1
|
Gironacci MM, Bruna-Haupt E. Unraveling the crosstalk between renin-angiotensin system receptors. Acta Physiol (Oxf) 2024; 240:e14134. [PMID: 38488216 DOI: 10.1111/apha.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/24/2024]
Abstract
The renin-angiotensin system (RAS) plays a key role in blood pressure regulation. The RAS is a complex interconnected system composed of two axes with opposite effects. The pressor arm, represented by angiotensin (Ang) II and the AT1 receptor (AT1R), mediates the vasoconstrictor, proliferative, hypertensive, oxidative, and pro-inflammatory effects of the RAS, while the depressor/protective arm, represented by Ang-(1-7), its Mas receptor (MasR) and the AT2 receptor (AT2R), opposes the actions elicited by the pressor arm. The AT1R, AT2R, and MasR belong to the G-protein-coupled receptor (GPCR) family. GPCRs operate not only as monomers, but they can also function in dimeric (homo and hetero) or higher-order oligomeric states. Due to the interaction with other receptors, GPCR properties may change: receptor affinity, trafficking, signaling, and its biological function may be altered. Thus, heteromerization provides a newly recognized means of modulation of receptor function, as well as crosstalk between GPCRs. This review is focused on angiotensin receptors, and how their properties are influenced by crosstalk with other receptors, adding more complexity to an already complex system and potentially opening up new therapeutic approaches.
Collapse
Affiliation(s)
- Mariela M Gironacci
- Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Bruna-Haupt
- INTEQUI (CONICET), Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
2
|
Nassour H, Pétrin D, Devost D, Billard E, Sleno R, Hébert TE, Chatenet D. Evidence for heterodimerization and functional interaction of the urotensin II and the angiotensin II type 1 receptors. Cell Signal 2024; 116:111056. [PMID: 38262555 DOI: 10.1016/j.cellsig.2024.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Despite the observation of synergistic interactions between the urotensinergic and angiotensinergic systems, the interplay between the urotensin II receptor (hUT) and the angiotensin II type 1 receptor (hAT1R) in regulating cellular signaling remains incompletely understood. Notably, the putative interaction between hUT and hAT1R could engender reciprocal allosteric modulation of their signaling signatures, defining a unique role for these complexes in cardiovascular physiology and pathophysiology. Using a combination of co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and FlAsH BRET-based conformational biosensors, we first demonstrated the physical interaction between hUT and hAT1R. Next, to analyze how this functional interaction regulated proximal and distal hUT- and hAT1R-associated signaling pathways, we used BRET-based signaling biosensors and western blots to profile pathway-specific signaling in HEK 293 cells expressing hUT, hAT1R or both. We observed that hUT-hAT1R heterodimers triggered distinct signaling outcomes compared to their respective parent receptors alone. Notably, co-transfection of hUT and hAT1R has no impact on hUII-induced Gq activation but significantly reduced the potency and efficacy of Ang II to mediate Gq activation. Interestingly, URP, the second hUT endogenous ligand, produce a distinct signaling signature compared to hUII at hUT-hAT1R. Our results therefore suggest that assembly of hUT with hAT1R might be important for allosteric modulation of outcomes associated with specific hardwired signaling complexes in healthy and disease states. Altogether, our work, which potentially explains the interplay observed in native cells and tissues, validates such complexes as potential targets to promote the design of compounds that can modulate heterodimer function selectively.
Collapse
Affiliation(s)
- Hassan Nassour
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, QC, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Etienne Billard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Rory Sleno
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.
| | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, QC, Canada.
| |
Collapse
|
3
|
Fessl T, Majellaro M, Bondar A. Microscopy and spectroscopy approaches to study GPCR structure and function. Br J Pharmacol 2023. [PMID: 38087925 DOI: 10.1111/bph.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
The GPCR signalling cascade is a key pathway responsible for the signal transduction of a multitude of physical and chemical stimuli, including light, odorants, neurotransmitters and hormones. Understanding the structural and functional properties of the GPCR cascade requires direct observation of signalling processes in high spatial and temporal resolution, with minimal perturbation to endogenous systems. Optical microscopy and spectroscopy techniques are uniquely suited to this purpose because they excel at multiple spatial and temporal scales and can be used in living objects. Here, we review recent developments in microscopy and spectroscopy technologies which enable new insights into GPCR signalling. We focus on advanced techniques with high spatial and temporal resolution, single-molecule methods, labelling strategies and approaches suitable for endogenous systems and large living objects. This review aims to assist researchers in choosing appropriate microscopy and spectroscopy approaches for a variety of applications in the study of cellular signalling.
Collapse
Affiliation(s)
- Tomáš Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Alexey Bondar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Laboratory of Microscopy and Histology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Riaposova L, Kim SH, Hanyaloglu AC, Sykes L, MacIntyre DA, Bennett PR, Terzidou V. Prostaglandin F2α requires activation of calcium-dependent signalling to trigger inflammation in human myometrium. Front Endocrinol (Lausanne) 2023; 14:1150125. [PMID: 37547305 PMCID: PMC10400332 DOI: 10.3389/fendo.2023.1150125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/06/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Preterm birth is one of the major causes of neonatal morbidity and mortality across the world. Both term and preterm labour are preceded by inflammatory activation in uterine tissues. This includes increased leukocyte infiltration, and subsequent increase in chemokine and cytokine levels, activation of pro-inflammatory transcription factors as NF-κB and increased prostaglandin synthesis. Prostaglandin F2α (PGF2α) is one of the myometrial activators and stimulators. Methods Here we investigated the role of PGF2α in pro-inflammatory signalling pathways in human myometrial cells isolated from term non-labouring uterine tissue. Primary myometrial cells were treated with G protein inhibitors, calcium chelators and/or PGF2α. Nuclear extracts were analysed by TranSignal cAMP/Calcium Protein/DNA Array. Whole cell protein lysates were analysed by Western blotting. mRNA levels of target genes were analysed by RT-PCR. Results The results show that PGF2α increases inflammation in myometrial cells through increased activation of NF-κB and MAP kinases and increased expression of COX-2. PGF2α was found to activate several calcium/cAMP-dependent transcription factors, such as CREB and C/EBP-β. mRNA levels of NF-κB-regulated cytokines and chemokines were also elevated with PGF2α stimulation. We have shown that the increase in PGF2α-mediated COX-2 expression in myometrial cells requires coupling of the FP receptor to both Gαq and Gαi proteins. Additionally, PGF2α-induced calcium response was also mediated through Gαq and Gαi coupling. Discussion In summary, our findings suggest that PGF2α-induced inflammation in myometrial cells involves activation of several transcription factors - NF-κB, MAP kinases, CREB and C/EBP-β. Our results indicate that the FP receptor signals via Gαq and Gαi coupling in myometrium. This work provides insight into PGF2α pro-inflammatory signalling in term myometrium prior to the onset of labour and suggests that PGF2α signalling pathways could be a potential target for management of preterm labour.
Collapse
Affiliation(s)
- Lucia Riaposova
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Sung Hye Kim
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Aylin C. Hanyaloglu
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lynne Sykes
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
- The Parasol Foundation Centre for Women’s Health and Cancer Research, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - David A. MacIntyre
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Phillip R. Bennett
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Vasso Terzidou
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Chelsea and Westminster Hospital National Health Service (NHS) Trust, London, United Kingdom
| |
Collapse
|
5
|
Bono F, Tomasoni Z, Mutti V, Sbrini G, Kumar R, Longhena F, Fiorentini C, Missale C. G Protein-Dependent Activation of the PKA-Erk1/2 Pathway by the Striatal Dopamine D1/D3 Receptor Heteromer Involves Beta-Arrestin and the Tyrosine Phosphatase Shp-2. Biomolecules 2023; 13:473. [PMID: 36979407 PMCID: PMC10046256 DOI: 10.3390/biom13030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The heteromer composed of dopamine D1 and D3 receptors (D1R-D3R) has been defined as a structure able to trigger Erk1/2 and Akt signaling in a G protein-independent, beta-arrestin 1-dependent way that is physiologically expressed in the ventral striatum and is likely involved in the control of locomotor activity. Indeed, abnormal levels of D1R-D3R heteromer in the dorsal striatum have been correlated with the development of L-DOPA-induced dyskinesia (LID) in Parkinson's disease patients, a motor complication associated with striatal D1R signaling, thus requiring Gs protein and PKA activity to activate Erk1/2. Therefore, to clarify the role of the D1R/D3R heteromer in LID, we investigated the signaling pathway induced by the heteromer using transfected cells and primary mouse striatal neurons. Collectively, we found that in both the cell models, D1R/D3R heteromer-induced activation of Erk1/2 exclusively required the D1R molecular effectors, such as Gs protein and PKA, with the contribution of the phosphatase Shp-2 and beta-arrestins, indicating that heterodimerization with the D3R abolishes the specific D3R-mediated signaling but strongly allows D1R signals. Therefore, while in physiological conditions the D1R/D3R heteromer could represent a mechanism that strengthens the D1R activity, its pathological expression may contribute to the abnormal PKA-Shp-2-Erk1/2 pathway connected with LID.
Collapse
Affiliation(s)
- Federica Bono
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Zaira Tomasoni
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Veronica Mutti
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giulia Sbrini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rajesh Kumar
- Seattle Children’s Research Institute, 1920 Terry Ave., Seattle, WA 98101, USA
| | - Francesca Longhena
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
6
|
Olson KM, Campbell A, Alt A, Traynor JR. Finding the Perfect Fit: Conformational Biosensors to Determine the Efficacy of GPCR Ligands. ACS Pharmacol Transl Sci 2022; 5:694-709. [PMID: 36110374 PMCID: PMC9469492 DOI: 10.1021/acsptsci.1c00256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly druggable targets that adopt numerous conformations. A ligand's ability to stabilize specific conformation(s) of its cognate receptor determines its efficacy or ability to produce a biological response. Identifying ligands that produce different receptor conformations and potentially discrete pharmacological effects (e.g., biased agonists, partial agonists, antagonists, allosteric modulators) is a major goal in drug discovery and necessary to develop drugs with better effectiveness and fewer side effects. Fortunately, direct measurements of ligand efficacy, via receptor conformational changes are possible with the recent development of conformational biosensors. In this review, we discuss classical efficacy models, including the two-state model, the ternary-complex model, and multistate models. We describe how nanobody-, transducer-, and receptor-based conformational biosensors detect and/or stabilize specific GPCR conformations to identify ligands with different levels of efficacy. In particular, conformational biosensors provide the potential to identify and/or characterize therapeutically desirable but often difficult to measure conformations of receptors faster and better than current methods. For drug discovery/development, several recent proof-of-principle studies have optimized conformational biosensors for high-throughput screening (HTS) platforms. However, their widespread use is limited by the fact that few sensors are reliably capable of detecting low-frequency conformations and technically demanding assay conditions. Nonetheless, conformational biosensors do help identify desirable ligands such as allosteric modulators, biased ligands, or partial agonists in a single assay, representing a distinct advantage over classical methods.
Collapse
Affiliation(s)
- Keith M. Olson
- Department
of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andra Campbell
- Department
of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew Alt
- Department
of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department
of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
7
|
Heneghan JF, Majmundar AJ, Rivera A, Wohlgemuth JG, Dlott JS, Snyder LM, Hildebrandt F, Alper SL. Activation of 2-oxoglutarate receptor 1 (OXGR1) by α-ketoglutarate (αKG) does not detectably stimulate Pendrin-mediated anion exchange in Xenopus oocytes. Physiol Rep 2022; 10:e15362. [PMID: 35851763 PMCID: PMC9294391 DOI: 10.14814/phy2.15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023] Open
Abstract
SLC26A4/Pendrin is the major electroneutral Cl- /HCO3- exchanger of the apical membrane of the Type B intercalated cell (IC) of the connecting segment (CNT) and cortical collecting duct (CCD). Pendrin mediates both base secretion in response to systemic base load and Cl- reabsorption in response to systemic volume depletion, manifested as decreased nephron salt and water delivery to the distal nephron. Pendrin-mediated Cl- /HCO3- exchange in the apical membrane is upregulated through stimulation of the β-IC apical membrane G protein-coupled receptor, 2-oxoglutarate receptor 1 (OXGR1/GPR99), by its ligand α-ketoglutarate (αKG). αKG is both filtered by the glomerulus and lumenally secreted by proximal tubule apical membrane organic anion transporters (OATs). OXGR1-mediated regulation of Pendrin by αKG has been documented in transgenic mice and in isolated perfused CCD. However, aspects of the OXGR1 signaling pathway have remained little investigated since its original discovery in lymphocytes. Moreover, no ex vivo cellular system has been reported in which to study the OXGR1 signaling pathway of Type B-IC, a cell type refractory to survival in culture in its differentiated state. As Xenopus oocytes express robust heterologous Pendrin activity, we investigated OXGR1 regulation of Pendrin in oocytes. Despite functional expression of OXGR1 in oocytes, co-expression of Pendrin and OXGR1 failed to exhibit αKG-sensitive stimulation of Pendrin-mediated Cl- /anion exchange under a wide range of conditions. We conclude that Xenopus oocytes lack one or more essential molecular components or physical conditions required for OXGR1 to regulate Pendrin activity.
Collapse
Affiliation(s)
- John F. Heneghan
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Amar J. Majmundar
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
| | - Alicia Rivera
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | | | - Friedhelm Hildebrandt
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Seth L. Alper
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
8
|
Toufaily C, Fortin J, Alonso CA, Lapointe E, Zhou X, Santiago-Andres Y, Lin YF, Cui Y, Wang Y, Devost D, Roelfsema F, Steyn F, Hanyaloglu AC, Hébert TE, Fiordelisio T, Boerboom D, Bernard DJ. Addition of a carboxy terminal tail to the normally tailless gonadotropin-releasing hormone receptor impairs fertility in female mice. eLife 2021; 10:72937. [PMID: 34939930 PMCID: PMC8741216 DOI: 10.7554/elife.72937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G-protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization. This might be an evolutionary adaptation that enables LH surge generation and ovulation. To test this idea, we fused the chicken GnRHR Ctail to the endogenous murine GnRHR in a transgenic model. The LH surge was blunted, but not blocked in these mice. In contrast, they showed reductions in FSH production, ovarian follicle development, and fertility. Addition of the Ctail altered the nature of agonist-induced calcium signaling required for normal FSH production. The loss of the GnRHR Ctail during mammalian evolution is unlikely to have conferred a selective advantage by enabling the LH surge. The adaptive significance of this specialization remains to be determined.
Collapse
Affiliation(s)
- Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jérôme Fortin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Carlos Ai Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Evelyne Lapointe
- Département de biomédecine vétérinaire, Universite de Montreal, Ste-Hyacinthe, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Yorgui Santiago-Andres
- Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Yiming Cui
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ferdinand Roelfsema
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Frederik Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Aylin C Hanyaloglu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Tatiana Fiordelisio
- 3epartamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Derek Boerboom
- Département de biomédecine vétérinaire, Universite de Montreal, Ste-Hyacinthe, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Integration and Spatial Organization of Signaling by G Protein-Coupled Receptor Homo- and Heterodimers. Biomolecules 2021; 11:biom11121828. [PMID: 34944469 PMCID: PMC8698773 DOI: 10.3390/biom11121828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023] Open
Abstract
Information flow from a source to a receiver becomes informative when the recipient can process the signal into a meaningful form. Information exchange and interpretation is essential in biology and understanding how cells integrate signals from a variety of information-coding molecules into complex orchestrated responses is a major challenge for modern cell biology. In complex organisms, cell to cell communication occurs mostly through neurotransmitters and hormones, and receptors are responsible for signal recognition at the membrane level and information transduction inside the cell. The G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, with nearly 800 genes coding for these proteins. The recognition that GPCRs may physically interact with each other has led to the hypothesis that their dimeric state can provide the framework for temporal coincidence in signaling pathways. Furthermore, the formation of GPCRs higher order oligomers provides the structural basis for organizing distinct cell compartments along the plasma membrane where confined increases in second messengers may be perceived and discriminated. Here, we summarize evidence that supports these conjectures, fostering new ideas about the physiological role played by receptor homo- and hetero-oligomerization in cell biology.
Collapse
|
10
|
Zhou Y, Meng J, Xu C, Liu J. Multiple GPCR Functional Assays Based on Resonance Energy Transfer Sensors. Front Cell Dev Biol 2021; 9:611443. [PMID: 34041234 PMCID: PMC8141573 DOI: 10.3389/fcell.2021.611443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the largest membrane protein families that participate in various physiological and pathological activities. Accumulating structural evidences have revealed how GPCR activation induces conformational changes to accommodate the downstream G protein or β-arrestin. Multiple GPCR functional assays have been developed based on Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) sensors to monitor the conformational changes in GPCRs, GPCR/G proteins, or GPCR/β-arrestin, especially over the past two decades. Here, we will summarize how these sensors have been optimized to increase the sensitivity and compatibility for application in different GPCR classes using various labeling strategies, meanwhile provide multiple solutions in functional assays for high-throughput drug screening.
Collapse
Affiliation(s)
- Yiwei Zhou
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiyong Meng
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
11
|
Grundmann M, Bender E, Schamberger J, Eitner F. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci 2021; 22:ijms22041763. [PMID: 33578942 PMCID: PMC7916689 DOI: 10.3390/ijms22041763] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.
Collapse
Affiliation(s)
- Manuel Grundmann
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
- Correspondence:
| | - Eckhard Bender
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Jens Schamberger
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Frank Eitner
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
| |
Collapse
|
12
|
Signal profiling of the β 1AR reveals coupling to novel signalling pathways and distinct phenotypic responses mediated by β 1AR and β 2AR. Sci Rep 2020; 10:8779. [PMID: 32471984 PMCID: PMC7260363 DOI: 10.1038/s41598-020-65636-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
A comprehensive understanding of signalling downstream of GPCRs requires a broad approach to capture novel signalling modalities in addition to established pathways. Here, using an array of sixteen validated BRET-based biosensors, we analyzed the ability of seven different β-adrenergic ligands to engage five distinct signalling pathways downstream of the β1-adrenergic receptor (β1AR). In addition to generating signalling signatures and capturing functional selectivity for the different ligands toward these pathways, we also revealed coupling to signalling pathways that have not previously been ascribed to the βAR. These include coupling to Gz and G12 pathways. The signalling cascade linking the β1AR to calcium mobilization was also characterized using a combination of BRET-based biosensors and CRISPR-engineered HEK 293 cells lacking the Gαs subunit or with pharmacological or genetically engineered pathway inhibitors. We show that both Gs and G12 are required for the full calcium response. Our work highlights the power of combining signal profiling with genome editing approaches to capture the full complement of GPCR signalling activities in a given cell type and to probe their underlying mechanisms.
Collapse
|
13
|
Kaur S, Shen X, Power A, Ward ML. Stretch modulation of cardiac contractility: importance of myocyte calcium during the slow force response. Biophys Rev 2020; 12:135-142. [PMID: 31939110 DOI: 10.1007/s12551-020-00615-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanical response of the heart to myocardial stretch has been understood since the work of muscle physiologists more than 100 years ago, whereby an increase in ventricular chamber filling during diastole increases the subsequent force of contraction. The stretch-induced increase in contraction is biphasic. There is an abrupt increase in the force that coincides with the stretch (the rapid response), which is then followed by a slower response that develops over several minutes (the slow force response, or SFR). The SFR is associated with a progressive increase in the magnitude of the Ca2+ transient, the event that initiates myocyte cross-bridge cycling and force development. However, the mechanisms underlying the stretch-dependent increase in the Ca2+ transient are still debated. This review outlines recent literature on the SFR and summarizes the different stretch-activated Ca2+ entry pathways. The SFR might result from a combination of several different cellular mechanisms initiated in response to activation of different cellular stretch sensors.
Collapse
Affiliation(s)
- Sarbjot Kaur
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G.Jebsen Center for Cardiac Research, Oslo, Norway
| | - Amelia Power
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Exploring functional consequences of GPCR oligomerization requires a different lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:181-211. [DOI: 10.1016/bs.pmbts.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Combining Conformational Profiling of GPCRs with CRISPR/Cas9 Gene Editing Approaches. Methods Mol Biol 2019. [PMID: 30969416 DOI: 10.1007/978-1-4939-9121-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Ligand-biased signaling could have a significant impact on drug discovery programs. As such, many approaches to screening now target a larger section of the signaling responses downstream of an individual G protein-coupled receptor (GPCR). Biosensor-based platforms have been developed to capture signaling signatures. Despite the ability to use such signaling signatures, they may still be particular to an individual cell type and thus such platforms may not be portable from cell to cell, necessitating further cell-specific biosensor development. We have developed a complementary strategy based on capturing receptor-proximal conformational profiles using intra-molecular BRET-based sensors composed of a Renilla luciferase donor engineered into the carboxy-terminus and CCPGCC motifs which bind fluorescent hairpin biarsenical dyes engineered into different positions into the receptor primary structure. Here, we discuss how these experiments can be conducted and combined with CRISPR/Cas9 genome editing to assess specific G protein-dependent and -independent events.
Collapse
|
16
|
Sleno R, Hébert TE. Shaky ground - The nature of metastable GPCR signalling complexes. Neuropharmacology 2019; 152:4-14. [PMID: 30659839 DOI: 10.1016/j.neuropharm.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/19/2023]
Abstract
How G protein-coupled receptors (GPCR) interact with one another remains an area of active investigation. Obligate dimers of class C GPCRs such as metabotropic GABA and glutamate receptors are well accepted, although whether this is a general feature of other GPCRs is still strongly debated. In this review, we focus on the idea that GPCR dimers and oligomers are better imagined as parts of larger metastable signalling complexes. We discuss the nature of functional oligomeric entities, their stabilities and kinetic features and how structural and functional asymmetries of such metastable entities might have implications for drug discovery. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rory Sleno
- Marketed Pharmaceuticals and Medical Devices Bureau, Marketed Health Products Directorate, Health Products and Food Branch, Health Canada, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
17
|
Fillion D, Devost D, Sleno R, Inoue A, Hébert TE. Asymmetric Recruitment of β-Arrestin1/2 by the Angiotensin II Type I and Prostaglandin F2α Receptor Dimer. Front Endocrinol (Lausanne) 2019; 10:162. [PMID: 30936850 PMCID: PMC6431625 DOI: 10.3389/fendo.2019.00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Initially identified as monomers, G protein-coupled receptors (GPCRs) can also form functional homo- and heterodimers that act as distinct signaling hubs for cellular signal integration. We previously found that the angiotensin II (Ang II) type 1 receptor (AT1R) and the prostaglandin F2α (PGF2α) receptor (FP), both important in the control of smooth muscle contractility, form such a functional heterodimeric complex in HEK 293 and vascular smooth muscle cells. Here, we hypothesize that both Ang II- and PGF2α-induced activation of the AT1R/FP dimer, or the parent receptors alone, differentially regulate signaling by distinct patterns of β-arrestin recruitment. Using BRET-based biosensors, we assessed the recruitment kinetics of β-arrestin1/2 to the AT1R/FP dimer, or the parent receptors alone, when stimulated by either Ang II or PGF2α. Using cell lines with CRISPR/Cas9-mediated gene deletion, we also examined the role of G proteins in such recruitment. We observed that Ang II induced a rapid, robust, and sustained recruitment of β-arrestin1/2 to AT1R and, to a lesser extent, the heterodimer, as expected, since AT1R is a strong recruiter of both β-arrestin subtypes. However, PGF2α did not induce such recruitment to FP alone, although it did when the AT1R is present as a heterodimer. β-arrestins were likely recruited to the AT1R partner of the dimer. Gαq, Gα11, Gα12, and Gα13 were all involved to some extent in PGF2α-induced β-arrestin1/2 recruitment to the dimer as their combined absence abrogated the response, and their separate re-expression was sufficient to partially restore it. Taken together, our data sheds light on a new mechanism whereby PGF2α specifically recruits and signals through β-arrestin but only in the context of the AT1R/FP dimer, suggesting that this may be a new allosteric signaling entity.
Collapse
Affiliation(s)
- Dany Fillion
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Rory Sleno
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- *Correspondence: Terence E. Hébert
| |
Collapse
|
18
|
Measuring Recruitment of β-Arrestin to G Protein-Coupled Heterodimers Using Bioluminescence Resonance Energy Transfer. Methods Mol Biol 2019; 1957:83-91. [PMID: 30919348 DOI: 10.1007/978-1-4939-9158-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Initially identified as monomers, G protein-coupled receptors (GPCRs) can also form functional dimers that act as distinct signalling hubs for the integration of cellular signalling. We previously found that the angiotensin II (Ang II) type 1 receptor (AT1R) and the prostaglandin F2α (PGF2α) receptor (FP), both important in the control of smooth muscle contractility, form such a functional heterodimeric complex in HEK 293 and vascular smooth muscle cells (Goupil et al., J Biol Chem 290:3137-3148, 2015; Sleno et al., J Biol Chem 292:12139-12152, 2017). In addition to canonical G protein coupling, GPCRs recruit and engage β-arrestin-dependent pathways. Using BRET-based biosensors, we demonstrate how to assess recruitment of β-arrestin-1 and -2 to AT1R and the AT1R/FP dimer in response to Ang II. Surprisingly, β-arrestin-1 and -2 were recruited to the dimer, in response to PGF2α as well, even though FP alone cannot recruit either β-arrestin-1 and -2.
Collapse
|
19
|
Sharif NA, Klimko PG. Prostaglandin FP receptor antagonists: discovery, pharmacological characterization and therapeutic utility. Br J Pharmacol 2018; 176:1059-1078. [PMID: 29679483 DOI: 10.1111/bph.14335] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
In contrast to the availability of potent and selective antagonists of several prostaglandin receptor types (including DP1 , DP2 , EP and TP receptors), there has been a paucity of well-characterized, selective FP receptor antagonists. The earliest ones included dimethyl amide and dimethyl amine derivatives of PGF2α , but these have failed to gain prominence. The fluorinated PGF2α analogues, AL-8810 and AL-3138, were subsequently discovered as competitive and non-competitive FP receptor antagonists respectively. Non-prostanoid structures, such as the thiazolidinone AS604872, the D-amino acid-based oligopeptide PDC31 and its peptidomimic analogue PDC113.824 came next, but the latter two are allosteric inhibitors of FP receptor signalling. AL-8810 has a sub-micromolar in vitro potency and ≥2 log unit selectivity against most other PG receptors when tested in several cell- and tissue-based functional assays. Additionally, AL-8810 has demonstrated therapeutic efficacy as an FP receptor antagonist in animal models of stroke, traumatic brain injury, multiple sclerosis, allodynia and endometriosis. Consequently, it appears that AL-8810 has become the FP receptor antagonist of choice. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
| | - Peter G Klimko
- Novartis Pharmaceuticals Corporation, Fort Worth, TX, 76134, USA
| |
Collapse
|
20
|
Durdagi S, Erol I, Salmas RE, Aksoydan B, Kantarcioglu I. Oligomerization and cooperativity in GPCRs from the perspective of the angiotensin AT1 and dopamine D2 receptors. Neurosci Lett 2018; 700:30-37. [PMID: 29684528 DOI: 10.1016/j.neulet.2018.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) can form homo- and heterodimers or constitute higher oligomeric clusters with other heptahelical GPCRs. In this article, multiscale molecular modeling approaches as well as experimental techniques which are used to study oligomerization of GPCRs are reviewed. In particular, the effect of dimerization/oligomerization to the ligand binding affinity of individual protomers and also on the efficacy of the oligomer are discussed by including diverse examples from the literature. In addition, possible allosteric effects that may emerge upon interaction of GPCRs with membrane components, like cholesterol, is also discussed. Investigation of these above-mentioned interactions may greatly contribute to the candidate molecule screening studies and development of novel therapeutics with fewer adverse effects.
Collapse
Affiliation(s)
- Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey.
| | - Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Isik Kantarcioglu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Bioengineering Program, Graduate School of Natural and Applied Sciences, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
21
|
Sleno R, Hébert TE. The Dynamics of GPCR Oligomerization and Their Functional Consequences. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:141-171. [PMID: 29699691 DOI: 10.1016/bs.ircmb.2018.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The functional importance of G protein-coupled receptor (GPCR) oligomerization remains controversial. Although obligate dimers of class C GPCRs are well accepted, the generalizability of this phenomenon is still strongly debated with respect to other classes of GPCRs. In this review, we focus on understanding the organization and dynamics between receptor equivalents and their signaling partners in oligomeric receptor complexes, with a view toward integrating disparate viewpoints into a unified understanding. We discuss the nature of functional oligomeric entities, and how asymmetries in receptor structure and function created by oligomers might have implications for receptor function as allosteric machines and for future drug discovery.
Collapse
|
22
|
Milligan G, Inoue A. Genome Editing Provides New Insights into Receptor-Controlled Signalling Pathways. Trends Pharmacol Sci 2018; 39:481-493. [PMID: 29548548 DOI: 10.1016/j.tips.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/10/2023]
Abstract
Rapid developments in genome editing, based largely on CRISPR/Cas9 technologies, are offering unprecedented opportunities to eliminate the expression of single or multiple gene products in intact organisms and in model cell systems. Elimination of individual G protein-coupled receptors (GPCRs), both single and multiple G protein subunits, and arrestin adaptor proteins is providing new and sometimes unanticipated insights into molecular details of the regulation of cell signalling pathways and the behaviour of receptor ligands. Genome editing is certain to become a central component of therapeutic target validation, and will provide pharmacologists with new understanding of the complexities of action of novel and previously studied ligands, as well as of the transmission of signals from individual cell-surface receptors to intracellular signalling cascades.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 Japan.
| |
Collapse
|
23
|
Kauk M, Hoffmann C. Intramolecular and Intermolecular FRET Sensors for GPCRs - Monitoring Conformational Changes and Beyond. Trends Pharmacol Sci 2017; 39:123-135. [PMID: 29180026 DOI: 10.1016/j.tips.2017.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Within the past decade, a large increase in structural knowledge from crystallographic studies has significantly fostered our understanding of the structural biology of G protein-coupled receptors (GPCRs). However, information on dynamic events upon receptor activation or deactivation is not yet readily accessed by these structural approaches. GPCR-based fluorescence resonance energy transfer or bioluminescence resonance energy transfer sensors or sensors for interacting proteins (e.g., G proteins or arrestins) can in part cover this gap. The principal design of such sensors was reported 15 years ago. Since then, sensors for almost 20 different GPCRs have been designed. If used with necessary controls and cautious interpretation, such sensors can contribute significantly to our understanding of the basic mechanisms of GPCR function and beyond. In this review, we will discuss the recent developments in this area of GPCR dynamics.
Collapse
Affiliation(s)
- Michael Kauk
- Department of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Carsten Hoffmann
- Department of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany; Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll Straße 2, D-07745 Jena, Germany.
| |
Collapse
|