1
|
Weiss N, Zamponi GW. The T-type calcium channelosome. Pflugers Arch 2024; 476:163-177. [PMID: 38036777 DOI: 10.1007/s00424-023-02891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
Collapse
Affiliation(s)
- Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Nakagawa M, Takahashi K, Nishizawa Y, Ohta T. Involvement of interaction of Cav3.2 and nociceptive TRPA1 in pathological pain transmission. Biomed Res 2024; 45:45-55. [PMID: 38325845 DOI: 10.2220/biomedres.45.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
T-type Ca2+ channels and TRPA1 expressed in sensory neurons are involved in pain. We previously demonstrated a functional interaction of these channels under physiological conditions. Here we investigated the possible involvement of these channels in inflammatory pain condition. We also evaluated the relationship of these channels endogenously expressed in RIN-14B, a rat pancreatic islet tumor cell line. In dorsal root ganglion (DRG) neurons innervated inflammatory side, [Ca2+]i increases induced by 15 mM KCl (15K) were enhanced in neurons responded to AITC. This enhancement was not observed in genetically TRPA1-deficient neurons. The T-type and AITC-induced currents were larger in neurons of the inflammatory side than in those of the control one. In DRGs of the inflammatory side, the protein expression of Cav3.2, but not TRPA1, was increased. In RIN-14B, 15K-induced [Ca2+]i increases were decreased by blockers of T-type Ca2+ channel and TRPA1, and by TRPA1-silencing. Immunoprecipitation suggested the coexistent of these channels in sensory neurons and RIN-14B. In mice with inflammation, mechanical hypersensitivity was suppressed by blockers of both channels. These data suggest that the interaction of Cav3.2 with TRPA1 in sensory neurons is enhanced via the augmentation of the activities of both channels under inflammatory conditions, indicating that both channels are therapeutic targets for inflammatory pain.
Collapse
Affiliation(s)
- Minami Nakagawa
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan
| | - Yuki Nishizawa
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan
| |
Collapse
|
3
|
Spafford JD. A governance of ion selectivity based on the occupancy of the "beacon" in one- and four-domain calcium and sodium channels. Channels (Austin) 2023; 17:2191773. [PMID: 37075164 PMCID: PMC10120453 DOI: 10.1080/19336950.2023.2191773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
One of nature's exceptions was discovered when a Cav3 T-type channel was observed to switch phenotype from a calcium channel into a sodium channel by neutralizing an aspartate residue in the high field strength (HFS) +1 position within the ion selectivity filter. The HFS+1 site is dubbed a "beacon" for its location at the entryway just above the constricted, minimum radius of the HFS site's electronegative ring. A classification is proposed based on the occupancy of the HFS+1 "beacon" which correlates with the calcium- or sodium-selectivity phenotype. If the beacon is a glycine, or neutral, non-glycine residue, then the cation channel is calcium-selective or sodium-permeable, respectively (Class I). Occupancy of a beacon aspartate are calcium-selective channels (Class II) or possessing a strong calcium block (Class III). A residue lacking in position of the sequence alignment for the beacon are sodium channels (Class IV). The extent to which animal channels are sodium-selective is dictated in the occupancy of the HFS site with a lysine residue (Class III/IV). Governance involving the beacon solves the quandary the HFS site as a basis for ion selectivity, where an electronegative ring of glutamates at the HFS site generates a sodium-selective channel in one-domain channels but generates a calcium-selective channel in four-domain channels. Discovery of a splice variant in an exceptional channel revealed nature's exploits, highlighting the "beacon" as a principal determinant for calcium and sodium selectivity, encompassing known ion channels composed of one and four domains, from bacteria to animals.
Collapse
Affiliation(s)
- J David Spafford
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
Affiliation(s)
- John W. Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Worawan B. Limpitikul
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Ivy E. Dick School of Medicine, University of Maryland, Baltimore, MD21210
| |
Collapse
|
5
|
O’Day DH. Alzheimer's Disease beyond Calcium Dysregulation: The Complex Interplay between Calmodulin, Calmodulin-Binding Proteins and Amyloid Beta from Disease Onset through Progression. Curr Issues Mol Biol 2023; 45:6246-6261. [PMID: 37623212 PMCID: PMC10453589 DOI: 10.3390/cimb45080393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
A multifactorial syndrome, Alzheimer's disease is the main cause of dementia, but there is no existing therapy to prevent it or stop its progression. One of the earliest events of Alzheimer's disease is the disruption of calcium homeostasis but that is just a prelude to the disease's devastating impact. Calcium does not work alone but must interact with downstream cellular components of which the small regulatory protein calmodulin is central, if not primary. This review supports the idea that, due to calcium dyshomeostasis, calmodulin is a dominant regulatory protein that functions in all stages of Alzheimer's disease, and these regulatory events are impacted by amyloid beta. Amyloid beta not only binds to and regulates calmodulin but also multiple calmodulin-binding proteins involved in Alzheimer's. Together, they act on the regulation of calcium dyshomeostasis, neuroinflammation, amyloidogenesis, memory formation, neuronal plasticity and more. The complex interactions between calmodulin, its binding proteins and amyloid beta may explain why many therapies have failed or are doomed to failure unless they are considered.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
6
|
Thiel G, Rössler OG. Calmodulin Regulates Transient Receptor Potential TRPM3 and TRPM8-Induced Gene Transcription. Int J Mol Sci 2023; 24:ijms24097902. [PMID: 37175607 PMCID: PMC10178570 DOI: 10.3390/ijms24097902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Calmodulin is a small protein that binds Ca2+ ions via four EF-hand motifs. The Ca2+/calmodulin complex as well as Ca2+-free calmodulin regulate the activities of numerous enzymes and ion channels. Here, we used genetic and pharmacological tools to study the functional role of calmodulin in regulating signal transduction of TRPM3 and TRPM8 channels. Both TRPM3 and TRPM8 are important regulators of thermosensation. Gene transcription triggered by stimulation of TRPM3 or TRPM8 channels was significantly impaired in cells expressing a calmodulin mutant with mutations in all four EF-hand Ca2+ binding motifs. Similarly, incubation of cells with the calmodulin inhibitor ophiobolin A reduced TRPM3 and TRPM8-induced signaling. The Ca2+/calmodulin-dependent protein phosphatase calcineurin was shown to negatively regulate TRPM3-induced gene transcription. Here, we show that TRPM8-induced transcription is also regulated by calcineurin. We propose that calmodulin plays a dual role in regulating TRPM3 and TRPM8 functions. Calmodulin is required for the activation of TRPM3 and TRPM8-induced intracellular signaling, most likely through a direct interaction with the channels. Ca2+ influx through TRPM3 and TRPM8 feeds back to TRPM3 and TRPM8-induced signaling by activation of the calmodulin-regulated enzyme calcineurin, which acts as a negative feedback loop for both TRPM3 and TRPM8 channel signaling.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| |
Collapse
|
7
|
Zuidscherwoude M, van Goor MK, Roig SR, Thijssen N, van Erp M, Fransen J, van der Wijst J, Hoenderop JG. Functional basis for calmodulation of the TRPV5 calcium channel. J Physiol 2023; 601:859-878. [PMID: 36566502 DOI: 10.1113/jp282952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/26/2022] Open
Abstract
Within the transient receptor potential (TRP) superfamily of ion channels, TRPV5 is a highly Ca2+ -selective channel important for active reabsorption of Ca2+ in the kidney. Its channel activity is controlled by a negative feedback mechanism involving calmodulin (CaM) binding. Combining advanced microscopy techniques and biochemical assays, this study characterized the dynamic lobe-specific CaM regulation. We demonstrate for the first time that functional (full-length) TRPV5 interacts with CaM in the absence of Ca2+ , and this interaction is intensified at increasing Ca2+ concentrations sensed by the CaM C-lobe that achieves channel pore blocking. Channel inactivation occurs without requiring CaM N-lobe calcification. Moreover, we show a Ca2+ -dependent binding stoichiometry at the single channel level. In conclusion, our study proposes a new model for CaM-dependent regulation - calmodulation - of this uniquely Ca2+ -selective TRP channel TRPV5 that involves apoCaM interaction and lobe-specific actions, which may be of significant physiological relevance given its role as gatekeeper of Ca2+ transport in the kidney. KEY POINTS: The renal Ca2+ channel TRPV5 is an important player in maintenance of the body's Ca2+ homeostasis. Activity of TRPV5 is controlled by a negative feedback loop that involves calmodulin (CaM), a protein with two Ca2+ -binding lobes. We investigated the dynamics of the interaction between TRPV5 and CaM with advanced fluorescence microscopy techniques. Our data support a new model for CaM-dependent regulation of TRPV5 channel activity with CaM lobe-specific actions and demonstrates Ca2+ -dependent binding stoichiometries. This study improves our understanding of the mechanism underlying fast channel inactivation, which is physiologically relevant given the gatekeeper function of TRPV5 in Ca2+ reabsorption in the kidney.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark K van Goor
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sara R Roig
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Niky Thijssen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Merijn van Erp
- Radboudumc Technology Centre Microscopy, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack Fransen
- Radboudumc Technology Centre Microscopy, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
El Ghaleb Y, Flucher BE. Ca V3.3 Channelopathies. Handb Exp Pharmacol 2023; 279:263-288. [PMID: 36592228 DOI: 10.1007/164_2022_631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel's activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Shin SM, Lauzadis J, Itson-Zoske B, Cai Y, Fan F, Natarajan GK, Kwok WM, Puopolo M, Hogan QH, Yu H. Targeting intrinsically disordered regions facilitates discovery of calcium channels 3.2 inhibitory peptides for adeno-associated virus-mediated peripheral analgesia. Pain 2022; 163:2466-2484. [PMID: 35420557 PMCID: PMC9562599 DOI: 10.1097/j.pain.0000000000002650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Ample data support a prominent role of peripheral T-type calcium channels 3.2 (Ca V 3.2) in generating pain states. Development of primary sensory neuron-specific inhibitors of Ca V 3.2 channels is an opportunity for achieving effective analgesic therapeutics, but success has been elusive. Small peptides, especially those derived from natural proteins as inhibitory peptide aptamers (iPAs), can produce highly effective and selective blockade of specific nociceptive molecular pathways to reduce pain with minimal off-target effects. In this study, we report the engineering of the potent and selective iPAs of Ca V 3.2 from the intrinsically disordered regions (IDRs) of Ca V 3.2 intracellular segments. Using established prediction algorithms, we localized the IDRs in Ca V 3.2 protein and identified several Ca V 3.2iPA candidates that significantly reduced Ca V 3.2 current in HEK293 cells stably expressing human wide-type Ca V 3.2. Two prototype Ca V 3.2iPAs (iPA1 and iPA2) derived from the IDRs of Ca V 3.2 intracellular loops 2 and 3, respectively, were expressed selectively in the primary sensory neurons of dorsal root ganglia in vivo using recombinant adeno-associated virus (AAV), which produced sustained inhibition of calcium current conducted by Ca V 3.2/T-type channels and significantly attenuated both evoked and spontaneous pain behavior in rats with neuropathic pain after tibial nerve injury. Recordings from dissociated sensory neurons showed that AAV-mediated Ca V 3.2iPA expression suppressed neuronal excitability, suggesting that Ca V 3.2iPA treatment attenuated pain by reversal of injury-induced neuronal hypersensitivity. Collectively, our results indicate that Ca V 3.2iPAs are promising analgesic leads that, combined with AAV-mediated delivery in anatomically targeted sensory ganglia, have the potential to be a selective peripheral Ca V 3.2-targeting strategy for clinical treatment of pain.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Fan Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Gayathri K. Natarajan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Caveolin-3 and Arrhythmias: Insights into the Molecular Mechanisms. J Clin Med 2022; 11:jcm11061595. [PMID: 35329921 PMCID: PMC8952412 DOI: 10.3390/jcm11061595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Caveolin-3 is a muscle-specific protein on the membrane of myocytes correlated with a variety of cardiovascular diseases. It is now clear that the caveolin-3 plays a critical role in the cardiovascular system and a significant role in cardiac protective signaling. Mutations in the gene encoding caveolin-3 cause a broad spectrum of clinical phenotypes, ranging from persistent elevations in the serum levels of creatine kinase in asymptomatic humans to cardiomyopathy. The influence of Caveolin-3(CAV-3) mutations on current density parallels the effect on channel trafficking. For example, mutations in the CAV-3 gene promote ventricular arrhythmogenesis in long QT syndrome 9 by a combined decrease in the loss of the inward rectifier current (IK1) and gain of the late sodium current (INa-L). The functional significance of the caveolin-3 has proved that caveolin-3 overexpression or knockdown contributes to the occurrence and development of arrhythmias. Caveolin-3 overexpression could lead to reduced diastolic spontaneous Ca2+ waves, thus leading to the abnormal L-Type calcium channel current-induced ventricular arrhythmias. Moreover, CAV-3 knockdown resulted in a shift to more negative values in the hyperpolarization-activated cyclic nucleotide channel 4 current (IHCN4) activation curve and a significant decrease in IHCN4 whole-cell current density. Recent evidence indicates that caveolin-3 plays a significant role in adipose tissue and is related to obesity development. The role of caveolin-3 in glucose homeostasis has attracted increasing attention. This review highlights the underlining mechanisms of caveolin-3 in arrhythmia. Progress in this field may contribute to novel therapeutic approaches for patients prone to developing arrhythmia.
Collapse
|
11
|
Maksemous N, Blayney CD, Sutherland HG, Smith RA, Lea RA, Tran KN, Ibrahim O, McArthur JR, Haupt LM, Cader MZ, Finol-Urdaneta RK, Adams DJ, Griffiths LR. Investigation of CACNA1I Cav3.3 Dysfunction in Hemiplegic Migraine. Front Mol Neurosci 2022; 15:892820. [PMID: 35928792 PMCID: PMC9345121 DOI: 10.3389/fnmol.2022.892820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Familial hemiplegic migraine (FHM) is a severe neurogenetic disorder for which three causal genes, CACNA1A, SCN1A, and ATP1A2, have been implicated. However, more than 80% of referred diagnostic cases of hemiplegic migraine (HM) are negative for exonic mutations in these known FHM genes, suggesting the involvement of other genes. Using whole-exome sequencing data from 187 mutation-negative HM cases, we identified rare variants in the CACNA1I gene encoding the T-type calcium channel Cav3.3. Burden testing of CACNA1I variants showed a statistically significant increase in allelic burden in the HM case group compared to gnomAD (OR = 2.30, P = 0.00005) and the UK Biobank (OR = 2.32, P = 0.0004) databases. Dysfunction in T-type calcium channels, including Cav3.3, has been implicated in a range of neurological conditions, suggesting a potential role in HM. Using patch-clamp electrophysiology, we compared the biophysical properties of five Cav3.3 variants (p.R111G, p.M128L, p.D302G, p.R307H, and p.Q1158H) to wild-type (WT) channels expressed in HEK293T cells. We observed numerous functional alterations across the channels with Cav3.3-Q1158H showing the greatest differences compared to WT channels, including reduced current density, right-shifted voltage dependence of activation and inactivation, and slower current kinetics. Interestingly, we also found significant differences in the conductance properties exhibited by the Cav3.3-R307H and -Q1158H variants compared to WT channels under conditions of acidosis and alkalosis. In light of these data, we suggest that rare variants in CACNA1I may contribute to HM etiology.
Collapse
Affiliation(s)
- Neven Maksemous
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Claire D Blayney
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robert A Smith
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rod A Lea
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kim Ngan Tran
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Omar Ibrahim
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Larisa M Haupt
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - M Zameel Cader
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Yaduvanshi S, Ero R, Kumar V. The mechanism of complex formation between calmodulin and voltage gated calcium channels revealed by molecular dynamics. PLoS One 2021; 16:e0258112. [PMID: 34610038 PMCID: PMC8491939 DOI: 10.1371/journal.pone.0258112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022] Open
Abstract
Calmodulin, a ubiquitous eukaryotic calcium sensor responsible for the regulation of many fundamental cellular processes, is a highly flexible protein and exhibits an unusually wide range of conformations. Furthermore, CaM is known to interact with more than 300 cellular targets. Molecular dynamics (MD) simulation trajectories suggest that EF-hand loops show different magnitudes of flexibility. Therefore, the four EF-hand motifs have different affinities for Ca2+ ions, which enables CaM to function on wide range of Ca2+ ion concentrations. EF-hand loops are 2-3 times more flexible in apo CaM whereas least flexible in Ca2+/CaM-IQ motif complexes. We report a unique intermediate conformation of Ca2+/CaM while transitioning from extended to compact form. We also report the complex formation process between Ca2+/CaM and IQ CaM-binding motifs. Our results showed how IQ motif recognise its binding site on the CaM and how CaM transforms from extended to compact form upon binding to IQ motif.
Collapse
Affiliation(s)
- Shivani Yaduvanshi
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Noida, Noida, Uttar Pradesh, India
| | - Rya Ero
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Veerendra Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Noida, Noida, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
13
|
Gardinier JD. The Diminishing Returns of Mechanical Loading and Potential Mechanisms that Desensitize Osteocytes. Curr Osteoporos Rep 2021; 19:436-443. [PMID: 34216359 PMCID: PMC9306018 DOI: 10.1007/s11914-021-00693-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Adaptation to mechanical loading is critical to maintaining bone mass and offers therapeutic potential to preventing age-related bone loss and osteoporosis. However, increasing the duration of loading is met with "diminishing returns" as the anabolic response quickly becomes saturated. As a result, the anabolic response to daily activities and repetitive bouts of loading is limited by the underlying mechanisms that desensitize and render bone unresponsive at the cellular level. Osteocytes are the primary cells that respond to skeletal loading and facilitate the overall anabolic response. Although many of osteocytes' signaling mechanisms activated in response to loading are considered anabolic in nature, several of them can also render osteocytes insensitive to further stimuli and thereby creating a negative feedback loop that limits osteocytes' overall response. The purpose of this review is to examine the potential mechanisms that may contribute to the loss of mechanosensitivity. In particular, we examined the inactivation/desensitization of ion channels and signaling molecules along with the potential role of endocytosis and cytoskeletal reorganization. The significance in defining the negative feedback loop is the potential to identify unique targets for enabling osteocytes to maintain their sensitivity. In doing so, we can begin to cultivate new strategies that capitalize on the anabolic nature of daily activities that repeatedly load the skeleton.
Collapse
|
14
|
Piekut T, Wong YY, Walker SE, Smith CL, Gauberg J, Harracksingh AN, Lowden C, Novogradac BB, Cheng HYM, Spencer GE, Senatore A. Early Metazoan Origin and Multiple Losses of a Novel Clade of RIM Presynaptic Calcium Channel Scaffolding Protein Homologs. Genome Biol Evol 2021; 12:1217-1239. [PMID: 32413100 PMCID: PMC7456537 DOI: 10.1093/gbe/evaa097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
The precise localization of CaV2 voltage-gated calcium channels at the synapse active zone requires various interacting proteins, of which, Rab3-interacting molecule or RIM is considered particularly important. In vertebrates, RIM interacts with CaV2 channels in vitro via a PDZ domain that binds to the extreme C-termini of the channels at acidic ligand motifs of D/E-D/E/H-WC-COOH, and knockout of RIM in vertebrates and invertebrates disrupts CaV2 channel synaptic localization and synapse function. Here, we describe a previously uncharacterized clade of RIM proteins bearing domain architectures homologous to those of known RIM homologs, but with some notable differences including key amino acids associated with PDZ domain ligand specificity. This novel RIM emerged near the stem lineage of metazoans and underwent extensive losses, but is retained in select animals including the early-diverging placozoan Trichoplax adhaerens, and molluscs. RNA expression and localization studies in Trichoplax and the mollusc snail Lymnaea stagnalis indicate differential regional/tissue type expression, but overlapping expression in single isolated neurons from Lymnaea. Ctenophores, the most early-diverging animals with synapses, are unique among animals with nervous systems in that they lack the canonical RIM, bearing only the newly identified homolog. Through phylogenetic analysis, we find that CaV2 channel D/E-D/E/H-WC-COOH like PDZ ligand motifs were present in the common ancestor of cnidarians and bilaterians, and delineate some deeply conserved C-terminal structures that distinguish CaV1 from CaV2 channels, and CaV1/CaV2 from CaV3 channels.
Collapse
Affiliation(s)
| | | | - Sarah E Walker
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Carolyn L Smith
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | |
Collapse
|
15
|
Gauberg J, Abdallah S, Elkhatib W, Harracksingh AN, Piekut T, Stanley EF, Senatore A. Conserved biophysical features of the Ca V2 presynaptic Ca 2+ channel homologue from the early-diverging animal Trichoplax adhaerens. J Biol Chem 2020; 295:18553-18578. [PMID: 33097592 PMCID: PMC7939481 DOI: 10.1074/jbc.ra120.015725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1-CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage-activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+ Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Salsabil Abdallah
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alicia N Harracksingh
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Thomas Piekut
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Krembil Research Institute, Toronto, Ontario, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
16
|
Wang R, Wang M, Zhou J, Dai Z, Sun G, Sun X. Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury. J Adv Res 2020; 34:173-186. [PMID: 35024189 PMCID: PMC8655133 DOI: 10.1016/j.jare.2020.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction Intracellular calcium overload is an important contributor to myocardial ischemia/reperfusion (MI/R) injury. Total saponins of the traditional Chinese medicinal plant Aralia elata (Miq.) Seem. (AS) are beneficial for treating MI/R injury, and Calenduloside E (CE) is the main active ingredient of AS. Objectives This study aimed to investigate the effects of CE on MI/R injury and determine its specific regulatory mechanisms. Methods To verify whether CE mediated cardiac protection in vivo and in vitro, we performed MI/R surgery in SD rats and subjected neonatal rat ventricular myocytes (NRVMs) to hypoxia-reoxygenation (HR). CE’s cardioprotective against MI/R injury was detected by Evans blue/TTC staining, echocardiography, HE staining, myocardial enzyme levels. Impedance and field potential recording, and patch-clamp techniques of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to detect the function of L-type calcium channels (LTCC). The mechanisms underlying between CE and LTCC was studied through western blot, immunofluorescence, and immunohistochemistry. Drug affinity responsive target stability (DARTS) and co-immunoprecipitation (co-IP) used to further clarify the effect of CE on LTCC and BAG3. Results We found that CE protected against MI/R injury by inhibiting calcium overload. Furthermore, CE improved contraction and field potential signals of hiPSC-CMs and restored sarcomere contraction and calcium transient of adult rat ventricular myocytes (ARVMs). Moreover, patch-clamp data showed that CE suppressed increased L-type calcium current (ICa,L) caused by LTCC agonist, proving that CE could regulate calcium homeostasis through LTCC. Importantly, we found that CE promoted the interaction between LTCC and Bcl2-associated athanogene 3 (BAG3) by co-IP and DARTS. Conclusion Our results demonstrate that CE enhanced LTCC-BAG3 interaction to reduce MI/R induced-calcium overload, exerting a cardioprotective effect.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jiahui Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ziru Dai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
17
|
Sun H, Zhang H, Ross A, Wang TT, Al-Chami A, Wu SH. Developmentally Regulated Rebound Depolarization Enhances Spike Timing Precision in Auditory Midbrain Neurons. Front Cell Neurosci 2020; 14:236. [PMID: 32848625 PMCID: PMC7424072 DOI: 10.3389/fncel.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The inferior colliculus (IC) is an auditory midbrain structure involved in processing biologically important temporal features of sounds. The responses of IC neurons to these temporal features reflect an interaction of synaptic inputs and neuronal biophysical properties. One striking biophysical property of IC neurons is the rebound depolarization produced following membrane hyperpolarization. To understand how the rebound depolarization is involved in spike timing, we made whole-cell patch clamp recordings from IC neurons in brain slices of P9-21 rats. We found that the percentage of rebound neurons was developmentally regulated. The precision of the timing of the first spike on the rebound increased when the neuron was repetitively injected with a depolarizing current following membrane hyperpolarization. The average jitter of the first spikes was only 0.5 ms. The selective T-type Ca2+ channel antagonist, mibefradil, significantly increased the jitter of the first spike of neurons in response to repetitive depolarization following membrane hyperpolarization. Furthermore, the rebound was potentiated by one to two preceding rebounds within a few hundred milliseconds. The first spike generated on the potentiated rebound was more precise than that on the non-potentiated rebound. With the addition of a calcium chelator, BAPTA, into the cell, the rebound potentiation no longer occurred, and the precision of the first spike on the rebound was not improved. These results suggest that the postinhibitory rebound mediated by T-type Ca2+ channel promotes spike timing precision in IC neurons. The rebound potentiation and precise spikes may be induced by increases in intracellular calcium levels.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hui Zhang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Alysia Ross
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Aycheh Al-Chami
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Shu Hui Wu
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
18
|
Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 2020; 472:831-844. [PMID: 32638069 PMCID: PMC7351805 DOI: 10.1007/s00424-020-02429-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
T-type, low-voltage activated, calcium channels, now designated Cav3 channels, are involved in a wide variety of physiological functions, especially in nervous systems. Their unique electrophysiological properties allow them to finely regulate neuronal excitability and to contribute to sensory processing, sleep, and hormone and neurotransmitter release. In the last two decades, genetic studies, including exploration of knock-out mouse models, have greatly contributed to elucidate the role of Cav3 channels in normal physiology, their regulation, and their implication in diseases. Mutations in genes encoding Cav3 channels (CACNA1G, CACNA1H, and CACNA1I) have been linked to a variety of neurodevelopmental, neurological, and psychiatric diseases designated here as neuronal Cav3 channelopathies. In this review, we describe and discuss the clinical findings and supporting in vitro and in vivo studies of the mutant channels, with a focus on de novo, gain-of-function missense mutations recently discovered in CACNA1G and CACNA1H. Overall, the studies of the Cav3 channelopathies help deciphering the pathogenic mechanisms of corresponding diseases and better delineate the properties and physiological roles Cav3 channels.
Collapse
Affiliation(s)
- Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France. .,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France.
| | - Sophie Nicole
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| |
Collapse
|
19
|
A novel phospho-modulatory mechanism contributes to the calcium-dependent regulation of T-type Ca 2+ channels. Sci Rep 2019; 9:15642. [PMID: 31666636 PMCID: PMC6821770 DOI: 10.1038/s41598-019-52194-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/13/2019] [Indexed: 11/08/2022] Open
Abstract
Cav3 / T-type Ca2+ channels are dynamically regulated by intracellular Ca2+ ions, which inhibit Cav3 availability. Here, we demonstrate that this inhibition becomes irreversible in the presence of non-hydrolysable ATP analogs, resulting in a strong hyperpolarizing shift in the steady-state inactivation of the residual Cav3 current. Importantly, the effect of these ATP analogs was prevented in the presence of intracellular BAPTA. Additional findings obtained using intracellular dialysis of inorganic phosphate and alkaline phosphatase or NaN3 treatment further support the involvement of a phosphorylation mechanism. Contrasting with Cav1 and Cav2 Ca2+ channels, the Ca2+-dependent modulation of Cav3 channels appears to be independent of calmodulin, calcineurin and endocytic pathways. Similar findings were obtained for the native T-type Ca2+ current recorded in rat thalamic neurons of the central medial nucleus. Overall, our data reveal a new Ca2+ sensitive phosphorylation-dependent mechanism regulating Cav3 channels, with potentially important physiological implications for the multiple cell functions controlled by T-type Ca2+ channels.
Collapse
|
20
|
Liu T, Zhou J, Cui H, Li P, Luo J, Li T, He F, Wang Y, Tang T. iTRAQ-based quantitative proteomics reveals the neuroprotection of rhubarb in experimental intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:244-254. [PMID: 30502478 DOI: 10.1016/j.jep.2018.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a traditional Chinese medicine(TCM), that possesses neuroprotective, anti-inflammatory, antibacterial, antioxidative, purgative and anticancer properties, and has been used to treat intracerebral hemorrhage (ICH) and many other diseases. AIMS OF THE STUDY This study aimed to investigate the changes of brain protein in ICH rats treated with rhubarb and to explore the multi-target mechanism of rhubarb in the treatment of ICH via bioinformatics analysis of differentially expressed proteins (DEPs). MATERIALS AND METHODS Rats were subjected to collagenase-induced ICH and then treated orally with 3 or 12 g/kg rhubarb daily for 2 days following ICH. After sacrifice, total protein of brain tissue was extracted, and isobaric tag for relative and absolute quantification (iTRAQ)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was employed to quantitatively identify of the DEPs in two treatment groups compared with the vehicle group. The DEPs were analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and STRING databases. Bioinformatics Analysis Tool for Molecular mechanism of TCM (BATMAN-TCM) was used to predict the target of rhubarb and western blotting was used for verification. RESULTS In total, 1356 proteins were identified with a 1% false discovery rate (FDR). Among them, 55 DEPs were significantly altered in the sham, vehicle, low dose rhubarb group (LDR, 3 g/kg), and high dose rhubarb group (HDR, 12 g/kg). Enrichment analysis of GO annotations indicated that rhubarb mainly regulated expression of some neuron projection proteins involved in the response to drug and nervous system development. The dopaminergic synapse pathway was found to be the most significant DEP in the combined analysis of the KEGG and BATMAN-TCM databases. Based on the results of the STRING analysis, oxidative stress (OS), calcium binding protein regulation, vascularization, and energy metabolism were important in the rhubarb therapeutic process. CONCLUSION Rhubarb achieves its effects mainly through the dopaminergic synapse pathway in ICH treatment. The ICH-treating mechanisms of rhubarb may also involve anti-OS, calcium binding protein regulation, angiogenic regulation, and energy metabolism improvement. This study adds new evidence to clinical applications of rhubarb for ICH.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, 830000 Urumqi, China
| | - Jing Zhou
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Hanjin Cui
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Pengfei Li
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Jiekun Luo
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Teng Li
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Feng He
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; National Research Center of geriatrics, Xiangya Hospital, Central South University, China.
| | - Tao Tang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; National Research Center of geriatrics, Xiangya Hospital, Central South University, China.
| |
Collapse
|
21
|
Schaub C, Uebachs M. Scaling of recovery rates influences T-type Ca 2+ channel availability following IPSPs. Heliyon 2019; 5:e01278. [PMID: 30886927 PMCID: PMC6395784 DOI: 10.1016/j.heliyon.2019.e01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 11/24/2022] Open
Abstract
The excitability of neuronal membranes is crucially modulated by T-type Ca2+ channels (ICaT) due to their low threshold of activation. ICaT inactivates steeply at potentials close to the resting membrane potential. Therefore, the availability of ICaT following changes in membrane potential depends on the time course of the onset of inactivation as well as on the time course of recovery from inactivation. It was previously shown that the time course of recovery from inactivation depends on the duration of the conditioning pulse in cloned T-type Ca2+ channel subunits (Cav3.1-Cav3.3(Uebachs et al., 2006)). This provides a potential mechanism for an intrinsic form of short term plasticity. Here, we address the question, whether this mechanism results in altered availability of ICaT following physiological changes in membrane potential. We found that the recovery of ICaT during an IPSP depends on the duration of a preceding depolarized period.
Collapse
Affiliation(s)
- Christina Schaub
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, Life & Brain Center, Sigmund Freud Str. 2, 53121, Bonn, Germany.,Department of Neurology, University of Bonn, Sigmund Freud Str. 2, 53121, Bonn, Germany
| | - Mischa Uebachs
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, Life & Brain Center, Sigmund Freud Str. 2, 53121, Bonn, Germany.,Department of Neurology, University of Bonn, Sigmund Freud Str. 2, 53121, Bonn, Germany
| |
Collapse
|
22
|
T-type Calcium Channels in Cancer. Cancers (Basel) 2019; 11:cancers11020134. [PMID: 30678110 PMCID: PMC6407089 DOI: 10.3390/cancers11020134] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Although voltage-activated Ca2+ channels are a common feature in excitable cells, their expression in cancer tissue is less understood. T-type Ca2+ channels are particularly overexpressed in various cancers. Because of their activation profile at membrane potentials close to rest and the generation of a window current, T-type Ca2+ channels may regulate a variety of Ca2+-dependent cellular processes, including cell proliferation, survival, and differentiation. The expression of T-type Ca2+ channels is of special interest as a target for therapeutic interventions.
Collapse
|
23
|
Fux JE, Mehta A, Moffat J, Spafford JD. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Front Physiol 2018; 9:1406. [PMID: 30519187 PMCID: PMC6259924 DOI: 10.3389/fphys.2018.01406] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
The appearance of voltage-gated, sodium-selective channels with rapid gating kinetics was a limiting factor in the evolution of nervous systems. Two rounds of domain duplications generated a common 24 transmembrane segment (4 × 6 TM) template that is shared amongst voltage-gated sodium (Nav1 and Nav2) and calcium channels (Cav1, Cav2, and Cav3) and leak channel (NALCN) plus homologs from yeast, different single-cell protists (heterokont and unikont) and algae (green and brown). A shared architecture in 4 × 6 TM channels include an asymmetrical arrangement of extended extracellular L5/L6 turrets containing a 4-0-2-2 pattern of cysteines, glycosylated residues, a universally short III-IV cytoplasmic linker and often a recognizable, C-terminal PDZ binding motif. Six intron splice junctions are conserved in the first domain, including a rare U12-type of the minor spliceosome provides support for a shared heritage for sodium and calcium channels, and a separate lineage for NALCN. The asymmetrically arranged pores of 4x6 TM channels allows for a changeable ion selectivity by means of a single lysine residue change in the high field strength site of the ion selectivity filter in Domains II or III. Multicellularity and the appearance of systems was an impetus for Nav1 channels to adapt to sodium ion selectivity and fast ion gating. A non-selective, and slowly gating Nav2 channel homolog in single cell eukaryotes, predate the diversification of Nav1 channels from a basal homolog in a common ancestor to extant cnidarians to the nine vertebrate Nav1.x channel genes plus Nax. A close kinship between Nav2 and Nav1 homologs is evident in the sharing of most (twenty) intron splice junctions. Different metazoan groups have lost their Nav1 channel genes altogether, while vertebrates rapidly expanded their gene numbers. The expansion in vertebrate Nav1 channel genes fills unique functional niches and generates overlapping properties contributing to redundancies. Specific nervous system adaptations include cytoplasmic linkers with phosphorylation sites and tethered elements to protein assemblies in First Initial Segments and nodes of Ranvier. Analogous accessory beta subunit appeared alongside Nav1 channels within different animal sub-phyla. Nav1 channels contribute to pace-making as persistent or resurgent currents, the former which is widespread across animals, while the latter is a likely vertebrate adaptation.
Collapse
Affiliation(s)
- Julia E Fux
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Amrit Mehta
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jack Moffat
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
24
|
Wang D, Ragnarsson L, Lewis RJ. T-type Calcium Channels in Health and Disease. Curr Med Chem 2018; 27:3098-3122. [PMID: 30277145 DOI: 10.2174/0929867325666181001112821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Low Voltage-Activated (LVA) T-type calcium channels are characterized by transient current and Low Threshold Spikes (LTS) that trigger neuronal firing and oscillatory behavior. Combined with their preferential localization in dendrites and their specific "window current", T-type calcium channels are considered to be key players in signal amplification and synaptic integration. Assisted by the emerging pharmacological tools, the structural determinants of channel gating and kinetics, as well as novel physiological and pathological functions of T-type calcium channels, are being uncovered. In this review, we provide an overview of structural determinants in T-type calcium channels, their involvement in disorders and diseases, the development of novel channel modulators, as well as Structure-Activity Relationship (SAR) studies that lead to rational drug design.
Collapse
Affiliation(s)
- Dan Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Richard J Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|
25
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|