1
|
Lyman KA, Han Y, Robinson AP, Weinberg SE, Fisher DW, Heuermann RJ, Lyman RE, Kim DK, Ludwig A, Chandel NS, Does MD, Miller SD, Chetkovich DM. Characterization of hyperpolarization-activated cyclic nucleotide-gated channels in oligodendrocytes. Front Cell Neurosci 2024; 18:1321682. [PMID: 38469353 PMCID: PMC10925711 DOI: 10.3389/fncel.2024.1321682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mature oligodendrocytes (OLG) are the myelin-forming cells of the central nervous system. Recent work has shown a dynamic role for these cells in the plasticity of neural circuits, leading to a renewed interest in voltage-sensitive currents in OLG. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and their respective current (Ih) were recently identified in mature OLG and shown to play a role in regulating myelin length. Here we provide a biochemical and electrophysiological characterization of HCN channels in cells of the oligodendrocyte lineage. We observed that mice with a nonsense mutation in the Hcn2 gene (Hcn2ap/ap) have less white matter than their wild type counterparts with fewer OLG and fewer oligodendrocyte progenitor cells (OPCs). Hcn2ap/ap mice have severe motor impairments, although these deficits were not observed in mice with HCN2 conditionally eliminated only in oligodendrocytes (Cnpcre/+; Hcn2F/F). However, Cnpcre/+; Hcn2F/F mice develop motor impairments more rapidly in response to experimental autoimmune encephalomyelitis (EAE). We conclude that HCN2 channels in OLG may play a role in regulating metabolism.
Collapse
Affiliation(s)
- Kyle A. Lyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrew P. Robinson
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL, United States
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel W. Fisher
- Department of Psychiatry, University of Washington, Seattle, WA, United States
| | - Robert J. Heuermann
- Department of Neurology, Washington University, St. Louis, MO, United States
| | - Reagan E. Lyman
- Heritage College of Osteopathic Medicine, Ohio University, Dublin, OH, United States
| | - Dong Kyu Kim
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Andreas Ludwig
- Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Mark D. Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL, United States
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
2
|
Han Y, Iyamu ID, Clutter MR, Mishra RK, Lyman KA, Zhou C, Michailidis I, Xia MY, Sharma H, Luan CH, Schiltz GE, Chetkovich DM. Discovery of a small-molecule inhibitor of the TRIP8b-HCN interaction with efficacy in neurons. J Biol Chem 2022; 298:102069. [PMID: 35623388 PMCID: PMC9243175 DOI: 10.1016/j.jbc.2022.102069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 10/27/2022] Open
Abstract
Major depressive disorder is a critical public health problem with a lifetime prevalence of nearly 17% in the United States. One potential therapeutic target is the interaction between hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and an auxiliary subunit of the channel named tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). HCN channels regulate neuronal excitability in the mammalian hippocampus, and recent work has established that antagonizing HCN function rescues cognitive impairment caused by chronic stress. Here, we utilize a high-throughput virtual screen to find small molecules capable of disrupting the TRIP8b-HCN interaction. We found that the hit compound NUCC-0200590 disrupts the TRIP8b-HCN interaction in vitro and in vivo. These results provide a compelling strategy for developing new small molecules capable of disrupting the TRIP8b-HCN interaction.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Iredia D Iyamu
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Matthew R Clutter
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Rama K Mishra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| | - Kyle A Lyman
- Department of Neurology, Stanford University, Palo Alto, California, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ioannis Michailidis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maya Y Xia
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Horrick Sharma
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary E Schiltz
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pharmacology, Northwestern University, Chicago, Illinois, USA; Department of Chemistry, Northwestern University, Evanston, Illinois, USA.
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Peters CH, Singh RK, Bankston JR, Proenza C. Regulation of HCN Channels by Protein Interactions. Front Physiol 2022; 13:928507. [PMID: 35795651 PMCID: PMC9251338 DOI: 10.3389/fphys.2022.928507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels are key regulators of subthreshold membrane potentials in excitable cells. The four mammalian HCN channel isoforms, HCN1-HCN4, are expressed throughout the body, where they contribute to diverse physiological processes including cardiac pacemaking, sleep-wakefulness cycles, memory, and somatic sensation. While all HCN channel isoforms produce currents when expressed by themselves, an emerging list of interacting proteins shape HCN channel excitability to influence the physiologically relevant output. The best studied of these regulatory proteins is the auxiliary subunit, TRIP8b, which binds to multiple sites in the C-terminus of the HCN channels to regulate expression and disrupt cAMP binding to fine-tune neuronal HCN channel excitability. Less is known about the mechanisms of action of other HCN channel interaction partners like filamin A, Src tyrosine kinase, and MinK-related peptides, which have a range of effects on HCN channel gating and expression. More recently, the inositol trisphosphate receptor-associated cGMP-kinase substrates IRAG1 and LRMP (also known as IRAG2), were discovered as specific regulators of the HCN4 isoform. This review summarizes the known protein interaction partners of HCN channels and their mechanisms of action and identifies gaps in our knowledge.
Collapse
Affiliation(s)
- Colin H. Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rohit K. Singh
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John R. Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Catherine Proenza,
| |
Collapse
|
4
|
Lyman KA, Han Y, Zhou C, Renteria I, Besing GL, Kurz JE, Chetkovich DM. Hippocampal cAMP regulates HCN channel function on two time scales with differential effects on animal behavior. Sci Transl Med 2021; 13:eabl4580. [PMID: 34818058 DOI: 10.1126/scitranslmed.abl4580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kyle A Lyman
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.,Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA.,Department of Neurology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Isabelle Renteria
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Gai-Linn Besing
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Jonathan E Kurz
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 225 E. Chicago Ave., Chicago, IL 60611, USA
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Bürgi J, Ekal L, Wilmanns M. Versatile allosteric properties in Pex5-like tetratricopeptide repeat proteins to induce diverse downstream function. Traffic 2021; 22:140-152. [PMID: 33580581 DOI: 10.1111/tra.12785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 01/11/2023]
Abstract
Proteins composed of tetratricopeptide repeat (TPR) arrays belong to the α-solenoid tandem-repeat family that have unique properties in terms of their overall conformational flexibility and ability to bind to multiple protein ligands. The peroxisomal matrix protein import receptor Pex5 comprises two TPR triplets that recognize protein cargos with a specific C-terminal Peroxisomal Targeting Signal (PTS) 1 motif. Import of PTS1-containing protein cargos into peroxisomes through a transient pore is mainly driven by allosteric binding, coupling and release mechanisms, without a need for external energy. A very similar TPR architecture is found in the functionally unrelated TRIP8b, a regulator of the hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel. TRIP8b binds to the HCN ion channel via a C-terminal sequence motif that is nearly identical to the PTS1 motif of Pex5 receptor cargos. Pex5, Pex5-related Pex9, and TRIP8b also share a less conserved N-terminal domain. This domain provides a second protein cargo-binding site and plays a distinct role in allosteric coupling of initial cargo loading by PTS1 motif-mediated interactions and different downstream functional readouts. The data reviewed here highlight the overarching role of molecular allostery in driving the diverse functions of TPR array proteins, which could form a model for other α-solenoid tandem-repeat proteins involved in translocation processes across membranes.
Collapse
Affiliation(s)
- Jérôme Bürgi
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Lakhan Ekal
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany.,University Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Han Y, Lyman KA, Foote KM, Chetkovich DM. The structure and function of TRIP8b, an auxiliary subunit of hyperpolarization-activated cyclic-nucleotide gated channels. Channels (Austin) 2020; 14:110-122. [PMID: 32189562 PMCID: PMC7153792 DOI: 10.1080/19336950.2020.1740501] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed throughout the mammalian central nervous system (CNS). These channels have been implicated in a wide range of diseases, including Major Depressive Disorder and multiple subtypes of epilepsy. The diversity of functions that HCN channels perform is in part attributable to differences in their subcellular localization. To facilitate a broad range of subcellular distributions, HCN channels are bound by auxiliary subunits that regulate surface trafficking and channel function. One of the best studied auxiliary subunits is tetratricopeptide-repeat containing, Rab8b-interacting protein (TRIP8b). TRIP8b is an extensively alternatively spliced protein whose only known function is to regulate HCN channels. TRIP8b binds to HCN pore-forming subunits at multiple interaction sites that differentially regulate HCN channel function and subcellular distribution. In this review, we summarize what is currently known about the structure and function of TRIP8b isoforms with an emphasis on the role of this auxiliary subunit in health and disease.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A. Lyman
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Kendall M. Foote
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
8
|
Foote KM, Lyman KA, Han Y, Michailidis IE, Heuermann RJ, Mandikian D, Trimmer JS, Swanson GT, Chetkovich DM. Phosphorylation of the HCN channel auxiliary subunit TRIP8b is altered in an animal model of temporal lobe epilepsy and modulates channel function. J Biol Chem 2019; 294:15743-15758. [PMID: 31492750 DOI: 10.1074/jbc.ra119.010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder with many patients experiencing poor seizure control with existing anti-epileptic drugs. Thus, novel insights into the mechanisms of epileptogenesis and identification of new drug targets can be transformative. Changes in ion channel function have been shown to play a role in generating the aberrant neuronal activity observed in TLE. Previous work demonstrates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are mislocalized within CA1 pyramidal cells in a rodent model of TLE. The subcellular distribution of HCN channels is regulated by an auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), and disruption of this interaction correlates with channel mislocalization. However, the molecular mechanisms responsible for HCN channel dysregulation in TLE are unclear. Here we investigated whether changes in TRIP8b phosphorylation are sufficient to alter HCN channel function. We identified a phosphorylation site at residue Ser237 of TRIP8b that enhances binding to HCN channels and influences channel gating by altering the affinity of TRIP8b for the HCN cytoplasmic domain. Using a phosphospecific antibody, we demonstrate that TRIP8b phosphorylated at Ser237 is enriched in CA1 distal dendrites and that phosphorylation is reduced in the kainic acid model of TLE. Overall, our findings indicate that the TRIP8b-HCN interaction can be modulated by changes in phosphorylation and suggest that loss of TRIP8b phosphorylation may affect HCN channel properties during epileptogenesis. These results highlight the potential of drugs targeting posttranslational modifications to restore TRIP8b phosphorylation to reduce excitability in TLE.
Collapse
Affiliation(s)
- Kendall M Foote
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Department of Pharmacology, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Kyle A Lyman
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232.,Department of Medicine, Stanford University, Palo Alto, California 94305
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Ioannis E Michailidis
- Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Robert J Heuermann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Danielle Mandikian
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616.,Department of Physiology and Membrane Biology, University of California, Davis, California 95616
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611.,Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Dane M Chetkovich
- Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| |
Collapse
|
9
|
Günther A, Luczak V, Gruteser N, Abel T, Baumann A. HCN4 knockdown in dorsal hippocampus promotes anxiety-like behavior in mice. GENES BRAIN AND BEHAVIOR 2019; 18:e12550. [PMID: 30585408 PMCID: PMC6850037 DOI: 10.1111/gbb.12550] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/03/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Hyperpolarization‐activated and cyclic nucleotide‐gated (HCN) channels mediate the Ih current in the murine hippocampus. Disruption of the Ih current by knockout of HCN1, HCN2 or tetratricopeptide repeat‐containing Rab8b‐interacting protein has been shown to affect physiological processes such as synaptic integration and maintenance of resting membrane potentials as well as several behaviors in mice, including depressive‐like and anxiety‐like behaviors. However, the potential involvement of the HCN4 isoform in these processes is unknown. Here, we assessed the contribution of the HCN4 isoform to neuronal processing and hippocampus‐based behaviors in mice. We show that HCN4 is expressed in various regions of the hippocampus, with distinct expression patterns that partially overlapped with other HCN isoforms. For behavioral analysis, we specifically modulated HCN4 expression by injecting recombinant adeno‐associated viral (rAAV) vectors mediating expression of short hairpin RNA against hcn4 (shHcn4) into the dorsal hippocampus of mice. HCN4 knockdown produced no effect on contextual fear conditioning or spatial memory. However, a pronounced anxiogenic effect was evident in mice treated with shHcn4 compared to control littermates. Our findings suggest that HCN4 specifically contributes to anxiety‐like behaviors in mice.
Collapse
Affiliation(s)
- Anne Günther
- Laboratory for Synaptic Molecules of Memory Persistence, Center for Brain Science, RIKEN, Saitama, Japan.,Institute of Complex Systems, Cellular Biophysics (ICS-4),Research Center Jülich, Jülich, Germany
| | - Vincent Luczak
- Division of Biological Sciences and Center for Neural Circuits and Behavior, Neurobiology Section, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California, USA
| | - Nadine Gruteser
- Institute of Complex Systems, Cellular Biophysics (ICS-4),Research Center Jülich, Jülich, Germany
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Arnd Baumann
- Institute of Complex Systems, Cellular Biophysics (ICS-4),Research Center Jülich, Jülich, Germany
| |
Collapse
|
10
|
Saponaro A, Cantini F, Porro A, Bucchi A, DiFrancesco D, Maione V, Donadoni C, Introini B, Mesirca P, Mangoni ME, Thiel G, Banci L, Santoro B, Moroni A. A synthetic peptide that prevents cAMP regulation in mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. eLife 2018; 7:35753. [PMID: 29923826 PMCID: PMC6023613 DOI: 10.7554/elife.35753] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Binding of TRIP8b to the cyclic nucleotide binding domain (CNBD) of mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels prevents their regulation by cAMP. Since TRIP8b is expressed exclusively in the brain, we envisage that it can be used for orthogonal control of HCN channels beyond the central nervous system. To this end, we have identified by rational design a 40-aa long peptide (TRIP8bnano) that recapitulates affinity and gating effects of TRIP8b in HCN isoforms (hHCN1, mHCN2, rbHCN4) and in the cardiac current If in rabbit and mouse sinoatrial node cardiomyocytes. Guided by an NMR-derived structural model that identifies the key molecular interactions between TRIP8bnano and the HCN CNBD, we further designed a cell-penetrating peptide (TAT-TRIP8bnano) which successfully prevented β-adrenergic activation of mouse If leaving the stimulation of the L-type calcium current (ICaL) unaffected. TRIP8bnano represents a novel approach to selectively control HCN activation, which yields the promise of a more targeted pharmacology compared to pore blockers.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Cantini
- Department of Chemistry, University of Florence, Florence, Italy.,Magnetic Resonance Center, University of Florence, Florence, Italy
| | | | - Annalisa Bucchi
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Vincenzo Maione
- Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy
| | - Chiara Donadoni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Bianca Introini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, CNRS, INSERM F-34094, Université de Montpellier, Montpellier, France.,Laboratory of Excellence Ion Channels Science and Therapeutics, Valbonne, France
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, CNRS, INSERM F-34094, Université de Montpellier, Montpellier, France.,Laboratory of Excellence Ion Channels Science and Therapeutics, Valbonne, France
| | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Lucia Banci
- Department of Chemistry, University of Florence, Florence, Italy.,Magnetic Resonance Center, University of Florence, Florence, Italy.,Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy.,Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Florence, Italy
| | - Bina Santoro
- Department of Neuroscience, Columbia University, New York, United States
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy.,Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|