1
|
Nishida R, Fukui T, Niikura T, Kumabe Y, Yoshikawa R, Takase K, Yamamoto Y, Kuroda R, Oe K. Preventive effects of transcutaneous CO 2 application on disuse osteoporosis and muscle atrophy in a rat hindlimb suspension model. Bone 2024; 189:117262. [PMID: 39303931 DOI: 10.1016/j.bone.2024.117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
We previously demonstrated that transcutaneous CO2 application promotes muscle fiber-type switching, fracture healing, and osteogenesis by increasing blood flow and angiogenesis. Here, we aimed to investigate the preventive effects of transcutaneous CO2 application on disuse osteoporosis and muscle atrophy in a rat hindlimb suspension model. Eleven-week-old male Sprague-Dawley rats were divided into hindlimb suspension (HS), HS with transcutaneous CO2 application (HSCO2), and control groups. HSCO2 rats were administered transcutaneous 100 % CO2 gas in their bilateral hindlimbs, five times a week for 20 min. After 3 weeks, we harvested the gastrocnemius, femur, and tibia for assessment. Histological analysis revealed a significant decrease in the gastrocnemius myofiber cross-sectional area in HS rats compared to the control rats, whereas HSCO2 rats exhibited a significant increase compared to HS rats. Micro-computed tomography showed significant bone atrophy in the trabecular and cortical bones of the femur in HS rats compared to those of the control rats, whereas significant improvement was noted in HSCO2 rats. Histological analysis of the proximal tibia revealed more marrow adipose tissue in the HS rats than in the control rats. However, in the HSCO2 rats, fewer marrow adipose tissue and osteoclasts were observed. Moreover, HSCO2 rats had more osteoblasts and higher expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and vascular endothelial growth factor (VEGF) than the HS rats. The gastrocnemius and distal femur of HSCO2 rats also exhibited elevated PGC-1α and VEGF expression and upregulation of the myogenesis markers and osteogenesis markers compared to those of HS rats. This treatment effectively prevented disuse osteoporosis and muscle atrophy by promoting local angiogenesis and blood flow. PGC-1α is crucial for promoting this angiogenic pathway. Transcutaneous CO2 application may be a novel preventive procedure for disuse osteoporosis and muscle atrophy, complementing medication and rehabilitation.
Collapse
Affiliation(s)
- Ryota Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Hyogo Prefectural Nishinomiya Hospital, Japan
| | - Yohei Kumabe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Ryo Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Kyohei Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Yuya Yamamoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.
| |
Collapse
|
2
|
Phelan DE, Reddan B, Shigemura M, Sznajder JI, Crean D, Cummins EP. Orphan Nuclear Receptor Family 4A (NR4A) Members NR4A2 and NR4A3 Selectively Modulate Elements of the Monocyte Response to Buffered Hypercapnia. Int J Mol Sci 2024; 25:2852. [PMID: 38474099 PMCID: PMC10931687 DOI: 10.3390/ijms25052852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Hypercapnia occurs when the partial pressure of carbon dioxide (CO2) in the blood exceeds 45 mmHg. Hypercapnia is associated with several lung pathologies and is transcriptionally linked to suppression of immune and inflammatory signalling through poorly understood mechanisms. Here we propose Orphan Nuclear Receptor Family 4A (NR4A) family members NR4A2 and NR4A3 as potential transcriptional regulators of the cellular response to hypercapnia in monocytes. Using a THP-1 monocyte model, we investigated the sensitivity of NR4A family members to CO2 and the impact of depleting NR4A2 and NR4A3 on the monocyte response to buffered hypercapnia (10% CO2) using RNA-sequencing. We observed that NR4A2 and NR4A3 are CO2-sensitive transcription factors and that depletion of NR4A2 and NR4A3 led to reduced CO2-sensitivity of mitochondrial and heat shock protein (Hsp)-related genes, respectively. Several CO2-sensitive genes were, however, refractory to depletion of NR4A2 and NR4A3, indicating that NR4As regulate certain elements of the cellular response to buffered hypercapnia but that other transcription factors also contribute. Bioinformatic analysis of conserved CO2-sensitive genes implicated several novel putative CO2-sensitive transcription factors, of which the ETS Proto-Oncogene 1 Transcription Factor (ETS-1) was validated to show increased nuclear expression in buffered hypercapnia. These data give significant insights into the understanding of immune responses in patients experiencing hypercapnia.
Collapse
Affiliation(s)
- David E. Phelan
- School of Medicine, University College Dublin, Dublin 4, Ireland (B.R.)
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Ben Reddan
- School of Medicine, University College Dublin, Dublin 4, Ireland (B.R.)
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Masahiko Shigemura
- Division of Thoracic Surgery, Northwestern University, Chicago, IL 60611, USA;
| | - Jacob I. Sznajder
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Daniel Crean
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Eoin P. Cummins
- School of Medicine, University College Dublin, Dublin 4, Ireland (B.R.)
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
3
|
Campaña-Duel E, Ceccato A, Morales-Quinteros L, Camprubí-Rimblas M, Artigas A. Hypercapnia and its relationship with respiratory infections. Expert Rev Respir Med 2024; 18:41-47. [PMID: 38489161 DOI: 10.1080/17476348.2024.2331767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
INTRODUCTION Hypercapnia is developed in patients with acute and/or chronic respiratory conditions. Clinical data concerning hypercapnia and respiratory infections interaction is limited. AREAS COVERED Currently, the relationship between hypercapnia and respiratory infections remains unclear. In this review, we summarize studies on the effects of hypercapnia on models of pulmonary infections to clarify the role of elevated CO2 in these pulmonary pathologies. Hypercapnia affects different cell types in the alveoli, leading to changes in the immune response. In vitro studies show that hypercapnia downregulates the NF-κβ pathway, reduces inflammation and impairs epithelial wound healing. While in vivo models show a dual role between short- and long-term effects of hypercapnia on lung infection. However, it is still controversial whether the effects observed under hypercapnia are pH dependent or not. EXPERT OPINION The role of hypercapnia is still a controversial debate. Hypercapnia could play a beneficial role in mechanically ventilated models, by lowering the inflammation produced by the stretch condition. But it could be detrimental in infectious scenarios, causing phagocyte dysfunction and lack of infection control. Further data concerning hypercapnia on respiratory infections is needed to elucidate this interaction.
Collapse
Affiliation(s)
- Elena Campaña-Duel
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Adrian Ceccato
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Intensive care unit, Hospital Universitari Sagrat Cor, Grupo Quironsalud, Barcelona, Spain
| | - Luis Morales-Quinteros
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Medicina Intensiva, Hospital de la Santa Creu y Sant Pau, Barcelona, Spain
| | - Marta Camprubí-Rimblas
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Antonio Artigas
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Grams KJ, Neumueller SE, Mouradian GC, Burgraff NJ, Hodges MR, Pan L, Forster HV. Mild and moderate chronic hypercapnia elicit distinct transcriptomic responses of immune function in cardiorespiratory nuclei. Physiol Genomics 2023; 55:487-503. [PMID: 37602394 PMCID: PMC11178267 DOI: 10.1152/physiolgenomics.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Chronic hypercapnia (CH) is a hallmark of respiratory-related diseases, and the level of hypercapnia can acutely or progressively become more severe. Previously, we have shown time-dependent adaptations in steady-state physiology during mild (arterial Pco2 ∼55 mmHg) and moderate (∼60 mmHg) CH in adult goats, including transient (mild CH) or sustained (moderate CH) suppression of acute chemosensitivity suggesting limitations in adaptive respiratory control mechanisms as the level of CH increases. Changes in specific markers of glutamate receptor plasticity, interleukin-1ß, and serotonergic modulation within key nodes of cardiorespiratory control do not fully account for the physiological adaptations to CH. Here, we used an unbiased approach (bulk tissue RNA sequencing) to test the hypothesis that mild or moderate CH elicits distinct gene expression profiles in important brain stem regions of cardiorespiratory control, which may explain the contrasting responses to CH. Gene expression profiles from the brain regions validated the accuracy of tissue biopsy methodology. Differential gene expression analyses revealed greater effects of CH on brain stem sites compared with the medial prefrontal cortex. Mild CH elicited an upregulation of predominantly immune-related genes and predicted activation of immune-related pathways and functions. In contrast, moderate CH broadly led to downregulation of genes and predicted inactivation of cellular pathways related to the immune response and vascular function. These data suggest that mild CH leads to a steady-state activation of neuroinflammatory pathways within the brain stem, whereas moderate CH drives the opposite response. Transcriptional shifts in immune-related functions may underlie the cardiorespiratory network's capability to respond to acute, more severe hypercapnia when in a state of progressively increased CH.NEW & NOTEWORTHY Mild chronic hypercapnia (CH) broadly upregulated immune-related genes and a predicted activation of biological pathways related to immune cell activity and the overall immune response. In contrast, moderate CH primarily downregulated genes related to major histocompatibility complex signaling and vasculature function that led to a predicted inactivation of pathways involving the immune response and vascular endothelial function. The severity-dependent effect on immune responses suggests that neuroinflammation has an important role in CH and may be important in the maintenance of proper ventilatory responses to acute and chronic hypercapnia.
Collapse
Affiliation(s)
- Kirstyn J Grams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nicholas J Burgraff
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
5
|
Phelan DE, Mota C, Strowitzki MJ, Shigemura M, Sznajder JI, Crowe L, Masterson JC, Hayes SE, Reddan B, Yin X, Brennan L, Crean D, Cummins EP. Hypercapnia alters mitochondrial gene expression and acylcarnitine production in monocytes. Immunol Cell Biol 2023; 101:556-577. [PMID: 36967673 PMCID: PMC10330468 DOI: 10.1111/imcb.12642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/03/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
CO2 is produced during aerobic respiration. Normally, levels of CO2 in the blood are tightly regulated but pCO2 can rise (hypercapnia, pCO2 > 45 mmHg) in patients with lung diseases, for example, chronic obstructive pulmonary disease (COPD). Hypercapnia is a risk factor in COPD but may be of benefit in the context of destructive inflammation. The effects of CO2 per se, on transcription, independent of pH change are poorly understood and warrant further investigation. Here we elucidate the influence of hypercapnia on monocytes and macrophages through integration of state-of-the-art RNA-sequencing, metabolic and metabolomic approaches. THP-1 monocytes and interleukin 4-polarized primary murine macrophages were exposed to 5% CO2 versus 10% CO2 for up to 24 h in pH-buffered conditions. In hypercapnia, we identified around 370 differentially expressed genes (DEGs) under basal and about 1889 DEGs under lipopolysaccharide-stimulated conditions in monocytes. Transcripts relating to both mitochondrial and nuclear-encoded gene expression were enhanced in hypercapnia in basal and lipopolysaccharide-stimulated cells. Mitochondrial DNA content was not enhanced, but acylcarnitine species and genes associated with fatty acid metabolism were increased in hypercapnia. Primary macrophages exposed to hypercapnia also increased activation of genes associated with fatty acid metabolism and reduced activation of genes associated with glycolysis. Thus, hypercapnia elicits metabolic shifts in lipid metabolism in monocytes and macrophages under pH-buffered conditions. These data indicate that CO2 is an important modulator of monocyte transcription that can influence immunometabolic signaling in immune cells in hypercapnia. These immunometabolic insights may be of benefit in the treatment of patients experiencing hypercapnia.
Collapse
Affiliation(s)
- David E Phelan
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Catarina Mota
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Moritz J Strowitzki
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Louise Crowe
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Joanne C Masterson
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Sophie E Hayes
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Ben Reddan
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Xiaofei Yin
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Lorraine Brennan
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Daniel Crean
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Bikov A, Frent S, Deleanu O, Meszaros M, Birza MR, Popa AM, Manzur AR, Gligor L, Mihaicuta S. Time Spent with Saturation below 80% versus 90% in Patients with Obstructive Sleep Apnoea. J Clin Med 2023; 12:4205. [PMID: 37445240 DOI: 10.3390/jcm12134205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Nocturnal hypoxaemia measured as the percentage of total sleep time spent with saturation below 90% (TST90%) may better predict cardiovascular consequences of obstructive sleep apnoea (OSA) than the number of obstructive respiratory events measured with the apnoea-hypopnea index (AHI). Deeper hypoxaemia may potentially induce more severe pathophysiological consequences. However, the additional value of the percentage of total sleep time spent with saturation below 80% (TST80%) to TST90% is not fully explored. METHODS Comprehensive medical history was taken and fasting lipid and C-reactive protein levels were measured in 797 volunteers participating in two cohort studies in Hungary and Romania. Sleep parameters, including AHI, TST90% and TST80%, were recorded following a polysomnography (PSG, n = 598) or an inpatient cardiorespiratory polygraphy (n = 199). The performance of TST80% to predict cardiovascular risk was compared with TST90% using linear and logistic regression analyses as well receiver operating characteristics curves. Sensitivity analyses were performed in patients who had PSG, separately. RESULTS Both parameters are significantly related to cardiovascular risk factors; however, TST80% did not show better predictive value for cardiovascular risk than TST90%. On the other hand, patients with more severe hypoxaemia reported more excessive daytime sleepiness. CONCLUSIONS TST80% has limited additional clinical value compared to TST90% when evaluating cardiovascular risk in patients with OSA.
Collapse
Affiliation(s)
- András Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, UK
- Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Stefan Frent
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Oana Deleanu
- Department of Pulmonology, University of Medicine and Pharmacy Carol Davila, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Martina Meszaros
- Department of Pulmonology, Semmelweis University, Tömő Street 25-29, Budapest 1083, Hungary
| | - Mariela Romina Birza
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Alina Mirela Popa
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Andrei Raul Manzur
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Loredana Gligor
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Stefan Mihaicuta
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Huang R, Hammelef E, Sabitsky M, Ream C, Khalilieh S, Zohar N, Lavu H, Bowne WB, Yeo CJ, Nevler A. Chronic Obstructive Pulmonary Disease Is Associated with Worse Oncologic Outcomes in Early-Stage Resected Pancreatic and Periampullary Cancers. Biomedicines 2023; 11:1684. [PMID: 37371779 DOI: 10.3390/biomedicines11061684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause of cancer mortality in the United States. Hypoxic and hypercapnic tumor microenvironments have been suggested to promote tumor aggressiveness. The objective of this study was to evaluate the association between chronic obstructive pulmonary disease (COPD) and oncologic survival outcomes in patients with early-stage PDAC and periampullary cancers. In this case-control study, patients who underwent a pancreaticoduodenectomy during 2014-2021 were assessed. Demographic, perioperative, histologic, and oncologic data were collected. A total of 503 PDAC and periampullary adenocarcinoma patients were identified, 257 males and 246 females, with a mean age of 68.1 (±9.8) years and a mean pre-operative BMI of 26.6 (±4.7) kg/m2. Fifty-two percent of patients (N = 262) reported a history of smoking. A total of 42 patients (8.3%) had COPD. The average resected tumor size was 2.9 ± 1.4 cm and 65% of the specimens (N = 329) were positive for lymph-node involvement. Kaplan-Meier analysis showed that COPD was associated with worse overall and disease-specific survival (p < 0.05). Cox regression analysis showed COPD to be an independent prognostic factor (HR = 1.5, 95% CI 1.0-2.3, p = 0.039) along with margin status, lymphovascular invasion, and perineural invasion (p < 0.05 each). A 1:3 nearest neighbor propensity score matching was also employed and revealed COPD to be an independent risk factor for overall and disease-specific survival (OR 1.8 and OR 1.6, respectively; p < 0.05 each). These findings may support the rationale posed by in vitro laboratory studies, suggesting an important impact of hypoxic and hypercapnic tumor respiratory microenvironments in promoting therapy resistance in cancer.
Collapse
Affiliation(s)
- Rachel Huang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Emma Hammelef
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthew Sabitsky
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carolyn Ream
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Saed Khalilieh
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nitzan Zohar
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harish Lavu
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wilbur B Bowne
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Charles J Yeo
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Rivers RJ, Meininger CJ. The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability. Int J Mol Sci 2023; 24:ijms24065181. [PMID: 36982254 PMCID: PMC10048965 DOI: 10.3390/ijms24065181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Sustained tissue hypoxia is associated with many pathophysiological conditions, including chronic inflammation, chronic wounds, slow-healing fractures, microvascular complications of diabetes, and metastatic spread of tumors. This extended deficiency of oxygen (O2) in the tissue sets creates a microenvironment that supports inflammation and initiates cell survival paradigms. Elevating tissue carbon dioxide levels (CO2) pushes the tissue environment toward "thrive mode," bringing increased blood flow, added O2, reduced inflammation, and enhanced angiogenesis. This review presents the science supporting the clinical benefits observed with the administration of therapeutic CO2. It also presents the current knowledge regarding the cellular and molecular mechanisms responsible for the biological effects of CO2 therapy. The most notable findings of the review include (a) CO2 activates angiogenesis not mediated by hypoxia-inducible factor 1a, (b) CO2 is strongly anti-inflammatory, (c) CO2 inhibits tumor growth and metastasis, and (d) CO2 can stimulate the same pathways as exercise and thereby, acts as a critical mediator in the biological response of skeletal muscle to tissue hypoxia.
Collapse
Affiliation(s)
- Richard J Rivers
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
9
|
Radi R. Interplay of carbon dioxide and peroxide metabolism in mammalian cells. J Biol Chem 2022; 298:102358. [PMID: 35961463 PMCID: PMC9485056 DOI: 10.1016/j.jbc.2022.102358] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/25/2022] Open
Abstract
The carbon dioxide/bicarbonate (CO2/HCO3-) molecular pair is ubiquitous in mammalian cells and tissues, mainly as a result of oxidative decarboxylation reactions that occur during intermediary metabolism. CO2 is in rapid equilibrium with HCO3-via the hydration reaction catalyzed by carbonic anhydrases. Far from being an inert compound in redox biology, CO2 enhances or redirects the reactivity of peroxides, modulating the velocity, extent, and type of one- and two-electron oxidation reactions mediated by hydrogen peroxide (H2O2) and peroxynitrite (ONOO-/ONOOH). Herein, we review the biochemical mechanisms by which CO2 engages in peroxide-dependent reactions, free radical production, redox signaling, and oxidative damage. First, we cover the metabolic formation of CO2 and its connection to peroxide formation and decomposition. Next, the reaction mechanisms, kinetics, and processes by which the CO2/peroxide interplay modulates mammalian cell redox biology are scrutinized in-depth. Importantly, CO2 also regulates gene expression related to redox and nitric oxide metabolism and as such influences oxidative and inflammatory processes. Accumulated biochemical evidence in vitro, in cellula, and in vivo unambiguously show that the CO2 and peroxide metabolic pathways are intertwined and together participate in key redox events in mammalian cells.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
10
|
Csoma B, Vulpi MR, Dragonieri S, Bentley A, Felton T, Lázár Z, Bikov A. Hypercapnia in COPD: Causes, Consequences, and Therapy. J Clin Med 2022; 11:3180. [PMID: 35683563 PMCID: PMC9181664 DOI: 10.3390/jcm11113180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder that may lead to gas exchange abnormalities, including hypercapnia. Chronic hypercapnia is an independent risk factor of mortality in COPD, leading to epithelial dysfunction and impaired lung immunity. Moreover, chronic hypercapnia affects the cardiovascular physiology, increases the risk of cardiovascular morbidity and mortality, and promotes muscle wasting and musculoskeletal abnormalities. Noninvasive ventilation is a widely used technique to remove carbon dioxide, and several studies have investigated its role in COPD. In the present review, we aim to summarize the causes and effects of chronic hypercapnia in COPD. Furthermore, we discuss the use of domiciliary noninvasive ventilation as a treatment option for hypercapnia while highlighting the controversies within the evidence. Finally, we provide some insightful clinical recommendations and draw attention to possible future research areas.
Collapse
Affiliation(s)
- Balázs Csoma
- Department of Pulmonology, Semmelweis University, 25-29 Tömő Str., 1083 Budapest, Hungary; (B.C.); (Z.L.)
| | - Maria Rosaria Vulpi
- School of Medicine: Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, 11 Piazza G. Cesare-Bari, 70124 Bari, Italy; (M.R.V.); (S.D.)
| | - Silvano Dragonieri
- School of Medicine: Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, 11 Piazza G. Cesare-Bari, 70124 Bari, Italy; (M.R.V.); (S.D.)
| | - Andrew Bentley
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Manchester M23 9LT, UK; (A.B.); (T.F.)
| | - Timothy Felton
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Manchester M23 9LT, UK; (A.B.); (T.F.)
| | - Zsófia Lázár
- Department of Pulmonology, Semmelweis University, 25-29 Tömő Str., 1083 Budapest, Hungary; (B.C.); (Z.L.)
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Manchester M23 9LT, UK; (A.B.); (T.F.)
| |
Collapse
|
11
|
Strowitzki MJ, Nelson R, Garcia MP, Tuffs C, Bleul MB, Fitzsimons S, Navas J, Uzieliene I, Ritter AS, Phelan D, Kierans SJ, Blanco A, Bernotiene E, Belton O, Schneider M, Cummins EP, Taylor CT. Carbon Dioxide Sensing by Immune Cells Occurs through Carbonic Anhydrase 2-Dependent Changes in Intracellular pH. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2363-2375. [PMID: 35477686 DOI: 10.4049/jimmunol.2100665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
CO2, the primary gaseous product of respiration, is a major physiologic gas, the biology of which is poorly understood. Elevated CO2 is a feature of the microenvironment in multiple inflammatory diseases that suppresses immune cell activity. However, little is known about the CO2-sensing mechanisms and downstream pathways involved. We found that elevated CO2 correlates with reduced monocyte and macrophage migration in patients undergoing gastrointestinal surgery and that elevated CO2 reduces migration in vitro. Mechanistically, CO2 reduces autocrine inflammatory gene expression, thereby inhibiting macrophage activation in a manner dependent on decreased intracellular pH. Pharmacologic or genetic inhibition of carbonic anhydrases (CAs) uncouples a CO2-elicited intracellular pH response and attenuates CO2 sensitivity in immune cells. Conversely, CRISPR-driven upregulation of the isoenzyme CA2 confers CO2 sensitivity in nonimmune cells. Of interest, we found that patients with chronic lung diseases associated with elevated systemic CO2 (hypercapnia) display a greater risk of developing anastomotic leakage following gastrointestinal surgery, indicating impaired wound healing. Furthermore, low intraoperative pH levels in these patients correlate with reduced intestinal macrophage infiltration. In conclusion, CO2 is an immunomodulatory gas sensed by immune cells through a CA2-coupled change in intracellular pH.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Ross Nelson
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Mario P Garcia
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Christopher Tuffs
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Marc B Bleul
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Stephen Fitzsimons
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland; and
| | - Javier Navas
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - David Phelan
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Sarah J Kierans
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Alfonso Blanco
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Orina Belton
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland; and
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Eoin P Cummins
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland;
| |
Collapse
|
12
|
Carbon dioxide levels in neonates: what are safe parameters? Pediatr Res 2022; 91:1049-1056. [PMID: 34230621 PMCID: PMC9122818 DOI: 10.1038/s41390-021-01473-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
There is no consensus on the optimal pCO2 levels in the newborn. We reviewed the effects of hypercapnia and hypocapnia and existing carbon dioxide thresholds in neonates. A systematic review was conducted in accordance with the PRISMA statement and MOOSE guidelines. Two hundred and ninety-nine studies were screened and 37 studies included. Covidence online software was employed to streamline relevant articles. Hypocapnia was associated with predominantly neurological side effects while hypercapnia was linked with neurological, respiratory and gastrointestinal outcomes and Retinpathy of prematurity (ROP). Permissive hypercapnia did not decrease periventricular leukomalacia (PVL), ROP, hydrocephalus or air leaks. As safe pCO2 ranges were not explicitly concluded in the studies chosen, it was indirectly extrapolated with reference to pCO2 levels that were found to increase the risk of neonatal disease. Although PaCO2 ranges were reported from 2.6 to 8.7 kPa (19.5-64.3 mmHg) in both term and preterm infants, there are little data on the safety of these ranges. For permissive hypercapnia, parameters described for bronchopulmonary dysplasia (BPD; PaCO2 6.0-7.3 kPa: 45.0-54.8 mmHg) and congenital diaphragmatic hernia (CDH; PaCO2 ≤ 8.7 kPa: ≤65.3 mmHg) were identified. Contradictory findings on the effectiveness of permissive hypercapnia highlight the need for further data on appropriate CO2 parameters and correlation with outcomes. IMPACT: There is no consensus on the optimal pCO2 levels in the newborn. There is no consensus on the effectiveness of permissive hypercapnia in neonates. A safe range of pCO2 of 5-7 kPa was inferred following systematic review.
Collapse
|
13
|
Linthwaite VL, Pawloski W, Pegg HB, Townsend PD, Thomas MJ, So VKH, Brown AP, Hodgson DRW, Lorimer GH, Fushman D, Cann MJ. Ubiquitin is a carbon dioxide-binding protein. SCIENCE ADVANCES 2021; 7:eabi5507. [PMID: 34559559 PMCID: PMC8462908 DOI: 10.1126/sciadv.abi5507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The identification of CO2-binding proteins is crucial to understanding CO2-regulated molecular processes. CO2 can form a reversible posttranslational modification through carbamylation of neutral N-terminal α-amino or lysine ε-amino groups. We have previously developed triethyloxonium (TEO) ion as a chemical proteomics tool for covalent trapping of carbamates, and here, we deploy TEO to identify ubiquitin as a mammalian CO2-binding protein. We use 13C-NMR spectroscopy to demonstrate that CO2 forms carbamates on the ubiquitin N terminus and ε-amino groups of lysines 6, 33, 48, and 63. We demonstrate that biologically relevant pCO2 levels reduce ubiquitin conjugation at lysine-48 and down-regulate ubiquitin-dependent NF-κB pathway activation. Our results show that ubiquitin is a CO2-binding protein and demonstrates carbamylation as a viable mechanism by which mammalian cells can respond to fluctuating pCO2.
Collapse
Affiliation(s)
| | - Wes Pawloski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hamish B. Pegg
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | | | - Victor K. H. So
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Adrian P. Brown
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - David R. W. Hodgson
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Martin J. Cann
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
14
|
Kryvenko V, Wessendorf M, Tello K, Herold S, Morty RE, Seeger W, Vadász I. Hypercapnia-induces IRE1α-driven Endoplasmic Reticulum-associated Degradation of the Na,K-ATPase β-subunit. Am J Respir Cell Mol Biol 2021; 65:615-629. [PMID: 34192507 DOI: 10.1165/rcmb.2021-0114oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is often associated with elevated levels of CO2 (hypercapnia) and impaired alveolar fluid clearance. Misfolding of the Na,K-ATPase (NKA), a key molecule involved in both alveolar epithelial barrier tightness and in resolution of alveolar edema, in the endoplasmic reticulum (ER) may decrease plasma membrane (PM) abundance of the transporter. Here, we investigated how hypercapnia affects the NKA β-subunit (NKA-β) in the ER. Exposing murine precision-cut lung slices (PCLS) and human alveolar epithelial A549 cells to elevated CO2 levels led to a rapid decrease of NKA-β abundance in the ER and at the cell surface. Knockdown of ER alpha-mannosidase I (MAN1B1) and ER degradation enhancing alpha-mannosidase like protein 1 by siRNA or treatment with the MAN1B1 inhibitor, kifunensine rescued loss of NKA-β in the ER, suggesting ER-associated degradation (ERAD) of the enzyme. Furthermore, hypercapnia activated the unfolded protein response (UPR) by promoting phosphorylation of inositol-requiring enzyme 1α (IRE1α) and treatment with a siRNA against IRE1α prevented the decrease of NKA-β in the ER. Of note, the hypercapnia-induced phosphorylation of IRE1α was triggered by a Ca2+-dependent mechanism. Additionally, inhibition of the inositol trisphosphate receptor decreased phosphorylation levels of IRE1α in PCLS and A549 cells, suggesting that Ca2+ efflux from the ER might be responsible for IRE1α activation and ERAD of NKA-β. In conclusion, here we provide evidence that hypercapnia attenuates maturation of the regulatory subunit of NKA by activating IRE1α and promoting ERAD, which may contribute to impaired alveolar epithelial integrity in patients with ARDS and hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Miriam Wessendorf
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany
| | - Khodr Tello
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Susanne Herold
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Rory E Morty
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Werner Seeger
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany.,Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany
| | - István Vadász
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany;
| |
Collapse
|
15
|
Schneberger D, Pandher U, Thompson B, Kirychuk S. Effects of elevated CO 2 levels on lung immune response to organic dust and lipopolysaccharide. Respir Res 2021; 22:104. [PMID: 33836776 PMCID: PMC8033726 DOI: 10.1186/s12931-021-01700-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Workplaces with elevated organic dust levels such as animal feed barns also commonly have elevated levels of gasses, such as CO2. Workers exposed to such complex environments often experience respiratory effects that may be due to a combination of respirable factors. We examined the effects of CO2 on lung innate immune responses in mice co-exposed to the inflammatory agents lipopolysaccharide (LPS) and organic dust. We evaluated CO2 levels at the building recommended limit (1000 ppm) as well as the exposure limit (5000 ppm). Mice were nasally instilled with dust extracts or LPS and immediately put into chambers with a constant flow of room air (avg. 430 ppm CO2), 1000 ppm, or 5000 ppm CO2 enriched air. Results reveal that organic dust exposures tended to show decreased inflammatory responses with 1000 ppm CO2 and increased responses at 5000 ppm CO2. Conversely, LPS with addition of CO2 as low as 1000 ppm tended to inhibit several inflammatory markers. In most cases saline treated animals showed few changes with CO2 exposure, though some changes in mRNA levels were present. This shows that CO2 as low as 1000 ppm CO2 was capable of altering innate immune responses to both LPS and organic dust extracts, but each response was altered in a different fashion.
Collapse
Affiliation(s)
- David Schneberger
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Upkardeep Pandher
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brooke Thompson
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shelley Kirychuk
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
16
|
Phelan DE, Mota C, Lai C, Kierans SJ, Cummins EP. Carbon dioxide-dependent signal transduction in mammalian systems. Interface Focus 2021; 11:20200033. [PMID: 33633832 PMCID: PMC7898142 DOI: 10.1098/rsfs.2020.0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Carbon dioxide (CO2) is a fundamental physiological gas known to profoundly influence the behaviour and health of millions of species within the plant and animal kingdoms in particular. A recent Royal Society meeting on the topic of 'Carbon dioxide detection in biological systems' was extremely revealing in terms of the multitude of roles that different levels of CO2 play in influencing plants and animals alike. While outstanding research has been performed by leading researchers in the area of plant biology, neuronal sensing, cell signalling, gas transport, inflammation, lung function and clinical medicine, there is still much to be learned about CO2-dependent sensing and signalling. Notably, while several key signal transduction pathways and nodes of activity have been identified in plants and animals respectively, the precise wiring and sensitivity of these pathways to CO2 remains to be fully elucidated. In this article, we will give an overview of the literature relating to CO2-dependent signal transduction in mammalian systems. We will highlight the main signal transduction hubs through which CO2-dependent signalling is elicited with a view to better understanding the complex physiological response to CO2 in mammalian systems. The main topics of discussion in this article relate to how changes in CO2 influence cellular function through modulation of signal transduction networks influenced by pH, mitochondrial function, adenylate cyclase, calcium, transcriptional regulators, the adenosine monophosphate-activated protein kinase pathway and direct CO2-dependent protein modifications. While each of these topics will be discussed independently, there is evidence of significant cross-talk between these signal transduction pathways as they respond to changes in CO2. In considering these core hubs of CO2-dependent signal transduction, we hope to delineate common elements and identify areas in which future research could be best directed.
Collapse
Affiliation(s)
- D. E. Phelan
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Mota
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Lai
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - S. J. Kierans
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - E. P. Cummins
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
17
|
Masterson C, Horie S, McCarthy SD, Gonzalez H, Byrnes D, Brady J, Fandiño J, Laffey JG, O'Toole D. Hypercapnia in the critically ill: insights from the bench to the bedside. Interface Focus 2021; 11:20200032. [PMID: 33628425 PMCID: PMC7898152 DOI: 10.1098/rsfs.2020.0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
Carbon dioxide (CO2) has long been considered, at best, a waste by-product of metabolism, and at worst, a toxic molecule with serious health consequences if physiological concentration is dysregulated. However, clinical observations have revealed that 'permissive' hypercapnia, the deliberate allowance of respiratory produced CO2 to remain in the patient, can have anti-inflammatory effects that may be beneficial in certain circumstances. In parallel, studies at the cell level have demonstrated the profound effect of CO2 on multiple diverse signalling pathways, be it the effect from CO2 itself specifically or from the associated acidosis it generates. At the whole organism level, it now appears likely that there are many biological sensing systems designed to respond to CO2 concentration and tailor respiratory and other responses to atmospheric or local levels. Animal models have been widely employed to study the changes in CO2 levels in various disease states and also to what extent permissive or even directly delivered CO2 can affect patient outcome. These findings have been advanced to the bedside at the same time that further clinical observations have been elucidated at the cell and animal level. Here we present a synopsis of the current understanding of how CO2 affects mammalian biological systems, with a particular emphasis on inflammatory pathways and diseases such as lung specific or systemic sepsis. We also explore some future directions and possibilities, such as direct control of blood CO2 levels, that could lead to improved clinical care in the future.
Collapse
|
18
|
Shigemura M, Welch LC, Sznajder JI. Hypercapnia Regulates Gene Expression and Tissue Function. Front Physiol 2020; 11:598122. [PMID: 33329047 PMCID: PMC7715027 DOI: 10.3389/fphys.2020.598122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023] Open
Abstract
Carbon dioxide (CO2) is produced in eukaryotic cells primarily during aerobic respiration, resulting in higher CO2 levels in mammalian tissues than those in the atmosphere. CO2 like other gaseous molecules such as oxygen and nitric oxide, is sensed by cells and contributes to cellular and organismal physiology. In humans, elevation of CO2 levels in tissues and the bloodstream (hypercapnia) occurs during impaired alveolar gas exchange in patients with severe acute and chronic lung diseases. Advances in understanding of the biology of high CO2 effects reveal that the changes in CO2 levels are sensed in cells resulting in specific tissue responses. There is accumulating evidence on the transcriptional response to elevated CO2 levels that alters gene expression and activates signaling pathways with consequences for cellular and tissue functions. The nature of hypercapnia-responsive transcriptional regulation is an emerging area of research, as the responses to hypercapnia in different cell types, tissues, and species are not fully understood. Here, we review the current understanding of hypercapnia effects on gene transcription and consequent cellular and tissue functions.
Collapse
Affiliation(s)
- Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
19
|
Bharat A, Angulo M, Sun H, Akbarpour M, Alberro A, Cheng Y, Shigemura M, Berdnikovs S, Welch LC, Kanter JA, Budinger GRS, Lecuona E, Sznajder JI. High CO 2 Levels Impair Lung Wound Healing. Am J Respir Cell Mol Biol 2020; 63:244-254. [PMID: 32275835 DOI: 10.1165/rcmb.2019-0354oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Delayed lung repair leads to alveolopleural fistulae, which are a major cause of morbidity after lung resections. We have reported that intrapleural hypercapnia is associated with delayed lung repair after lung resection. Here, we provide new evidence that hypercapnia delays wound closure of both large airway and alveolar epithelial cell monolayers because of inhibition of epithelial cell migration. Cell migration and airway epithelial wound closure were dependent on Rac1-GTPase activation, which was suppressed by hypercapnia directly through the upregulation of AMP kinase and indirectly through inhibition of injury-induced NF-κB-mediated CXCL12 (pleural CXC motif chemokine 12) release, respectively. Both these pathways were independently suppressed, because dominant negative AMP kinase rescued the effects of hypercapnia on Rac1-GTPase in uninjured resting cells, whereas proteasomal inhibition reversed the NF-κB-mediated CXCL12 release during injury. Constitutive overexpression of Rac1-GTPase rescued the effects of hypercapnia on both pathways as well as on wound healing. Similarly, exogenous recombinant CXCL12 reversed the effects of hypercapnia through Rac1-GTPase activation by its receptor, CXCR4. Moreover, CXCL12 transgenic murine recipients of orthotopic tracheal transplantation were protected from hypercapnia-induced inhibition of tracheal epithelial cell migration and wound repair. In patients undergoing lobectomy, we found inverse correlation between intrapleural carbon dioxide and pleural CXCL12 levels as well as between CXCL12 levels and alveolopleural leak. Accordingly, we provide first evidence that high carbon dioxide levels impair lung repair by inhibiting epithelial cell migration through two distinct pathways, which can be restored by recombinant CXCL12.
Collapse
Affiliation(s)
- Ankit Bharat
- Division of Thoracic Surgery.,Division of Pulmonary and Critical Care Medicine, and
| | - Martín Angulo
- Division of Pulmonary and Critical Care Medicine, and.,Pathophysiology Department, School of Medicine, Universidad de la República, Montevideo, Uruguay; and
| | | | | | - Andrés Alberro
- Division of Pulmonary and Critical Care Medicine, and.,Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Yuan Cheng
- Division of Pulmonary and Critical Care Medicine, and
| | | | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University, Chicago, Illinois
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, and
| | | | | | | | | |
Collapse
|
20
|
Hypercapnia: An Aggravating Factor in Asthma. J Clin Med 2020; 9:jcm9103207. [PMID: 33027886 PMCID: PMC7599850 DOI: 10.3390/jcm9103207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is a common chronic respiratory disorder with relatively good outcomes in the majority of patients with appropriate maintenance therapy. However, in a small minority, patients can experience severe asthma with respiratory failure and hypercapnia, necessitating intensive care unit admission. Hypercapnia occurs due to alveolar hypoventilation and insufficient removal of carbon dioxide (CO2) from the blood. Although mild hypercapnia is generally well tolerated in patients with asthma, there is accumulating evidence that elevated levels of CO2 can act as a gaso-signaling molecule, triggering deleterious effects in various organs such as the lung, skeletal muscles and the innate immune system. Here, we review recent advances on pathophysiological response to hypercapnia and discuss potential detrimental effects of hypercapnia in patients with asthma.
Collapse
|
21
|
Ryan S, Cummins EP, Farre R, Gileles-Hillel A, Jun JC, Oster H, Pepin JL, Ray DW, Reutrakul S, Sanchez-de-la-Torre M, Tamisier R, Almendros I. Understanding the pathophysiological mechanisms of cardiometabolic complications in obstructive sleep apnoea: towards personalised treatment approaches. Eur Respir J 2020; 56:13993003.02295-2019. [PMID: 32265303 DOI: 10.1183/13993003.02295-2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/15/2020] [Indexed: 12/19/2022]
Abstract
In January 2019, a European Respiratory Society research seminar entitled "Targeting the detrimental effects of sleep disturbances and disorders" was held in Dublin, Ireland. It provided the opportunity to critically review the current evidence of pathophysiological responses of sleep disturbances, such as sleep deprivation, sleep fragmentation or circadian misalignment and of abnormalities in physiological gases such as oxygen and carbon dioxide, which occur frequently in respiratory conditions during sleep. A specific emphasis of the seminar was placed on the evaluation of the current state of knowledge of the pathophysiology of cardiovascular and metabolic diseases in obstructive sleep apnoea (OSA). Identification of the detailed mechanisms of these processes is of major importance to the field and this seminar offered an ideal platform to exchange knowledge, and to discuss pitfalls of current models and the design of future collaborative studies. In addition, we debated the limitations of current treatment strategies for cardiometabolic complications in OSA and discussed potentially valuable alternative approaches.
Collapse
Affiliation(s)
- Silke Ryan
- Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland .,School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ramon Farre
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBAPS, and CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - Alex Gileles-Hillel
- Pediatric Pulmonology and Sleep Unit, Dept of Pediatrics, and The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jonathan C Jun
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | | | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes, and Metabolism, Dept of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Manuel Sanchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Hospital Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Renaud Tamisier
- HP2 INSERM U1042, Université Grenoble Alpes, Grenoble, France
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBAPS, and CIBER Enfermedades Respiratorias, Barcelona, Spain
| |
Collapse
|
22
|
Ebner F, Riker RR, Haxhija Z, Seder DB, May TL, Ullén S, Stammet P, Hirsch K, Forsberg S, Dupont A, Friberg H, McPherson JA, Søreide E, Dankiewicz J, Cronberg T, Nielsen N. The association of partial pressures of oxygen and carbon dioxide with neurological outcome after out-of-hospital cardiac arrest: an explorative International Cardiac Arrest Registry 2.0 study. Scand J Trauma Resusc Emerg Med 2020; 28:67. [PMID: 32664989 PMCID: PMC7362652 DOI: 10.1186/s13049-020-00760-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Exposure to extreme arterial partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) following the return of spontaneous circulation (ROSC) after out-of-hospital cardiac arrest (OHCA) is common and may affect neurological outcome but results of previous studies are conflicting. METHODS Exploratory study of the International Cardiac Arrest Registry (INTCAR) 2.0 database, including 2162 OHCA patients with ROSC in 22 intensive care units in North America and Europe. We tested the hypothesis that exposure to extreme PaO2 or PaCO2 values within 24 h after OHCA is associated with poor neurological outcome at discharge. Our primary analyses investigated the association between extreme PaO2 and PaCO2 values, defined as hyperoxemia (PaO2 > 40 kPa), hypoxemia (PaO2 < 8.0 kPa), hypercapnemia (PaCO2 > 6.7 kPa) and hypocapnemia (PaCO2 < 4.0 kPa) and neurological outcome. The secondary analyses tested the association between the exposure combinations of PaO2 > 40 kPa with PaCO2 < 4.0 kPa and PaO2 8.0-40 kPa with PaCO2 > 6.7 kPa and neurological outcome. To define a cut point for the onset of poor neurological outcome, we tested a model with increasing and decreasing PaO2 levels and decreasing PaCO2 levels. Cerebral Performance Category (CPC), dichotomized to good (CPC 1-2) and poor (CPC 3-5) was used as outcome measure. RESULTS Of 2135 patients eligible for analysis, 700 were exposed to hyperoxemia or hypoxemia and 1128 to hypercapnemia or hypocapnemia. Our primary analyses did not reveal significant associations between exposure to extreme PaO2 or PaCO2 values and neurological outcome (P = 0.13-0.49). Our secondary analyses showed no significant associations between combinations of PaO2 and PaCO2 and neurological outcome (P = 0.11-0.86). There was no PaO2 or PaCO2 level significantly associated with poor neurological outcome. All analyses were adjusted for relevant co-variates. CONCLUSIONS Exposure to extreme PaO2 or PaCO2 values in the first 24 h after OHCA was common, but not independently associated with neurological outcome at discharge.
Collapse
Affiliation(s)
- Florian Ebner
- Lund University, Helsingborg Hospital, Department of Clinical Sciences Lund, Anesthesia and Intensive Care, Charlotte Yhlens Gata 10, S-251 87, Helsingborg, Sweden.
| | - Richard R Riker
- Department of Critical Care Services, Maine Medical Center, Portland, ME, USA
| | - Zana Haxhija
- Department of Critical Care Services, Maine Medical Center, Portland, ME, USA
| | - David B Seder
- Department of Critical Care Services, Maine Medical Center, Portland, ME, USA
| | - Teresa L May
- Department of Critical Care Services, Maine Medical Center, Portland, ME, USA
| | - Susann Ullén
- Clinical Studies Sweden, Skane University Hospital, Lund, Sweden
| | - Pascal Stammet
- Medical and Health Directorate, National Fire and Rescue Corps, Luxembourg City, Luxembourg
| | - Karen Hirsch
- Stanford Neurocritical Care Program, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Sune Forsberg
- Department of Intensive Care, Norrtälje Hospital, Center for Resuscitation,Karolinska Institute, Solna, Sweden
| | - Allison Dupont
- Department of Cardiology, Northeast Georgia Medical Center, Gainesville, GA, USA
| | - Hans Friberg
- Department of Clinical Sciences, Anesthesiology and Intensive Care, Lund University, Skane University Hospital, Malmö, Sweden
| | | | - Eldar Søreide
- Critical Care and Anaesthesiology Research Group, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Josef Dankiewicz
- Department of Clinical Sciences Lund, Cardiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Niklas Nielsen
- Lund University, Helsingborg Hospital, Department of Clinical Sciences Lund, Anesthesia and Intensive Care, Charlotte Yhlens Gata 10, S-251 87, Helsingborg, Sweden
| |
Collapse
|
23
|
Nevler A, Brown SZ, Nauheim D, Portocarrero C, Rodeck U, Bassig J, Schultz CW, McCarthy GA, Lavu H, Yeo TP, Yeo CJ, Brody JR. Effect of Hypercapnia, an Element of Obstructive Respiratory Disorder, on Pancreatic Cancer Chemoresistance and Progression. J Am Coll Surg 2020; 230:659-667. [PMID: 32058016 DOI: 10.1016/j.jamcollsurg.2019.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic obstructive respiratory disorders (ORDs) are linked to increased rates of cancer-related deaths. Little is known about the effects of hypercapnia (elevated CO2) on development of pancreatic ductal adenocarcinoma (PDAC) and drug resistance. STUDY DESIGN Two PDAC cell lines were exposed to normocapnic (5% CO2) and hypercapnic (continuous/intermittent 10% CO2) conditions, physiologically similar to patients with active ORD. Cells were assessed for proliferation rate, colony formation, and chemo-/radiotherapeutic efficacy. In a retrospective clinical study design, patients with PDAC who had undergone pancreatic resection between 2002 and 2014 were reviewed. Active smokers were excluded to remove possible smoking-related protumorigenic influence. Clinical data, pathologic findings, and survival end points were recorded. Kaplan-Meier and Cox regression analyses were performed. RESULTS Exposure to hypercapnia resulted in increased colony formation and proliferation rates in vitro in both cell lines (MIA-PaCa-2: 111% increase and Panc-1: 114% increase; p < 0.05). Hypercapnia exposure induced a 2.5-fold increase in oxaliplatin resistance (p < 0.05) in both cell lines and increased resistance to ionizing radiation in MIA-PaCa-2 cells (p < 0.05). Five hundred and seventy-eight patients were included (52% were male, median age was 68.7 years [interquartile range 60.6 to 76.8 years]). Cox regression analysis, assessing TNM staging, age, sex, and ORD status, identified ORD as an independent risk factor for both overall survival (hazard ratio 1.64; 95% CI, 1.2 to 2.3; p < 0.05) and disease-free survival (hazard ratio 1.68; 95% CI, 1.06 to 2.67). CONCLUSIONS PDAC cells exposed to hypercapnic environments, which is common in patients with ORD, showed tumor proliferation, radioresistance, and chemoresistance. Patients with a history of ORD had a worse overall prognosis, suggesting that hypercapnic conditions play a role in the development and progression of PDAC and stressing the need for patient-tailored care.
Collapse
Affiliation(s)
- Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA.
| | - Samantha Z Brown
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - David Nauheim
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Carla Portocarrero
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Jonathan Bassig
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Christopher W Schultz
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Grace A McCarthy
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Harish Lavu
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Theresa P Yeo
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Charles J Yeo
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Jonathan R Brody
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
24
|
Cummins EP, Strowitzki MJ, Taylor CT. Mechanisms and Consequences of Oxygen and Carbon Dioxide Sensing in Mammals. Physiol Rev 2019; 100:463-488. [PMID: 31539306 DOI: 10.1152/physrev.00003.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular oxygen (O2) and carbon dioxide (CO2) are the primary gaseous substrate and product of oxidative phosphorylation in respiring organisms, respectively. Variance in the levels of either of these gasses outside of the physiological range presents a serious threat to cell, tissue, and organism survival. Therefore, it is essential that endogenous levels are monitored and kept at appropriate concentrations to maintain a state of homeostasis. Higher organisms such as mammals have evolved mechanisms to sense O2 and CO2 both in the circulation and in individual cells and elicit appropriate corrective responses to promote adaptation to commonly encountered conditions such as hypoxia and hypercapnia. These can be acute and transient nontranscriptional responses, which typically occur at the level of whole animal physiology or more sustained transcriptional responses, which promote chronic adaptation. In this review, we discuss the mechanisms by which mammals sense changes in O2 and CO2 and elicit adaptive responses to maintain homeostasis. We also discuss crosstalk between these pathways and how they may represent targets for therapeutic intervention in a range of pathological states.
Collapse
Affiliation(s)
- Eoin P Cummins
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Moritz J Strowitzki
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
25
|
Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D, Liao Q. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 2018; 11:2063-2073. [PMID: 29695914 PMCID: PMC5905465 DOI: 10.2147/ott.s161109] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a group of cells that malignantly grow and proliferate uncontrollably. At present, treatment modes for cancer mainly comprise surgery, chemotherapy, radiotherapy, molecularly targeted therapy, gene therapy, and immunotherapy. However, the curative effects of these treatments have been limited thus far by specific characteristics of tumors. Abnormal activation of signaling pathways is involved in tumor pathogenesis and plays critical roles in growth, progression, and relapse of cancers. Targeted therapies against effectors in oncogenic signaling have improved the outcomes of cancer patients. NFκB is an important signaling pathway involved in pathogenesis and treatment of cancers. Excessive activation of the NFκB-signaling pathway has been documented in various tumor tissues, and studies on this signaling pathway for targeted cancer therapy have become a hot topic. In this review, we update current understanding of the NFκB-signaling pathway in cancer.
Collapse
Affiliation(s)
- Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Lu Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Department of Medical Microbiology, Immunology, and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| |
Collapse
|