1
|
Li X, Lei Y. Construction of a prognostic risk model for Stomach adenocarcinoma based on endoplasmic reticulum stress genes. Wien Klin Wochenschr 2024; 136:319-330. [PMID: 37993598 DOI: 10.1007/s00508-023-02306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/21/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE Stomach adenocarcinoma (STAD) is caused by malignant transformation of gastric glandular cells and is characterized by a high incidence rate and a poor prognosis. This study was designed to establish a prognostic risk model for STAD according to endoplasmic reticulum (ER) stress feature genes as cancer cells are susceptible to ER stress. METHODS The TCGA-STAD dataset was downloaded to screen differentially expressed genes (DEGs). By intersecting DEGs with ER stress genes retrieved from GeneCards, ER stress-related DEGs in STAD were obtained. Kmeans cluster analysis of STAD subtypes and Single sample gene set enrichment analysis (ssGSEA) analysis of immune infiltration were performed. Cox regression analysis was utilized to construct a risk prognostic model. Samples were split into high-risk and low-risk groups according to the median risk score. Survival analysis and Receiver Operating Characteristic (ROC) curves were conducted to assess the validity of the model. Gene set enrichment analysis (GSEA) was performed to investigate differential pathways in the two risk groups. Cox analysis was performed to verify the independence of the risk model, and a nomogram was generated. RESULTS A total of 162 ER stress-related DEGs in STAD were identified by bioinformatics analysis. Kmeans cluster analysis showed that STAD was divided into 3 subgroups. The ssGSEA showed that the levels of immune infiltration in subgroups 2 and 3 were significantly higher than subgroup 1. With 12 prognostic genes (MATN3, ATP2A1, NOX4, AQP11, HP, CAV1, STARD3, FKBP10, EGF, F2, SERPINE1, CNGA3) selected from ER stress-related DEGs using Cox regression analysis, we then constructed a prognostic model. Kaplan-Meier (K‑M) survival curves and ROC curves showed good prediction performance of the model. Significant enrichment of genes in the high-risk group was found in extracellular matrix (ECM) receptor interaction. Cox regression analysis combined with clinical factors showed that the risk model could be used as an independent prognostic factor. The prediction correction curve showed that the good prediction ability of the nomogram. CONCLUSION The STAD could be divided into three subgroups, and the 12-gene model constructed by ER stress signatures had a good prognostic performance for STAD patients.
Collapse
Affiliation(s)
- Xi Li
- Department of General Surgery, Zigong Fourth People's Hospital, No. 19 Tanmulin Street, Ziliujing District, 643000, Zigong City, Sichuan Province, China
| | - Yuehua Lei
- Department of General Surgery, Zigong Fourth People's Hospital, No. 19 Tanmulin Street, Ziliujing District, 643000, Zigong City, Sichuan Province, China.
| |
Collapse
|
2
|
Halimani N, Nesterchuk M, Tsitrina AA, Sabirov M, Andreichenko IN, Dashenkova NO, Petrova E, Kulikov AM, Zatsepin TS, Romanov RA, Mikaelyan AS, Kotelevtsev YV. Knockdown of Hyaluronan synthase 2 suppresses liver fibrosis in mice via induction of transcriptomic changes similar to 4MU treatment. Sci Rep 2024; 14:2797. [PMID: 38307876 PMCID: PMC10837461 DOI: 10.1038/s41598-024-53089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
Hepatic fibrosis remains a significant clinical challenge due to ineffective treatments. 4-methylumbelliferone (4MU), a hyaluronic acid (HA) synthesis inhibitor, has proven safe in phase one clinical trials. In this study, we aimed to ameliorate liver fibrosis by inhibiting HA synthesis. We compared two groups of mice with CCl4-induced fibrosis, treated with 4-methylumbelliferone (4MU) and hyaluronan synthase 2 (HAS2) targeting siRNA (siHAS2). The administration of 4MU and siHAS2 significantly reduced collagen and HA deposition, as well as biochemical markers of hepatic damage induced by repeated CCl4 injections. The transcriptomic analysis revealed converging pathways associated with downstream HA signalling. 4MU- and siHAS2-treated fibrotic livers shared 405 upregulated and 628 downregulated genes. These genes were associated with xenobiotic and cholesterol metabolism, mitosis, endoplasmic reticulum stress, RNA processing, and myeloid cell migration. The functional annotation of differentially expressed genes (DEGs) in siHAS2-treated mice revealed attenuation of extracellular matrix-associated pathways. In comparison, in the 4MU-treated group, DEGs were related to lipid and bile metabolism pathways and cell cycle. These findings confirm that HAS2 is an important pharmacological target for suppressing hepatic fibrosis using siRNA.
Collapse
Affiliation(s)
- Noreen Halimani
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
| | - Mikhail Nesterchuk
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - Alexandra A Tsitrina
- IKI-Ilse Katz Institute for Nanoscale Science & Technology, Nem Gurion University of the Negev, Beersheba, Israel
| | - Marat Sabirov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Irina N Andreichenko
- AO Reproduction Head Centre of Agricultural Animals, Tsentralnaya Street, 3., Podolsk, Moscow Region, 142143, Russia
| | - Nataliya O Dashenkova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Elizaveta Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - Alexey M Kulikov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Timofei S Zatsepin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Arsen S Mikaelyan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Yuri V Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| |
Collapse
|
3
|
Liu ZD, Wang SQ, Li S, He J, Wang SH, Cai HQ, Wan JH. Identification of FKBP10 prognostic value in lung adenocarcinoma patients with surgical resection of brain metastases: A retrospective single-institution cohort study. Clinics (Sao Paulo) 2023; 78:100212. [PMID: 37201304 DOI: 10.1016/j.clinsp.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVE To explore the expression levels and clinical value of FKBP10 in lung adenocarcinoma brain metastases. DESIGN A retrospective single-institution cohort study. PATIENTS The perioperative records of 71 patients with lung adenocarcinoma brain metastases who underwent surgical resection at the authors' institution between November 2012 and June 2019 were retrospectively analyzed. METHODS The authors evaluated FKBP10 expression levels using immunohistochemistry in tissue arrays of these patients. Kaplan-Meier survival curves were constructed, and a Cox proportional hazards regression model was used to identify independent prognostic biomarkers. A public database was used to detect FKBP10 expression and its clinical value in primary lung adenocarcinoma. RESULTS The authors found that the FKBP10 protein was selectively expressed in lung adenocarcinoma brain metastases. Survival analysis showed that FKBP10 expression (p = 0.02, HR = 2.472, 95% CI [1.156, 5.289]), target therapy (p < 0.01, HR = 0.186, 95% CI [0.073, 0.477]), and radiotherapy (p = 0.006, HR = 0.330, 95% CI [0.149, 0.731]) were independent prognostic factors for survival in lung adenocarcinoma patients with brain metastases. The authors also detected FKBP10 expression in primary lung adenocarcinoma using a public database, found that FKBP10 is also selectively expressed in primary lung adenocarcinoma, and affects the overall survival and disease-free survival of patients. LIMITATIONS The number of enrolled patients was relatively small and patients' treatment options varied. CONCLUSIONS A combination of surgical resection, adjuvant radiotherapy, and precise target therapy may benefit the survival of selected patients with lung adenocarcinoma brain metastases. FKBP10 is a novel biomarker for lung adenocarcinoma brain metastases, which is closely associated with survival time and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Zhi-Dan Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song-Quan Wang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Neurosurgery, Second Hospital of Shanxi Medical University Taiyuan, China
| | - Sai Li
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shao-Hua Wang
- Department of Neurosurgery, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jing-Hai Wan
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
The role of gene encoding collagen secretion protein (SERPINH1) in the pathogenesis of a hypermobile type of Ehlers-Danlos syndrome. Postepy Dermatol Alergol 2023; 40:102-106. [PMID: 36909907 PMCID: PMC9993214 DOI: 10.5114/ada.2022.124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Hypermobile (hEDS) Ehlers-Danlos syndrome (EDS) is a non-inflammatory, autosomal dominant connective tissue disorder. hEDS, unlike other types of EDS, has no known genetic aetiology, so diagnosis is conducted based on a person's medical history, a physical examination, and exclusion of other types of EDS after genetic tests. Aim The present study was a sequencing analysis of the SERPINH1 gene and the evaluation of the potential impact of variants of this gene on their role in the aetiology of the hypermobile type of EDS. Material and methods The study group included 100 hEDS patients of Polish origin. The SERPINH1 gene analysis was performed on genomic DNA (gDNA). In all patients, other types of EDS or other connective tissue disorders were excluded by testing them with NGS technology. Results Among 100 tested patients, 4 different types of missense variants (heterozygote) were detected. All SERPINH1 alterations were classified as benign according to ACMG guidelines. Conclusions Mutations in the SERPINH1 gene have been described in a rare type of OI but have never been analysed in hypermobile Ehlers-Danlos syndrome. In our investigation among 100 hEDS patients, we did not identify pathogenic or likely pathogenic variants. Though only benign variants were detected, which play no role in the pathogenesis of hEDS, we should take into account mechanisms other than gene structure alterations, which may have an impact on collagen and other ECM protein transport.
Collapse
|
5
|
Colman M, Vroman R, Dhooge T, Malfait Z, Symoens S, Burnyté B, Nampoothiri S, Kariminejad A, Malfait F, Syx D. Kyphoscoliotic Ehlers-Danlos syndrome caused by pathogenic variants in FKBP14: Further insights into the phenotypic spectrum and pathogenic mechanisms. Hum Mutat 2022; 43:1994-2009. [PMID: 36054293 DOI: 10.1002/humu.24456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023]
Abstract
The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of heritable connective tissue diseases. The autosomal recessive kyphoscoliotic EDS results from deficiency of either lysyl hydroxylase 1 (encoded by PLOD1), crucial for collagen cross-linking; or the peptidyl-prolyl cis-trans isomerase family FK506-binding protein 22 kDa (FKBP22 encoded by FKBP14), a molecular chaperone of types III, IV, VI, and X collagen. This study reports the clinical manifestations of three probands with homozygous pathogenic FKBP14 variants, including the previously reported c.362dupC; p.(Glu122Argfs*7) variant, a novel missense variant (c.587A>G; p.(Asp196Gly)) and a start codon variant (c.2T>G; p.?). Consistent clinical features in the hitherto reported individuals (n = 40) are kyphoscoliosis, generalized joint hypermobility and congenital muscle hypotonia. Severe vascular complications have been observed in 12.5%. A previously unreported feature is microcornea observed in two probands reported here. Both the c.587A>G and the c.362dupC variant cause complete loss of FKBP22. With immunocytochemistry on dermal fibroblasts, we provide the first evidence for intracellular retention of types III and VI collagen in EDS-FKBP14. Scratch wound assays were largely normal. Western blot of proteins involved in the unfolded protein response and autophagy did not reveal significant upregulation in dermal fibroblasts.
Collapse
Affiliation(s)
- Marlies Colman
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Robin Vroman
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Tibbe Dhooge
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Zoë Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Sofie Symoens
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Biruté Burnyté
- Center for Medical Genetics, Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kerala, India
| | | | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Xiao Y, Li S, Zhang M, Liu X, Ju G, Hou J. A Novel Biomarker, FKBP10, for Poor Prognosis Prediction in Patients with Clear Cell Renal Cell Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5490644. [PMID: 35722147 PMCID: PMC9205734 DOI: 10.1155/2022/5490644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
Objective To screen genes associated with poor prognosis of clear cell renal cell carcinoma (CcRCC) from the public databases HPA (Human Protein Atlas), UALCAN, and GEPIA (Gene Expression Profiling Interactive Analysis) and to investigate the expression of FKBP10 in CcRCC and the effect on prognosis of the patients and the biological behavior of CcRCC cells. Methods The tumor tissues and adjacent noncancerous tissues of 42 patients with CcRCC diagnosed and treated in our hospital were collected, and the general information of the patients was recorded. FKBP10 expression in the tissues was determined by qRT-PCR and western blot, and its relationship with general information and prognosis of patients was analyzed. Knockdown or overexpression experiments were carried out with the human proximal tubule epithelial cell line HK-2 and CcRCC cell lines Caki-1, 786-O, ACHN, and A498 to verify the relationship between FKBP10 expression and cell proliferation and adhesion ability using MTT assay and fibronectin adhesion assay, respectively. Western blot was utilized to examine the protein expression level of c-Myc, cyclin D1, and Bcl-2 in the cells. Results FKBP10 was highly expressed in CcRCC tissues and cells and was correlated with poor prognosis. In addition, FKBP10 expression was positively correlated with CcRCC tumor size and staging and negatively correlated with tumor differentiation. Moreover, knockdown of FKBP10 significantly inhibited the proliferation of CcRCC cells, notably declined the protein expression of c-Myc, cyclin D1, and Bcl-2, and promoted cell adhesion. Conclusion FKBP10 is highly expressed in CcRCC tissues and cells and is associated with poor prognosis in patients. FKBP10 participated in the occurrence and development of CcRCC by promoting cell proliferation and inhibiting apoptosis and adhesion.
Collapse
Affiliation(s)
- Yongshuang Xiao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shuofeng Li
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Meng Zhang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xin Liu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Guanqun Ju
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Huang J, Zhou Q, Ren Q, Luo L, Ji G, Zheng T. Endoplasmic reticulum stress associates with the development of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1094394. [PMID: 36714579 PMCID: PMC9877331 DOI: 10.3389/fendo.2022.1094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important player in various intracellular signaling pathways that regulate cellular functions in many diseases. Intervertebral disc degeneration (IDD), an age-related degenerative disease, is one of the main clinical causes of low back pain. Although the pathological development of IDD is far from being fully elucidated, many studies have been shown that ER stress (ERS) is involved in IDD development and regulates various processes, such as inflammation, cellular senescence and apoptosis, excessive mechanical loading, metabolic disturbances, oxidative stress, calcium homeostasis imbalance, and extracellular matrix (ECM) dysregulation. This review summarizes the formation of ERS and the potential link between ERS and IDD development. ERS can be a promising new therapeutic target for the clinical management of IDD.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Liliang Luo
- Department of Orthopedics, Shangyou Hospital of traditional Chinese Medicine, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tiansheng Zheng,
| |
Collapse
|
8
|
Staab-Weijnitz CA. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 66:363-381. [PMID: 34861139 DOI: 10.1165/rcmb.2021-0342tr] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one third of all global deaths. Also lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine and proline biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfils essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of (1) specificity for collagen biosynthesis, maturation and degradation, and (2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and to the extracellular matrix are discussed.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Comprehensive Pneumology Center/Institute of Lung Biology and Disease, Member of the German Center of Lung Research (DZL), München, Germany;
| |
Collapse
|
9
|
Abstract
Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.
Collapse
Affiliation(s)
- Shinya Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,JT Biohistory Research Hall, Osaka, 569-1125, Japan
| |
Collapse
|
10
|
Tat V, Ayaub EA, Ayoub A, Vierhout M, Naiel S, Padwal MK, Abed S, Mekhael O, Tandon K, Revill SD, Yousof T, Bellaye PS, Kolb PS, Dvorkin-Gheva A, Naqvi A, Cutz JC, Hambly N, Kato J, Vaughan M, Moss J, Kolb MRJ, Ask K. FK506-Binding Protein 13 Expression Is Upregulated in Interstitial Lung Disease and Correlated with Clinical Severity. A Potentially Protective Role. Am J Respir Cell Mol Biol 2021; 64:235-246. [PMID: 33253593 DOI: 10.1165/rcmb.2020-0121oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a progressive lung disease characterized by myofibroblast accumulation and excessive extracellular matrix deposition. We sought to investigate the role of FKBP13 (13-kD FK506-binding protein), an endoplasmic reticulum-resident molecular chaperone, in various forms of pulmonary fibrosis. We first characterized the gene and protein expression of FKBP13 in lung biopsy specimens from 24 patients with idiopathic pulmonary fibrosis and 17 control subjects. FKBP13 expression was found to be elevated in the fibrotic regions of idiopathic pulmonary fibrosis lung tissues and correlated with declining forced vital capacity and dyspnea severity. FKBP13 expression was also increased in lung biopsy specimens of patients with hypersensitivity pneumonitis, rheumatoid arthritis, and sarcoidosis-associated interstitial lung disease. We next evaluated the role of this protein using FKBP13-/- mice in a bleomycin model of pulmonary fibrosis. Animals were assessed for lung function and histopathology at different stages of lung injury including the inflammatory (Day 7), fibrotic (Day 21), and resolution (Day 50) phases. FKBP13-/- mice showed increased infiltration of inflammatory cells and cytokines at Day 7, increased lung elastance and fibrosis at Day 21, and impaired resolution of fibrosis at Day 50. These changes were associated with an increased number of cells that stained positive for TUNEL and cleaved caspase 3 in the FKBP13-/- lungs, indicating a heightened cellular sensitivity to bleomycin. Our findings suggest that FKBP13 is a potential biomarker for severity of interstitial lung diseases and that it has a biologically relevant role in protecting mice against bleomycin-induced injury, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Victor Tat
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Ehab A Ayaub
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Anmar Ayoub
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Manreet K Padwal
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Soumeya Abed
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Olivia Mekhael
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Karun Tandon
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Spencer D Revill
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Tamana Yousof
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Pierre-Simon Bellaye
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Philipp S Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Asghar Naqvi
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Jean-Claude Cutz
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Nathan Hambly
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Jiro Kato
- Pulmonary Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Martha Vaughan
- Pulmonary Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joel Moss
- Pulmonary Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
11
|
Cai HQ, Zhang MJ, Cheng ZJ, Yu J, Yuan Q, Zhang J, Cai Y, Yang LY, Zhang Y, Hao JJ, Wang MR, Wan JH. FKBP10 promotes proliferation of glioma cells via activating AKT-CREB-PCNA axis. J Biomed Sci 2021; 28:13. [PMID: 33557829 PMCID: PMC7871608 DOI: 10.1186/s12929-020-00705-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/26/2020] [Indexed: 01/21/2023] Open
Abstract
Background Although the availability of therapeutic options including temozolomide, radiotherapy and some target agents following neurosurgery, the prognosis of glioma patients remains poor. Thus, there is an urgent need to explore possible targets for clinical treatment of this disease. Methods Tissue microarrays and immunohistochemistry were used to detect FKBP10, Hsp47, p-AKT (Ser473), p-CREB (Ser133) and PCNA expression in glioma tissues and xenografts. CCK-8 tests, colony formation assays and xenograft model were performed to test proliferation ability of FKBP10 in glioma cells in vitro and in vivo. Quantitative reverse transcriptase-PCR, western-blotting, GST-pull down, co-immunoprecipitation and confocal-immunofluorescence staining assay were used to explore the molecular mechanism underlying the functions of overexpressed FKBP10 in glioma cells. Results FKBP10 was highly expressed in glioma tissues and its expression was positively correlates with grade, poor prognosis. FKBP10-knockdown suppressed glioma cell proliferation in vitro and subcutaneous/orthotopic xenograft tumor growth in vivo. Silencing of FKBP10 reduced p-AKT (Ser473), p-CREB (Ser133), PCNA mRNA and PCNA protein expression in glioma cells. FKBP10 interacting with Hsp47 enhanced the proliferation ability of glioma cells via AKT-CREB-PCNA cascade. In addition, correlation between these molecules were also found in xenograft tumor and glioma tissues. Conclusions We showed for the first time that FKBP10 is overexpressed in glioma and involved in proliferation of glioma cells by interacting with Hsp47 and activating AKT-CREB-PCNA signaling pathways. Our findings suggest that inhibition of FKBP10 related signaling might offer a potential therapeutic option for glioma patients.
Collapse
Affiliation(s)
- Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min-Jie Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhi-Jian Cheng
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jing Yu
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Yuan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jing-Hai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
12
|
Syx D, Ishikawa Y, Gebauer J, Boudko SP, Guillemyn B, Van Damme T, D’hondt S, Symoens S, Nampoothiri S, Gould DB, Baumann U, Bächinger HP, Malfait F. Aberrant binding of mutant HSP47 affects posttranslational modification of type I collagen and leads to osteogenesis imperfecta. PLoS Genet 2021; 17:e1009339. [PMID: 33524049 PMCID: PMC7877763 DOI: 10.1371/journal.pgen.1009339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/11/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype. Heat shock protein 47 (HSP47) is essential for correct collagen folding. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta. The highly conserved p.R222 residue is located within the collagen interacting surface and HSP47-R222S shows a significantly reduced affinity for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen. In contrast to other types of OI, this overmodification is not caused by prolonged exposure of procollagen to modifying enzymes, since the intracellular folding rate of type I procollagen appears to be normal. We show significant upregulation of several molecular chaperones and collagen-modifying enzymes and increased binding of several of these molecules to unfolded type I collagen chains upon abnormal HSP47-R222S binding. This suggests a compensatory mechanism for aberrant HSP47-R222S binding, eventually leading to overmodification of type I procollagen chains, and underscores the importance of HSP47 for proper posttranslational modification.
Collapse
Affiliation(s)
- Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, California, United States of America
| | - Jan Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Sergei P. Boudko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Brecht Guillemyn
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Tim Van Damme
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sanne D’hondt
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sheela Nampoothiri
- Amrita Institute of Medical Sciences and Research Center, Cochin, Kerala, India
| | - Douglas B. Gould
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, California, United States of America
- Department of Anatomy, Institute for Human Genetics, UCSF School of Medicine, San Francisco, California, United States of America
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
13
|
Abstract
The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; ,
| | - V Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; , .,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
14
|
Li C, Wang L. Molecular characterization, expression and functional analysis of TGFβ1-b in crucian carp (Carassius carassius). Int J Biol Macromol 2020; 165:1392-1401. [PMID: 33045298 DOI: 10.1016/j.ijbiomac.2020.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Transforming growth factor β1 (TGFβ1) is a polyfunctional cytokine with important roles in growth, differentiation and immune function in various animals. In this study, PCR, bioinformatics, real-time quantitative PCR, prokaryotic expression, protein purification and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-TOF-MS) were applied to investigate the structural features and function of TGFβ1-b in crucian carp. The complete coding sequence (CDS) of TGFβ1-b was 1134 bp in length and was submitted to GenBank (ID: MH473141). TGFβ1-b encoded a putative protein of 377 amino acids and included a signal peptide consisting of 22 amino acids. TGFβ1-b was relatively conservative in fish and distant from mammals in terms of evolutionary relationship. TGFβ1-b was found to be expressed in various tissues, with the highest expression in the kidney. The expressions of TGFβ1-b in muscle, heart and liver were increased with the addition of Rhodopseudomonas palustris, Bacillus subtilis and Enterococcus faecium at 30 days (p < 0.01). While, the expressions of SMAD2, SMAD3 and SMAD7 were also up-regulated with the addition of R. palustris at 20 days (p < 0.01). The expression of TGFβ1-b could be affected by time and group factors (p < 0.05). Moreover, the expression vector TGFβ1-b-pDE2 was successfully constructed. Prokaryotic expression indicated that a 43 kDa target protein was obtained after induction with 1.5 mM isopropyl-beta-D-thiogalactopyranoside (IPTG) for 3.5 h at 37 °C for 200 r/h. The activities of alkaline phosphatase and lysozyme in injection TGFβ1-b protein group (ITg) and feeding broken bacterial liquid group (BTg) were significantly increased at 24 h (p < 0.01). And the activities of superoxide dismutase in ITg were significantly increased at 36 h (p < 0.01). Besides, the expressions of heat shock protein 30 and heat shock protein 47 in ITg and BTg were significantly increased (p < 0.01). Whereas, the expression of interleukin-11 was significantly reduced (p < 0.01). These results indicated that TGFβ1-b protein might play a role in immunity of crucian carp.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chendu 610041, PR China; Healthy Aquaculture Key Laboratory of Sichuan Province, Chendu 610041, PR China
| | - Li Wang
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chendu 610041, PR China.
| |
Collapse
|
15
|
van Dijk FS, Semler O, Etich J, Köhler A, Jimenez-Estrada JA, Bravenboer N, Claeys L, Riesebos E, Gegic S, Piersma SR, Jimenez CR, Waisfisz Q, Flores CL, Nevado J, Harsevoort AJ, Janus GJ, Franken AA, van der Sar AM, Meijers-Heijboer H, Heath KE, Lapunzina P, Nikkels PG, Santen GW, Nüchel J, Plomann M, Wagener R, Rehberg M, Hoyer-Kuhn H, Eekhoff EM, Pals G, Mörgelin M, Newstead S, Wilson BT, Ruiz-Perez VL, Maugeri A, Netzer C, Zaucke F, Micha D. Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2. Am J Hum Genet 2020; 107:989-999. [PMID: 33053334 DOI: 10.1016/j.ajhg.2020.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Osteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families. KDELR2 encodes KDEL endoplasmic reticulum protein retention receptor 2, which recycles ER-resident proteins with a KDEL-like peptide from the cis-Golgi to the ER through COPI retrograde transport. Analysis of patient primary fibroblasts showed intracellular decrease of HSP47 and FKBP65 along with reduced procollagen type I in culture media. Electron microscopy identified an abnormal quality of secreted collagen fibrils with increased amount of HSP47 bound to monomeric and multimeric collagen molecules. Mapping the identified KDELR2 variants onto the crystal structure of G. gallus KDELR2 indicated that these lead to an inactive receptor resulting in impaired KDELR2-mediated Golgi-ER transport. Therefore, in KDELR2-deficient individuals, OI most likely occurs because of the inability of HSP47 to bind KDELR2 and dissociate from collagen type I. Instead, HSP47 remains bound to collagen molecules extracellularly, disrupting fiber formation. This highlights the importance of intracellular recycling of ER-resident molecular chaperones for collagen type I and bone metabolism and a crucial role of HSP47 in the KDELR2-associated pathogenic mechanism leading to OI.
Collapse
|
16
|
Salo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol 2020; 30:38-49. [PMID: 32969070 DOI: 10.1111/exd.14197] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra- and extracellular modifications are needed to make functional collagen molecules, intracellular post-translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4-hydroxylases, 3-hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.
Collapse
Affiliation(s)
- Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Yang Z, Zhou C, Shi H, Zhang N, Tang B, Ji N. Heme Induces BECN1/ATG5-Mediated Autophagic Cell Death via ER Stress in Neurons. Neurotox Res 2020; 38:1037-1048. [PMID: 32840757 DOI: 10.1007/s12640-020-00275-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/11/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhage (ICH) is a serious medical problem, and effective treatment is limited. Hemorrhaged blood is highly toxic to the brain, and heme, which is mainly released from hemoglobin, plays a vital role in neurotoxicity. However, the specific mechanism involved in heme-mediated neurotoxicity has not been well studied. In this study, we investigated the neurotoxicity of heme in neurons. Neurons were treated with heme, and cell death, autophagy, and endoplasmic reticulum (ER) stress were analyzed. In addition, the relationship between autophagy and apoptosis in heme-induced cell death and the downstream effects were also assessed. We showed that heme induced cell death and autophagy in neurons. The suppression of autophagy using either pharmacological inhibitors (3-methyladenine) or RNA interference of essential autophagy genes (BECN1 and ATG5) decreased heme-induced cell death in neurons. Moreover, the ER stress activator thapsigargin increased cell autophagy and the cell death ratio following heme treatment. Autophagy promoted heme-induced cell apoptosis and cell death through the BECN1/ATG5 pathway. Our findings suggest that heme potentiates neuronal autophagy via ER stress, which in turn induces cell death via the BECN1/ATG5 pathway. Targeting ER stress-mediated autophagy might be a promising therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Changlong Zhou
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Hui Shi
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Nan Zhang
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Bin Tang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Na Ji
- Department of Anesthesia, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
18
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
19
|
Besio R, Chow CW, Tonelli F, Marini JC, Forlino A. Bone biology: insights from osteogenesis imperfecta and related rare fragility syndromes. FEBS J 2019; 286:3033-3056. [PMID: 31220415 PMCID: PMC7384889 DOI: 10.1111/febs.14963] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
The limited accessibility of bone and its mineralized nature have restricted deep investigation of its biology. Recent breakthroughs in identification of mutant proteins affecting bone tissue homeostasis in rare skeletal diseases have revealed novel pathways involved in skeletal development and maintenance. The characterization of new dominant, recessive and X-linked forms of the rare brittle bone disease osteogenesis imperfecta (OI) and other OI-related bone fragility disorders was a key player in this advance. The development of in vitro models for these diseases along with the generation and characterization of murine and zebrafish models contributed to dissecting previously unknown pathways. Here, we describe the most recent advances in the understanding of processes involved in abnormal bone mineralization, collagen processing and osteoblast function, as illustrated by the characterization of new causative genes for OI and OI-related fragility syndromes. The coordinated role of the integral membrane protein BRIL and of the secreted protein PEDF in modulating bone mineralization as well as the function and cross-talk of the collagen-specific chaperones HSP47 and FKBP65 in collagen processing and secretion are discussed. We address the significance of WNT ligand, the importance of maintaining endoplasmic reticulum membrane potential and of regulating intramembrane proteolysis in osteoblast homeostasis. Moreover, we also examine the relevance of the cytoskeletal protein plastin-3 and of the nucleotidyltransferase FAM46A. Thanks to these advances, new targets for the development of novel therapies for currently incurable rare bone diseases have been and, likely, will be identified, supporting the important role of basic science for translational approaches.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Chi-Wing Chow
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Terajima M, Taga Y, Cabral WA, Liu Y, Nagasawa M, Sumida N, Kayashima Y, Chandrasekaran P, Han L, Maeda N, Perdivara I, Hattori S, Marini JC, Yamauchi M. Cyclophilin B control of lysine post-translational modifications of skin type I collagen. PLoS Genet 2019; 15:e1008196. [PMID: 31173582 PMCID: PMC6602281 DOI: 10.1371/journal.pgen.1008196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/01/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023] Open
Abstract
Covalent intermolecular cross-linking of collagen is essential for tissue stability. Recent studies have demonstrated that cyclophilin B (CypB), an endoplasmic reticulum (ER)-resident peptidyl-prolyl cis-trans isomerase, modulates lysine (Lys) hydroxylation of type I collagen impacting cross-linking chemistry. However, the extent of modulation, the molecular mechanism and the functional outcome in tissues are not well understood. Here, we report that, in CypB null (KO) mouse skin, two unusual collagen cross-links lacking Lys hydroxylation are formed while neither was detected in wild type (WT) or heterozygous (Het) mice. Mass spectrometric analysis of type I collagen showed that none of the telopeptidyl Lys was hydroxylated in KO or WT/Het mice. Hydroxylation of the helical cross-linking Lys residues was almost complete in WT/Het but was markedly diminished in KO. Lys hydroxylation at other sites was also lower in KO but to a lesser extent. A key glycosylation site, α1(I) Lys-87, was underglycosylated while other sites were mostly overglycosylated in KO. Despite these findings, lysyl hydroxylases and glycosyltransferase 25 domain 1 levels were significantly higher in KO than WT/Het. However, the components of ER chaperone complex that positively or negatively regulates lysyl hydroxylase activities were severely reduced or slightly increased, respectively, in KO. The atomic force microscopy-based nanoindentation modulus were significantly lower in KO skin than WT. These data demonstrate that CypB deficiency profoundly affects Lys post-translational modifications of collagen likely by modulating LH chaperone complexes. Together, our study underscores the critical role of CypB in Lys modifications of collagen, cross-linking and mechanical properties of skin. Deficiency of cyclophilin B (CypB), an endoplasmic reticulum-resident peptidyl-prolyl cis-trans isomerase, causes recessive osteogenesis imperfecta type IX, resulting in defective connective tissues. Recent studies using CypB null mice revealed that CypB modulates lysine hydroxylation of type I collagen impacting collagen cross-linking. However, the extent of modulation, the molecular mechanism and the effect on tissue properties are not well understood. In the present study, we show that CypB deficiency in mouse skin results in the formation of unusual collagen cross-links, aberrant tissue formation, altered levels of lysine modifying enzymes and their chaperones, and impaired mechanical property. These findings highlight an essential role of CypB in collagen post-translational modifications which are critical in maintaining the structure and function of connective tissues.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Wayne A. Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Genetics Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying Liu
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Irina Perdivara
- Fujifilm Diosynth Biotechnologies, Morrisville, North Carolina, United States of America
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Joan C. Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Gruenwald I, Spector A, Shultz T, Lischinsky D, Kimmel E. The beginning of a new era: treatment of erectile dysfunction by use of physical energies as an alternative to pharmaceuticals. Int J Impot Res 2019; 31:155-161. [DOI: 10.1038/s41443-019-0142-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
22
|
Ito S, Nagata K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J Biol Chem 2018; 294:2133-2141. [PMID: 30541925 DOI: 10.1074/jbc.tm118.002812] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heat shock protein 47 (Hsp47) is an endoplasmic reticulum (ER)-resident molecular chaperone essential for correct folding of procollagen in mammalian cells. In this Review, we discuss the role and function of Hsp47 in vertebrate cells and its role in connective tissue disorders. Hsp47 binds to collagenous (Gly-Xaa-Arg) repeats within triple-helical procollagen in the ER and can prevent its local unfolding or aggregate formation, resulting in accelerating triple-helix formation of procollagen. Hsp47 pH-dependently dissociates from procollagen in the cis-Golgi or ER-Golgi intermediate compartment and is then transported back to the ER. Although Hsp47 belongs to the serine protease inhibitor (serpin) superfamily, it does not possess serine protease inhibitory activity. Whereas general molecular chaperones such as Hsp70 and Hsp90 exhibit broad substrate specificity, Hsp47 has narrower specificity mainly for procollagens. However, other Hsp47-interacting proteins have been recently reported, suggesting a much broader role for Hsp47 in the cell that warrants further investigation. Other ER-resident stress proteins, such as binding immunoglobulin protein (BiP), are induced by ER stress, whereas Hsp47 is induced only by heat shock. Constitutive expression of Hsp47 is always correlated with expression of various collagen types, and disruption of the Hsp47 gene in mice causes embryonic lethality due to impaired basement membrane and collagen fibril formation. Increased Hsp47 expression is associated with collagen-related disorders such as fibrosis, characterized by abnormal collagen accumulation, highlighting Hsp47's potential as a clinically relevant therapeutic target.
Collapse
Affiliation(s)
| | - Kazuhiro Nagata
- From the Institute for Protein Dynamics, .,Department of Molecular Biosciences, Faculty of Life Sciences, and.,CREST, Japan Science and Technology Agency, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
23
|
Akbarzadeh A, Günther OP, Houde AL, Li S, Ming TJ, Jeffries KM, Hinch SG, Miller KM. Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics 2018; 19:749. [PMID: 30326831 PMCID: PMC6192343 DOI: 10.1186/s12864-018-5108-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background Pacific salmon (Oncorhynchus spp.) serve as good biological indicators of the breadth of climate warming effects on fish because their anadromous life cycle exposes them to environmental challenges in both marine and freshwater environments. Our study sought to mine the extensive functional genomic studies in fishes to identify robust thermally-responsive biomarkers that could monitor molecular physiological signatures of chronic thermal stress in fish using non-lethal sampling of gill tissue. Results Candidate thermal stress biomarkers for gill tissue were identified using comparisons among microarray datasets produced in the Molecular Genetics Laboratory, Pacific Biological Station, Nanaimo, BC, six external, published microarray studies on chronic and acute temperature stress in salmon, and a comparison of significant genes across published studies in multiple fishes using deep literature mining. Eighty-two microarray features related to 39 unique gene IDs were selected as candidate chronic thermal stress biomarkers. Most of these genes were identified both in the meta-analysis of salmon microarray data and in the literature mining for thermal stress markers in salmonids and other fishes. Quantitative reverse transcription PCR (qRT-PCR) assays for 32 unique genes with good efficiencies across salmon species were developed, and their activity in response to thermally challenged sockeye salmon (O. nerka) and Chinook salmon (O. tshawytscha) (cool, 13–14 °C and warm temperatures 18–19 °C) over 5–7 days was assessed. Eight genes, including two transcripts of each SERPINH1 and HSP90AA1, FKBP10, MAP3K14, SFRS2, and EEF2 showed strong and robust chronic temperature stress response consistently in the discovery analysis and both sockeye and Chinook salmon validation studies. Conclusions The results of both discovery analysis and gene expression showed that a panel of genes involved in chaperoning and protein rescue, oxidative stress, and protein biosynthesis were differentially activated in gill tissue of Pacific salmon in response to elevated temperatures. While individually, some of these biomarkers may also respond to other stressors or biological processes, when expressed in concert, we argue that a biomarker panel comprised of some or all of these genes could provide a reliable means to specifically detect thermal stress in field-caught salmon. Electronic supplementary material The online version of this article (10.1186/s12864-018-5108-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arash Akbarzadeh
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada. .,Department of Fisheries, Faculty of Marine Science and technology, University of Hormozgan, P.O. Box: 3995, Bandar Abbas, Iran.
| | | | - Aimee Lee Houde
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| | - Tobi J Ming
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| | - Kenneth M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| |
Collapse
|
24
|
Ishikawa Y, Rubin K, Bächinger HP, Kalamajski S. The endoplasmic reticulum-resident collagen chaperone Hsp47 interacts with and promotes the secretion of decorin, fibromodulin, and lumican. J Biol Chem 2018; 293:13707-13716. [PMID: 30002123 DOI: 10.1074/jbc.ra117.000758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
The build-up of diversified and tissue-specific assemblies of extracellular matrix (ECM) proteins depends on secreted and cell surface-located molecular arrays that coordinate ECM proteins into discrete designs. The family of small leucine-rich proteins (SLRPs) associates with and dictates the structure of fibrillar collagens, which form the backbone of most ECM types. However, whether SLRPs form complexes with proteins other than collagens is unclear. Here, we demonstrate that heat shock protein 47 (Hsp47), a well-established endoplasmic reticulum-resident collagen chaperone, also binds the SLRPs decorin, lumican, and fibromodulin with affinities comparable with that in the Hsp47-type I collagen interaction. Furthermore, we show that a lack of Hsp47 inhibits the cellular secretion of decorin and lumican. Our results expand the understanding of the concerted molecular interactions that control the secretion and organization of a functional collagenous ECM.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.,the Research Department, Shriners Hospital for Children, Portland, Oregon 97239, and
| | - Kristofer Rubin
- the Department for Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75237, Sweden
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.,the Research Department, Shriners Hospital for Children, Portland, Oregon 97239, and
| | - Sebastian Kalamajski
- the Department for Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75237, Sweden
| |
Collapse
|