pyruvate kinase M2 represses thermogenic gene expression in brown adipocytes. FEBS Lett 2019; 594:1218-1225. [PMID: 31823361 DOI: 10.1002/1873-3468.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022]
Abstract
Utilizing the thermogenic capacity of brown adipose tissue is a potential anti-obesity strategy; therefore, the mechanisms controlling expression of thermogenesis-related genes are of interest. Pyruvate kinase (PK) catalyzes the last step of glycolysis and exists as four isoenzymes: PK, liver, PK, red blood cell, PK, muscle (PKM1 and PKM2). PKM2 has both glycolytic and nuclear functions. Here, we report that PKM2 is enriched in brown adipose compared with white adipose tissue. Specific knockdown of PKM2 in mature brown adipocytes demonstrates that silencing of PKM2 does not lead to a decrease in PK activity, but causes a robust upregulation of thermogenic uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21) gene expression. This increase is not mediated by any of the known mechanisms for PKM2-regulated gene expression, thus implying the existence of a novel mechanism for PKM2-dependent effects on gene expression.
Collapse
Affiliation(s)
- Marie S Isidor
- Department of Biology, University of Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Denmark.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Sally Winther
- Department of Biology, University of Copenhagen, Denmark
| | | | - Astrid L Basse
- Department of Biology, University of Copenhagen, Denmark
| | - Bjørn Quistorff
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Denmark
| |
Collapse
|
14
|
Xu D, Liang J, Lin J, Yu C. PKM2: A Potential Regulator of Rheumatoid Arthritis via Glycolytic and Non-Glycolytic Pathways. Front Immunol 2019; 10:2919. [PMID: 31921178 PMCID: PMC6930793 DOI: 10.3389/fimmu.2019.02919] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Immunometabolism provides a new perspective on the pathogenesis of rheumatoid arthritis (RA). In recent years, there have been investigations focusing on the role of intracellular glucose metabolism in the pathogenesis of RA. Previous studies have shown that glycolysis of synovial tissue is increased in RA patients, while glycolysis inhibitors can significantly inhibit synovitis. Pyruvate kinase (PK) is a key enzyme in glycolysis, catalyzing the final rate-limiting step in the process. An isoform of PK, PKM2, provides favorable conditions for the survival of tumor cells via its glycolytic or non-glycolytic functions and has become a potential therapeutic target in tumors. RA synovium has the characteristic of tumor-like growth, and, moreover, increased expression of PKM2 was identified in the synovial tissue of RA patients in recent studies, indicating the underlying role of PKM2 in RA. PKM2 has potential value as a new therapeutic target or biomarker for RA, but its exact role in RA remains unclear. In this review, the properties of PKM2 and existing research concerning PKM2 and RA are thoroughly reviewed and summarized, and the possible role and mechanism of PKM2 in RA are discussed.
Collapse
Affiliation(s)
- Danyi Xu
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junyu Liang
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Suzuki A, Puri S, Leland P, Puri A, Moudgil T, Fox BA, Puri RK, Joshi BH. Subcellular compartmentalization of PKM2 identifies anti-PKM2 therapy response in vitro and in vivo mouse model of human non-small-cell lung cancer. PLoS One 2019; 14:e0217131. [PMID: 31120964 PMCID: PMC6532891 DOI: 10.1371/journal.pone.0217131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/06/2019] [Indexed: 01/09/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is an alternatively spliced variant, which mediates the conversion of glucose to lactate in cancer cells under normoxic conditions, known as the Warburg effect. Previously, we demonstrated that PKM2 is one of 97 genes that are overexpressed in non-small-cell lung cancer (NSCLC) cell lines. Herein, we demonstrate a novel role of subcellular PKM2 expression as a biomarker of therapeutic response after targeting this gene by shRNA or small molecule inhibitor (SMI) of PKM2 enzyme activity in vitro and in vivo. We examined two established lung cancer cell lines, nine patients derived NSCLC and three normal lung fibroblast cell lines for PKM2 mRNA, protein and enzyme activity by RT-qPCR, immunocytochemistry (ICC), and Western blot analysis. All eleven NSCLC cell lines showed upregulated PKM2 enzymatic activity and protein expression mainly in their cytoplasm. Targeting PKM2 by shRNA or SMI, NSCLC cells showed significantly reduced mRNA, enzyme activity, cell viability, and colony formation, which also downregulated cytosolic PKM2 and upregulated nuclear enzyme activities. Normal lung fibroblast cell lines did not express PKM2, which served as negative controls. PKM2 targeting by SMI slowed tumor growth while gene-silencing significantly reduced growth of human NSCLC xenografts. Tumor sections from responding mice showed >70% reduction in cytoplasmic PKM2 with low or undetectable nuclear staining by immunohistochemistry (IHC). In sharp contrast, non-responding tumors showed a >38% increase in PKM2 nuclear staining with low or undetectable cytoplasmic staining. In conclusion, these results confirmed PKM2 as a target for cancer therapy and an unique function of subcellular PKM2, which may characterize therapeutic response to anti-PKM2 therapy in NSCLC.
Collapse
Affiliation(s)
- Akiko Suzuki
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Sachin Puri
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Pamela Leland
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Ankit Puri
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Tarsem Moudgil
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Bernard A. Fox
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, OHSU, Portland, Oregon, United States of America
| | - Raj K. Puri
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Bharat H. Joshi
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lin Y, Zhai H, Ouyang Y, Lu Z, Chu C, He Q, Cao X. Knockdown of PKM2 enhances radiosensitivity of cervical cancer cells. Cancer Cell Int 2019; 19:129. [PMID: 31114449 PMCID: PMC6518815 DOI: 10.1186/s12935-019-0845-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background Pyruvate kinase isozyme type M2 (PKM2) catalyzes the final step in glycolysis and has been found to be up-regulated in multiple human malignancies. However, whether PKM2 regulates the radiosensitivity of human cervical cancer (CC) remains unknown. Methods The expression of PKM2 in 94 patients with CC in the complete response (CR) and noncomplete response (nCR) groups, was evaluated by immunohistochemistry. The effect of PKM2 inhibition on radiosensitivity, the cell cycle, DNA damage, and apoptosis was evaluated by immunofluorescence analysis, colony formation assay, flow cytometry analysis and Western blotting. Results PKM2 expression was more highly expressed in the nCR group than that in CR group and PKM2 expression was enhanced in CC cells after ionizing radiation (IR). In addition, knockdown of PKM2 combined with IR significantly reduced cell growth, promoted apoptosis, and enhanced radiosensitivity. Additionally, knockdown of PKM2 with IR resulted in increased phosphorylation of DNA repair checkpoint proteins (ATM) and phosphorylated-H2AX. Moreover, knockdown of PKM2 combined with IR significantly increased the expression of cleaved caspase 3 and caspase 9, whereas Bcl2 expression was suppressed. Furthermore, knockdown of PKM2 combined with IR markedly reduced the expression of several cancer stem cell biomarkers in vitro, including NANOG, OCT4, SOX2, and Bmi1. Conclusions The results of our study suggests that PKM2 might be involved in mediating CC radiosensitivity and is identified as a potentially important target to enhance radiosensitivity in patients with CC.
Collapse
Affiliation(s)
- Yanzhu Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hui Zhai
- Gynecology Department, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Yi Ouyang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhiyuan Lu
- 3Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chengbiao Chu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qianting He
- 3Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinping Cao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
17
|
Amin S, Yang P, Li Z. Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer 2019; 1871:331-341. [PMID: 30826427 DOI: 10.1016/j.bbcan.2019.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Rewiring glucose metabolism, termed as Warburg effect or aerobic glycolysis, is a common signature of cancer cells to meet their high energetic and biosynthetic demands of rapid growth and proliferation. Pyruvate kinase M2 isoform (PKM2) is a key player in such metabolic reshuffle, which functions as a rate-limiting glycolytic enzyme in the cytosol of highly-proliferative cancer cells. During the recent decades, PKM2 has been extensively studied in non-canonical localizations such as nucleus, mitochondria, and extracellular secretion, and pertained to novel biological functions in tumor progression. Such functions of PKM2 open a new avenue for cancer researchers. This review summarizes up-to-date functions of PKM2 at various subcellular localizations of cancer cells and draws attention to the translocation of PKM2 from cytosol into the nucleus induced by posttranslational modifications. Moreover, PKM2 in tumor cells could have an important role in resistance acquisition processes against various chemotherapeutic drugs, which have raised a concern on PKM2 as a potential therapeutic target. Finally, we summarize the current status and future perspectives to improve the potential of PKM2 as a therapeutic target for the development of anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
18
|
Saleme B, Gurtu V, Zhang Y, Kinnaird A, Boukouris AE, Gopal K, Ussher JR, Sutendra G. Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity. Sci Transl Med 2019; 11:eaau8866. [PMID: 30728290 DOI: 10.1126/scitranslmed.aau8866] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced cardiotoxicity (CIC) is a common clinical problem that compromises effective anticancer therapies. Many chemotherapeutics (including anthracyclines, such as doxorubicin) induce the proapoptotic transcription factor p53 in the tumor and nonspecifically in the heart, promoting heart failure. Although inhibition of p53 shows benefit in preclinical heart failure models, it would not be an attractive adjuvant therapy for CIC, because it would prevent tumor regression. A p53-targeting therapy that would decrease chemotherapy-induced apoptosis in the myocardium and, at the same time, enhance apoptosis in the tumor would be ideal. Here, we propose that differences in oxygen tension between the myocardium and the tumor could provide a platform for redox-dependent tissue-specific therapies. We show by coimmunoprecipitation and mass spectrometry that the redox-regulated pyruvate kinase muscle 2 (PKM2) directly binds with p53 and that the redox status of cysteine-423 of tetrameric (but not monomeric) PKM2 is critical for the differential regulation of p53 transcriptional activity. Tetrameric PKM2 suppresses p53 transcriptional activity and apoptosis in a high oxidation state but enhances them in a low oxidation one. We show that the oxidation state (along with cysteine-423 oxidation) is higher in the heart compared to the tumor of the same animal. Treatment with TEPP-46 (a compound that stabilizes tetrameric PKM2) suppressed doxorubicin-induced cardiomyocyte apoptosis, preventing cardiac dysfunction, but enhanced cancer cell apoptosis and tumor regression in the same animals in lung cancer models. Thus, our work suggests that redox-dependent differences in common proteins expressed in the myocardium and tumor can be exploited therapeutically for tissue selectivity in CIC.
Collapse
Affiliation(s)
- Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Vikram Gurtu
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Adam Kinnaird
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta T6G 1Z1, Canada
| | - Aristeidis E Boukouris
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - John R Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2J7, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 2J7, Canada
| |
Collapse
|
19
|
A critical review of the role of M 2PYK in the Warburg effect. Biochim Biophys Acta Rev Cancer 2019; 1871:225-239. [PMID: 30708038 PMCID: PMC6525063 DOI: 10.1016/j.bbcan.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
It is becoming generally accepted in recent literature that the Warburg effect in cancer depends on inhibition of M2PYK, the pyruvate kinase isozyme most commonly expressed in tumors. We remain skeptical. There continues to be a general lack of solid experimental evidence for the underlying idea that a bottle neck in aerobic glycolysis at the level of M2PYK results in an expanded pool of glycolytic intermediates (which are thought to serve as building blocks necessary for proliferation and growth of cancer cells). If a bottle neck at M2PYK exists, then the remarkable increase in lactate production by cancer cells is a paradox, particularly since a high percentage of the carbons of lactate originate from glucose. The finding that pyruvate kinase activity is invariantly increased rather than decreased in cancer undermines the logic of the M2PYK bottle neck, but is consistent with high lactate production. The "inactive" state of M2PYK in cancer is often described as a dimer (with reduced substrate affinity) that has dissociated from an active tetramer of M2PYK. Although M2PYK clearly dissociates easier than other isozymes of pyruvate kinase, it is not clear that dissociation of the tetramer occurs in vivo when ligands are present that promote tetramer formation. Furthermore, it is also not clear whether the dissociated dimer retains any activity at all. A number of non-canonical functions for M2PYK have been proposed, all of which can be challenged by the finding that not all cancer cell types are dependent on M2PYK expression. Additional in-depth studies of the Warburg effect and specifically of the possible regulatory role of M2PYK in the Warburg effect are needed.
Collapse
|
20
|
Chen J, Yu Y, Chen X, He Y, Hu Q, Li H, Han Q, Ren F, Li J, Li C, Bao J, Ren Z, Duan Z, Cui G, Sun R. MiR-139-5p is associated with poor prognosis and regulates glycolysis by repressing PKM2 in gallbladder carcinoma. Cell Prolif 2018; 51:e12510. [PMID: 30105813 PMCID: PMC6528956 DOI: 10.1111/cpr.12510] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Gallbladder carcinoma (GBC) is the most highly aggressive cancer of biliary tract, but effective therapeutics are lacking. Emerging evidence has unveiled that miR-139-5p is aberrantly downregulated in cancers, including GBC. However, the functions and mechanisms of miR-139-5p in GBC remain unclear. MATERIALS AND METHODS MiR-139-5p-overexpression was established in GBC cell lines, after which cell proliferation, migration, invasion, colony formation, and glucose metabolism were assayed in vitro. Subsequently, bioinformatics prediction and dual-luciferase reporter were performed to confirm that pyruvate kinase M2 (PKM2) was a direct target of miRNA-139-5p. Xenograft mouse models were applied to investigate the role of miR-139-5p in GBC tumourigenicity in vivo. In situ hybridization and immunohistochemical assays were performed to determine the relationships among miR-139-5p, PKM2 expression and clinical malignancies in GBC samples. RESULTS We found that miR-139-5p was substantially downregulated in GBC tissues. Low expression of miR-139-5p was significantly associated with poor clinical outcomes. GBC cell proliferation, migration, and invasion could be inhibited by overexpression of miR-139-5p either in vitro or in vivo. In addition, miR-139-5p overexpression could directly inhibit PKM2 expression and lead to suppression of glucose consumption, lactate production, and cellular ATP levels. Moreover, PKM2 was frequently upregulated in GBC and correlated with poor prognosis. Mechanistically, miRNA-139-5p inhibited cell proliferation, migration, and glycolysis in GBC, at least in part, by repressing PKM2. CONCLUSIONS These results demonstrated a novel role for miR-139-5p/PKM2 in GBC progression and provided potential prognostic predictors for GBC patients.
Collapse
Affiliation(s)
- Jianan Chen
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yan Yu
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaolong Chen
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuting He
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qiuyue Hu
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hongqiang Li
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qicai Han
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Fang Ren
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Juan Li
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chao Li
- Department of Bone and Soft TissueThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Jie Bao
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhigang Ren
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenfeng Duan
- Department of Orthopedic SurgeryDavid Geffen School of Medicine at UCLA Los AngelesLos AngelesCalifornia
| | - Guangying Cui
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ranran Sun
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
21
|
Kim B, Jang C, Dharaneeswaran H, Li J, Bhide M, Yang S, Li K, Arany Z. Endothelial pyruvate kinase M2 maintains vascular integrity. J Clin Invest 2018; 128:4543-4556. [PMID: 30222136 PMCID: PMC6159968 DOI: 10.1172/jci120912] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022] Open
Abstract
The M2 isoform of pyruvate kinase (PKM2) is highly expressed in most cancer cells, and has been studied extensively as a driver of oncogenic metabolism. In contrast, the role of PKM2 in nontransformed cells is little studied, and nearly nothing is known of its role, if any, in quiescent cells. We show here that endothelial cells express PKM2 almost exclusively over PKM1. In proliferating endothelial cells, PKM2 is required to suppress p53 and maintain cell cycle progression. In sharp contrast, PKM2 has a strikingly different role in quiescent endothelial cells, where inhibition of PKM2 leads to degeneration of tight junctions and barrier function. Mechanistically, PKM2 regulates barrier function independently of its canonical activity as a pyruvate kinase. Instead, PKM2 suppresses NF-kB and its downstream target, the vascular permeability factor angiopoietin 2. As a consequence, loss of endothelial cell PKM2 in vivo predisposes mice to VEGF-induced vascular leak, and to severe bacteremia and death in response to sepsis. Together, these data demonstrate new roles of PKM2 in quiescent cells, and highlight the need for caution in developing cancer therapies that target PKM2.
Collapse
Affiliation(s)
- Boa Kim
- Cardiovascular Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Harita Dharaneeswaran
- Cardiovascular Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Li
- Cardiovascular Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohit Bhide
- Cardiovascular Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Yang
- Cardiovascular Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristina Li
- Cardiovascular Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zolt Arany
- Cardiovascular Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Biamonti G, Maita L, Montecucco A. The Krebs Cycle Connection: Reciprocal Influence Between Alternative Splicing Programs and Cell Metabolism. Front Oncol 2018; 8:408. [PMID: 30319972 PMCID: PMC6168629 DOI: 10.3389/fonc.2018.00408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a pervasive mechanism that molds the transcriptome to meet cell and organism needs. However, how this layer of gene expression regulation is coordinated with other aspects of the cell metabolism is still largely undefined. Glucose is the main energy and carbon source of the cell. Not surprisingly, its metabolism is finely tuned to satisfy growth requirements and in response to nutrient availability. A number of studies have begun to unveil the connections between glucose metabolism and splicing programs. Alternative splicing modulates the ratio between M1 and M2 isoforms of pyruvate kinase in this way determining the choice between aerobic glycolysis and complete glucose oxidation in the Krebs cycle. Reciprocally, intermediates in the Krebs cycle may impact splicing programs at different levels by modulating the activity of 2-oxoglutarate-dependent oxidases. In this review we discuss the molecular mechanisms that coordinate alternative splicing programs with glucose metabolism, two aspects with profound implications in human diseases.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Lucia Maita
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | |
Collapse
|
23
|
Lu Y, Yan JS, Xia L, Qin K, Yin QQ, Xu HT, Gao MQ, Qu XN, Sun YT, Chen GQ. 2-Bromopalmitate targets retinoic acid receptor alpha and overcomes all-trans retinoic acid resistance of acute promyelocytic leukemia. Haematologica 2018; 104:102-112. [PMID: 30076181 PMCID: PMC6312026 DOI: 10.3324/haematol.2018.191916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
Fatty acid oxidation dependency of leukemia cells has been documented in recent studies. Pharmacologic inhibition of fatty acid oxidation, thereby, displays significant effects in suppressing leukemia. 2-Bromopalmitate, a palmitate analogue, was initially identified as an inhibitor of fatty acid oxidation, and recently recognized as an inhibitor of protein palmitoylation. However, the effects of 2-Bromopalmitate on leukemia and its cellular targets remain obscure. Herein, we discover in cultured cell lines, a transplantable mouse model, and primary blasts that 2-Bromopalmitate presents synergistic differentiation induction with all-trans retinoic acid in acute promyelocytic leukemia. Moreover, 2-Bromopalmitate overcomes all-trans retinoic acid resistance in all-trans retinoic acid-resistant cells and leukemic mice. Mechanistically, 2-Bromopalmitate covalently binds at cysteine 105 and cysteine 174 of retinoic acid receptor alpha (RARα) and stabilizes RARα protein in the presence of all-trans retinoic acid which is known to induce RARα degradation, leading to enhanced transcription of RARα-target genes. Mutation of both cysteines largely abrogates the synergistic effect of 2-Bromopalmitate on all-trans retinoic acid-induced differentiation, demonstrating that 2-Bromopalmitate promotes all-trans retinoic acid-induced differentiation through binding RARα. All-trans retinoic acid-based regimens including arsenic trioxide or chemotherapy, as preferred therapy for acute promyelocytic leukemia, induce adverse events and irreversible resistance. We expect that combining all-trans retinoic acid with 2-Bromopalmitate would be a promising therapeutic strategy for acute promyelocytic leukemia, especially for overcoming all-trans retinoic acid resistance of relapsed acute promyelocytic leukemia patients.
Collapse
Affiliation(s)
- Ying Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM)
| | - Jin-Song Yan
- Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University
| | - Li Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM)
| | - Kang Qin
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM)
| | - Qian-Qian Yin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Hong-Tao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Meng-Qing Gao
- Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University
| | - Xiao-Ning Qu
- Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University
| | - Yu-Ting Sun
- Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM)
| |
Collapse
|
24
|
Xia L, Qin K, Wang XR, Wang XL, Zhou AW, Chen GQ, Lu Y. Pyruvate kinase M2 phosphorylates H2AX and promotes genomic instability in human tumor cells. Oncotarget 2017; 8:109120-109134. [PMID: 29312595 PMCID: PMC5752508 DOI: 10.18632/oncotarget.22621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/28/2017] [Indexed: 01/02/2023] Open
Abstract
Pyruvate kinase (PK) catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP, a rate-limiting reaction in glycolysis. M2 isoform of PK (PKM2) is the predominant form of PK expressed in tumors. In addition to its well established cytosolic functions as a glycolytic enzyme, PKM2 displays nuclear localization and important nonmetabolic functions in tumorigenesis. Herein, we report that nuclear PKM2 interacts with histone H2AX under DNA damage conditions. Depletion of PKM2 decreased the level of serine 139-phosphorylated H2AX (γ-H2AX) in response to DNA damage. The in vitro kinase assay reveals that PKM2 directly phosphorylates H2AX at serine 139, which is abolished by the deletion of FBP-binding pocket of PKM2 (PKM2-Del515-520). Replacement of wild type PKM2 with the kinase dead mutant PKM2-Del515-520 leads to decreased cell proliferation and chromosomal aberrations under DNA damage conditions. Together, we propose that PKM2 promotes genomic instability in tumor cells which involves direct phosphorylation of H2AX. These findings reveal PKM2 as a novel modulator for genomic instability in tumor cells.
Collapse
Affiliation(s)
- Li Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kang Qin
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xin-Ran Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xiao-Ling Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ai-Wu Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ying Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|