1
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
2
|
Cong J, Lv H, Xu Y. The role of nociceptive neurons in allergic rhinitis. Front Immunol 2024; 15:1430760. [PMID: 39185421 PMCID: PMC11341422 DOI: 10.3389/fimmu.2024.1430760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Allergic rhinitis (AR) is a chronic, non-infectious condition affecting the nasal mucosa, primarily mediated mainly by IgE. Recent studies reveal that AR is intricately associated not only with type 2 immunity but also with neuroimmunity. Nociceptive neurons, a subset of primary sensory neurons, are pivotal in detecting external nociceptive stimuli and modulating immune responses. This review examines nociceptive neuron receptors and elucidates how neuropeptides released by these neurons impact the immune system. Additionally, we summarize the role of immune cells and inflammatory mediators on nociceptive neurons. A comprehensive understanding of the dynamic interplay between nociceptive neurons and the immune system augments our understanding of the neuroimmune mechanisms underlying AR, thereby opening novel avenues for AR treatment modalities.
Collapse
Affiliation(s)
- Jianchao Cong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
3
|
Feng X, Zhan H, Sokol CL. Sensory neuronal control of skin barrier immunity. Trends Immunol 2024; 45:371-380. [PMID: 38653601 PMCID: PMC11102800 DOI: 10.1016/j.it.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.
Collapse
Affiliation(s)
- Xinyi Feng
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Haoting Zhan
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Gour N, Dong X. The MRGPR family of receptors in immunity. Immunity 2024; 57:28-39. [PMID: 38198852 PMCID: PMC10825802 DOI: 10.1016/j.immuni.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
The discovery of Mas-related G protein-coupled receptors (Mrgprs) has opened a compelling chapter in our understanding of immunity and sensory biology. This family of receptors, with their unique expression and diverse ligands, has emerged as key players in inflammatory states and hold the potential to alleviate human diseases. This review will focus on the members of this receptor family expressed on immune cells and how they govern immune and neuro-immune pathways underlying various physiological and pathological states. Immune cell-specific Mrgprs have been shown to control a variety of manifestations, including adverse drug reactions, inflammatory conditions, bacterial immunity, and the sensing of environmental exposures like allergens and irritants.
Collapse
Affiliation(s)
- Naina Gour
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Fujii K, Miyagawa R, Tanaka R, Saito M, Tanaka S, Shiratori-Hayashi M, Tsuda M, Dong X, Fujii M. MrgprA3 + Primary Sensory Neurons Mediate Acute Allergic Itch Responses in Atopic Dermatitis Model Mice. Biol Pharm Bull 2024; 47:1624-1630. [PMID: 39370266 DOI: 10.1248/bpb.b24-00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Itch is a prominent symptom of atopic dermatitis (AD). However, the underlying mechanism remains complex and has not yet been fully elucidated. Mas-related G protein-coupled receptor A3 (MrgprA3) has emerged attention as a marker of primary sensory neurons that specifically transmit itch signals; however, its involvement in AD-related itch has not been extensively explored. In this study, we developed an AD itch mouse model by repeatedly applying house dust mite (HDM) extract to barrier-impaired skin via a special diet. To clarify the role of MrgprA3+ neurons in itch behavior in our AD model, we adopted a toxin receptor-mediated cell knockout strategy using transgenic mice in which the diphtheria toxin receptor (DTR) gene was placed under the control of the Mrgpra3 promoter. When the HDM extract was repeatedly applied to the face and back skin of special diet-fed mice, the mice exhibited AD-like dry and eczematous skin lesions accompanied by three types of itch-related behaviors:1) spontaneous scratching, 2) acute scratching after antigen challenge, and 3) light touch-evoked scratching. Upon diphtheria toxin administration, substantial depletion of DTR+/MrgprA3+ neurons was observed in the dorsal root ganglion. Ablation of MrgprA3+ neurons suppressed acute itch responses after HDM application, whereas spontaneous and touch-evoked itch behaviors remained unaffected. Our findings unequivocally demonstrate that in our AD model, MrgprA3+ primary sensory neurons mediate acute allergic itch responses, whereas these neurons are not involved in spontaneous itch or alloknesis.
Collapse
Affiliation(s)
- Kyoko Fujii
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Ryosuke Miyagawa
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Rina Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Michiko Saito
- Bioscience Research Center, Kyoto Pharmaceutical University
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Miho Shiratori-Hayashi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyusyu University
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyusyu University
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine
| | - Masanori Fujii
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
- Department of Analytical Pharmacology, Faculty of Pharmacy, Meijo University
| |
Collapse
|
6
|
Meloun A, León B. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. FRONTIERS IN ALLERGY 2023; 4:1265049. [PMID: 37810200 PMCID: PMC10552645 DOI: 10.3389/falgy.2023.1265049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.
Collapse
Affiliation(s)
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Soh WT, Zhang J, Hollenberg MD, Vliagoftis H, Rothenberg ME, Sokol CL, Robinson C, Jacquet A. Protease allergens as initiators-regulators of allergic inflammation. Allergy 2023; 78:1148-1168. [PMID: 36794967 PMCID: PMC10159943 DOI: 10.1111/all.15678] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Tremendous progress in the last few years has been made to explain how seemingly harmless environmental proteins from different origins can induce potent Th2-biased inflammatory responses. Convergent findings have shown the key roles of allergens displaying proteolytic activity in the initiation and progression of the allergic response. Through their propensity to activate IgE-independent inflammatory pathways, certain allergenic proteases are now considered as initiators for sensitization to themselves and to non-protease allergens. The protease allergens degrade junctional proteins of keratinocytes or airway epithelium to facilitate allergen delivery across the epithelial barrier and their subsequent uptake by antigen-presenting cells. Epithelial injuries mediated by these proteases together with their sensing by protease-activated receptors (PARs) elicit potent inflammatory responses resulting in the release of pro-Th2 cytokines (IL-6, IL-25, IL-1β, TSLP) and danger-associated molecular patterns (DAMPs; IL-33, ATP, uric acid). Recently, protease allergens were shown to cleave the protease sensor domain of IL-33 to produce a super-active form of the alarmin. At the same time, proteolytic cleavage of fibrinogen can trigger TLR4 signaling, and cleavage of various cell surface receptors further shape the Th2 polarization. Remarkably, the sensing of protease allergens by nociceptive neurons can represent a primary step in the development of the allergic response. The goal of this review is to highlight the multiple innate immune mechanisms triggered by protease allergens that converge to initiate the allergic response.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Caroline L. Sokol
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clive Robinson
- Institute for Infection and Immunity, St George’s University of London, London, UK
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Jacquet A. The HDM allergen orchestra and its cysteine protease maestro: Stimulators of kaleidoscopic innate immune responses. Mol Immunol 2023; 156:48-60. [PMID: 36889186 DOI: 10.1016/j.molimm.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
House dust mite (HDM) encloses an explosive cocktail of allergenic proteins sensitizing hundreds of millions of people worldwide. To date, the innate cellular and molecular mechanism(s) orchestrating the HDM-induced allergic inflammation remains partially deciphered. Understanding the kaleidoscope of HDM-induced innate immune responses is hampered by (1) the large complexity of the HDM allergome with very diverse functional bioreactivities, (2) the perpetual presence of microbial compounds (at least LPS, β-glucan, chitin) promoting as well pro-Th2 innate signaling pathways and (3) multiple cross-talks involving structural, neuronal and immune cells. The present review provides an update on the innate immune properties, identified so far, of multiple HDM allergen groups. Experimental evidence highlights the importance of HDM allergens displaying protease or lipid-binding activities on the initiation of the allergic responses. Specifically, group 1 HDM cysteine proteases are considered as the key initiators of the allergic response through their capacities to impair the epithelial barrier integrity, to stimulate the release of pro-Th2 danger-associated molecular patterns (DAMPs) in epithelial cells, to produce super-active forms of IL-33 alarmin and to mature thrombin leading to Toll-like receptor 4 (TLR4) activation. Remarkably, the recently evidenced primary sensing of cysteine protease allergens by nociceptive neurons confirms the critical role of this HDM allergen group in the early events leading to Th2 differentiation.
Collapse
Affiliation(s)
- Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
MAS-related G protein-coupled receptors X (MRGPRX): Orphan GPCRs with potential as targets for future drugs. Pharmacol Ther 2022; 238:108259. [DOI: 10.1016/j.pharmthera.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|
10
|
Hawro T. Proteases and itch - a human and animal model of non-histaminergic itch using cysteine protease Ficin. J Eur Acad Dermatol Venereol 2022; 36:1156. [PMID: 35848141 DOI: 10.1111/jdv.18298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
Affiliation(s)
- T Hawro
- Institute and Comprehensive Center for Inflammation Medicine, Department of Dermatology, Allergology and Venereology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
11
|
Van Remoortel S, Lambeets L, Timmermans JP. Neuro-immune interactions and the role of Mas-related G protein-coupled receptors in the gastrointestinal tract. Anat Rec (Hoboken) 2022; 306:1131-1139. [PMID: 35694864 DOI: 10.1002/ar.25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Over the past decade, the research field dealing with the role of a new family of Rhodopsin A-like G protein-coupled receptors, that is, the family of Mas-related G protein-coupled receptors (Mrgprs) has expanded enormously. A plethora of recent studies have provided evidence that Mrgprs are key players in itch and pain, as well as in the initiation and modulation of inflammatory/allergic responses in the skin. Over the years, it has become clear that this role is not limited to the skin, but extends to other mucosal surfaces such as the respiratory tract and the gastrointestinal (GI) tract. In the GI tract, Mrgprs have emerged as novel interoceptive sensory pathways linked to health and disease, and are in close functional association with the gut's immune system. This review aims to provide an update of our current knowledge on the expression, distribution and function of members of this Mrgpr family in intrinsic and extrinsic neuro-immune pathways related to the GI system.
Collapse
Affiliation(s)
- Samuel Van Remoortel
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Lana Lambeets
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Malewicz NM, Ieong HFH, Oeck S, Kumowski N, Zhang Z, Shimada SG, LaMotte RH. Punctate Administration of Ficin as a Human and Animal Model of Non-Histaminergic Itch. J Eur Acad Dermatol Venereol 2022; 36:1300-1307. [PMID: 35412669 PMCID: PMC9296617 DOI: 10.1111/jdv.18142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ficin, a cysteine protease derived from fig-tree latex, has been reported to elicit itch and nociceptive sensations, though quantitative sensory studies are lacking. Cowhage containing the pruritic cysteine Mucunain, on the other hand, has been widely studied as activating polymodal nociceptors and eliciting a histamine-independent itch. OBJECTIVES We tested whether ficin in heat-inactivated cowhage spicules would elicit itch and nociceptive sensations in humans, and analogous behaviors in mice, that are similar to those evoked by native cowhage and, whether these behaviors in mice were dose-dependent when ficin was injected intradermally. METHODS Human volunteers rated the magnitude of itch and nociceptive sensations evoked by either native cowhage spicules or heat-inactivated spicules soaked in 1, 10 or 100 mg/ml ficin (0.03, 0.3, and 3 ng of ficin in spicule tip), applied to forearm. In mice, itch-like scratching and nociceptive-like wiping were recorded in response to either native cowhage, to heat-inactivated spicules that were either inactive or contained 100 mg/ml ficin, or to intradermal injections of 1.25, 2.5, or 5 μg/ 5 μl, each treatment applied to the cheek. RESULTS The dose of 100 mg/ml ficin in spicules evoked comparable magnitudes of itch, nociceptive sensations and areas of cutaneous dysesthesia as native cowhage in humans and comparable itch-like scratching and pain-like wiping behaviors in mice. But to elicit similar behaviors when injected intradermally in mice a greater amount of ficin (1.25 μg) was required. CONCLUSION Spicule-delivery or intradermal injection of ficin elicits behaviors in mice that model itch and nociceptive sensations in humans, suggesting that ficin may be useful in translating mechanistic research on the neural mechanisms of pruritic and nociceptive effects of cysteine proteases between the two species.
Collapse
Affiliation(s)
- N M Malewicz
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT, 06510, USA.,Clinics for Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Ruhr University Bergmannsheil Bochum, 44789, Germany
| | - H F-H Ieong
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT, 06510, USA
| | - S Oeck
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - N Kumowski
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT, 06510, USA
| | - Z Zhang
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT, 06510, USA
| | - S G Shimada
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT, 06510, USA
| | - R H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT, 06510, USA
| |
Collapse
|
13
|
Mas-Related G Protein-Coupled Receptors (Mrgprs) as Mediators of Gut Neuro-Immune Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:259-269. [PMID: 36587165 DOI: 10.1007/978-3-031-05843-1_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the past 15 years, the research field on Mas-related G protein-coupled receptors (Mrgprs), a relatively new family of rhodopsin A-like G protein-coupled receptors, has expanded enormously, and a plethora of recent studies have provided evidence that several of these Mrgpr family members play an important role in the underlying mechanisms of itch and pain, as well as in the initiation and modulation of inflammatory/allergic responses. Initial studies mainly focused on the skin, but more recently also visceral organs such as the respiratory and gastrointestinal (GI) tracts emerged as sites for Mrgpr involvement. It has become clear that the gastrointestinal tract and its innervation in close association with the immune system represent a novel expression site for Mrgprs where they contribute to the interoceptive mechanisms maintaining homeostasis and might constitute promising targets in chronic abdominal pain disorders. In this short review, we provide an update of our current knowledge on the expression, distribution, and function of members of this Mrgpr family in intrinsic and extrinsic neuro-immune pathways related to the gastrointestinal tract, their mediatory role(s) in gut neuro-immune signaling, and their involvement in visceral afferent (nociceptive) pathways.
Collapse
|
14
|
Arora R, Van Theemsche KM, Van Remoortel S, Snyders DJ, Labro AJ, Timmermans JP. Constitutive, Basal, and β-Alanine-Mediated Activation of the Human Mas-Related G Protein-Coupled Receptor D Induces Release of the Inflammatory Cytokine IL-6 and Is Dependent on NF-κB Signaling. Int J Mol Sci 2021; 22:ijms222413254. [PMID: 34948051 PMCID: PMC8703779 DOI: 10.3390/ijms222413254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have emerged as key players in regulating (patho)physiological processes, including inflammation. Members of the Mas-related G protein coupled receptors (MRGPRs), a subfamily of GPCRs, are largely expressed by sensory neurons and known to modulate itch and pain. Several members of MRGPRs are also expressed in mast cells, macrophages, and in cardiovascular tissue, linking them to pseudo-allergic drug reactions and suggesting a pivotal role in the cardiovascular system. However, involvement of the human Mas-related G-protein coupled receptor D (MRGPRD) in the regulation of the inflammatory mediator interleukin 6 (IL-6) has not been demonstrated to date. By stimulating human MRGPRD-expressing HeLa cells with the agonist β-alanine, we observed a release of IL-6. β-alanine-induced signaling through MRGPRD was investigated further by probing downstream signaling effectors along the Gαq/Phospholipase C (PLC) pathway, which results in an IkB kinases (IKK)-mediated canonical activation of nuclear factor kappa-B (NF-κB) and stimulation of IL-6 release. This IL-6 release could be blocked by a Gαq inhibitor (YM-254890), an IKK complex inhibitor (IKK-16), and partly by a PLC inhibitor (U-73122). Additionally, we investigated the constitutive (ligand-independent) and basal activity of MRGPRD and concluded that the observed basal activity of MRGPRD is dependent on the presence of fetal bovine serum (FBS) in the culture medium. Consequently, the dynamic range for IL-6 detection as an assay for β-alanine-mediated activation of MRGPRD is substantially increased by culturing the cells in FBS free medium before treatment. Overall, the observation that MRGPRD mediates the release of IL-6 in an in vitro system, hints at a role as an inflammatory mediator and supports the notion that IL-6 can be used as a marker for MRGPRD activation in an in vitro drug screening assay.
Collapse
Affiliation(s)
- Rohit Arora
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (R.A.); (S.V.R.)
- Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.M.V.T.); (D.J.S.)
| | - Kenny M. Van Theemsche
- Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.M.V.T.); (D.J.S.)
| | - Samuel Van Remoortel
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (R.A.); (S.V.R.)
| | - Dirk J. Snyders
- Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.M.V.T.); (D.J.S.)
| | - Alain J. Labro
- Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.M.V.T.); (D.J.S.)
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
- Correspondence: (A.J.L.); (J.-P.T.); Tel.: +32-9-3320034 (A.J.L.); +32-3-2653327 (J.-P.T.)
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (R.A.); (S.V.R.)
- Correspondence: (A.J.L.); (J.-P.T.); Tel.: +32-9-3320034 (A.J.L.); +32-3-2653327 (J.-P.T.)
| |
Collapse
|
15
|
Wang X, Yi W, He L, Luo S, Wang J, Jiang L, Long H, Zhao M, Lu Q. Abnormalities in Gut Microbiota and Metabolism in Patients With Chronic Spontaneous Urticaria. Front Immunol 2021; 12:691304. [PMID: 34721374 PMCID: PMC8554312 DOI: 10.3389/fimmu.2021.691304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Increasing evidence suggests that the gut microbiome plays a role in the pathogenesis of allergy and autoimmunity. The association between abnormalities in the gut microbiota and chronic spontaneous urticaria (CSU) remains largely undefined. Methods Fecal samples were obtained from 39 patients with CSU and 40 healthy controls (HCs). 16S ribosomal RNA (rRNA) gene sequencing (39 patients with CSU and 40 HCs) and untargeted metabolomics (12 patients with CSU and 12 HCs) were performed to analyze the compositional and metabolic alterations of the gut microbiome in CSU patients and HCs. Results The 16S rRNA gene sequencing results showed a significant difference in the β-diversity of the gut microbiota, presented as the Jaccard distance, between CSU patients and HCs. No significant differences were found in the α-diversity of the gut microbiota between patients and HCs. At the phylum level, the major bacteria in the gut microbiome of patients with CSU were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. At the genus level, Lactobacillus, Turicibacter, and Lachnobacterium were significantly increased and Phascolarctobacterium was decreased in patients with CSU. PICRUSt and correlation analysis indicated that Lactobacillus, Turicibacter, and Phascolarctobacterium were positively related to G protein-coupled receptors. Metabolomic analysis showed that α-mangostin and glycyrrhizic acid were upregulated and that 3-indolepropionic acid, xanthine, and isobutyric acid were downregulated in patients with CSU. Correlation analysis between the intestinal microbiota and metabolites suggested that there was a positive correlation between Lachnobacterium and α-mangostin. Conclusions This study suggests that disturbances in the gut microbiome composition and metabolites and their crosstalk or interaction may participate in the pathogenesis of CSU.
Collapse
Affiliation(s)
- Xin Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wanyu Yi
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liting He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuaihantian Luo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Jiang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hai Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
16
|
Agache I, Palmer E, Sanver D, Kirtland M, Shamji MH. Molecular allergology approach to allergic asthma. Mol Aspects Med 2021; 85:101027. [PMID: 34579961 DOI: 10.1016/j.mam.2021.101027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Allergic asthma is a frequently encountered and well described asthma phenotype. However, its precise mechanisms are less known. The tools for targeted selection of patients for an optimal response to intervention (prevention or treatment) are also lacking. Here we explore the potential of the molecular allergology approach to achieve a better understanding of allergic asthma mechanisms, a precise diagnosis and an optimal management of these patients.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | - Elizabeth Palmer
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Didem Sanver
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK; Necmettin Erbakan University, Engineering & Architecture Faculty, Department of Food Engineering, Konya, Turkey
| | - Max Kirtland
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Mohamed H Shamji
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| |
Collapse
|
17
|
Imamura S, Washio K, Mizuno M, Oda Y, Fukunaga A, Nishigori C. Activated steady status and distinctive FcεRI-mediated responsiveness in basophils of atopic dermatitis. Allergol Int 2021; 70:327-334. [PMID: 33674191 DOI: 10.1016/j.alit.2021.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Although basophils are considered to play an important role for maintenance of type 2 inflammation in atopic dermatitis (AD), studies on basophils in AD patients are limited. Some studies have reported the activation status, including CD203c and CD63, of peripheral blood basophils in AD patients. METHODS We examined the features of circulating basophils in AD patients, assessed cell surface marker expressions and total serum IgE, and compared basophil responsiveness to stimulation between AD patients and healthy controls (HCs). In addition, the correlations among AD severity, laboratory factors, and features of basophils were examined. Blood samples from 38 AD patients and 21 HCs were analyzed. Basophil response markers CD203c and CD63, and expression of surface-bound IgE and FcεRI on basophils were measured. CD203c and CD63 expressions induced by stimulation with anti-IgE and anti-FcεRI antibodies were measured. Clinical/laboratory factors including total serum IgE were examined for correlations with these basophil parameters. RESULTS Baseline CD203c and CD63 expression on basophils were significantly higher in AD patients compared with HCs. The CD203c/CD63 response ratio to anti-FcεRI stimulation was higher than that to anti-IgE stimulation in AD patients, but not HCs. FcεRI expression on basophils was higher in AD patients than in HCs, although surface-bound IgE on basophils was equivalent. Total serum IgE had negative correlations with surface-bound IgE and CD63 responsiveness to anti-IgE stimulation. CONCLUSIONS Basophils were spontaneously activated under steady-state conditions in AD patients and responsiveness to anti-IgE stimulation was lower than in HCs. Despite high serum IgE and high basophil FcεRI expression, surface-bound IgE on basophils remained relatively low. Basophils might be suppressed or exhausted regarding FcεRI signaling via IgE in severe AD.
Collapse
|
18
|
Abstract
The house dust mite (HDM) is globally ubiquitous in human habitats. Thirty-two allergens for Dermatophagoides farinae and 21 for Dermatophagoides pteronyssinus have been detected so far. The present minireview summarizes information about the role of Der p 1 as a key coordinator of the HDM-induced allergic response and reports on a series of Italian patients who are allergic to HDMs. We studied the specific IgE profiles in a population of patients with allergic asthma and rhinitis screened for specific immunotherapy (SIT) for HDM allergies, with the aim of obtaining insights into the pathogenic role of Der p1. Patients co-sensitized to other airborne allergens showed a higher prevalence of asthma (9/12 (75%) vs. 2/7 (29%); p < 0.05) than did HDM mono-sensitized patients. The latter group showed higher Der p1 concentrations than that of the co-sensitized group (p = 0.0360), and a direct correlation between Der p1 and Der p2 (r = 0.93; p = 0.0003) was observed. In conclusion, our study offers insights into the role of Der p1 in a population of patients with allergic rhinitis and asthma who were candidates for SIT. Interestingly, Der p1 positivity was associated with bronchial asthma and co-sensitization.
Collapse
|
19
|
Inclan-Rico JM, Kim BS, Abdus-Saboor I. Beyond somatosensation: Mrgprs in mucosal tissues. Neurosci Lett 2021; 748:135689. [PMID: 33582191 DOI: 10.1016/j.neulet.2021.135689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/29/2022]
Abstract
Mas-related G coupled receptors (Mrgprs) are a superfamily of receptors expressed in sensory neurons that are known to transmit somatic sensations from the skin to the central nervous system. Interestingly, Mrgprs have recently been implicated in sensory and motor functions of mucosal-associated neuronal circuits. The gastrointestinal and pulmonary tracts are constantly exposed to noxious stimuli. Therefore, it is likely that neuronal Mrgpr signaling pathways in mucosal tissues, akin to their family members expressed in the skin, might relay messages that alert the host when mucosal tissues are affected by damaging signals. Further, Mrgprs have been proposed to mediate the cross-talk between sensory neurons and immune cells that promotes host-protective functions at barrier sites. Although the mechanisms by which Mrgprs are activated in mucosal tissues are not completely understood, these exciting studies implicate Mrgprs as potential therapeutic targets for conditions affecting the intestinal and airway mucosa. This review will highlight the central role of Mrgpr signaling pathways in the regulation of homeostasis at mucosal tissues.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian S Kim
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ishmail Abdus-Saboor
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Wedi B, Gehring M, Kapp A. The pseudoallergen receptor MRGPRX2 on peripheral blood basophils and eosinophils: Expression and function. Allergy 2020; 75:2229-2242. [PMID: 32003863 DOI: 10.1111/all.14213] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mas-related G protein-coupled receptor X2 (MRGPRX2) is regarded as a mast cell-specific receptor mediating non-IgE-dependent activation. We aimed to investigate whether human basophils and eosinophils express functional MRGPRX2. METHODS Flow cytometry, immunocytochemistry, immunofluorescence, Western blot, and RT-PCR were performed in highly purified peripheral blood basophils and eosinophils of atopic and nonatopic donors. To assess functional activity, fluorescent avidin-based degranulation assay, calcium mobilization, cytokine production in supernatants, assessment of viability/apoptosis, and tricolor granulocyte activation test were used. RESULTS MRGPRX2 was significantly expressed by basophils and eosinophils but not neutrophils. Functional capacity was shown by anti-MRGPRX2 mAb-induced calcium influx and concentration-dependent induction of degranulation. Sequential stimulation in the calcium mobilization assay gave no evidence for desensitization or receptor internalization. Anti-MRGPRX2 mAb significantly promoted survival. Inhibition of apoptosis could be due to released IL-3, IL-5, and GM-CSF found in supernatants. Short-term incubation with IL-3 dose-dependently upregulated MRGPRX2 expression in both, stimulation for 24 hours with anti-IgE, C5a, fMLP, and IL-3 in basophils and by IL-3, IL-5, and IL-33 in eosinophils. Among known mast cell MRGPRX2 agonists ciprofloxacin but not PMX-53 was functional on basophils and eosinophils. In basophils of allergic subjects, tricolor granulocyte activation test using grass pollen demonstrated MRGPRX2 upregulation associated with degranulation and CD63 expression. CONCLUSION Unraveling the regulation and signaling mechanisms of MRGPRX2 on basophils and eosinophils might enable the development of new therapeutic strategies to prevent or inhibit allergic and nonallergic hypersensitivity. Moreover, addressing MRGPRX2 might have potential for diagnostic purposes in (drug) hypersensitivity.
Collapse
Affiliation(s)
- Bettina Wedi
- Department of Dermatology and Allergy Comprehensive Allergy Center Hannover Medical School Hannover Germany
| | - Manuela Gehring
- Department of Dermatology and Allergy Comprehensive Allergy Center Hannover Medical School Hannover Germany
| | - Alexander Kapp
- Department of Dermatology and Allergy Comprehensive Allergy Center Hannover Medical School Hannover Germany
| |
Collapse
|
21
|
Xing Y, Chen J, Hilley H, Steele H, Yang J, Han L. Molecular Signature of Pruriceptive MrgprA3 + Neurons. J Invest Dermatol 2020; 140:2041-2050. [PMID: 32234460 DOI: 10.1016/j.jid.2020.03.935] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
Itch, initiated by the activation of sensory neurons, is associated frequently with dermatological diseases. MrgprA3+ sensory neurons have been identified as one of the major itch-sensing neuronal populations. Mounting evidence has demonstrated that peripheral pathological conditions induce physiological regulation of sensory neurons, which is critical for the maintenance of chronic itch sensation. However, the underlying molecular mechanisms are not clear. Here, we performed RNA sequencing of genetically labeled MrgprA3+ neurons under both naïve and allergic contact dermatitis conditions. Our results revealed the unique molecular signature of itch-sensing neurons and the distinct transcriptional profile changes that result in response to dermatitis. We found enrichment of nine Mrgpr family members and two histamine receptors in MrgprA3+ neurons, suggesting that MrgprA3+ neurons are a direct neuronal target for histamine and Mrgpr agonists. In addition, PTPN6 and PCDH12 were identified as highly selective markers of MrgprA3+ neurons. We also discovered that MrgprA3+ neurons respond to skin dermatitis in a way that is unique from other sensory neurons by regulating a combination of transcriptional factors, ion channels, and key molecules involved in synaptic transmission. These results significantly increase our knowledge of itch transmission and uncover potential targets for combating itch.
Collapse
Affiliation(s)
- Yanyan Xing
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Junyu Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Henry Hilley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Haley Steele
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jingjing Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liang Han
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
22
|
Jacquet A, Robinson C. Proteolytic, lipidergic and polysaccharide molecular recognition shape innate responses to house dust mite allergens. Allergy 2020; 75:33-53. [PMID: 31166610 DOI: 10.1111/all.13940] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
House dust mites (HDMs) are sources of an extensive repertoire of allergens responsible for a range of allergic conditions. Technological advances have accelerated the identification of these allergens and characterized their putative roles within HDMs. Understanding their functional bioactivities is illuminating how they interact with the immune system to cause disease and how interrelations between them are essential to maximize allergic responses. Two types of allergen bioactivity, namely proteolysis and peptidolipid/lipid binding, elicit IgE and stimulate bystander responses to unrelated allergens. Much of this influence arises from Toll-like receptor (TLR) 4 or TLR2 signalling and, in the case of protease allergens, the activation of additional pleiotropic effectors with strong disease linkage. Of related interest is the interaction of HDM allergens with common components of the house dust matrix, through either their binding to allergens or their autonomous modulation of immune receptors. Herein, we provide a contemporary view of how proteolysis, lipid-binding activity and interactions with polysaccharides and polysaccharide molecular recognition systems coordinate the principal responses which underlie allergy. The power of the catalytically competent group 1 HDM protease allergen component is demonstrated by a review of disclosures surrounding the efficacy of novel inhibitors produced by structure-based design.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC) Chulalongkorn University Bangkok Thailand
| | - Clive Robinson
- Institute for Infection and Immunity St George's, University of London London UK
| |
Collapse
|
23
|
Van Remoortel S, Ceuleers H, Arora R, Van Nassauw L, De Man JG, Buckinx R, De Winter BY, Timmermans JP. Mas-related G protein-coupled receptor C11 (Mrgprc11) induces visceral hypersensitivity in the mouse colon: A novel target in gut nociception? Neurogastroenterol Motil 2019; 31:e13623. [PMID: 31119828 DOI: 10.1111/nmo.13623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Visceral hypersensitivity, an important cause of abdominal pain in disorders such as IBD and IBS, presents with a poorly understood pathophysiology and limited treatment options. Several members of the Mas-related G protein-coupled receptor family (Mrgprs) have become promising targets in pain research. The potential link between the murine Mrgpr C11 (Mrgprc11) and gut nociception is currently uninvestigated. Therefore, we explored the expression and functional role of Mrgprc11 in the gut nociceptive innervation. METHODS Mrgprc11 expression was evaluated in DRG neurons innervating the mouse colon using in situ hybridization and immunohistochemistry. Visceromotor responses to colorectal distension (CRD) assessed the effect of the Mrgprc11 agonist, BAM(8-22), on colonic pain sensitivity in healthy mice. Moreover, we determined pERK1/2-immunoreactivity in the thoracolumbar spinal cord after noxious CRD. Finally, from a translational point of view, we looked for expression of the human counterpart of Mrgprc11, MRGPRX1, in human thoracolumbar DRGs. KEY RESULTS In situ hybridization and immunohistochemistry revealed Mrgprc11 expression in colonic DRG neurons. Intracolonic administration of BAM(8-22) significantly increased colonic pain sensitivity in an Mrgprc11-dependent manner, and led to a significantly increased degree of neuronal activation in the splanchnic spinal cord upon noxious stimulation. Furthermore, MRGPRX1 expression was also detected in human thoracolumbar DRG neurons. CONCLUSIONS & INFERENCES: Our findings established a novel function for Mrgprc11 in the gut nociceptive innervation and propose the receptor as a new player in visceral hypersensitivity. Given the presence of MRGPRX1 in human DRG neurons, our study warrants future research on its therapeutic potential in abdominal pain disorders.
Collapse
Affiliation(s)
- Samuel Van Remoortel
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Rohit Arora
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Luc Van Nassauw
- Laboratory of Human Anatomy and Embryology, Division ASTARC, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Roeland Buckinx
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
24
|
Tallima H, Abou El Dahab M, El Ridi R. Role of T lymphocytes and papain enzymatic activity in the protection induced by the cysteine protease against Schistosoma mansoni in mice. J Adv Res 2019; 17:73-84. [PMID: 31193307 PMCID: PMC6526234 DOI: 10.1016/j.jare.2018.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 01/08/2023] Open
Abstract
Papain use deciphered the protection mechanism(s) of the schistosomiasis vaccine. Papain stimulation of innate immunity induced parasite egg attrition. Papain enzymatic and non-enzymatic sites activated T cells and innate immunity. IgG1 antibodies and liver uric acid and ARA levels correlated with protection. Identification of type 2 immunity-inducing cysteine peptidases motifs is required.
Papain, an experimental model protease, was used to decipher the protective mechanism(s) of the cysteine peptidase-based schistosomiasis vaccine. To examine the role of T lymphocytes, athymic nude (nu/nu) and immunocompetent haired (nu/+) mice were subcutaneously (sc) injected with 50 µg active papain two days before percutaneous exposure to 100 cercariae of Schistosoma mansoni. Highly significant (P < 0.005) reductions in worm burden required competent T lymphocytes, while significant increases (P < 0.05) of >80% in dead parasite ova in the small intestine were independent of T cell activity and likely relied on the innate immune axis. To investigate the role of enzymatic activity, immunocompetent mice were sc injected with 50 µg active or E-64-inactivated papain two days before exposure to cercariae. The reductions in worm burden were highly significant (P < 0.0001), reaching >65% and 40% in active and inactivated papain-treated mice, respectively. Similar highly significant (P < 0.0001) decreases of 85% in the viability of parasite ova in the small intestine occurred in both active and inactivated papain-treated mice. These findings indicated that immune responses elicited by one or more papain structural motifs are necessary and sufficient for induction of considerable parasite and egg attrition. Correlates of protection included IgG1-dominated antibody responses and increases in the levels of uric acid and arachidonic acid in the lung and liver upon parasite migration in these sites. Identification of the shared patterns or motifs in cysteine peptidases and evaluation of their immune protective potential will pave the way to the development of a safe, efficacious, storage-stable, and cost-effective schistosomiasis vaccine.
Collapse
Affiliation(s)
- Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.,Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Marwa Abou El Dahab
- Zoology Department, Faculty of Science, Ein Shams University, Cairo 11566, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
25
|
Zhang J, Chen J, Zuo J, Newton GK, Stewart MR, Perrior TR, Garrod DR, Robinson C. Allergen Delivery Inhibitors: Characterisation of Potent and Selective Inhibitors of Der p 1 and Their Attenuation of Airway Responses to House Dust Mite Allergens. Int J Mol Sci 2018; 19:E3166. [PMID: 30326568 PMCID: PMC6214017 DOI: 10.3390/ijms19103166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Group 1 allergens of house dust mites (HDM) are globally significant triggers of allergic disease. They are considered as initiator allergens because their protease activity enables the development of allergy to a spectrum of unrelated allergens from various sources. This initiator-perpetuator function identifies Group 1 HDM allergens as attractive drug design targets for the first small-molecule approach directed towards a non-human, root cause trigger of allergic disease. The purpose of this study was to: (i) identify exemplar inhibitors of these allergens using Der p 1 as a design template, and (ii) characterise the pharmacological profiles of these compounds using in vitro and in vivo models relevant to allergy. Potent inhibitors representing four different chemotypes and differentiated by mechanism of action were investigated. These compounds prevented the ab initio development of allergy to the full spectrum of HDM allergens and in established allergy they inhibited the recruitment of inflammatory cells and blunted acute allergic bronchoconstriction following aerosol challenge with the full HDM allergen repertoire. Collectively, the data obtained in these experiments demonstrate that the selective pharmacological targeting of Der p 1 achieves an attractive range of benefits against exposure to all HDM allergens, consistent with the initiator-perpetuator function of this allergen.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Chen
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Jie Zuo
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
- BOE Technology Center, BOE Technology Group Co., Ltd., Beijing 100176, China.
| | - Gary K Newton
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
| | - Mark R Stewart
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
| | - Trevor R Perrior
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
| | - David R Garrod
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Clive Robinson
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
26
|
Zhang J, Chen J, Newton GK, Perrior TR, Robinson C. Allergen Delivery Inhibitors: A Rationale for Targeting Sentinel Innate Immune Signaling of Group 1 House Dust Mite Allergens through Structure-Based Protease Inhibitor Design. Mol Pharmacol 2018; 94:1007-1030. [PMID: 29976563 PMCID: PMC6064784 DOI: 10.1124/mol.118.112730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
Diverse evidence from epidemiologic surveys and investigations into the molecular basis of allergenicity have revealed that a small cadre of "initiator" allergens promote the development of allergic diseases, such as asthma, allergic rhinitis, and atopic dermatitis. Pre-eminent among these initiators are the group 1 allergens from house dust mites (HDM). In mites, group 1 allergens function as cysteine peptidase digestive enzymes to which humans are exposed by inhalation of HDM fecal pellets. Their protease nature confers the ability to activate high gain signaling mechanisms which promote innate immune responses, leading to the persistence of allergic sensitization. An important feature of this process is that the initiator drives responses both to itself and to unrelated allergens lacking these properties through a process of collateral priming. The clinical significance of group 1 HDM allergens in disease, their serodominance as allergens, and their IgE-independent bioactivities in innate immunity make these allergens interesting therapeutic targets in the design of new small-molecule interventions in allergic disease. The attraction of this new approach is that it offers a powerful, root-cause-level intervention from which beneficial effects can be anticipated by interference in a wide range of effector pathways associated with these complex diseases. This review addresses the general background to HDM allergens and the validation of group 1 as putative targets. We then discuss structure-based drug design of the first-in-class representatives of allergen delivery inhibitors aimed at neutralizing the proteolytic effects of HDM group 1 allergens, which are essential to the development and maintenance of allergic diseases.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Jie Chen
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Gary K Newton
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Trevor R Perrior
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Clive Robinson
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| |
Collapse
|
27
|
Mulligan JK, Patel K, Williamson T, Reaves N, Carroll W, Stephenson SE, Gao P, Drake RR, Neely BA, Tomlinson S, Schlosser RJ, Atkinson C. C3a receptor antagonism as a novel therapeutic target for chronic rhinosinusitis. Mucosal Immunol 2018; 11:1375-1385. [PMID: 29907871 PMCID: PMC6162114 DOI: 10.1038/s41385-018-0048-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease with an unknown etiology. Recent studies have implicated the complement system as a potential modulator of disease immunopathology. We performed proteomic pathway enrichment analysis of differentially increased proteins, and found an enrichment of complement cascade pathways in the nasal mucus of individuals with CRSwNP as compared to control subjects. Sinonasal mucus levels of complement 3 (C3) correlated with worse subjective disease severity, whereas no significant difference in systemic C3 levels could be determined in plasma samples. Given that human sinonasal epithelial cells were the predominate sinonasal source of C3 and complement anaphylatoxin 3a (C3a) staining, we focused on their role in in vitro studies. Baseline intracellular C3 levels were higher in CRSwNP cells, and following exposure to Aspergillus fumigatus (Af) extract, they released significantly more C3 and C3a. Inhibition of complement 3a receptor (C3aR) signaling led to a decrease in Af-induced C3 and C3a release, both in vitro and in vivo. Finally, we found in vivo that C3aR deficiency or inhibition significantly reduced inflammation and CRS development in a mouse model of Af-induced CRS. These findings demonstrate that local sinonasal complement activation correlates with subjective disease severity, and that local C3aR antagonism significantly ameliorates Af-induced CRS in a rodent model.
Collapse
Affiliation(s)
- Jennifer K Mulligan
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Kunal Patel
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Lee Patterson Allen Transplant Immunobiology Laboratory, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Tucker Williamson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Nicholas Reaves
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - William Carroll
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Sarah E Stephenson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Peng Gao
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Benjamin A Neely
- Marine Biochemical Sciences, National Institute of Standards and Technology, Charleston, SC, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Lee Patterson Allen Transplant Immunobiology Laboratory, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
28
|
Abstract
Introduction Chronic itch has been drawing much attention due to its clinical significance and the complexity of its mechanisms. To facilitate the development of anti-itch strategies, it is necessary to investigate the key players in itch sensation under chronic itch conditions. Several members of the Mrgpr family were identified as itch receptors that detect cutaneous pruritogens in primary sensory neurons. However, the role of Mrgprs in chronic itch conditions has not been well described. Methods Scratching behaviors of WT and Mrgpr-clusterΔ-/- mice were examined in dry skin model and contact dermatitis model to examine the role of Mrgpr genes in mediating chronic itch sensation. Scratching behaviors of the mice were also examined in allergic itch model. Real-time PCR were performed to examine the expression level of MrgprA3 and MrgprC11 under naïve and dry skin conditions. The MrgprA3+ itch-sensing fibers were labeled by tdTomato fluorescence in Mrgpra3GFP-Cre; ROSA26tdTomato mice, and the morphology and density of those fibers in the epidermis were analyzed under dry skin condition. Results We showed that deleting a cluster of Mrgpr genes in mice reduced scratching behavior severely under two chronic itch conditions, namely dry skin and contact dermatitis, and the allergic itch condition. Moreover, the gene expressions of itch receptors MrgprA3 and MrgprC11 in dorsal root ganglia (DRG) were upregulated significantly under dry skin condition. Consistently, the percentage of MrgprA3+ itch-sensing neurons was increased as well. We also observed hyperinnervation of MrgprA3+ itch-sensing fibers in the epidermis of the skin under dry skin condition. Discussion We demonstrate that Mrgprs play important roles in mediating chronic itch and allergic itch. These findings enrich our knowledge of itch mechanism and may lead to the development of novel therapeutic approach to combat itch.
Collapse
|