1
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
2
|
Clews AC, Ulch BA, Jesionowska M, Hong J, Mullen RT, Xu Y. Variety of Plant Oils: Species-Specific Lipid Biosynthesis. PLANT & CELL PHYSIOLOGY 2024; 65:845-862. [PMID: 37971406 DOI: 10.1093/pcp/pcad147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Plant oils represent a large group of neutral lipids with important applications in food, feed and oleochemical industries. Most plants accumulate oils in the form of triacylglycerol within seeds and their surrounding tissues, which comprises three fatty acids attached to a glycerol backbone. Different plant species accumulate unique fatty acids in their oils, serving a range of applications in pharmaceuticals and oleochemicals. To enable the production of these distinctive oils, select plant species have adapted specialized oil metabolism pathways, involving differential gene co-expression networks and structurally divergent enzymes/proteins. Here, we summarize some of the recent advances in our understanding of oil biosynthesis in plants. We compare expression patterns of oil metabolism genes from representative species, including Arabidopsis thaliana, Ricinus communis (castor bean), Linum usitatissimum L. (flax) and Elaeis guineensis (oil palm) to showcase the co-expression networks of relevant genes for acyl metabolism. We also review several divergent enzymes/proteins associated with key catalytic steps of unique oil accumulation, including fatty acid desaturases, diacylglycerol acyltransferases and oleosins, highlighting their structural features and preference toward unique lipid substrates. Lastly, we briefly discuss protein interactomes and substrate channeling for oil biosynthesis and the complex regulation of these processes.
Collapse
Affiliation(s)
- Alyssa C Clews
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Brandon A Ulch
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Monika Jesionowska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jun Hong
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yang Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Gao H, Xue J, Yuan L, Sun Y, Song Y, Zhang C, Li R, Jia X. Systematic characterization of CsbZIP transcription factors in Camelina sativa and functional analysis of CsbZIP-A12 mediating regulation of unsaturated fatty acid-enriched oil biosynthesis. Int J Biol Macromol 2024; 270:132273. [PMID: 38734348 DOI: 10.1016/j.ijbiomac.2024.132273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors (TFs) function importantly in numerous life processes in plants. However, bZIP members and their biological roles remain unknown in Camelina sativa, a worldwide promising oil crop. Here, 220 CsbZIP proteins were identified in camelina and classified into thirteen groups. Two and 347 pairs of tandem and segmental duplication genes were detected to be underwent purification selection, with segmental duplication as the main driven-force of CsbZIP gene family expansion. Most CsbZIP genes displayed a tissue-specific expression pattern. Particularly, CsbZIP-A12 significantly positively correlated with many FA/oil biosynthesis-related genes, indicating CsbZIP-A12 may regulate lipid biosynthesis. Notably, yeast one-hybrid (Y1H), β-Glucuronidase (GUS), dual-luciferase (LUC) and EMSA assays evidenced that CsbZIP-A12 located in nucleus interacted with the promoters of CsSAD2-3 and CsFAD3-3 genes responsible for unsaturated fatty acid (UFA) synthesis, thus activating their transcriptions. Overexpression of CsbZIP-A12 led to an increase of total lipid by 3.275 % compared to the control, followed with oleic and α-linolenic acid levels enhanced by 3.4 % and 5.195 %, and up-regulated the expressions of CsSAD2-3, CsFAD3-3 and CsPDAT2-3 in camelina seeds. Furthermore, heterogeneous expression of CsbZIP-A12 significantly up-regulated the expressions of NtSAD2, NtFAD3 and NtPDAT genes in tobacco plants, thereby improving the levels of total lipids and UFAs in both leaves and seeds without negative effects on other agronomic traits. Together, our findings suggest that CsbZIP-A12 upregulates FA/oil biosynthesis by activating CsSAD2-3 and CsFAD3-3 as well as possible other related genes. These data lay a foundation for further functional analyses of CsbZIPs, providing new insights into the TF-based lipid metabolic engineering to increase vegetable oil yield and health-beneficial quality in oilseeds.
Collapse
Affiliation(s)
- Huiling Gao
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Jinai Xue
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi, China
| | - Yan Sun
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Yanan Song
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Chunhui Zhang
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Runzhi Li
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China.
| | - Xiaoyun Jia
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China.
| |
Collapse
|
4
|
Xu Y, Kambhampati S, Morley SA, Cook R, Froehlich J, Allen DK, Benning C. Arabidopsis ACYL CARRIER PROTEIN4 and RHOMBOID LIKE10 act independently in chloroplast phosphatidate synthesis. PLANT PHYSIOLOGY 2023; 193:2661-2676. [PMID: 37658850 PMCID: PMC10803724 DOI: 10.1093/plphys/kiad483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
ACYL CARRIER PROTEIN4 (ACP4) is the most abundant ACP isoform in Arabidopsis (Arabidopsis thaliana) leaves and acts as a scaffold for de novo fatty acid biosynthesis and as a substrate for acyl-ACP-utilizing enzymes. Recently, ACP4 was found to interact with a protein-designated plastid RHOMBOID LIKE10 (RBL10) that affects chloroplast monogalactosyldiacylglycerol (MGDG) biosynthesis, but the cellular function of this interaction remains to be explored. Here, we generated and characterized acp4 rbl10 double mutants to explore whether ACP4 and RBL10 directly interact in influencing chloroplast lipid metabolism. Alterations in the content and molecular species of chloroplast lipids such as MGDG and phosphatidylglycerol were observed in the acp4 and rbl10 mutants, which are likely associated with the changes in the size and profiles of diacylglycerol (DAG), phosphatidic acid (PA), and acyl-ACP precursor pools. ACP4 contributed to the size and profile of the acyl-ACP pool and interacted with acyl-ACP-utilizing enzymes, as expected for its role in fatty acid biosynthesis and chloroplast lipid assembly. RBL10 appeared to be involved in the conversion of PA to DAG precursors for MGDG biosynthesis as evidenced by the increased 34:x PA and decreased 34:x DAG in the rbl10 mutant and the slow turnover of radiolabeled PA in isolated chloroplasts fed with [14C] acetate. Interestingly, the impaired PA turnover in rbl10 was partially reversed in the acp4 rbl10 double mutant. Collectively, this study shows that ACP4 and RBL10 affect chloroplast lipid biosynthesis by modulating substrate precursor pools and appear to act independently.
Collapse
Affiliation(s)
- Yang Xu
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | - Stewart A Morley
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- United States Department of Agriculture, Agriculture Research Service, St. Louis, MO 63132, USA
| | - Ron Cook
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - John Froehlich
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- United States Department of Agriculture, Agriculture Research Service, St. Louis, MO 63132, USA
| | - Christoph Benning
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Wang J, Wang Q, Huang X, Hu W, Wang S, Zhou Z. Phosphorus-induced greater enhancement in carbon supply and storage for oil synthesis during the crucial period made cottonseed kernel oil yield have a higher increment than protein. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107781. [PMID: 37230024 DOI: 10.1016/j.plaphy.2023.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/15/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Cottonseed has a high utilization value due to its luxuriant oil and protein, but low phosphorus (P) in cropland reduces its yield and quality. A limited understanding of the physiological mechanism underlying these results restricted the exploration of P efficient management in cotton cultivation. A 3-year experiment was performed with Lu 54 (low-P sensitive) and Yuzaomian 9110 (low-P tolerant) under 0 (deficient-P), 100 (critical-P), and 200 (excessive-P) kg P2O5 ha-1 in a field having 16.9 mg kg-1 available P to explore the key pathway for P to regulate cottonseed oil and protein formation. P application markedly increased cottonseed oil and protein yields, with the enhanced acetyl-CoA and oxaloacetate contents during 20-26 days post anthesis being a vital reason. Notably, during the crucial period, decreased phosphoenolpyruvate carboxylase activity weakened the carbon allocation to protein, making malonyl-CoA content increase greater than free amino acid; Meanwhile, P application accelerated the carbon storage in oil but retarded that in protein. Consequently, cottonseed oil yield increased more than protein. Oil and protein synthesis in Lu 54 was more susceptible to P, resulting in greater increments in oil and protein yields than Yuzaomian 9110. Based on acetyl-CoA and oxaloacetate contents (the key substrates), the critical P content in the subtending leaf to cotton boll needed by oil and protein synthesis in Lu 54 (0.35%) was higher than Yuzaomian 9110 (0.31%). This study provided a new perception of the regulation of P on cottonseed oil and protein formation, contributing to the efficient P management in cotton cultivation.
Collapse
Affiliation(s)
- Jiawei Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qin Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xiaolin Huang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
6
|
Xu Y. Biochemistry and Biotechnology of Lipid Accumulation in the Microalga Nannochloropsis oceanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11500-11509. [PMID: 36083864 DOI: 10.1021/acs.jafc.2c05309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oils are among the most important agricultural commodities and have wide applications in food/nutrition, biofuels, and oleochemicals. The oleaginous microalga Nannochloropsis oceanica can produce large amounts of oils and the high-value ω-3 eicosapentaenoic acid, which represents a promising resource for oil production targeting biodiesel, nutraceutical, and aquaculture industries. In recent years, with the availability of omics databases and the development of genetic tools, N. oceanica has been extensively investigated as a model photosynthetic organism for studying lipid metabolism and as a green cellular factory to produce lipids for industrial applications. This review summarizes the current knowledge on the lipid composition and biosynthetic pathways of N. oceanica and reviews the recent advances in metabolic engineering of lipid production in this microalga.
Collapse
Affiliation(s)
- Yang Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
7
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
8
|
Wang J, Singer SD, Souto BA, Asomaning J, Ullah A, Bressler DC, Chen G. Current progress in lipid-based biofuels: Feedstocks and production technologies. BIORESOURCE TECHNOLOGY 2022; 351:127020. [PMID: 35307524 DOI: 10.1016/j.biortech.2022.127020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The expanding use of fossil fuels has caused concern in terms of both energy security and environmental issues. Therefore, attempts have been made worldwide to promote the development of renewable energy sources, among which biofuel is especially attractive. Compared to other biofuels, lipid-derived biofuels have a higher energy density and better compatibility with existing infrastructure, and their performance can be readily improved by adjusting the chemical composition of lipid feedstocks. This review thus addresses the intrinsic interactions between lipid feedstocks and lipid-based biofuels, including biodiesel, and renewable equivalents to conventional gasoline, diesel, and jet fuel. Advancements in lipid-associated biofuel technology, as well as the properties and applicability of various lipid sources in terms of biofuel production, are also discussed. Furthermore, current progress in lipid production and profile optimization in the context of plant lipids, microbial lipids, and animal fats are presented to provide a wider context of lipid-based biofuel technology.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Bernardo A Souto
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Justice Asomaning
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
9
|
Xu Y, Pan X, Lu J, Wang J, Shan Q, Stout J, Chen G. Evolutionary and biochemical characterization of a Chromochloris zofingiensis MBOAT with wax synthase and diacylglycerol acyltransferase activity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5584-5598. [PMID: 34037747 DOI: 10.1093/jxb/erab236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Wax synthase (WS) catalyzes the last step in wax ester biosynthesis in green plants. Two unrelated sub-families of WS, including the bifunctional acyltransferase and plant-like WS have been reported, but the latter is largely uncharacterized in microalgae. Here, we functionally characterized a putative plant-like WS (CzWS1) from the emerging model green microalga Chromochloris zofingiensis. Our results showed that plant-like WS evolved under different selection constraints in plants and microalgae, with positive selection likely contributing to functional divergence. Unlike jojoba with high amounts of wax ester in seeds and a highly active WS enzyme, C. zofingiensis has no detectable wax ester but a high abundance of WS transcripts. Co-expression analysis showed that C. zofingiensis WS has different expression correlation with lipid biosynthetic genes from jojoba, and may have a divergent function. In vitro characterization indicated that CzWS1 had diacylglycerol acyltransferase activity along with WS activity, and overexpression of CzWS1 in yeast and Chlamydomonas reinhardtii affected triacylglycerol accumulation. Moreover, biochemical and bioinformatic analyses revealed the relevance of the C-terminal region of CzWS1 in enzyme function. Taken together, our results indicated a functional divergence of plant-like WS in plants and microalgae, and the importance of its C-terminal region in specialization of enzyme function.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Xue Pan
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Junhao Lu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Qiyuan Shan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jake Stout
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
11
|
Xu Y, Mietkiewska E, Shah S, Weselake RJ, Chen G. Punicic acid production in Brassica napus. Metab Eng 2020; 62:20-29. [PMID: 32841680 DOI: 10.1016/j.ymben.2020.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022]
Abstract
Punicic acid (PuA; 18:3Δ9cis,11trans,13cis), a conjugated linolenic acid isomer bearing three conjugated double bonds, is associated with various health benefits and has potential for industrial use. The major nature source of this unusual fatty acid is pomegranate (Punica granatum) seed oil, which contains up to 80% (w/w) of its fatty acids as PuA. Pomegranate seed oil, however, is low yielding with unstable production and thus limits the supply of PuA. Metabolic engineering of established temperate oil crops for PuA production, therefore, has the potential to be a feasible strategy to overcome the limitations associated with sourcing PuA from pomegranate. In this study, the cDNAs encoding a pomegranate fatty acid conjugase and a pomegranate oleate desaturase were co-expressed in canola-type Brassica napus. Transgenic B. napus lines accumulated up to 11% (w/w) of the total fatty acids as PuA in the seed oil, which is the highest level of PuA reported in metabolically engineered oilseed crops so far. Levels of seed oil PuA were stable over two generations and had no negative effects on seed germination. The transgenic B. napus lines with the highest PuA levels contained multiple transgene insertions and the PuA content of B. napus seed oil was correlated with efficiency of oleic acid desaturation and linoleic acid conjugation. In addition, PuA accumulated at lower levels in polar lipids (5.0-6.9%) than triacylglycerol (7.5-10.6%), and more than 60% of triacylglycerol-associated PuA was present at the sn-2 position. This study provides the basis for the commercial production of PuA in transgenic oilseed crops and thus would open new prospects for the application of this unusual fatty acid in health and industry.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Saleh Shah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
12
|
Xu Y, Caldo KMP, Falarz L, Jayawardhane K, Chen G. Kinetic improvement of an algal diacylglycerol acyltransferase 1 via fusion with an acyl-CoA binding protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:856-871. [PMID: 31991039 DOI: 10.1111/tpj.14708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/26/2019] [Accepted: 01/21/2020] [Indexed: 05/03/2023]
Abstract
Microalgal oils in the form of triacylglycerols (TAGs) are broadly used as nutritional supplements and biofuels. Diacylglycerol acyltransferase (DGAT) catalyzes the final step of acyl-CoA-dependent biosynthesis of TAG, and is considered a key target for manipulating oil production. Although a growing number of DGAT1s have been identified and over-expressed in some algal species, the detailed structure-function relationship, as well as the improvement of DGAT1 performance via protein engineering, remain largely untapped. Here, we explored the structure-function features of the hydrophilic N-terminal domain of DGAT1 from the green microalga Chromochloris zofingiensis (CzDGAT1). The results indicated that the N-terminal domain of CzDGAT1 was less disordered than those of the higher eukaryotic enzymes and its partial truncation or complete removal could substantially decrease enzyme activity, suggesting its possible role in maintaining enzyme performance. Although the N-terminal domains of animal and plant DGAT1s were previously found to bind acyl-CoAs, replacement of CzDGAT1 N-terminus by an acyl-CoA binding protein (ACBP) could not restore enzyme activity. Interestingly, the fusion of ACBP to the N-terminus of the full-length CzDGAT1 could enhance the enzyme affinity for acyl-CoAs and augment protein accumulation levels, which ultimately drove oil accumulation in yeast cells and tobacco leaves to higher levels than the full-length CzDGAT1. Overall, our findings unravel the distinct features of the N-terminus of algal DGAT1 and provide a strategy to engineer enhanced performance in DGAT1 via protein fusion, which may open a vista in generating improved membrane-bound acyl-CoA-dependent enzymes and boosting oil biosynthesis in plants and oleaginous microorganisms.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Lucas Falarz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Kethmi Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
13
|
Sullivan SA, Nawarathne IN, Walker KD. CoA recycling by a benzoate coenzyme A ligase in cascade reactions with aroyltransferases to biocatalyze paclitaxel analogs. Arch Biochem Biophys 2020; 683:108276. [PMID: 31978400 DOI: 10.1016/j.abb.2020.108276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
A Pseudomonas CoA ligase (BadA) biocatalyzed aroyl CoA thioesters used by a downstream N-benzoyltransferase (NDTNBT) in a cascade reaction made aroyl analogs of the anticancer drug paclitaxel. BadA kept the high-cost aroyl CoA substrates at saturation for the downstream NDTNBT by recycling CoA when it was added as the limiting reactant. A deacylated taxane substrate N-debenzoyl-2'-deoxypaclitaxel was converted to its benzoylated product at a higher yield, compared to the converted yield in assays in which the BadA ligase chemistry was omitted, and benzoyl CoA was added as a cosubstrate. The resulting benzoylated product 2'-deoxypaclitaxel was made at 196% over the theoretical yield of product that could be made from the CoA added at 50 μM, and the cosubstrates benzoic acid (100 μM), and N-debenzoyl-2'-deoxypaclitaxel (500 μM) added in excess. In addition, a 2-O-benzoyltransferase (mTBT) was incubated with BadA, aroyl acids, CoA, a 2-O-debenzoylated taxane substrate, and cofactors under the CoA-recycling conditions established for the NDTNBT/BadA cascade. The mTBT/BadA combination also made various 2-O-aroylated products that could potentially function as next-generation baccatin III compounds. These ligase/benzoyltransferase cascade reactions show the feasibility of recycling aroyl CoA thioesters in vitro to make bioactive acyl analogs of paclitaxel precursors.
Collapse
Affiliation(s)
- Sean A Sullivan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Kevin D Walker
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
14
|
Nguyen T, Xu Y, Abdel-Hameed M, Sorensen JL, Singer SD, Chen G. Characterization of a Type-2 Diacylglycerol Acyltransferase from Haematococcus pluvialis Reveals Possible Allostery of the Recombinant Enzyme. Lipids 2019; 55:425-433. [PMID: 31879987 DOI: 10.1002/lipd.12210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022]
Abstract
Haematococcus pluvialis is a green microalga used in the algal biotechnology industry that can accumulate considerable amounts of storage triacylglycerol (TAG) and astaxanthin, which is a high-value carotenoid with strong antioxidant activity, under stress conditions. Diacylglycerol acyltransferase (DGAT) catalyzes the last step of the acyl-CoA-dependent TAG biosynthesis and appears to represent a bottleneck in algal TAG formation. In this study, putative H. pluvialis DGAT2 cDNA (HpDGAT2A, B, D and E) were identified from a transcriptome database and were subjected to sequence-based in silico analyses. The coding sequences of HpDGAT2B, D, and E were then isolated and characterized through heterologous expression in a TAG-deficient Saccharomyces cerevisiae strain H1246. The expression of HpDGAT2D allowed the recovery of TAG biosynthesis in this yeast mutant, and further in vitro enzymatic assays confirmed that the recombinant HpDGAT2D possessed strong DGAT activity. Interestingly, the recombinant HpDGAT2D displayed sigmoidal kinetics in response to increasing acyl-CoA concentrations, which has not been reported in plant or algal DGAT2 in previous studies.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Mona Abdel-Hameed
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - John L Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
15
|
Falarz L, Xu Y, Singer SD, Chen G. A Fluorescence-Based Assay for Quantitative Analysis of Phospholipid:Diacylglycerol Acyltransferase Activity. Lipids 2019; 54:571-579. [PMID: 31478204 DOI: 10.1002/lipd.12190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022]
Abstract
Phospholipid:diacylglycerol acyltransferase (PDAT) catalyzes the acyl-CoA-independent triacylglycerol (TAG) biosynthesis in plants and oleaginous microorganisms and thus is a key target in lipid research. The conventional in vitro PDAT activity assay involves the use of radiolabeled substrates, which, however, are expensive and demand strict regulation. In this study, a reliable fluorescence-based method using nitrobenzoxadiazole-labeled diacylglycerol (NBD-DAG) as an alternative substrate was established and subsequently used to characterize the enzyme activity and kinetics of a recombinant Arabidopsis thaliana PDAT1 (AtPDAT1). We also demonstrate that the highly toxic benzene used in typical PDAT assays can be substituted with diethyl ether without affecting the formation rate of NBD-TAG. Overall, this method works well with a broad range of PDAT protein content and shows linear correlation with the conventional method with radiolabeled substrates, and thus may be applicable to PDAT from various plant and microorganism species.
Collapse
Affiliation(s)
- Lucas Falarz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada, T1J 4B1
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| |
Collapse
|
16
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
17
|
Engineering Arabidopsis long-chain acyl-CoA synthetase 9 variants with enhanced enzyme activity. Biochem J 2019; 476:151-164. [DOI: 10.1042/bcj20180787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022]
Abstract
Abstract
Long-chain acyl-CoA synthetase (LACS, EC 6.2.1.3) catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which, in turn, serves as the major acyl donor for various lipid metabolic pathways. Increasing the size of acyl-CoA pool by enhancing LACS activity appears to be a useful approach to improve the production and modify the composition of fatty acid-derived compounds, such as triacylglycerol. In the present study, we aimed to improve the enzyme activity of Arabidopsis thaliana LACS9 (AtLACS9) by introducing random mutations into its cDNA using error-prone PCR. Two AtLACS9 variants containing multiple amino acid residue substitutions were identified with enhanced enzyme activity. To explore the effect of each amino acid residue substitution, single-site mutants were generated and the amino acid substitutions C207F and D238E were found to be primarily responsible for the increased activity of the two variants. Furthermore, evolutionary analysis revealed that the beneficial amino acid site C207 is conserved among LACS9 from plant eudicots, whereas the other beneficial amino acid site D238 might be under positive selection. Together, our results provide valuable information for the production of LACS variants for applications in the metabolic engineering of lipid biosynthesis in oleaginous organisms.
Collapse
|
18
|
Xu Y, Falarz L, Chen G. Characterization of Type-2 Diacylglycerol Acyltransferases in the Green Microalga Chromochloris zofingiensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:291-298. [PMID: 30543104 DOI: 10.1021/acs.jafc.8b05755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of the acyl-CoA-dependent TAG biosynthesis and thus is a key target for manipulating oil production in microalgae. The microalga Chromochloris zofingiensis can accumulate substantial amounts of triacylglycerol (TAG) and represents a promising source of algal lipids. In this study, C. zofingiensis DGAT2s (CzDGAT2s) were characterized with in silico, in vivo (yeast), and in vitro assays. Putative CzDGAT2s were identified, and their functional motifs and evolutionary relationship with other DGAT2s were analyzed. When CzDGAT2s were individually expressed in a TAG-deficient Saccharomyces cerevisiae strain, only CzDGAT2C could restore the TAG biosynthesis. Further in vitro assays indicated that CzDGAT2C displayed typical DGAT activity, which was fitted to the Michaelis-Menten equation, and N- and C-terminals were important for the enzyme activity. In addition, membrane yeast two-hybrid assay revealed a possible DGAT2 activity modulation via the formation of homodimer/heterodimer among different DGAT2 isoforms.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science , University of Alberta , Edmonton , Alberta , Canada T6G 2P5
| | - Lucas Falarz
- Department of Agricultural, Food and Nutritional Science , University of Alberta , Edmonton , Alberta , Canada T6G 2P5
- Department of Biological Sciences , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science , University of Alberta , Edmonton , Alberta , Canada T6G 2P5
- Department of Biological Sciences , University of Manitoba , Winnipeg , Manitoba , Canada R3T 2N2
| |
Collapse
|
19
|
Caldo KMP, Shen W, Xu Y, Hanley-Bowdoin L, Chen G, Weselake RJ, Lemieux MJ. Diacylglycerol acyltransferase 1 is activated by phosphatidate and inhibited by SnRK1-catalyzed phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:287-299. [PMID: 30003607 DOI: 10.1111/tpj.14029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/23/2018] [Accepted: 06/26/2018] [Indexed: 05/06/2023]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and committed step in the Kennedy pathway for triacylglycerol (TAG) biosynthesis and, as such, elucidating its mode of regulation is critical to understand the fundamental aspects of carbon metabolism in oleaginous crops. In this study, purified Brassica napus diacylglycerol acyltransferase 1 (BnaDGAT1) in n-dodecyl-β-d-maltopyranoside micelles was lipidated to form mixed micelles and subjected to detailed biochemical analysis. The degree of mixed micelle fluidity appeared to influence acyltransferase activity. BnaDGAT1 exhibited a sigmoidal response and eventual substrate inhibition with respect to increasing concentrations of oleoyl-CoA. Phosphatidate (PA) was identified as a feed-forward activator of BnaDGAT1, enabling the final enzyme in the Kennedy pathway to adjust to the incoming flow of carbon leading to TAG. In the presence of PA, the oleoyl-CoA saturation plot became more hyperbolic and desensitized to substrate inhibition indicating that PA facilitates the transition of the enzyme into the more active state. PA may also relieve possible autoinhibition of BnaDGAT1 brought about by the N-terminal regulatory domain, which was shown to interact with PA. Indeed, PA is a key effector modulating lipid homeostasis, in addition to its well recognized role in lipid signaling. BnaDGAT1 was also shown to be a substrate of the sucrose non-fermenting-1-related kinase 1 (SnRK1), which catalyzed phosphorylation of the enzyme and converted it to a less active form. Thus, this known regulator of carbon metabolism directly influences TAG biosynthesis.
Collapse
Affiliation(s)
- Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Wei Shen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
20
|
Rosli R, Chan PL, Chan KL, Amiruddin N, Low ETL, Singh R, Harwood JL, Murphy DJ. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:84-96. [PMID: 30107884 DOI: 10.1016/j.plantsci.2018.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 05/14/2023]
Abstract
The diacylglycerol acyltransferases (DGAT) (diacylglycerol:acyl-CoA acyltransferase, EC 2.3.1.20) are a key group of enzymes that catalyse the final and usually the most important rate-limiting step of triacylglycerol biosynthesis in plants and other organisms. Genes encoding four distinct functional families of DGAT enzymes have been characterised in the genome of the African oil palm, Elaeis guineensis. The contrasting features of the various isoforms within the four families of DGAT genes, namely DGAT1, DGAT2, DGAT3 and WS/DGAT are presented both in the oil palm itself and, for comparative purposes, in 12 other oil crop or model/related plants, namely Arabidopsis thaliana, Brachypodium distachyon, Brassica napus, Elaeis oleifera, Glycine max, Gossypium hirsutum, Helianthus annuus, Musa acuminata, Oryza sativa, Phoenix dactylifera, Sorghum bicolor, and Zea mays. The oil palm genome contains respectively three, two, two and two distinctly expressed functional copies of the DGAT1, DGAT2, DGAT3 and WS/DGAT genes. Phylogenetic analyses of the four DGAT families showed that the E. guineensis genes tend to cluster with sequences from P. dactylifera and M. acuminata rather than with other members of the Commelinid monocots group, such as the Poales which include the major cereal crops such as rice and maize. Comparison of the predicted DGAT protein sequences with other animal and plant DGATs was consistent with the E. guineensis DGAT1 being ER located with its active site facing the lumen while DGAT2, although also ER located, had a predicted cytosol-facing active site. In contrast, DGAT3 and some (but not all) WS/DGAT in E. guineensis are predicted to be soluble, cytosolic enzymes. Evaluation of E. guineensis DGAT gene expression in different tissues and developmental stages suggests that the four DGAT groups have distinctive physiological roles and are particularly prominent in developmental processes relating to reproduction, such as flowering, and in fruit/seed formation especially in the mesocarp and endosperm tissues.
Collapse
Affiliation(s)
- Rozana Rosli
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL, United Kingdom; Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - John L Harwood
- School of Biosciences, University of Cardiff, Cardiff, CF10 3AX, United Kingdom
| | - Denis J Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
21
|
Xu Y, Caldo KMP, Pal-Nath D, Ozga J, Lemieux MJ, Weselake RJ, Chen G. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae. Lipids 2018; 53:663-688. [PMID: 30252128 DOI: 10.1002/lipd.12081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty-acid compositions of plant seed oils. In addition, there is a strong research interest in establishing plant vegetative tissues and microalgae as platforms for lipid production. In higher plants and microalgae, TAG biosynthesis occurs via acyl-CoA-dependent or acyl-CoA-independent pathways. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step in the acyl-CoA-dependent biosynthesis of TAG, which appears to represent a bottleneck in oil accumulation in some oilseed species. Membrane-bound and soluble forms of DGAT have been identified with very different amino-acid sequences and biochemical properties. Alternatively, TAG can be formed through acyl-CoA-independent pathways via the catalytic action of membrane-bound phospholipid:diacylglycerol acyltransferase (PDAT). As the enzymes catalyzing the terminal steps of TAG formation, DGAT and PDAT play crucial roles in determining the flux of carbon into seed TAG and thus have been considered as the key targets for engineering oil production. Here, we summarize the most recent knowledge on DGAT and PDAT in higher plants and microalgae, with the emphasis on their physiological roles, structural features, and regulation. The development of various metabolic engineering strategies to enhance the TAG content and alter the fatty-acid composition of TAG is also discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Dipasmita Pal-Nath
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Jocelyn Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|