1
|
Firdoos N, Krumwiede L, Medina-Escobar N, Treichel L, Fischer L, Herde M, Witte CP. The vacuolar phosphatases purple acid phosphatase 26 and haloacid dehalogenase IIA2.1 hydrolyze 5'-, 3'-, and 2'-nucleotides derived from RNA degradation. PLANT PHYSIOLOGY 2024; 197:kiaf025. [PMID: 39823296 DOI: 10.1093/plphys/kiaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
The vacuole is an important site for RNA degradation. Autophagy delivers RNA to the vacuole, where the vacuolar T2 RNase ribonuclease 2 (RNS2) plays a major role in RNA catabolism. The presumed products of RNS2 activity are 3'-nucleoside monophosphates (3'-NMPs). Vacuolar phosphatases that carry out 3'-NMP hydrolysis are required to metabolize 3'-NMPs, but the specific players remain unknown. Using a mutant of RNS2 and mutants of the autophagy-related genes 5 and 9 (atg5 and atg9), we confirmed that 3'-NMPs are products of vacuolar RNS2-mediated RNA degradation in Arabidopsis (Arabidopsis thaliana). Moreover, we identified purple acid phosphatase 26 (PAP26) and haloacid dehalogenase IIA2.1 (HIIA2.1) as vacuolar 3'-NMP phosphatases. Based on phylogenetic analysis, we propose systematic nomenclature for HADIIA enzymes, some of which were previously named vegetative storage proteins, which we critically discuss. PAP26 and HIIA2.1 differ in their NMP specificity and activity in vitro. However, hiia2.1 pap26 double mutant plants, but generally not the respective single mutants, accumulate 3'-NMPs in addition to 5'-NMPs and, surprisingly, also 2'-NMPs. These findings suggest that PAP26 and HIIA2.1 have overlapping NMP substrate spectra in vivo. Excess 3'- and 2'-NMPs accumulate in plants exposed to a prolonged night, presumably because carbon limitation enhances autophagy-mediated vacuolar RNA degradation. We conclude that vacuolar RNA catabolism releases 3'-NMPs and 2'-NMPs through RNS2 and other RNases that also generate 5'-NMPs. PAP26 and HIIA2.1 are required to dephosphorylate these NMPs, so that they can enter general nucleotide metabolism outside the vacuole.
Collapse
Affiliation(s)
- Nabila Firdoos
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Lukas Krumwiede
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Nieves Medina-Escobar
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Leonie Treichel
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Lisa Fischer
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| |
Collapse
|
2
|
Dunken N, Widmer H, Balcke GU, Straube H, Langen G, Charura NM, Saake P, De Quattro C, Schön J, Rövenich H, Wawra S, Khan M, Djamei A, Zurbriggen MD, Tissier A, Witte CP, Zuccaro A. A nucleoside signal generated by a fungal endophyte regulates host cell death and promotes root colonization. Cell Host Microbe 2024; 32:2161-2177.e7. [PMID: 39603244 DOI: 10.1016/j.chom.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
The intracellular colonization of plant roots by the beneficial fungal endophyte Serendipita indica follows a biphasic strategy, including a host cell death phase that enables successful colonization of Arabidopsis thaliana roots. How host cell death is initiated and controlled is largely unknown. Here, we show that two fungal enzymes, the ecto-5'-nucleotidase SiE5NT and the nuclease SiNucA, act synergistically in the apoplast at the onset of cell death to produce deoxyadenosine (dAdo). The uptake of extracellular dAdo but not the structurally related adenosine activates cell death via the equilibrative nucleoside transporter ENT3. We identified a previously uncharacterized Toll-like interleukin 1 receptor (TIR)-nucleotide-binding leucine-rich repeat receptor (NLR) protein, ISI (induced by S. indica), as an intracellular factor that affects host cell death, fungal colonization, and growth promotion. Our data show that the combined activity of two fungal apoplastic enzymes promotes the production of a metabolite that engages TIR-NLR-modulated pathways to induce plant cell death, providing a link to immunometabolism in plants.
Collapse
Affiliation(s)
- Nick Dunken
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Heidi Widmer
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Henryk Straube
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover Germany; Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Gregor Langen
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Nyasha M Charura
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Concetta De Quattro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Jonas Schön
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany; Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hanna Rövenich
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Stephan Wawra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Matias D Zurbriggen
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany; Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany; Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover Germany
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
3
|
Rinne J, Niehaus M, Medina-Escobar N, Straube H, Schaarschmidt F, Rugen N, Braun HP, Herde M, Witte CP. Three Arabidopsis UMP kinases have different roles in pyrimidine nucleotide biosynthesis and (deoxy)CMP salvage. THE PLANT CELL 2024; 36:3611-3630. [PMID: 38865437 PMCID: PMC11371195 DOI: 10.1093/plcell/koae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Pyrimidine nucleotide monophosphate biosynthesis ends in the cytosol with uridine monophosphate (UMP). UMP phosphorylation to uridine diphosphate (UDP) by UMP KINASEs (UMKs) is required for the generation of all pyrimidine (deoxy)nucleoside triphosphates as building blocks for nucleic acids and central metabolites like UDP-glucose. The Arabidopsis (Arabidopsis thaliana) genome encodes five UMKs and three belong to the AMP KINASE (AMK)-like UMKs, which were characterized to elucidate their contribution to pyrimidine metabolism. Mitochondrial UMK2 and cytosolic UMK3 are evolutionarily conserved, whereas cytosolic UMK1 is specific to the Brassicaceae. In vitro, all UMKs can phosphorylate UMP, cytidine monophosphate (CMP) and deoxycytidine monophosphate (dCMP), but with different efficiencies. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-induced null mutants were generated for UMK1 and UMK2, but not for UMK3, since frameshift alleles were lethal for germline cells. However, a mutant with diminished UMK3 activity showing reduced growth was obtained. Metabolome analyses of germinating seeds and adult plants of single- and higher-order mutants revealed that UMK3 plays an indispensable role in the biosynthesis of all pyrimidine (deoxy)nucleotides and UDP-sugars, while UMK2 is important for dCMP recycling that contributes to mitochondrial DNA stability. UMK1 is primarily involved in CMP recycling. We discuss the specific roles of these UMKs referring also to the regulation of pyrimidine nucleoside triphosphate synthesis.
Collapse
Affiliation(s)
- Jannis Rinne
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Nieves Medina-Escobar
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Frank Schaarschmidt
- Department of Biostatistics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Nils Rugen
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
4
|
Krämer U. Metal Homeostasis in Land Plants: A Perpetual Balancing Act Beyond the Fulfilment of Metalloproteome Cofactor Demands. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:27-65. [PMID: 38277698 DOI: 10.1146/annurev-arplant-070623-105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany;
| |
Collapse
|
5
|
Wanke A, van Boerdonk S, Mahdi LK, Wawra S, Neidert M, Chandrasekar B, Saake P, Saur IML, Derbyshire P, Holton N, Menke FLH, Brands M, Pauly M, Acosta IF, Zipfel C, Zuccaro A. A GH81-type β-glucan-binding protein enhances colonization by mutualistic fungi in barley. Curr Biol 2023; 33:5071-5084.e7. [PMID: 37977140 DOI: 10.1016/j.cub.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Cell walls are important interfaces of plant-fungal interactions, acting as robust physical and chemical barriers against invaders. Upon fungal colonization, plants deposit phenolics and callose at the sites of fungal penetration to prevent further fungal progression. Alterations in the composition of plant cell walls significantly impact host susceptibility. Furthermore, plants and fungi secrete glycan hydrolases acting on each other's cell walls. These enzymes release various sugar oligomers into the apoplast, some of which activate host immunity via surface receptors. Recent characterization of cell walls from plant-colonizing fungi has emphasized the abundance of β-glucans in different cell wall layers, which makes them suitable targets for recognition. To characterize host components involved in immunity against fungi, we performed a protein pull-down with the biotinylated β-glucan laminarin. Thereby, we identified a plant glycoside hydrolase family 81-type glucan-binding protein (GBP) as a β-glucan interactor. Mutation of GBP1 and its only paralog, GBP2, in barley led to decreased colonization by the beneficial root endophytes Serendipita indica and S. vermifera, as well as the arbuscular mycorrhizal fungus Rhizophagus irregularis. The reduction of colonization was accompanied by enhanced responses at the host cell wall, including an extension of callose-containing cell wall appositions. Moreover, GBP mutation in barley also reduced fungal biomass in roots by the hemibiotrophic pathogen Bipolaris sorokiniana and inhibited the penetration success of the obligate biotrophic leaf pathogen Blumeria hordei. These results indicate that GBP1 is involved in the establishment of symbiotic associations with beneficial fungi-a role that has potentially been appropriated by barley-adapted pathogens.
Collapse
Affiliation(s)
- Alan Wanke
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah van Boerdonk
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lisa Katharina Mahdi
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stephan Wawra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Miriam Neidert
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Balakumaran Chandrasekar
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Nicholas Holton
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Mathias Brands
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK; Institute of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
6
|
Xiong Z, Zhang N, Xu L, Deng Z, Limwachiranon J, Guo Y, Han Y, Yang W, Scharf DH. Urease of Aspergillus fumigatus Is Required for Survival in Macrophages and Virulence. Microbiol Spectr 2023; 11:e0350822. [PMID: 36916906 PMCID: PMC10100864 DOI: 10.1128/spectrum.03508-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
The number of patients suffering from fungal diseases has constantly increased during the last decade. Among the fungal pathogens, the airborne filamentous fungus Aspergillus fumigatus can cause chronic and fatal invasive mold infections. So far, only three major classes of drugs (polyenes, azoles, and echinocandins) are available for the treatment of life-threatening fungal infections, and all present pharmacological drawbacks (e.g., low solubility or toxicity). Meanwhile, clinical antifungal-resistant isolates are continuously emerging. Therefore, there is a high demand for novel antifungal drugs, preferentially those that act on new targets. We studied urease and the accessory proteins in A. fumigatus to determine their biochemical roles and their influence on virulence. Urease is crucial for the growth on urea as the sole nitrogen source, and the transcript and protein levels are elevated on urea media. The urease deficient mutant displays attenuated virulence, and its spores are more susceptible to macrophage-mediated killing. We demonstrated that this observation is associated with an inability to prevent the acidification of the phagosome. Furthermore, we could show that a nickel-chelator inhibits growth on urea. The nickel chelator is also able to reverse the effects of urease on macrophage killing and phagosome acidification, thereby reducing virulence in systemic and trachea infection models. IMPORTANCE The development of antifungal drugs is an urgent task, but it has proven to be difficult due to many similarities between fungal and animal cells. Here, we characterized the urease system in A. fumigatus, which depends on nickel for activity. Notably, nickel is not a crucial element for humans. Therefore, we went further to explore the role of nickel-dependent urease in host-pathogen interactions. We were able to show that urease is important in preventing the acidification of the phagosome and therefore reduces the killing of conidia by macrophages. Furthermore, the deletion of urease shows reduced virulence in murine infection models. Taken together, we identified urease as an essential virulence factor of A. fumigatus. We were able to show that the application of the nickel-chelator dimethylglyoxime is effective in both in vitro and in vivo infection models. This suggests that nickel chelators or urease inhibitors are potential candidates for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Zhang
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Liru Xu
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiduo Deng
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jarukitt Limwachiranon
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaojie Guo
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Han
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yang
- Department of Biophysics and Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daniel H. Scharf
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Chen X, Kim SH, Rhee S, Witte CP. A plastid nucleoside kinase is involved in inosine salvage and control of purine nucleotide biosynthesis. THE PLANT CELL 2023; 35:510-528. [PMID: 36342213 PMCID: PMC9806653 DOI: 10.1093/plcell/koac320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/02/2022] [Indexed: 05/19/2023]
Abstract
In nucleotide metabolism, nucleoside kinases recycle nucleosides into nucleotides-a process called nucleoside salvage. Nucleoside kinases for adenosine, uridine, and cytidine have been characterized from many organisms, but kinases for inosine and guanosine salvage are not yet known in eukaryotes and only a few such enzymes have been described from bacteria. Here we identified Arabidopsis thaliana PLASTID NUCLEOSIDE KINASE 1 (PNK1), an enzyme highly conserved in plants and green algae belonging to the Phosphofructokinase B family. We demonstrate that PNK1 from A. thaliana is located in plastids and catalyzes the phosphorylation of inosine, 5-aminoimidazole-4-carboxamide-1-β-d-ribose (AICA ribonucleoside), and uridine but not guanosine in vitro, and is involved in inosine salvage in vivo. PNK1 mutation leads to increased flux into purine nucleotide catabolism and, especially in the context of defective uridine degradation, to over-accumulation of uridine and UTP as well as growth depression. The data suggest that PNK1 is involved in feedback regulation of purine nucleotide biosynthesis and possibly also pyrimidine nucleotide biosynthesis. We additionally report that cold stress leads to accumulation of purine nucleotides, probably by inducing nucleotide biosynthesis, but that this adjustment of nucleotide homeostasis to environmental conditions is not controlled by PNK1.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Sang-Hoon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sangkee Rhee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
8
|
Gui JY, Rao S, Huang X, Liu X, Cheng S, Xu F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158673. [PMID: 36096215 DOI: 10.1016/j.scitotenv.2022.158673] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nutrient imbalance (i.e., deficiency and toxicity) of microelements is an outstanding environmental issue that influences each aspect of ecosystems. Although the crucial roles of microelements in entire lifecycle of plants have been widely acknowledged, the effective control of microelements is still neglected due to the narrow safe margins. Selenium (Se) is an essential element for humans and animals. Although it is not believed to be indispensable for plants, many literatures have reported the significance of Se in terms of the uptake, accumulation, and detoxification of essential microelements in plants. However, most papers only concerned on the antagonistic effect of Se on metal elements in plants and ignored the underlying mechanisms. There is still a lack of systematic review articles to summarize the comprehensive knowledge on the connections between Se and microelements in plants. In this review, we conclude the bidirectional effects of Se on micronutrients in plants, including iron, zinc, copper, manganese, nickel, molybdenum, sodium, chlorine, and boron. The regulatory mechanisms of Se on these micronutrients are also analyzed. Moreover, we further emphasize the role of Se in alleviating element toxicity and adjusting the concentration of micronutrients in plants by altering the soil conditions (e.g., adsorption, pH, and organic matter), promoting microbial activity, participating in vital physiological and metabolic processes, generating element competition, stimulating metal chelation, organelle compartmentalization, and sequestration, improving the antioxidant defense system, and controlling related genes involved in transportation and tolerance. Based on the current understanding of the interaction between Se and these essential elements, future directions for research are suggested.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
9
|
Enzymes and cellular interplay required for flux of fixed nitrogen to ureides in bean nodules. Nat Commun 2022; 13:5331. [PMID: 36088455 PMCID: PMC9464200 DOI: 10.1038/s41467-022-33005-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
Tropical legumes transport fixed nitrogen in form of ureides (allantoin and allantoate) over long distances from the nodules to the shoot. Ureides are formed in nodules from purine mononucleotides by a partially unknown reaction network that involves bacteroid-infected and uninfected cells. Here, we demonstrate by metabolic analysis of CRISPR mutant nodules of Phaseolus vulgaris defective in either xanthosine monophosphate phosphatase (XMPP), guanosine deaminase (GSDA), the nucleoside hydrolases 1 and 2 (NSH1, NSH2) or xanthine dehydrogenase (XDH) that nodule ureide biosynthesis involves these enzymes and requires xanthosine and guanosine but not inosine monophosphate catabolism. Interestingly, promoter reporter analyses revealed that XMPP, GSDA and XDH are expressed in infected cells, whereas NSH1, NSH2 and the promoters of the downstream enzymes urate oxidase (UOX) and allantoinase (ALN) are active in uninfected cells. The data suggest a complex cellular organization of ureide biosynthesis with three transitions between infected and uninfected cells. Tropical legumes export fixed nitrogen from nodules as ureides. Here, the authors describe how ureides are produced by several biosynthetic enzymes in different nodule cell types and provide explanations for metabolic compartmentation.
Collapse
|
10
|
Jócsák I, Knolmajer B, Szarvas M, Rabnecz G, Pál-Fám F. Literature Review on the Effects of Heavy Metal Stress and Alleviating Possibilities through Exogenously Applied Agents in Alfalfa ( Medicago sativa L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:2161. [PMID: 36015464 PMCID: PMC9414348 DOI: 10.3390/plants11162161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) are among the most important toxic agents since they reach the soil through various routes and accumulate in the food chain. Therefore, HMs induce problems in soil integrity and in plant, animal, and human health. Alfalfa (Medicago sativa L.) is a significant crop worldwide, utilized in animal production. Furthermore, because of its nitrogen-absorbing ability via symbiotic strains of bacteria, it increases soil productivity. However, there are relatively few studies investigating the effects of HMs and their alleviation possibilities on alfalfa plants. Therefore, the goal of this review is to clarify the current state of research into HM-induced alterations in alfalfa and to determine the extent to which externally applied microorganisms and chemical compounds can mitigate the negative effects. The aim is to indicate areas of development towards further understanding of HM detoxification in alfalfa and to identify future research directions.
Collapse
Affiliation(s)
- Ildikó Jócsák
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Street 40, H-7400 Kaposvár, Hungary
| | - Bence Knolmajer
- Institute of Plant Protection, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Deák Ferenc Street 16, H-8360 Keszthely, Hungary
| | - Miklós Szarvas
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Street 40, H-7400 Kaposvár, Hungary
| | - Gyula Rabnecz
- Zorvet Ltd., Wlassics Gyula Street 58, H-1181 Budapest, Hungary
| | - Ferenc Pál-Fám
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Street 40, H-7400 Kaposvár, Hungary
| |
Collapse
|
11
|
Somayaji A, Dhanjal CR, Lingamsetty R, Vinayagam R, Selvaraj R, Varadavenkatesan T, Govarthanan M. An insight into the mechanisms of homeostasis in extremophiles. Microbiol Res 2022; 263:127115. [PMID: 35868258 DOI: 10.1016/j.micres.2022.127115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
The homeostasis of extremophiles is one that is a diamond hidden in the rough. The way extremophiles adapt to their extreme environments gives a clue into the true extent of what is possible when it comes to life. The discovery of new extremophiles is ever-expanding and an explosion of knowledge surrounding their successful existence in extreme environments is obviously perceived in scientific literature. The present review paper aims to provide a comprehensive view on the different mechanisms governing the extreme adaptations of extremophiles, along with insights and discussions on what the limits of life can possibly be. The membrane adaptations that are vital for survival are discussed in detail. It was found that there are many alterations in the genetic makeup of such extremophiles when compared to their mesophilic counterparts. Apart from the several proteins involved, the significance of chaperones, efflux systems, DNA repair proteins and a host of other enzymes that adapt to maintain functionality, are enlisted, and explained. A deeper understanding of the underlying mechanisms could have a plethora of applications in the industry. There are cases when certain microbes can withstand extreme doses of antibiotics. Such microbes accumulate numerous genetic elements (or plasmids) that possess genes for multiple drug resistance (MDR). A deeper understanding of such mechanisms helps in the development of potential approaches and therapeutic schemes for treating pathogen-mediated outbreaks. An in-depth analysis of the parameters - radiation, pressure, temperature, pH value and metal resistance - are discussed in this review, and the key to survival in these precarious niches is described.
Collapse
Affiliation(s)
- Adithi Somayaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chetan Roger Dhanjal
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rathnamegha Lingamsetty
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| |
Collapse
|
12
|
|
13
|
Initiation of cytosolic plant purine nucleotide catabolism involves a monospecific xanthosine monophosphate phosphatase. Nat Commun 2021; 12:6846. [PMID: 34824243 PMCID: PMC8616923 DOI: 10.1038/s41467-021-27152-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/02/2021] [Indexed: 12/05/2022] Open
Abstract
In plants, guanosine monophosphate (GMP) is synthesized from adenosine monophosphate via inosine monophosphate and xanthosine monophosphate (XMP) in the cytosol. It has been shown recently that the catabolic route for adenylate-derived nucleotides bifurcates at XMP from this biosynthetic route. Dephosphorylation of XMP and GMP by as yet unknown phosphatases can initiate cytosolic purine nucleotide catabolism. Here we show that Arabidopsis thaliana possesses a highly XMP-specific phosphatase (XMPP) which is conserved in vascular plants. We demonstrate that XMPP catalyzes the irreversible entry reaction of adenylate-derived nucleotides into purine nucleotide catabolism in vivo, whereas the guanylates enter catabolism via an unidentified GMP phosphatase and guanosine deaminase which are important to maintain purine nucleotide homeostasis. We also present a crystal structure and mutational analysis of XMPP providing a rationale for its exceptionally high substrate specificity, which is likely required for the efficient catalysis of the very small XMP pool in vivo. Dephosphorylation of xanthosine monophosphate (XMP) initiates purine nucleotide catabolism in plant cells. Here the authors identify an XMP phosphatase from Arabidopsis that channels XMP towards catabolism in vivo and demonstrate the structural basis for its XMP specificity.
Collapse
|
14
|
Grosjean N, Blaby-Haas CE. Leveraging computational genomics to understand the molecular basis of metal homeostasis. THE NEW PHYTOLOGIST 2020; 228:1472-1489. [PMID: 32696981 DOI: 10.1111/nph.16820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Genome-based data is helping to reveal the diverse strategies plants and algae use to maintain metal homeostasis. In addition to acquisition, distribution and storage of metals, acclimating to feast or famine can involve a wealth of genes that we are just now starting to understand. The fast-paced acquisition of genome-based data, however, is far outpacing our ability to experimentally characterize protein function. Computational genomic approaches are needed to fill the gap between what is known and unknown. To avoid misconstruing bioinformatically derived data, which is the root cause of the inaccurate functional annotations that plague databases, functional inferences from diverse sources and contextualization of that evidence with a robust understanding of protein family evolution is needed. Phylogenomic- and comparative-genomic-based studies can aid in the interpretation of experimental data or provide a spark for the discovery of a new function. These analyses not only lead to novel insight into a target protein's function but can generate thought-provoking insights across protein families.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | |
Collapse
|
15
|
Shi T, Zhu A, Jia J, Hu X, Chen J, Liu W, Ren X, Sun D, Fernie AR, Cui F, Chen W. Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:279-292. [PMID: 32073701 PMCID: PMC7383920 DOI: 10.1111/tpj.14727] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 05/21/2023]
Abstract
Plants produce numerous metabolites that are important for their development and growth. However, the genetic architecture of the wheat metabolome has not been well studied. Here, utilizing a high-density genetic map, we conducted a comprehensive metabolome study via widely targeted LC-MS/MS to analyze the wheat kernel metabolism. We further combined agronomic traits and dissected the genetic relationship between metabolites and agronomic traits. In total, 1260 metabolic features were detected. Using linkage analysis, 1005 metabolic quantitative trait loci (mQTLs) were found distributed unevenly across the genome. Twenty-four candidate genes were found to modulate the levels of different metabolites, of which two were functionally annotated by in vitro analysis to be involved in the synthesis and modification of flavonoids. Combining the correlation analysis of metabolite-agronomic traits with the co-localization of methylation quantitative trait locus (mQTL) and phenotypic QTL (pQTL), genetic relationships between the metabolites and agronomic traits were uncovered. For example, a candidate was identified using correlation and co-localization analysis that may manage auxin accumulation, thereby affecting number of grains per spike (NGPS). Furthermore, metabolomics data were used to predict the performance of wheat agronomic traits, with metabolites being found that provide strong predictive power for NGPS and plant height. This study used metabolomics and association analysis to better understand the genetic basis of the wheat metabolism which will ultimately assist in wheat breeding.
Collapse
Affiliation(s)
- Taotao Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Anting Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xifeng Ren
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Dongfa Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐Golm14476Germany
| | - Fa Cui
- Wheat Molecular Breeding Innovation Research GroupKey Laboratory of Molecular Module‐Based Breeding of High Yield and Abiotic Resistant Plants in Universities of ShandongSchool of AgricultureLudong UniversityYantaiChina
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
16
|
Chen M, Witte CP. A Kinase and a Glycosylase Catabolize Pseudouridine in the Peroxisome to Prevent Toxic Pseudouridine Monophosphate Accumulation. THE PLANT CELL 2020; 32:722-739. [PMID: 31907295 PMCID: PMC7054038 DOI: 10.1105/tpc.19.00639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 05/02/2023]
Abstract
Pseudouridine (Ψ) is a frequent nucleoside modification that occurs in both noncoding RNAs and mRNAs. In pseudouridine, C5 of uracil is attached to the Rib via an unusual C-glycosidic bond. This RNA modification is introduced on the RNA by site-specific transglycosylation of uridine (U), a process mediated by pseudouridine synthases. RNA is subject to constant turnover, releasing free pseudouridine, but the metabolic fate of pseudouridine in eukaryotes is unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), pseudouridine is catabolized in the peroxisome by (1) a pseudouridine kinase (PUKI) from the PfkB family that generates 5'-pseudouridine monophosphate (5'-ΨMP) and (2) a ΨMP glycosylase (PUMY) that hydrolyzes ΨMP to uracil and ribose-5-phosphate. Compromising pseudouridine catabolism leads to strong pseudouridine accumulation and increased ΨMP content. ΨMP is toxic, causing delayed germination and growth inhibition, but compromising pseudouridine catabolism does not affect the Ψ/U ratios in RNA. The bipartite peroxisomal PUKI and PUMY are conserved in plants and algae, whereas some fungi and most animals (except mammals) possess a PUMY-PUKI fusion protein, likely in mitochondria. We propose that vacuolar turnover of ribosomal RNA produces most of the pseudouridine pool via 3'-ΨMP, which is imported through the cytosol into the peroxisomes for degradation by PUKI and PUMY, a process involving a toxic 5'-ΨMP intermediate.
Collapse
Affiliation(s)
- Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| |
Collapse
|
17
|
Abstract
Maturation of urease involves post-translational insertion of nickel ions to form an active site with a carbamylated lysine ligand and is assisted by urease accessory proteins UreD, UreE, UreF and UreG. Here, we review our current understandings on how these urease accessory proteins facilitate the urease maturation. The urease maturation pathway involves the transfer of Ni2+ from UreE → UreG → UreF/UreD → urease. To avoid the release of the toxic metal to the cytoplasm, Ni2+ is transferred from one urease accessory protein to another through specific protein–protein interactions. One central theme depicts the role of guanosine triphosphate (GTP) binding/hydrolysis in regulating the binding/release of nickel ions and the formation of the protein complexes. The urease and [NiFe]-hydrogenase maturation pathways cross-talk with each other as UreE receives Ni2+ from hydrogenase maturation factor HypA. Finally, the druggability of the urease maturation pathway is reviewed.
Collapse
|
18
|
Baccolini C, Witte CP. AMP and GMP Catabolism in Arabidopsis Converge on Xanthosine, Which Is Degraded by a Nucleoside Hydrolase Heterocomplex. THE PLANT CELL 2019; 31:734-751. [PMID: 30787180 PMCID: PMC6482636 DOI: 10.1105/tpc.18.00899] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 05/17/2023]
Abstract
Plants can fully catabolize purine nucleotides. A firmly established central intermediate is the purine base xanthine. In the current widely accepted model of plant purine nucleotide catabolism, xanthine can be generated in various ways involving either inosine and hypoxanthine or guanosine and xanthosine as intermediates. In a comprehensive mutant analysis involving single and multiple mutants of urate oxidase, xanthine dehydrogenase, nucleoside hydrolases, guanosine deaminase, and hypoxanthine guanine phosphoribosyltransferase, we demonstrate that purine nucleotide catabolism in Arabidopsis (Arabidopsis thaliana) mainly generates xanthosine, but not inosine and hypoxanthine, and that xanthosine is derived from guanosine deamination and a second source, likely xanthosine monophosphate dephosphorylation. Nucleoside hydrolase 1 (NSH1) is known to be essential for xanthosine hydrolysis, but the in vivo function of a second cytosolic nucleoside hydrolase, NSH2, is unclear. We demonstrate that NSH1 activates NSH2 in vitro and in vivo, forming a complex with almost two orders of magnitude higher catalytic efficiency for xanthosine hydrolysis than observed for NSH1 alone. Remarkably, an inactive NSH1 point mutant can activate NSH2 in vivo, fully preventing purine nucleoside accumulation in nsh1 background. Our data lead to an altered model of purine nucleotide catabolism that includes an NSH heterocomplex as a central component.
Collapse
Affiliation(s)
- Chiara Baccolini
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| |
Collapse
|
19
|
Duan M, Li Y, Xu L, Yang H, Luo F, Guan Y, Zhang B, Jing C, You Z. Synthesis, crystal structure and urease inhibition of a trinuclear copper(II) complex with reduced Schiff base ligand. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Yu H, Guo S, Cheng JY, Jiang G, Li Z, Zhai W, Li A, Jiang Y, You Z. Synthesis and crystal structures of cobalt(III), copper(II), nickel(II) and zinc(II) complexes derived from 4-methoxy-N′-(pyridin-2-ylmethylene)benzohydrazide with urease inhibitory activity. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1533959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Huiyuan Yu
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Sihan Guo
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Jun-Yan Cheng
- College of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Jinan, P. R. China
| | - Guifa Jiang
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Zhiwen Li
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Wenqi Zhai
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Ang Li
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Yumin Jiang
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Zhonglu You
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| |
Collapse
|
21
|
Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30T. J Biosci Bioeng 2018; 126:667-675. [DOI: 10.1016/j.jbiosc.2018.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022]
|
22
|
You Z, Yu H, Li Z, Zhai W, Jiang Y, Li A, Guo S, Li K, Lv C, Zhang C. Inhibition studies of Jack bean urease with hydrazones and their copper(II) complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Chen M, Urs MJ, Sánchez-González I, Olayioye MA, Herde M, Witte CP. m 6A RNA Degradation Products Are Catabolized by an Evolutionarily Conserved N 6-Methyl-AMP Deaminase in Plant and Mammalian Cells. THE PLANT CELL 2018; 30:1511-1522. [PMID: 29884623 PMCID: PMC6096584 DOI: 10.1105/tpc.18.00236] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 05/17/2023]
Abstract
N6-methylated adenine (m6A) is the most frequent posttranscriptional modification in eukaryotic mRNA. Turnover of RNA generates N6-methylated AMP (N6-mAMP), which has an unclear metabolic fate. We show that Arabidopsis thaliana and human cells require an N6-mAMP deaminase (ADAL, renamed MAPDA) to catabolize N6-mAMP to inosine monophosphate in vivo by hydrolytically removing the aminomethyl group. A phylogenetic, structural, and biochemical analysis revealed that many fungi partially or fully lack MAPDA, which coincides with a minor role of N6A-RNA methylation in these organisms. MAPDA likely protects RNA from m6A misincorporation. This is required because eukaryotic RNA polymerase can use N6-mATP as a substrate. Upon abrogation of MAPDA, root growth is slightly reduced, and the N6-methyladenosine, N6-mAMP, and N6-mATP concentrations are increased in Arabidopsis. Although this will potentially lead to m6A misincorporation into RNA, we show that the frequency is too low to be reliably detected in vivo. Since N6-mAMP was severalfold more abundant than N6-mATP in MAPDA mutants, we speculate that additional molecular filters suppress the generation of N6-mATP. Enzyme kinetic data indicate that adenylate kinases represent such filters being highly selective for AMP versus N6-mAMP phosphorylation. We conclude that a multilayer molecular protection system is in place preventing N6-mAMP accumulation and salvage.
Collapse
Affiliation(s)
- Mingjia Chen
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, 30419 Hannover, Germany
| | - Mounashree J Urs
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, 30419 Hannover, Germany
| | | | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, 30419 Hannover, Germany
| |
Collapse
|
24
|
Rizwan K, Zubair M, Rasool N, Mahmood T, Ayub K, Alitheen NB, Aziz MNM, Akhtar MN, Nasim FUH, Bukhary SM, Ahmad VU, Rani M. Palladium(0) catalyzed Suzuki cross-coupling reaction of 2,5-dibromo-3-methylthiophene: selectivity, characterization, DFT studies and their biological evaluations. Chem Cent J 2018; 12:49. [PMID: 29728881 PMCID: PMC5935605 DOI: 10.1186/s13065-018-0404-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
Thiophene derivatives have shown versatile pharmacological activities. The Suzuki reaction proved a convenient method for C-C bond formations in organic molecules. In the present research work novel derivatives of 2,5-dibromo-3-methylthiophene (3a-k and 3l-p) has been synthesized, via Suzuki coupling reaction in low to moderate yields. A wide range of functional groups were well tolerated in reaction. Density functional theory investigations on all synthesized derivatives (3a-3p) were performed in order to explore the structural properties. The pharmaceutical potential of synthesized compounds was investigated through various bioassays (antioxidant, antibacterial, antiurease activities). The compounds 3l, 3g, 3j, showed excellent antioxidant activity (86.0, 82.0, 81.3%), respectively by scavenging DPPH. Synthesized compounds showed promising antibacterial activity against tested strains. 3b, 3k, 3a, 3d and 3j showed potential antiurease activity with 67.7, 64.2, 58.8, 54.7 and 52.1% inhibition at 50 µg/ml. Results indicated that synthesized molecules could be a potential source of pharmaceutical agents.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.,Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Tariq Mahmood
- Department of Chemistry, COMSATS Institute of Information Technology, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS Institute of Information Technology, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Noorjahan Banu Alitheen
- Deparment of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, University Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Muhammad Nazirul Mubin Aziz
- Deparment of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, University Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Muhammad Nadeem Akhtar
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun Razak, 26300, Kuantan, Pahang, Malaysia
| | - Faiz-Ul-Hassan Nasim
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Snober Mona Bukhary
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Viqar Uddin Ahmad
- HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mubeen Rani
- HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
25
|
Schroeder RY, Zhu A, Eubel H, Dahncke K, Witte CP. The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress. THE NEW PHYTOLOGIST 2018; 217:233-244. [PMID: 28921561 DOI: 10.1111/nph.14782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Nucleotide catabolism in Arabidopsis thaliana and Saccharomyces cerevisiae leads to the release of ribose, which requires phosphorylation to ribose-5-phosphate mediated by ribokinase (RBSK). We aimed to characterize RBSK in plants and yeast, to quantify the contribution of plant nucleotide catabolism to the ribose pool, and to investigate whether ribose carbon contributes to dark stress survival of plants. We performed a phylogenetic analysis and determined the kinetic constants of plant-expressed Arabidopsis and yeast RBSKs. Using mass spectrometry, several metabolites were quantified in AtRBSK mutants and double mutants with genes of nucleoside catabolism. Additionally, the dark stress performance of several nucleotide metabolism mutants and rbsk was compared. The plant PfkB family of sugar kinases forms nine major clades likely representing distinct biochemical functions, one of them RBSK. Nucleotide catabolism is the dominant ribose source in plant metabolism and is highly induced by dark stress. However, rbsk cannot be discerned from the wild type in dark stress. Interestingly, the accumulation of guanosine in a guanosine deaminase mutant strongly enhances dark stress symptoms. Although nucleotide catabolism contributes to carbon mobilization upon darkness and is the dominant source of ribose, the contribution appears to be of minor importance for dark stress survival.
Collapse
Affiliation(s)
- Rebekka Y Schroeder
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Anting Zhu
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Kathleen Dahncke
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin, 14195, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| |
Collapse
|
26
|
Yilamujiang A, Zhu A, Ligabue-Braun R, Bartram S, Witte CP, Hedrich R, Hasabe M, Schöner CR, Schöner MG, Kerth G, Carlini CR, Mithöfer A. Coprophagous features in carnivorous Nepenthes plants: a task for ureases. Sci Rep 2017; 7:11647. [PMID: 28912541 PMCID: PMC5599630 DOI: 10.1038/s41598-017-11999-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022] Open
Abstract
Most terrestrial carnivorous plants are specialized on insect prey digestion to obtain additional nutrients. Few species of the genus Nepenthes developed mutualistic relationships with mammals for nitrogen supplementation. Whether dietary changes require certain enzymatic composition to utilize new sources of nutrients has rarely been tested. Here, we investigated the role of urease for Nepenthes hemsleyana that gains nitrogen from the bat Kerivoula hardwickii while it roosts inside the pitchers. We hypothesized that N. hemsleyana is able to use urea from the bats’ excrements. In fact, we demonstrate that 15N-enriched urea provided to Nepenthes pitchers is metabolized and its nitrogen is distributed within the plant. As ureases are necessary to degrade urea, these hydrolytic enzymes should be involved. We proved the presence and enzymatic activity of a urease for Nepenthes plant tissues. The corresponding urease cDNA from N. hemsleyana was isolated and functionally expressed. A comprehensive phylogenetic analysis for eukaryotic ureases, including Nepenthes and five other carnivorous plants’ taxa, identified them as canonical ureases and reflects the plant phylogeny. Hence, this study reveals ureases as an emblematic example for an efficient, low-cost but high adaptive plasticity in plants while developing a further specialized lifestyle from carnivory to coprophagy.
Collapse
Affiliation(s)
- Ayufu Yilamujiang
- Department of Bioorganic Chemistry, Max Plank Institute for Chemical Ecology, 07745, Jena, Germany
| | - Anting Zhu
- Institute of Plant Nutrition, Leibniz University Hannover, 30419, Hannover, Germany
| | - Rodrigo Ligabue-Braun
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Plank Institute for Chemical Ecology, 07745, Jena, Germany
| | - Claus-Peter Witte
- Institute of Plant Nutrition, Leibniz University Hannover, 30419, Hannover, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082, Würzburg, Germany
| | | | - Caroline R Schöner
- Zoological Institute and Museum, Ernst-Moritz-Arndt-Universität Greifswald, 17489, Greifswald, Germany
| | - Michael G Schöner
- Zoological Institute and Museum, Ernst-Moritz-Arndt-Universität Greifswald, 17489, Greifswald, Germany
| | - Gerald Kerth
- Zoological Institute and Museum, Ernst-Moritz-Arndt-Universität Greifswald, 17489, Greifswald, Germany
| | - Célia R Carlini
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil.,Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, 90610-000, Porto Alegre, Brazil
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Plank Institute for Chemical Ecology, 07745, Jena, Germany.
| |
Collapse
|