1
|
Bravo-Gonzalez A, Alasfour M, Soong D, Noy J, Pongas G. Advances in Targeted Therapy: Addressing Resistance to BTK Inhibition in B-Cell Lymphoid Malignancies. Cancers (Basel) 2024; 16:3434. [PMID: 39456530 PMCID: PMC11506569 DOI: 10.3390/cancers16203434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/28/2024] Open
Abstract
B-cell lymphoid malignancies are a heterogeneous group of hematologic cancers, where Bruton's tyrosine kinase (BTK) inhibitors have received FDA approval for several subtypes. The first-in-class covalent BTK inhibitor, Ibrutinib, binds to the C481 amino acid residue to block the BTK enzyme and prevent the downstream signaling. Resistance to covalent BTK inhibitors (BTKi) can occur through mutations at the BTK binding site (C481S) but also other BTK sites and the phospholipase C gamma 2 (PLCγ2) resulting in downstream signaling. To bypass the C481S mutation, non-covalent BTKi, such as Pirtobrutinib, were developed and are active against both wild-type and the C481S mutation. In this review, we discuss the molecular and genetic mechanisms which contribute to acquisition of resistance to covalent and non-covalent BTKi. In addition, we discuss the new emerging class of BTK degraders, which utilize the evolution of proteolysis-targeting chimeras (PROTACs) to degrade the BTK protein and constitute an important avenue of overcoming resistance. The moving landscape of resistance to BTKi and the development of new therapeutic strategies highlight the ongoing advances being made towards the pursuit of a cure for B-cell lymphoid malignancies.
Collapse
Affiliation(s)
| | - Maryam Alasfour
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Deborah Soong
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Jose Noy
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Georgios Pongas
- Division of Hematology, Department of Medicine, University of Miami and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
2
|
Abdoul-Azize S, Hami R, Riou G, Derambure C, Charbonnier C, Vannier JP, Guzman ML, Schneider P, Boyer O. Glucocorticoids paradoxically promote steroid resistance in B cell acute lymphoblastic leukemia through CXCR4/PLC signaling. Nat Commun 2024; 15:4557. [PMID: 38811530 PMCID: PMC11136999 DOI: 10.1038/s41467-024-48818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Glucocorticoid (GC) resistance in childhood relapsed B-cell acute lymphoblastic leukemia (B-ALL) represents an important challenge. Despite decades of clinical use, the mechanisms underlying resistance remain poorly understood. Here, we report that in B-ALL, GC paradoxically induce their own resistance by activating a phospholipase C (PLC)-mediated cell survival pathway through the chemokine receptor, CXCR4. We identify PLC as aberrantly activated in GC-resistant B-ALL and its inhibition is able to induce cell death by compromising several transcriptional programs. Mechanistically, dexamethasone (Dex) provokes CXCR4 signaling, resulting in the activation of PLC-dependent Ca2+ and protein kinase C signaling pathways, which curtail anticancer activity. Treatment with a CXCR4 antagonist or a PLC inhibitor improves survival of Dex-treated NSG mice in vivo. CXCR4/PLC axis inhibition significantly reverses Dex resistance in B-ALL cell lines (in vitro and in vivo) and cells from Dex resistant ALL patients. Our study identifies how activation of the PLC signalosome in B-ALL by Dex limits the upfront efficacy of this chemotherapeutic agent.
Collapse
Affiliation(s)
| | - Rihab Hami
- Univ Brest, Inserm, UMR 1101, F-29200, Brest, France
| | - Gaetan Riou
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
| | | | | | | | - Monica L Guzman
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Pascale Schneider
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
- Rouen University Hospital, Department of Pediatric Immuno-Hemato-Oncology, F-76000, Rouen, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
- Rouen University Hospital, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
3
|
Visvanathan R, Utsuki T, Beck DE, Clayton WB, Lendy E, Sun KL, Liu Y, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes. PLoS One 2024; 19:e0299541. [PMID: 38551930 PMCID: PMC10980208 DOI: 10.1371/journal.pone.0299541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/12/2024] [Indexed: 04/01/2024] Open
Abstract
The activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes.
Collapse
Affiliation(s)
- Ramya Visvanathan
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Tadanobu Utsuki
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
| | - Daniel E. Beck
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
| | - W. Brent Clayton
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Emma Lendy
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Kuai-lin Sun
- Cayman Chemical Company, Ann Arbor, MI, United States of America
| | - Yinghui Liu
- Cayman Chemical Company, Ann Arbor, MI, United States of America
| | - Kirk W. Hering
- Cayman Chemical Company, Ann Arbor, MI, United States of America
| | - Andrew Mesecar
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Karson S. Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
| |
Collapse
|
4
|
Mougeot JLC, Beckman MF, Alexander AS, Hovan AJ, Hasséus B, Legert KG, Johansson JE, von Bültzingslöwen I, Brennan MT, Mougeot FB. Single nucleotide polymorphisms conferring susceptibility to leukemia and oral mucositis: a multi-center pilot study of patients prior to conditioning therapy for hematopoietic cell transplant. Support Care Cancer 2024; 32:220. [PMID: 38467943 DOI: 10.1007/s00520-024-08408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Leukemias have been associated with oral manifestations, reflecting susceptibility to cancer therapy-induced oral mucositis. We sought to identify SNPs associated with both leukemia and oral mucositis (OM). METHODS Whole exome sequencing was performed on leukemia and non-cancer blood disorder (ncBD) patients' saliva samples (N = 50) prior to conditioning therapy. WHO OM grading scores were determined: moderate to severe (OM2-4) vs. none to mild (OM0-1). Reads were processed using Trim Galorev0.6.7, Bowtie2v2.4.1, Samtoolsv1.10, Genome Analysis Toolkit (GATK)v4.2.6.1, and DeepVariantv1.4.0. We utilized the following pipelines: P1 analysis with PLINK2v3.7, SNP2GENEv1.4.1 and MAGMAv1.07b, and P2 [leukemia (N = 42) vs. ncBDs (N = 8)] and P3 [leukemia + OM2-4 (N = 18) vs. leukemia + OM0-1 (N = 24)] with Z-tests of genotypes and protein-protein interaction determination. GeneCardsSuitev5.14 was used to identify phenotypes (P1 and P2, leukemia; P3, oral mucositis) and average disease-causing likelihood and DGIdb for drug interactions. P1 and P2 genes were analyzed with CytoScape plugin BiNGOv3.0.3 to retrieve overrepresented Gene Ontology (GO) terms and Ensembl's VEP for SNP outcomes. RESULTS In P1, 457 candidate SNPs (28 genes) were identified and 21,604 SNPs (1016 genes) by MAGMAv1.07b. Eighteen genes were associated with "leukemia" per VarElectv5.14 analysis and predicted to be deleterious. In P2 and P3, 353 and 174 SNPs were significant, respectively. STRINGv12.0 returned 77 and 32 genes (C.L. = 0.7) for P2 and P3, respectively. VarElectv5.14 determined 60 genes from P2 associated with "leukemia" and 11 with "oral mucositis" from P3. Overrepresented GO terms included "cellular process," "signaling," "hemopoiesis," and "regulation of immune response." CONCLUSIONS We identified candidate SNPs possibly conferring susceptibility to develop leukemia and oral mucositis.
Collapse
Affiliation(s)
- Jean-Luc C Mougeot
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA.
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Micaela F Beckman
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam S Alexander
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allan J Hovan
- BC Cancer, Oral Oncology and Dentistry, Vancouver, BC, Canada
| | - Bengt Hasséus
- Department of Oral Medicine and Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Karin Garming Legert
- Department of Dental Medicine, University Dental Clinic, Karolinska Institutet, Huddinge, Sweden
| | - Jan-Erik Johansson
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Michael T Brennan
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA.
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Schmid VK, Hobeika E. B cell receptor signaling and associated pathways in the pathogenesis of chronic lymphocytic leukemia. Front Oncol 2024; 14:1339620. [PMID: 38469232 PMCID: PMC10926848 DOI: 10.3389/fonc.2024.1339620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
B cell antigen receptor (BCR) signaling is a key driver of growth and survival in both normal and malignant B cells. Several lines of evidence support an important pathogenic role of the BCR in chronic lymphocytic leukemia (CLL). The significant improvement of CLL patients' survival with the use of various BCR pathway targeting inhibitors, supports a crucial involvement of BCR signaling in the pathogenesis of CLL. Although the treatment landscape of CLL has significantly evolved in recent years, no agent has clearly demonstrated efficacy in patients with treatment-refractory CLL in the long run. To identify new drug targets and mechanisms of drug action in neoplastic B cells, a detailed understanding of the molecular mechanisms of leukemic transformation as well as CLL cell survival is required. In the last decades, studies of genetically modified CLL mouse models in line with CLL patient studies provided a variety of exciting data about BCR and BCR-associated kinases in their role in CLL pathogenesis as well as disease progression. BCR surface expression was identified as a particularly important factor regulating CLL cell survival. Also, BCR-associated kinases were shown to provide a crosstalk of the CLL cells with their tumor microenvironment, which highlights the significance of the cells' milieu in the assessment of disease progression and treatment. In this review, we summarize the major findings of recent CLL mouse as well as patient studies in regard to the BCR signalosome and discuss its relevance in the clinics.
Collapse
Affiliation(s)
| | - Elias Hobeika
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
6
|
Parigger T, Drothler S, Scherhäufl C, Gassner FJ, Schubert M, Steiner M, Höpner JP, Hödlmoser A, Schultheis L, Bakar AA, Neureiter D, Pleyer L, Egle A, Greil R, Geisberger R, Zaborsky N. Oncogenic MTOR Signaling Axis Compensates BTK Inhibition in a Chronic Lymphocytic Leukemia Patient with Richter Transformation: A Case Report and Review of the Literature. Acta Haematol 2024; 147:604-611. [PMID: 38402867 PMCID: PMC11441378 DOI: 10.1159/000537791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Targeting the B-cell receptor pathway via ibrutinib, a specific inhibitor of Bruton's tyrosine kinase, has shown marked clinical efficacy in treatment of patients with chronic lymphocytic leukemia (CLL), thus becoming a preferred first line option independent of risk factors. However, acquired resistance to ibrutinib poses a major clinical problem and requires the development of novel treatment combinations to increase efficacy and counteract resistance development and clinical relapse rates. CASE PRESENTATION In this study, we performed exome and transcriptome analyses of an ibrutinib resistant CLL patient in order to investigate genes and expression patterns associated with ibrutinib resistance. Here, we provide evidence that ibrutinib resistance can be attributed to aberrant mammalian target of rapamycin (MTOR) signaling. CONCLUSION Thus, our study proposes that combined use of MTOR inhibitors with ibrutinib could be a possible option to overcome therapy resistance in ibrutinib treated patients.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Agammaglobulinaemia Tyrosine Kinase/genetics
- TOR Serine-Threonine Kinases/metabolism
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- Adenine/analogs & derivatives
- Piperidines/therapeutic use
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/therapeutic use
- Male
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
Collapse
Affiliation(s)
- Thomas Parigger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Stephan Drothler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Christian Scherhäufl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Markus Steiner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Jan Philip Höpner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Alexandra Hödlmoser
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Lena Schultheis
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Aryunni Abu Bakar
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Department of Biosciences, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Lisa Pleyer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Laboratory for Molecular Cytology (MZL), Salzburg, Austria
| | - Alexander Egle
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
- Laboratory for Molecular Cytology (MZL), Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
7
|
Li W, Sano R, Apatira M, DeAnda F, Gururaja T, Yang M, Lundgaard G, Pan C, Liu J, Zhai Y, Yoon WH, Wang L, Tse C, Souers AJ, Lee CH. Bruton's Tyrosine Kinase Inhibitors with Distinct Binding Modes Reveal Differential Functional Impact on B-Cell Receptor Signaling. Mol Cancer Ther 2024; 23:35-46. [PMID: 37735104 PMCID: PMC10762339 DOI: 10.1158/1535-7163.mct-22-0642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/17/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Small molecule inhibitors of Bruton's tyrosine kinase (BTK) have been approved for the treatment of multiple B-cell malignancies and are being evaluated for autoimmune and inflammatory diseases. Various BTK inhibitors (BTKi) have distinct potencies, selectivity profiles, and binding modes within the ATP-binding site. On the basis of the latter feature, BTKis can be classified into those that occupy the back-pocket, H3 pocket, and the hinge region only. Hypothesizing that differing binding modes may have differential impact on the B-cell receptor (BCR) signaling pathway, we evaluated the activities of multiple BTKis in B-cell lymphoma models in vitro and in vivo. We demonstrated that, although all three types of BTKis potently inhibited BTK-Y223 autophosphorylation and phospholipase C gamma 2 (PLCγ2)-Y1217 transphosphorylation, hinge-only binders were defective in inhibiting BTK-mediated calcium mobilization upon BCR activation. In addition, PLCγ2 activation was effectively blocked by back-pocket and H3 pocket binders but not by hinge-only binders. Further investigation using TMD8 cells deficient in Rac family small GTPase 2 (RAC2) revealed that RAC2 functioned as a bypass mechanism, allowing for residual BCR signaling and PLCγ2 activation when BTK kinase activity was fully inhibited by the hinge-only binders. These data reveal a kinase activity-independent function of BTK, involving RAC2 in transducing BCR signaling events, and provide mechanistic rationale for the selection of clinical candidates for B-cell lymphoma indications.
Collapse
Affiliation(s)
- Wei Li
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Renata Sano
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Mutiah Apatira
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Felix DeAnda
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | | | - Muhua Yang
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Greta Lundgaard
- Drug Discovery Science and Technology, AbbVie Inc., Lake County, Illinois
| | - Chin Pan
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Jing Liu
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Yongjiao Zhai
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Woo Hyun Yoon
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Longcheng Wang
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Chris Tse
- Oncology Discovery, AbbVie Inc., Lake County, Illinois
| | | | - Chih-Hung Lee
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| |
Collapse
|
8
|
Tsai AP, Dong C, Lin PBC, Oblak AL, Viana Di Prisco G, Wang N, Hajicek N, Carr AJ, Lendy EK, Hahn O, Atkins M, Foltz AG, Patel J, Xu G, Moutinho M, Sondek J, Zhang Q, Mesecar AD, Liu Y, Atwood BK, Wyss-Coray T, Nho K, Bissel SJ, Lamb BT, Landreth GE. Genetic variants of phospholipase C-γ2 alter the phenotype and function of microglia and confer differential risk for Alzheimer's disease. Immunity 2023; 56:2121-2136.e6. [PMID: 37659412 PMCID: PMC10564391 DOI: 10.1016/j.immuni.2023.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aβ clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.
Collapse
Affiliation(s)
- Andy P Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuanpeng Dong
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gonzalo Viana Di Prisco
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nian Wang
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicole Hajicek
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam J Carr
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma K Lendy
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Oliver Hahn
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Micaiah Atkins
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aulden G Foltz
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jheel Patel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guixiang Xu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John Sondek
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qisheng Zhang
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew D Mesecar
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brady K Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kwangsik Nho
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie J Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Visvanathan R, Utsuki T, Beck DE, Lendy E, Sun KL, Liu Y, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel fluorogenic reporter substrate for 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (PLCγ2): Application to high-throughput screening for activators to treat Alzheimer's disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00024-2. [PMID: 36933698 DOI: 10.1016/j.slasd.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
A rare coding variant in PLCγ2 (P522R) expressed in microglia induces a mild activation of enzymatic activity when compared to wild-type. This mutation is reported to be protective against the cognitive decline associated with late-onset Alzheimer's disease (LOAD) and therefore, activation of wild-type PLCγ2 has been suggested as a potential therapeutic target for the prevention and treatment of LOAD. Additionally, PLCγ2 has been associated with other diseases such as cancer and some autoimmune disorders where mutations with much greater increases in PLCγ2 activity have been identified. Here, pharmacological inhibition may provide a therapeutic effect. In order to facilitate our investigation of the activity of PLCγ2, we developed an optimized fluorogenic substrate to monitor enzymatic activity in aqueous solution. This was accomplished by first exploring the spectral properties of various "turn-on" fluorophores. The most promising turn-on fluorophore was incorporated into a water-soluble PLCγ2 reporter substrate, which we named C8CF3-coumarin. The ability of PLCγ2 to enzymatically process C8CF3-coumarin was confirmed, and the kinetics of the reaction were determined. Reaction conditions were optimized to identify small molecule activators, and a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed with the goal of identifying small molecule activators of PLCγ2. The optimized screening conditions allowed identification of potential PLCγ2 activators and inhibitors, thus demonstrating the feasibility of this approach for high-throughput screening.
Collapse
Affiliation(s)
- Ramya Visvanathan
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Tadanobu Utsuki
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA
| | - Daniel E Beck
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA
| | - Emma Lendy
- IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kuai-Lin Sun
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Yinghui Liu
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Kirk W Hering
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Andrew Mesecar
- IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA.
| |
Collapse
|
10
|
Deshpande A, Munoz J. Targeted and cellular therapies in lymphoma: Mechanisms of escape and innovative strategies. Front Oncol 2022; 12:948513. [PMID: 36172151 PMCID: PMC9510896 DOI: 10.3389/fonc.2022.948513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
The therapeutic landscape for lymphomas is quite diverse and includes active surveillance, chemotherapy, immunotherapy, radiation therapy, and even stem cell transplant. Advances in the field have led to the development of targeted therapies, agents that specifically act against a specific component within the critical molecular pathway involved in tumorigenesis. There are currently numerous targeted therapies that are currently Food and Drug Administration (FDA) approved to treat certain lymphoproliferative disorders. Of many, some of the targeted agents include rituximab, brentuximab vedotin, polatuzumab vedotin, nivolumab, pembrolizumab, mogamulizumab, vemurafenib, crizotinib, ibrutinib, cerdulatinib, idelalisib, copanlisib, venetoclax, tazemetostat, and chimeric antigen receptor (CAR) T-cells. Although these agents have shown strong efficacy in treating lymphoproliferative disorders, the complex biology of the tumors have allowed for the malignant cells to develop various mechanisms of resistance to the targeted therapies. Some of the mechanisms of resistance include downregulation of the target, antigen escape, increased PD-L1 expression and T-cell exhaustion, mutations altering the signaling pathway, and agent binding site mutations. In this manuscript, we discuss and highlight the mechanism of action of the above listed agents as well as the different mechanisms of resistance to these agents as seen in lymphoproliferative disorders.
Collapse
Affiliation(s)
- Anagha Deshpande
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
- *Correspondence: Anagha Deshpande,
| | - Javier Munoz
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
11
|
Li K, Ran B, Wang Y, Liu L, Li W. PLCγ2 impacts microglia-related effectors revealing variants and pathways important in Alzheimer’s disease. Front Cell Dev Biol 2022; 10:999061. [PMID: 36147734 PMCID: PMC9485805 DOI: 10.3389/fcell.2022.999061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease mainly characterized by memory loss and cognitive decline. The etiology of AD is complex and remains incompletely understood. In recent years, genome-wide association studies (GWAS) have increasingly highlighted the central role of microglia in AD pathology. As a trans-membrane receptor specifically present on the microglia in the central nervous system, phosphatidylinositol-specific phospholipase C gamma 2 (PLCγ2) plays an important role in neuroinflammation. GWAS data and corresponding pathological research have explored the effects of PLCG2 variants on amyloid burden and tau pathologies that underline AD. The link between PLCγ2 and other AD-related effectors in human and mouse microglia has also been established, placing PLCγ2 downstream of the triggering receptor expressed on myeloid cells 2 (TREM2), toll-like receptor 4 (TLR4), Bruton’s tyrosine kinase (BTK), and colony-stimulating factor 1 receptor (CSF1R). Because the research on PLCγ2’s role in AD is still in its early stages, few articles have been published, therefore in this paper, we integrate the relevant research published to date, review the structural features, expression patterns, and related pathways of PLCγ2, and summarize the recent studies on important PLCG2 variants related to AD. Furthermore, the possibility and challenge of using PLCγ2 to develop therapeutic drugs for AD are also discussed.
Collapse
|
12
|
Arthur R, Wathen A, Lemm EA, Stevenson FK, Forconi F, Linley AJ, Steele AJ, Packham G, Valle-Argos B. BTK-independent regulation of calcium signalling downstream of the B-cell receptor in malignant B-cells. Cell Signal 2022; 96:110358. [PMID: 35597428 DOI: 10.1016/j.cellsig.2022.110358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
Abstract
BTK inhibitors (BTKi) have dramatically improved outcomes for patients with chronic lymphocytic leukaemia (CLL) and some forms of B-cell lymphoma. However, new strategies are needed to enhance responses. Here we have performed a detailed analysis of the effects of BTKi on B-cell receptor (BCR)-induced signalling using primary malignant cells from CLL patients and B-lymphoma cell lines. Although BTK is considered as a key activator of PLCγ2, BTKi (ibrutinib and acalabrutinib) failed to fully inhibit calcium responses in CLL samples with strong BCR signalling capacity. This BTKi-resistant calcium signalling was sufficient to engage downstream calcium-dependent transcription and suppress CLL cell apoptosis and was entirely independent of BTK and not just its kinase activity as similar results were obtained using a BTK-degrading PROTAC. BTK-independent calcium signalling was also observed in two B-lymphoma cell lines where BTKi had little effect on the initial phase of the calcium response but did accelerate the subsequent decline in intracellular calcium. In contrast to BTKi, calcium responses were completely blocked by inhibition of SYK in CLL and lymphoma cells. Engagement of BTK-independent calcium responses was associated with BTK-independent phosphorylation of PLCγ2 on Y753 and Y759 in both CLL and lymphoma cells. Moreover, in CLL samples, inhibition of RAC, which can mediate BTK-independent activation of PLCγ2, cooperated with ibrutinib to suppress calcium responses. BTK-independent calcium signalling may limit the effectiveness of BTKi to suppress BCR signalling responses and our results suggest inhibition of SYK or dual inhibition of BTK and RAC as alternative strategies to strengthen pathway blockade.
Collapse
Affiliation(s)
- Rachael Arthur
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Alexander Wathen
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Elizabeth A Lemm
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Freda K Stevenson
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Francesco Forconi
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Adam J Linley
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Institute of Systems, Molecular and Integrative Biology, 5(th) Floor Nuffield Building, Crown Street, Liverpool L69 3BX, United Kingdom
| | - Andrew J Steele
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Graham Packham
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.
| | - Beatriz Valle-Argos
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
13
|
Joseph RE, Lowe J, Fulton DB, Engen JR, Wales TE, Andreotti AH. The Conformational State of the BTK Substrate PLCγ Contributes to Ibrutinib Resistance. J Mol Biol 2022; 434:167422. [PMID: 34954235 PMCID: PMC8924901 DOI: 10.1016/j.jmb.2021.167422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022]
Abstract
Mutations in PLCγ, a substrate of the tyrosine kinase BTK, are often found in patients who develop resistance to the BTK inhibitor Ibrutinib. However, the mechanisms by which these PLCγ mutations cause Ibrutinib resistance are unclear. Under normal signaling conditions, BTK mediated phosphorylation of Y783 within the PLCγ cSH2-linker promotes the intramolecular association of this site with the adjacent cSH2 domain resulting in active PLCγ. Thus, the cSH2-linker region in the center of the regulatory gamma specific array (γSA) of PLCγ is a key feature controlling PLCγ activity. Even in the unphosphorylated state this linker exists in a conformational equilibrium between free and bound to the cSH2 domain. The position of this equilibrium is optimized within the properly regulated PLCγ enzyme but may be altered in the context of mutations. We therefore assessed the conformational status of four resistance associated mutations within the PLCγ γSA and find that they each alter the conformational equilibrium of the γSA leading to a shift toward active PLCγ. Interestingly, two distinct modes of mutation induced activation are revealed by this panel of Ibrutinib resistance mutations. These findings, along with the recently determined structure of fully autoinhibited PLCγ, provide new insight into the nature of the conformational change that occurs within the γSA regulatory region to affect PLCγ activation. Improving our mechanistic understanding of how B cell signaling escapes Ibrutinib treatment via mutations in PLCγ will aid in the development of strategies to counter drug resistance.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacques Lowe
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA. https://twitter.com/dbfulton
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. https://twitter.com/jrengen
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Phospholipase Cγ2 regulates endocannabinoid and eicosanoid networks in innate immune cells. Proc Natl Acad Sci U S A 2021; 118:2112971118. [PMID: 34607960 DOI: 10.1073/pnas.2112971118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Human genetic studies have pointed to a prominent role for innate immunity and lipid pathways in immunological and neurodegenerative disorders. Our understanding of the composition and function of immunomodulatory lipid networks in innate immune cells, however, remains incomplete. Here, we show that phospholipase Cγ2 (PLCγ2 or PLCG2)-mutations in which are associated with autoinflammatory disorders and Alzheimer's disease-serves as a principal source of diacylglycerol (DAG) pools that are converted into a cascade of bioactive endocannabinoid and eicosanoid lipids by DAG lipase (DAGL) and monoacylglycerol lipase (MGLL) enzymes in innate immune cells. We show that this lipid network is tonically stimulated by disease-relevant human mutations in PLCγ2, as well as Fc receptor activation in primary human and mouse macrophages. Genetic disruption of PLCγ2 in mouse microglia suppressed DAGL/MGLL-mediated endocannabinoid-eicosanoid cross-talk and also caused widespread transcriptional and proteomic changes, including the reorganization of immune-relevant lipid pathways reflected in reductions in DAGLB and elevations in PLA2G4A. Despite these changes, Plcg2 -/- mice showed generally normal proinflammatory cytokine and chemokine responses to lipopolysaccharide treatment, instead displaying a more restricted deficit in microglial activation that included impairments in prostaglandin production and CD68 expression. Our findings enhance the understanding of PLCγ2 function in innate immune cells, delineating a role in cross-talk with endocannabinoid/eicosanoid pathways and modulation of subsets of cellular responses to inflammatory stimuli.
Collapse
|
15
|
Jackson JT, Mulazzani E, Nutt SL, Masters SL. The role of PLCγ2 in immunological disorders, cancer, and neurodegeneration. J Biol Chem 2021; 297:100905. [PMID: 34157287 PMCID: PMC8318911 DOI: 10.1016/j.jbc.2021.100905] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol-specific phospholipase Cγ2 (PLCγ2) is a critical signaling molecule activated downstream from a variety of cell surface receptors that contain an intracellular immunoreceptor tyrosine-based activation motif. These receptors recruit kinases such as Syk, BTK, and BLNK to phosphorylate and activate PLCγ2, which then generates 1D-myo-inositol 1,4,5-trisphosphate and diacylglycerol. These well-known second messengers are required for diverse membrane functionality including cellular proliferation, endocytosis, and calcium flux. As a result, PLCγ2 dysfunction is associated with a variety of diseases including cancer, neurodegeneration, and immune disorders. The diverse pathologies associated with PLCγ2 are exemplified by distinct genetic variants. Inherited mutations at this locus cause PLCγ2-associated antibody deficiency and immune dysregulation, in some cases with autoinflammation. Acquired mutations at this locus, which often arise as a result of BTK inhibition to treat chronic lymphocytic leukemia, result in constitutive downstream signaling and lymphocyte proliferation. Finally, a third group of PLCγ2 variants actually has a protective effect in a variety of neurodegenerative disorders, presumably by increased uptake and degradation of deleterious neurological aggregates. Therefore, manipulating PLCγ2 activity either up or down could have therapeutic benefit; however, we require a better understanding of the signaling pathways propagated by these variants before such clinical utility can be realized. Here, we review the signaling roles of PLCγ2 in hematopoietic cells to help understand the effect of mutations driving immune disorders and cancer and extrapolate from this to roles which may relate to protection against neurodegeneration.
Collapse
Affiliation(s)
- Jacob T Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elisabeth Mulazzani
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Ghaderi A, Okhovat M, Wikanthi LSS, Svensson A, Palma M, Schultz J, Olin T, Österborg A, Mellstedt H, Hojjat‐Farsangi M. A ROR1 small molecule inhibitor (KAN0441571C) induced significant apoptosis of ibrutinib-resistant ROR1 + CLL cells. EJHAEM 2021; 2:498-502. [PMID: 35844694 PMCID: PMC9176142 DOI: 10.1002/jha2.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023]
Abstract
ROR1 - a receptor tyrosine kinase - is overexpressed in CLL. Ibrutinib, a Bruton's tyrosine kinase inhibitor, is clinically effective in CLL but patients may develop resistance. We evaluated the effect of an ROR1 inhibitor, KAN0441571C, in CLL cells from six patients obtained before and after developing resistance to ibrutinib. The ROR1 inhibitor induced apoptosis in ibrutinib-resistant CLL cells to the same degree as in ibrutinib-sensitive cells and dephosphorylated ROR1. This was also noted in one patient who became resistant to both ibrutinib and the Bcl-2 inhibitor venetoclax. The combination of ROR1 inhibitor and venetoclax had a synergistic apoptotic effect on ibrutinib-resistant cells.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
| | - Mohammad‐Ali Okhovat
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
| | | | - Ann Svensson
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
| | - Marzia Palma
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
- Department of HematologyKarolinska University Hospital SolnaStockholmSweden
| | - Johan Schultz
- Kancera AB, Karolinska Institute Science ParkSolnaSweden
| | - Thomas Olin
- Kancera AB, Karolinska Institute Science ParkSolnaSweden
| | - Anders Österborg
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
- Department of HematologyKarolinska University Hospital SolnaStockholmSweden
| | - Håkan Mellstedt
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
| | | |
Collapse
|
17
|
Abstract
Targeting BCR and BCL-2 signaling is a widely used therapeutic strategy for chronic lymphocytic leukemia. C481S mutation decreases the covalent binding affinity of ibrutinib to BTK, resulting in reversible rather than irreversible inhibition. In addition to BTK, mutations in PLCG2 have been demonstrated to mediate acquired ibrutinib resistance. Venetoclax, a highly selective BCL2 inhibitor, has high affinity to the BH3-binding grove of BCL2. Mutation in BCL2 (Gly101Val) decreases the affinity of BCL2 for venetoclax and confers acquired resistance in cell lines and primary patient cells. This review discusses the common mechanisms of resistance to targeted therapies in chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Shanmugapriya Thangavadivel
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 455D Wiseman Hall CCC, 410 West 12th Avenue, Columbus, OH 43210, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 455D Wiseman Hall CCC, 410 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Targeting phosphatidylinositol 3 kinase-β and -δ for Bruton tyrosine kinase resistance in diffuse large B-cell lymphoma. Blood Adv 2021; 4:4382-4392. [PMID: 32926124 DOI: 10.1182/bloodadvances.2020001685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma; 40% of patients relapse after a complete response or are refractory to therapy. To survive, the activated B-cell (ABC) subtype of DLBCL relies upon B-cell receptor signaling, which can be modulated by the activity of Bruton tyrosine kinase (BTK). Targeting BTK with ibrutinib, an inhibitor, provides a therapeutic approach for this subtype of DLBCL. However, non-Hodgkin lymphoma is often resistant to ibrutinib or acquires resistance soon after exposure. We explored how this resistance develops. We generated 3 isogenic ibrutinib-resistant DLBCL cell lines and investigated the deregulated pathways known to be associated with tumorigenic properties. Reduced levels of BTK and enhanced phosphatidylinositol 3-kinase (PI3K)/AKT signaling were hallmarks of these ibrutinib-resistant cells. Upregulation of PI3K-β expression was demonstrated to drive resistance in ibrutinib-resistant cells, and resistance was reversed by the blocking activity of PI3K-β/δ. Treatment with the selective PI3K-β/δ dual inhibitor KA2237 reduced both tumorigenic properties and survival-based PI3K/AKT/mTOR signaling of these ibrutinib-resistant cells. In addition, combining KA2237 with currently available chemotherapeutic agents synergistically inhibited metabolic growth. This study elucidates the compensatory upregulated PI3K/AKT axis that emerges in ibrutinib-resistant cells.
Collapse
|
19
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
20
|
Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol 2020; 10:591577. [PMID: 33154951 PMCID: PMC7116322 DOI: 10.3389/fonc.2020.591577] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The approval of BTK and PI3K inhibitors (ibrutinib, idelalisib) represents a revolution in the therapy of B cell malignancies such as chronic lymphocytic leukemia (CLL), mantle-cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), or Waldenström's macroglobulinemia (WM). However, these "BCR inhibitors" function by interfering with B cell pathophysiology in a more complex way than anticipated, and resistance develops through multiple mechanisms. In ibrutinib treated patients, the most commonly described resistance-mechanism is a mutation in BTK itself, which prevents the covalent binding of ibrutinib, or a mutation in PLCG2, which acts to bypass the dependency on BTK at the BCR signalosome. However, additional genetic aberrations leading to resistance are being described (such as mutations in the CARD11, CCND1, BIRC3, TRAF2, TRAF3, TNFAIP3, loss of chromosomal region 6q or 8p, a gain of Toll-like receptor (TLR)/MYD88 signaling or gain of 2p chromosomal region). Furthermore, relative resistance to BTK inhibitors can be caused by non-genetic adaptive mechanisms leading to compensatory pro-survival pathway activation. For instance, PI3K/mTOR/Akt, NFkB and MAPK activation, BCL2, MYC, and XPO1 upregulation or PTEN downregulation lead to B cell survival despite BTK inhibition. Resistance could also arise from activating microenvironmental pathways such as chemokine or integrin signaling via CXCR4 or VLA4 upregulation, respectively. Defining these compensatory pro-survival mechanisms can help to develop novel therapeutic combinations of BTK inhibitors with other inhibitors (such as BH3-mimetic venetoclax, XPO1 inhibitor selinexor, mTOR, or MEK inhibitors). The mechanisms of resistance to PI3K inhibitors remain relatively unclear, but some studies point to MAPK signaling upregulation via both genetic and non-genetic changes, which could be co-targeted therapeutically. Alternatively, drugs mimicking the BTK/PI3K inhibition effect can be used to prevent adhesion and/or malignant B cell migration (chemokine and integrin inhibitors) or to block the pro-proliferative T cell signals in the microenvironment (such as IL4/STAT signaling inhibitors). Here we review the genetic and non-genetic mechanisms of resistance and adaptation to the first generation of BTK and PI3K inhibitors (ibrutinib and idelalisib, respectively), and discuss possible combinatorial therapeutic strategies to overcome resistance or to increase clinical efficacy.
Collapse
Affiliation(s)
- Laura Ondrisova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
21
|
Arthur R, Valle-Argos B, Steele AJ, Packham G. Development of PROTACs to address clinical limitations associated with BTK-targeted kinase inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:131-152. [PMID: 32924028 PMCID: PMC7116064 DOI: 10.37349/etat.2020.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 02/03/2023] Open
Abstract
Chronic lymphocytic leukemia is a common form of leukemia and is dependent on growth-promoting signaling via the B-cell receptor. The Bruton tyrosine kinase (BTK) is an important mediator of B-cell receptor signaling and the irreversible BTK inhibitor ibrutinib can trigger dramatic clinical responses in treated patients. However, emergence of resistance and toxicity are major limitations which lead to treatment discontinuation. There remains, therefore, a clear need for new therapeutic options. In this review, we discuss recent progress in the development of BTK-targeted proteolysis targeting chimeras (PROTACs) describing how such agents may provide advantages over ibrutinib and highlighting features of PROTACs that are important for the development of effective BTK degrading agents. Overall, PROTACs appear to be an exciting new approach to target BTK. However, development is at a very early stage and considerable progress is required to refine these agents and optimize their drug-like properties before progression to clinical testing.
Collapse
Affiliation(s)
- Rachael Arthur
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Beatriz Valle-Argos
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Andrew J. Steele
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Institute for Life Sciences, University of Southampton, University Road, Highfield Campus, SO17 1BJ, Southampton, UK
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
22
|
George B, Mullick Chowdhury S, Hart A, Sircar A, Singh SK, Nath UK, Mamgain M, Singhal NK, Sehgal L, Jain N. Ibrutinib Resistance Mechanisms and Treatment Strategies for B-Cell lymphomas. Cancers (Basel) 2020; 12:E1328. [PMID: 32455989 PMCID: PMC7281539 DOI: 10.3390/cancers12051328] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/03/2023] Open
Abstract
Chronic activation of B-cell receptor (BCR) signaling via Bruton tyrosine kinase (BTK) is largely considered to be one of the primary mechanisms driving disease progression in B-Cell lymphomas. Although the BTK-targeting agent ibrutinib has shown promising clinical responses, the presence of primary or acquired resistance is common and often leads to dismal clinical outcomes. Resistance to ibrutinib therapy can be mediated through genetic mutations, up-regulation of alternative survival pathways, or other unknown factors that are not targeted by ibrutinib therapy. Understanding the key determinants, including tumor heterogeneity and rewiring of the molecular networks during disease progression and therapy, will assist exploration of alternative therapeutic strategies. Towards the goal of overcoming ibrutinib resistance, multiple alternative therapeutic agents, including second- and third-generation BTK inhibitors and immunomodulatory drugs, have been discovered and tested in both pre-clinical and clinical settings. Although these agents have shown high response rates alone or in combination with ibrutinib in ibrutinib-treated relapsed/refractory(R/R) lymphoma patients, overall clinical outcomes have not been satisfactory due to drug-associated toxicities and incomplete remission. In this review, we discuss the mechanisms of ibrutinib resistance development in B-cell lymphoma including complexities associated with genomic alterations, non-genetic acquired resistance, cancer stem cells, and the tumor microenvironment. Furthermore, we focus our discussion on more comprehensive views of recent developments in therapeutic strategies to overcome ibrutinib resistance, including novel BTK inhibitors, clinical therapeutic agents, proteolysis-targeting chimeras and immunotherapy regimens.
Collapse
Affiliation(s)
- Bhawana George
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sayan Mullick Chowdhury
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Amber Hart
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Anuvrat Sircar
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Satish Kumar Singh
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Uttam Kumar Nath
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Mukesh Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (M.M.); (N.K.S.)
| | - Naveen Kumar Singhal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (M.M.); (N.K.S.)
| | - Lalit Sehgal
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Neeraj Jain
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
23
|
Wist M, Meier L, Gutman O, Haas J, Endres S, Zhou Y, Rösler R, Wiese S, Stilgenbauer S, Hobeika E, Henis YI, Gierschik P, Walliser C. Noncatalytic Bruton's tyrosine kinase activates PLCγ 2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells. J Biol Chem 2020; 295:5717-5736. [PMID: 32184360 DOI: 10.1074/jbc.ra119.011946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/26/2020] [Indexed: 12/25/2022] Open
Abstract
Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+] i ), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+] i Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.
Collapse
Affiliation(s)
- Martin Wist
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Laura Meier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jennifer Haas
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sascha Endres
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yuan Zhou
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, 89081 Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| | - Claudia Walliser
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
24
|
Role of Non-Coding RNAs in the Development of Targeted Therapy and Immunotherapy Approaches for Chronic Lymphocytic Leukemia. J Clin Med 2020; 9:jcm9020593. [PMID: 32098192 PMCID: PMC7074107 DOI: 10.3390/jcm9020593] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
In the past decade, novel targeted therapy approaches, such as BTK inhibitors and Bcl2 blockers, and innovative treatments that regulate the immune response against cancer cells, such as monoclonal antibodies, CAR-T cell therapy, and immunomodulatory molecules, have been established to provide support for the treatment of patients. However, drug resistance development and relapse are still major challenges in CLL treatment. Several studies revealed that non-coding RNAs have a main role in the development and progression of CLL. Specifically, microRNAs (miRs) and tRNA-derived small-RNAs (tsRNAs) were shown to be outstanding biomarkers that can be used to diagnose and monitor the disease and to possibly anticipate drug resistance and relapse, thus supporting physicians in the selection of treatment regimens tailored to the patient needs. In this review, we will summarize the most recent discoveries in the field of targeted therapy and immunotherapy for CLL and discuss the role of ncRNAs in the development of novel drugs and combination regimens for CLL patients.
Collapse
|
25
|
Scheffold A, Stilgenbauer S. Revolution of Chronic Lymphocytic Leukemia Therapy: the Chemo-Free Treatment Paradigm. Curr Oncol Rep 2020; 22:16. [PMID: 32025827 PMCID: PMC7002327 DOI: 10.1007/s11912-020-0881-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose of Review Over the last years, targeted anticancer therapy with small molecule inhibitors and antibodies has much replaced chemoimmunotherapy, which has been the gold standard of care for patients with chronic lymphocytic leukemia (CLL). Here we give an overview of novel targeted agents used in therapy of chronic lymphocytic leukemia, as well as efforts to overcome resistance development, focusing on approved drugs since they gained high relevance in clinical practice. Recent Findings Novel agents moved to the forefront as a treatment strategy of CLL due to their outstanding efficacy, almost irrespectively of the underlying genetic features. Inhibition of Bruton’s tyrosine kinase (BTK), a key molecule in the B cell receptor pathway, achieved dramatic efficacy even in poor-risk and chemo-refractory patients. Further success was accomplished with venetoclax, which specifically inhibits anti-apoptotic BCL2 and induces apoptosis of CLL cells. Summary Inhibition of BTK or BCL2 is very effective and induces prolongation of progression-free and overall survival. Approved combination treatments such as venetoclax or ibrutinib with obinutuzumab show high responses rates and long remission durations. However, evolution and selection of subclones with continuous treatment leads to resistance towards these novel drugs and disease relapse. Hence, comparison of sequential treatment with combinations and discontinuation of therapy are important aspects which need to be investigated.
Collapse
Affiliation(s)
- Annika Scheffold
- Department of Internal Medicine III, Universitätsklinikum Ulm, Albert-Einstein Allee 23, D-89081, Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Universitätsklinikum Ulm, Albert-Einstein Allee 23, D-89081, Ulm, Germany. .,Department of Internal Medicine I, Saarland University, D-66421, Homburg, Germany.
| |
Collapse
|
26
|
Hajicek N, Keith NC, Siraliev-Perez E, Temple BRS, Huang W, Zhang Q, Harden TK, Sondek J. Structural basis for the activation of PLC-γ isozymes by phosphorylation and cancer-associated mutations. eLife 2019; 8:e51700. [PMID: 31889510 PMCID: PMC7004563 DOI: 10.7554/elife.51700] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Direct activation of the human phospholipase C-γ isozymes (PLC-γ1, -γ2) by tyrosine phosphorylation is fundamental to the control of diverse biological processes, including chemotaxis, platelet aggregation, and adaptive immunity. In turn, aberrant activation of PLC-γ1 and PLC-γ2 is implicated in inflammation, autoimmunity, and cancer. Although structures of isolated domains from PLC-γ isozymes are available, these structures are insufficient to define how release of basal autoinhibition is coupled to phosphorylation-dependent enzyme activation. Here, we describe the first high-resolution structure of a full-length PLC-γ isozyme and use it to underpin a detailed model of their membrane-dependent regulation. Notably, an interlinked set of regulatory domains integrates basal autoinhibition, tyrosine kinase engagement, and additional scaffolding functions with the phosphorylation-dependent, allosteric control of phospholipase activation. The model also explains why mutant forms of the PLC-γ isozymes found in several cancers have a wide spectrum of activities, and highlights how these activities are tuned during disease.
Collapse
Affiliation(s)
- Nicole Hajicek
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Nicholas C Keith
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Edhriz Siraliev-Perez
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Brenda RS Temple
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
- R L Juliano Structural Bioinformatics Core FacilityThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Weigang Huang
- Division of Chemical Biology and Medicinal ChemistryThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Qisheng Zhang
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
- Division of Chemical Biology and Medicinal ChemistryThe University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillUnited States
| | - T Kendall Harden
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - John Sondek
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
27
|
Yosifov DY, Wolf C, Stilgenbauer S, Mertens D. From Biology to Therapy: The CLL Success Story. Hemasphere 2019; 3:e175. [PMID: 31723816 PMCID: PMC6746030 DOI: 10.1097/hs9.0000000000000175] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 11/27/2022] Open
Abstract
Chemoimmunotherapy has been the standard of care for patients with chronic lymphocytic leukemia (CLL) over the last decade. Advances in monoclonal antibody technology have resulted in the development of newer generations of anti-CD20 antibodies with improved therapeutic effectiveness. In parallel, our knowledge about the distinctive biological characteristics of CLL has progressively deepened and has revealed the importance of B-cell receptor (BCR) signaling and upregulated antiapoptotic proteins for survival and expansion of malignant cell clones. This knowledge provided the basis for development of novel targeted agents that revolutionized treatment of CLL. Ibrutinib and idelalisib inhibit the Bruton tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) delta, respectively, thus interfering with supportive signals coming from the microenvironment via the BCR. These drugs induce egress of CLL cells from secondary lymphoid organs and remarkably improve clinical outcomes, especially for patients with unmutated immunoglobulin heavy-chain genes or with p53 abnormalities that do not benefit from classical treatment schemes. Latest clinical trial results have established ibrutinib with or without anti-CD20 antibodies as the preferred first-line treatment for most CLL patients, which will reduce the use of chemoimmunotherapy in the imminent future. Further advances are achieved with venetoclax, a BH3-mimetic that specifically inhibits the antiapoptotic B-cell lymphoma 2 protein and thus causes rapid apoptosis of CLL cells, which translates into deep and prolonged clinical responses including high rates of minimal residual disease negativity. This review summarizes recent advances in the development of targeted CLL therapies, including new combination schemes, novel BTK and PI3K inhibitors, spleen tyrosine kinase inhibitors, immunomodulatory drugs, and cellular immunotherapy.
Collapse
Affiliation(s)
- Deyan Y. Yosifov
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Cooperation Unit “Mechanisms of Leukemogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Wolf
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Cooperation Unit “Mechanisms of Leukemogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Klinik für Innere Medizin I, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Daniel Mertens
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Cooperation Unit “Mechanisms of Leukemogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Durand-Onaylı V, Haslauer T, Härzschel A, Hartmann TN. Rac GTPases in Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19124041. [PMID: 30558116 PMCID: PMC6321480 DOI: 10.3390/ijms19124041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that crosstalk between hematologic tumor cells and the tumor microenvironment contributes to leukemia and lymphoma cell migration, survival, and proliferation. The supportive tumor cell-microenvironment interactions and the resulting cellular processes require adaptations and modulations of the cytoskeleton. The Rac subfamily of the Rho family GTPases includes key regulators of the cytoskeleton, with essential functions in both normal and transformed leukocytes. Rac proteins function downstream of receptor tyrosine kinases, chemokine receptors, and integrins, orchestrating a multitude of signals arising from the microenvironment. As such, it is not surprising that deregulation of Rac expression and activation plays a role in the development and progression of hematological malignancies. In this review, we will give an overview of the specific contribution of the deregulation of Rac GTPases in hematologic malignancies.
Collapse
Affiliation(s)
- Valerie Durand-Onaylı
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Theresa Haslauer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Andrea Härzschel
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Tanja Nicole Hartmann
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
29
|
Targeted Therapy-Resistant Melanoma Cells Acquire Transcriptomic Similarities with Human Melanoblasts. Cancers (Basel) 2018; 10:cancers10110451. [PMID: 30453548 PMCID: PMC6265976 DOI: 10.3390/cancers10110451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
The mechanisms of adaptive and acquired drug resistance in tumors are not completely understood. So far, gene amplifications or mutations, leading to the reactivation of the MAPK or PI3K pathways have been described. In this study, we used two different methods to generate human melanoblasts: (1) via differentiation from induced pluripotent stem cells (iPSCs) and (2) via dedifferentiation from melanocytes. The melanoblast transcriptomes were then compared to the transcriptome of MAPK inhibitor-resistant melanoma cells. We observed that the expression of genes associated with cell cycle control, DNA damage control, metabolism, and cancer was altered in both melanoblast populations and in both adaptive and acquired resistant melanoma samples, compared to drug-sensitive samples. However, genes involved in antigen presentation and cellular movement were only regulated in the melanoblast populations and in the acquired resistant melanoma samples, compared to the drug-sensitive samples. Moreover, melanocyte-derived melanoblasts and adaptive resistant melanoma samples were characterized by different expression levels of certain transcription factors or genes involved in the CDK5 pathway. In conclusion, we show here that in vitro models of human melanoblasts are very important tools to comprehend the expression profiles of drug-resistant melanoma.
Collapse
|
30
|
Walliser C, Wist M, Hermkes E, Zhou Y, Schade A, Haas J, Deinzer J, Désiré L, Li SSC, Stilgenbauer S, Milner JD, Gierschik P. Functional characterization of phospholipase C-γ 2 mutant protein causing both somatic ibrutinib resistance and a germline monogenic autoinflammatory disorder. Oncotarget 2018; 9:34357-34378. [PMID: 30344948 PMCID: PMC6188132 DOI: 10.18632/oncotarget.26173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022] Open
Abstract
Depending on its occurrence in the germline or somatic context, a single point mutation, S707Y, of phospholipase C-γ2 (PLCγ2) gives rise to two distinct human disease states: acquired resistance of chronic lymphocytic leukemia cells (CLL) to inhibitors of Brutons´s tyrosine kinase (Btk) and dominantly inherited autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation, APLAID, respectively. The functional relationships of the PLCγ2S707Y mutation to other PLCG2 mutations causing (i) Btk inhibitor resistance of CLL cells and (ii) the APLAID-related human disease PLCγ2-associated antibody deficiency and immune dysregulation, PLAID, revealing different clinical characteristics including cold-induced urticaria, respectively, are currently incompletely understood. Here, we show that PLCγ2S707 point mutants displayed much higher activities at 37° C than the CLL Btk inhibitor resistance mutants R665W and L845F and the two PLAID mutants, PLCγ2Δ19 and PLCγ2Δ20-22. Combinations of CLL Btk inhibitor resistance mutations synergized to enhance PLCγ2 activity, with distinct functional consequences for different temporal orders of the individual mutations. Enhanced activity of PLCγ2S707Y was not observed in a cell-free system, suggesting that PLCγ2 activation in intact cells is dependent on regulatory rather than mutant-enzyme-inherent influences. Unlike the two PLAID mutants, PLCγ2S707Y was insensitive to activation by cooling and retained marked hyperresponsiveness to activated Rac upon cooling. In contrast to the PLAID mutants, which are insensitive to activation by endogenously expressed EGF receptors, the S707Y mutation markedly enhanced the stimulatory effect of EGF, explaining some of the pathophysiological discrepancies between immune cells of PLAID and APLAID patients in response to receptor-tyrosine-kinase activation.
Collapse
Affiliation(s)
- Claudia Walliser
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Martin Wist
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Elisabeth Hermkes
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Yuan Zhou
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Anja Schade
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Jennifer Haas
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Julia Deinzer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | | | - Shawn S C Li
- Department of Biochemistry and The Siebens-Drake Medical Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, Ulm 89070, Germany
| | - Joshua D Milner
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| |
Collapse
|
31
|
Bajaj T, Ramirez A, Wagner-Thelen H. Genetik der Alzheimer-Krankheit. MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zusammenfassung
Die Alzheimer-Erkrankung („Alzheimer’s disease“, AD) ist die häufigste Ursache der neurodegenerativen Demenzen. Im Gegensatz zu monogenen und meist frühmanifesten Formen der AD, welche auf hochpenetrante Mutationen in den Genen APP, PSEN1 und PSEN2 zurückzuführen sind, wird die Suszeptibilität für die sporadische, oft spätmanifeste Form der AD durch eine komplexe Wechselwirkung zwischen genetischen und epigenetischen Faktoren wie auch umwelt- und lebensstilbedingten Faktoren bestimmt. Obgleich APOE ε4 der stärkste genetische Risikofaktor für die AD ist, macht der Effekt des APOE ε4 lediglich 27,3 % der geschätzten Heritabilität von 58–79 % aus. Durch den kontinuierlichen technischen Fortschritt von GWAS (genomweite Assoziationsstudien) und automatisierten Sequenziermethoden der nächsten Generation gelingt es Wissenschaftlern in groß angelegten Kollaborationen sukzessive die fehlende Heritabilität aufzudecken. Wichtige Erkenntnisse aus GWAS und Signalweganalysen suggerieren, dass Mikroglia, die residenten Immunzellen des ZNS, eine entscheidende Rolle bei der Pathogenese der AD spielen. Eine beachtliche Anzahl der in genetischen Studien identifizierten Risikogene weisen immunsystembezogene Funktionen auf und werden in höchstem Maße von Mikroglia exprimiert. Durch die Beschreibung von Risikovarianten in CR1, CLU, SPI1, CD33, MS4A, ABCA7, EPHA1, HLA-DRB5/1, INPP5D, TYROBP, TREM2, PLCG2 und ABI3 nimmt die Mikroglia vermittelte Immunantwort bei der Pathogenese der AD eine zentrale Rolle ein. Von besonderer Bedeutung könnte sein, dass die PLCγ2-Variante p.P522R einen protektiven Effekt auf die LOAD („late-onset“ AD; spätmanifeste Form der AD) ausübt und als Enzym ein klassisches Ziel für eine therapeutische Modulation von komplexen Formen der AD darstellt.
Collapse
Affiliation(s)
- Thomas Bajaj
- Aff1 0000 0000 8852 305X grid.411097.a Sektion für Neurogenetik und Molekulare Neuropsychiatrie an der Klinik für Psychiatrie und Psychotherapie Uniklinik Köln Kerpener Straße 62 50937 Köln Deutschland
| | - Alfredo Ramirez
- Aff1 0000 0000 8852 305X grid.411097.a Sektion für Neurogenetik und Molekulare Neuropsychiatrie an der Klinik für Psychiatrie und Psychotherapie Uniklinik Köln Kerpener Straße 62 50937 Köln Deutschland
- Aff2 0000 0000 8786 803X grid.15090.3d Klinik für Neurodegenerative Erkrankungen und Gerontopsychiatrie Universitätsklinikum Bonn Sigmund-Freud-Straße 25 53127 Bonn Deutschland
| | - Holger Wagner-Thelen
- Aff1 0000 0000 8852 305X grid.411097.a Sektion für Neurogenetik und Molekulare Neuropsychiatrie an der Klinik für Psychiatrie und Psychotherapie Uniklinik Köln Kerpener Straße 62 50937 Köln Deutschland
| |
Collapse
|
32
|
Koss H, Bunney TD, Esposito D, Martins M, Katan M, Driscoll PC. Dynamic Allostery in PLCγ1 and Its Modulation by a Cancer Mutation Revealed by MD Simulation and NMR. Biophys J 2018; 115:31-45. [PMID: 29972810 PMCID: PMC6035297 DOI: 10.1016/j.bpj.2018.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol phospholipase Cγ (PLCγ) is an intracellular membrane-associated second-messenger signaling protein activated by tyrosine kinases such as fibroblast growth factor receptor 1. PLCγ contains the regulatory γ-specific array (γSA) comprising a tandem Src homology 2 (SH2) pair, an SH3 domain, and a split pleckstrin homology domain. Binding of an activated growth factor receptor to γSA leads to Tyr783 phosphorylation and consequent PLCγ activation. Several disease-relevant mutations in γSA have been identified; all lead to elevated phospholipase activity. In this work, we describe an allosteric mechanism that connects the Tyr783 phosphorylation site to the nSH2-cSH2 junction and involves dynamic interactions between the cSH2-SH3 linker and cSH2. Molecular dynamics simulations of the tandem SH2 protein suggest that Tyr783 phosphorylation is communicated to the nSH2-cSH2 junction by modulating cSH2 binding to sections of the cSH2-SH3 linker. NMR chemical shift perturbation analyses for designed tandem SH2 constructs reveal combined fast and slow dynamic processes that can be attributed to allosteric communication involving these regions of the protein, establishing an example in which complex N-site exchange can be directly inferred from 1H,15N-HSQC spectra. Furthermore, in tandem SH2 and γSA constructs, molecular dynamics and NMR results show that the Arg687Trp mutant in PLCγ1 (equivalent to the cancer mutation Arg665Trp in PLCγ2) perturbs the dynamic allosteric pathway. This combined experimental and computational study reveals a rare example of multistate kinetics involved in a dynamic allosteric process that is modulated in the context of a disease-relevant mutation. The allosteric influences and the weakened binding of the cSH2-SH3 linker to cSH2 should be taken into account in any more holistic investigation of PLCγ regulation.
Collapse
Affiliation(s)
- Hans Koss
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | | | - Marta Martins
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | | |
Collapse
|
33
|
BTK Cys481Ser drives ibrutinib resistance via ERK1/2 and protects BTK wild-type MYD88-mutated cells by a paracrine mechanism. Blood 2018; 131:2047-2059. [PMID: 29496671 DOI: 10.1182/blood-2017-10-811752] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/27/2018] [Indexed: 12/27/2022] Open
Abstract
Acquired ibrutinib resistance due to BTKCys481 mutations occurs in B-cell malignancies, including those with MYD88 mutations. BTKCys481 mutations are usually subclonal, and their relevance to clinical progression remains unclear. Moreover, the signaling pathways that promote ibrutinib resistance remain to be clarified. We therefore engineered BTKCys481Ser and BTKWT expressing MYD88-mutated Waldenström macroglobulinemia (WM) and activated B-cell (ABC) diffuse large B-cell lymphoma (DLBCL) cells and observed reactivation of BTK-PLCγ2-ERK1/2 signaling in the presence of ibrutinib in only the former. Use of ERK1/2 inhibitors triggered apoptosis in BTKCys481Ser-expressing cells and showed synergistic cytotoxicity with ibrutinib. ERK1/2 reactivation in ibrutinib-treated BTKCys481Ser cells was accompanied by release of many prosurvival and inflammatory cytokines, including interleukin-6 (IL-6) and IL-10 that were also blocked by ERK1/2 inhibition. To clarify if cytokine release by ibrutinib-treated BTKCys481Ser cells could protect BTKWT MYD88-mutated malignant cells, we used a Transwell coculture system and showed that nontransduced BTKWT MYD88-mutated WM or ABC DLBCL cells were rescued from ibrutinib-induced killing when cocultured with BTKCys481Ser but not their BTKWT-expressing counterparts. Use of IL-6 and/or IL-10 blocking antibodies abolished the protective effect conferred on nontransduced BTKWT by coculture with BTKCys481Ser expressing WM or ABC DLBCL cell counterparts. Rebound of IL-6 and IL-10 serum levels also accompanied disease progression in WM patients with acquired BTKCys481 mutations. Our findings show that the BTKCys481Ser mutation drives ibrutinib resistance in MYD88-mutated WM and ABC DLBCL cells through reactivation of ERK1/2 and can confer a protective effect on BTKWT cells through a paracrine mechanism.
Collapse
|
34
|
Lampson BL, Brown JR. Are BTK and PLCG2 mutations necessary and sufficient for ibrutinib resistance in chronic lymphocytic leukemia? Expert Rev Hematol 2018; 11:185-194. [PMID: 29381098 DOI: 10.1080/17474086.2018.1435268] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Ibrutinib is the first BTK inhibitor to show efficacy in chronic lymphocytic leukemia (CLL) and is also the first BTK inhibitor to which patients have developed resistance. Mutations in BTK and PLCG2 are found in ≈80% of CLL patients with acquired resistance to ibrutinib, but it remains unclear if these mutations are merely associated with disease relapse or directly cause it. Areas covered: Unique properties of both CLL and ibrutinib that complicate attempts to definitively conclude whether BTK/PLCG2 mutations are passengers or drivers of ibrutinib-resistant disease are reviewed. Characteristics of mutations that drive drug resistance are summarized and whether BTK/PLCG2 mutations possess these is discussed. These characteristics include (1) identification in multiple patients with acquired resistance, (2) in vitro validation of drug-resistant properties, (3) mutual exclusivity with one another, (4) increasing frequency over time on drug, and (5) high frequency at the time and site of clinical relapse. Expert commentary: While BTK/PLCG2 mutations have characteristics suggesting that they can drive ibrutinib resistance, this conclusion remains formally unproven until specific inhibition of such mutations is shown to cause regression of ibrutinib-resistant CLL. Data suggest that alternative mechanisms of resistance do exist in some patients.
Collapse
Affiliation(s)
- Benjamin L Lampson
- a Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Jennifer R Brown
- a Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
35
|
Zahr AA, Bose P, Keating MJ. Pharmacotherapy of relapsed/refractory chronic lymphocytic leukemia. Expert Opin Pharmacother 2017; 18:857-873. [PMID: 28446054 PMCID: PMC6488229 DOI: 10.1080/14656566.2017.1324420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The treatment of relapsed/refractory (RR) CLL has been revolutionized by the advent of the new oral inhibitors of B-cell receptor (BCR) signaling and the pro-survival protein, B-cell lymphoma 2 (BCL2). Additionally, new and more potent monoclonal antibodies against CD20 have replaced/may replace rituximab in many settings. Areas covered: Herein, we review the entire therapeutic landscape of RR CLL, with particular attention to the new small-molecule kinase inhibitors and BH3-mimetics. We discuss preclinical data with these agents in CLL, cover available efficacy and safety information, and examine potential resistance mechanisms and possible rational combinations to circumvent them. Expert opinion: The availability of potent and selective inhibitors of BCR signaling and of the anti-apoptotic functions of BCL2 has enormously enhanced our therapeutic armamentarium, with unprecedented efficacy now observed in patients who historically had poor outcomes with chemoimmunotherapy (CIT), e.g., those with deletion 17p/11q and/or IGHV-unmutated disease. The next challenge is to optimally sequence these agents and develop rational combinations that will hopefully lead to deeper and more durable remissions than ever seen before. Indeed, long term relapse free survival, already achievable with CIT in patients with genetically favorable-risk disease, now appears to be a realistic possibility for most patients with CLL.
Collapse
MESH Headings
- Adult
- Agammaglobulinaemia Tyrosine Kinase
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CD28 Antigens/antagonists & inhibitors
- CD28 Antigens/immunology
- Clinical Trials as Topic
- Drug Interactions
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Recurrence
- Rituximab/administration & dosage
- Rituximab/adverse effects
- Rituximab/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Abdallah Abou Zahr
- Department of Leukemia, University of Texas MD Anderson
Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson
Cancer Center, Houston, TX, USA
| | - Michael J. Keating
- Department of Leukemia, University of Texas MD Anderson
Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Kubuschok B, Trepel M. Learning from the failures of drug discovery in B-cell non-Hodgkin lymphomas and perspectives for the future: chronic lymphocytic leukemia and diffuse large B-cell lymphoma as two ends of a spectrum in drug development. Expert Opin Drug Discov 2017; 12:733-745. [PMID: 28494631 DOI: 10.1080/17460441.2017.1329293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Despite substantial recent advances, there is still an unmet need for better therapies in B-cell non Hodgkin lymphomas (B-NHL), especially in relapsed or refractory disease. Many novel targeted drugs have been developed based on a better molecular understanding of B-NHL. Areas covered: This article focuses on chronic lymphocytic leukemia (CLL) as a representative for indolent lymphomas and paradigmatic for the tremendous progress in treating B-NHL on the one hand and diffuse large B-cell lymphoma (DLBCL) as a representative for aggressive lymphomas and paradigmatic for many unsolved problems in lymphoma treatment or the other hand. We highlight salient points in current therapies targeting genetic, epigenetic, immunological and microenvironmental alterations. Possible reasons for drug failure in clinical trials like tumor heterogeneity, clonal evolution and drug resistance mechanisms are discussed. Based thereon, some perspectives for further drug discovery are given. Expert opinion: In view of the pathogenetic complexity of lymphomas, therapies targeting exclusively a single alteration may fail because resistance mechanisms are present either initially or evolve during treatment. Therefore, future therapies in B-NHL may have to target the greatest possible number of genetic, immunological or epigenetic alterations still allowing tolerability and to monitor these alterations during therapy.
Collapse
Affiliation(s)
- Boris Kubuschok
- a Department of Internal Medicine II , Klinikum Augsburg , Augsburg , Germany.,b Department of Hematology and Oncology , University of Saarland Medical School , Homburg , Germany
| | - Martin Trepel
- a Department of Internal Medicine II , Klinikum Augsburg , Augsburg , Germany.,c Department of Oncology and Hematology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
37
|
|
38
|
Huber H, Edenhofer S, Estenfelder S, Stilgenbauer S. Profile of venetoclax and its potential in the context of treatment of relapsed or refractory chronic lymphocytic leukemia. Onco Targets Ther 2017; 10:645-656. [PMID: 28223822 PMCID: PMC5308588 DOI: 10.2147/ott.s102646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the last few years, dramatic changes have occurred in the treatment of chronic lymphocytic leukemia (CLL). The current standard for young and fit patients with CLL remains chemoimmunotherapy, namely the fludarabine, cyclophosphamide, and rituximab (FCR) regimen. However, novel oral therapies are presently being introduced and represent a considerable breakthrough concerning effectiveness and safety profile. In particular, the very high-risk group of CLL patients, defined by the genetic aberration del(17p) and/or TP53 mutation, benefit from the new agents. These genetic abnormalities are the most relevant negative prognostic markers in the context of chemoimmunotherapy. New targeted therapies allow different approaches to improve outcomes.
Collapse
Affiliation(s)
- Henriette Huber
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Simone Edenhofer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Sven Estenfelder
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | |
Collapse
|
39
|
Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 2017; 129:1469-1479. [PMID: 28049639 DOI: 10.1182/blood-2016-06-719294] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
Disease progression in patients with chronic lymphocytic leukemia (CLL) treated with ibrutinib has been attributed to histologic transformation or acquired mutations in BTK and PLCG2. The rate of resistance and clonal composition of PD are incompletely characterized. We report on CLL patients treated with single-agent ibrutinib on an investigator-initiated phase 2 trial. With median follow-up of 34 months, 15 of 84 evaluable patients (17.9%) progressed. Relapsed/refractory disease at study entry, TP53 aberration, advanced Rai stage, and high β-2 microglobulin were independently associated with inferior progression-free survival (P < .05 for all tests). Histologic transformation occurred in 5 patients (6.0%) and was limited to the first 15 months on ibrutinib. In contrast, progression due to CLL in 10 patients (11.9%) occurred later, diagnosed at a median 38 months on study. At progression, mutations in BTK (Cys481) and/or PLCG2 (within the autoinhibitory domain) were found in 9 patients (10.7%), in 8 of 10 patients with progressive CLL, and in 1 patient with prolymphocytic transformation. Applying high-sensitivity testing (detection limit ∼1 in 1000 cells) to stored samples, we detected mutations up to 15 months before manifestation of clinical progression (range, 2.9-15.4 months). In 5 patients (6.0%), multiple subclones carrying different mutations arose independently, leading to subclonal heterogeneity of resistant disease. For a seamless transition to alternative targeted agents, patients progressing with CLL were continued on ibrutinib for up to 3 months, with 19.8 months median survival from the time of progression. This trial was registered at www.clinicaltrials.gov as #NCT01500733.
Collapse
|