1
|
Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer 2025; 25:189-208. [PMID: 39810024 DOI: 10.1038/s41568-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs). The functional impact of individual genomic alterations could be transmitted through regulated nodes and hubs of PPIs. Oncogenic mutations may lead to modified residues of proteins, enabling interactions with other proteins that the wild-type protein does not typically interact with, or preventing interactions with proteins that the wild-type protein usually interacts with. This can result in the rewiring of molecular signalling cascades and the acquisition of an oncogenic phenotype. Here, we review the altered PPIs driven by oncogenic mutations, discuss technologies for monitoring PPIs and provide a functional analysis of mutation-directed PPIs. These driver mutation-enabled PPIs and mutation-perturbed PPIs present a new paradigm for the development of tumour-specific therapeutics. The intersection of cancer variants and altered PPI interfaces represents a new frontier for understanding oncogenic rewiring and developing tumour-selective therapeutic strategies.
Collapse
Affiliation(s)
- Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Rahmé R, Resnick-Silverman L, Anguiano V, Campbell MJ, Fenaux P, Manfredi JJ. Mutant p53 regulates a distinct gene set by a mode of genome occupancy that is shared with wild type. EMBO Rep 2025; 26:1315-1343. [PMID: 39875582 PMCID: PMC11893899 DOI: 10.1038/s44319-025-00375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression. In contrast to a dominant-negative or inhibitory role, the presence of either mutant p53 or Mdm2 actually enhances the occupancy of wild type p53 on many canonical targets. The C-terminal 19 amino acids of wild type p53 suppress the p53 response allowing for survival at sublethal doses of radiation. Further, the p53 mutant 172H is shown to occupy genes and regulate their expression via non-canonical means that are shared with wild type p53. This results in the heterozygous 172H/+ genotype having an expanded transcriptome compared to wild type p53 + /+.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université de Paris, Paris, France
| | - Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vincent Anguiano
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Pierre Fenaux
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Service Hématologie Seniors, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Qiu L, Ma Z, Wu X. Mutant p53-Mediated Tumor Secretome: Bridging Tumor Cells and Stromal Cells. Genes (Basel) 2024; 15:1615. [PMID: 39766882 PMCID: PMC11675497 DOI: 10.3390/genes15121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor secretome comprises the totality of protein factors secreted by various cell components within the tumor microenvironment, serving as the primary medium for signal transduction between tumor cells and between tumor cells and stromal cells. The deletion or mutation of the p53 gene leads to alterations in cellular secretion characteristics, contributing to the construction of the tumor microenvironment in a cell non-autonomous manner. This review discusses the critical roles of mutant p53 in regulating the tumor secretome to remodel the tumor microenvironment, drive tumor progression, and influence the plasticity of cancer-associated fibroblasts (CAFs) as well as the dynamics of tumor immunity by focusing on both secreted protein expression and secretion pathways. The aim is to provide new insights for targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (L.Q.); (Z.M.)
| |
Collapse
|
4
|
Patil MR, Bihari A. Role of artificial intelligence in cancer detection using protein p53: A Review. Mol Biol Rep 2024; 52:46. [PMID: 39658610 DOI: 10.1007/s11033-024-10051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024]
Abstract
Normal cell development and prevention of tumor formation rely on the tumor-suppressor protein p53. This crucial protein is produced from the Tp53 gene, which encodes the p53 protein. The p53 protein plays a vital role in regulating cell growth, DNA repair, and apoptosis (programmed cell death), thereby maintaining the integrity of the genome and preventing the formation of tumors. Since p53 was discovered 43 years ago, many researchers have clarified its functions in the development of tumors. With the support of the protein p53 and targeted artificial intelligence modeling, it will be possible to detect cancer and tumor activity at an early stage. This will open up new research opportunities. In this review article, a comprehensive analysis was conducted on different machine learning techniques utilized in conjunction with the protein p53 to predict and speculate cancer. The study examined the types of data incorporated and evaluated the performance of these techniques. The aim was to provide a thorough understanding of the effectiveness of machine learning in predicting and speculating cancer using the protein p53.
Collapse
Affiliation(s)
- Manisha R Patil
- School of Computer Science Engineering and Information System, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
6
|
Hoang T, Sutera P, Nguyen T, Chang J, Jagtap S, Song Y, Shetty AC, Chowdhury DD, Chan A, Carrieri FA, Hathout L, Ennis R, Jabbour SK, Parikh R, Molitoris J, Song DY, DeWeese T, Marchionni L, Ren L, Sawant A, Simone N, Lafargue A, Van Der Eecken K, Bunz F, Ost P, Tran PT, Deek MP. TP53 structure-function relationships in metastatic castrate-sensitive prostate cancer and the impact of APR-246 treatment. Prostate 2024; 84:87-99. [PMID: 37812042 DOI: 10.1002/pros.24629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Despite well-informed work in several malignancies, the phenotypic effects of TP53 mutations in metastatic castration-sensitive prostate cancer (mCSPC) progression and metastasis are not clear. We characterized the structure-function and clinical impact of TP53 mutations in mCSPC. PATIENTS AND METHODS We performed an international retrospective review of men with mCSPC who underwent next-generation sequencing and were stratified according to TP53 mutational status and metastatic burden. Clinical outcomes included radiographic progression-free survival (rPFS) and overall survival (OS) evaluated with Kaplan-Meier and multivariable Cox regression. We also utilized isogenic cancer cell lines to assess the effect of TP53 mutations and APR-246 treatment on migration, invasion, colony formation in vitro, and tumor growth in vivo. Preclinical experimental observations were compared using t-tests and ANOVA. RESULTS Dominant-negative (DN) TP53 mutations were enriched in patients with synchronous (vs. metachronous) (20.7% vs. 6.3%, p < 0.01) and polymetastatic (vs. oligometastatic) (14.4% vs. 7.9%, p < 0.01) disease. On multivariable analysis, DN mutations were associated with worse rPFS (hazards ratio [HR] = 1.97, 95% confidence interval [CI]: 1.31-2.98) and overall survival [OS] (HR = 2.05, 95% CI: 1.14-3.68) compared to TP53 wild type (WT). In vitro, 22Rv1 TP53 R175H cells possessed stronger migration, invasion, colony formation ability, and cellular movement pathway enrichment in RNA sequencing analysis compared to 22Rv1 TP53 WT cells. Treatment with APR-246 reversed the effects of TP53 mutations in vitro and inhibited 22Rv1 TP53 R175H tumor growth in vivo in a dosage-dependent manner. CONCLUSIONS DN TP53 mutations correlated with worse prognosis in prostate cancer patients and higher metastatic potential, which could be counteracted by APR-246 treatment suggesting a potential future therapeutic avenue.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Triet Nguyen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Jinhee Chang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Shreya Jagtap
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Yang Song
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amol C Shetty
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dipanwita D Chowdhury
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Aaron Chan
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Francesca A Carrieri
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lara Hathout
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronald Ennis
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Rahul Parikh
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Jason Molitoris
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Lei Ren
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Amit Sawant
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Nicole Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Audrey Lafargue
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Kim Van Der Eecken
- Department of Pathology, Ghent University Hospital, Cancer Research Institute (CRIG), Ghent, Belgium
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Juarez D, Buono R, Matulis SM, Gupta VA, Duong M, Yudiono J, Paul M, Mallya S, Diep G, Hsin P, Lu A, Suh SM, Dong VM, Roberts AW, Leverson JD, Jalaluddin M, Liu Z, Bueno OF, Boise LH, Fruman DA. Statin-induced Mitochondrial Priming Sensitizes Multiple Myeloma Cells to BCL2 and MCL-1 Inhibitors. CANCER RESEARCH COMMUNICATIONS 2023; 3:2497-2509. [PMID: 37956312 PMCID: PMC10704957 DOI: 10.1158/2767-9764.crc-23-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
The BCL2 inhibitor venetoclax promotes apoptosis in blood cancer cells and is approved for treatment of chronic lymphocytic leukemia and acute myeloid leukemia. However, multiple myeloma cells are frequently more dependent on MCL-1 for survival, conferring resistance to venetoclax. Here we report that mevalonate pathway inhibition with statins can overcome resistance to venetoclax in multiple myeloma cell lines and primary cells. In addition, statins sensitize to apoptosis induced by MCL-1 inhibitor, S63845. In retrospective analysis of venetoclax clinical studies in multiple myeloma, background statin use was associated with a significantly enhanced rate of stringent complete response and absence of progressive disease. Statins sensitize multiple myeloma cells to venetoclax by upregulating two proapoptotic proteins: PUMA via a p53-independent mechanism and NOXA via the integrated stress response. These findings provide rationale for prospective testing of statins with venetoclax regimens in multiple myeloma. SIGNIFICANCE BH3 mimetics including venetoclax hold promise for treatment of multiple myeloma but rational combinations are needed to broaden efficacy. This study presents mechanistic and clinical data to support addition of pitavastatin to venetoclax regimens in myeloma. The results open a new avenue for repurposing statins in blood cancer.
Collapse
Affiliation(s)
- Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Roberta Buono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Shannon M. Matulis
- Department of Hematology and Medical Oncology and the Winship Cancer Institute at Emory University, Atlanta, Georgia
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology and the Winship Cancer Institute at Emory University, Atlanta, Georgia
| | - Madeleine Duong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Jacob Yudiono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Madhuri Paul
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Sharmila Mallya
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Grace Diep
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Peter Hsin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Alexander Lu
- Department of Chemistry, University of California, Irvine, California
| | - Sang Mi Suh
- Department of Chemistry, University of California, Irvine, California
| | - Vy M. Dong
- Department of Chemistry, University of California, Irvine, California
| | | | | | | | | | | | - Lawrence H. Boise
- Department of Hematology and Medical Oncology and the Winship Cancer Institute at Emory University, Atlanta, Georgia
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| |
Collapse
|
8
|
Emori C, Boucher Z, Bolcun-Filas E. CHEK2 signaling is the key regulator of oocyte survival after chemotherapy. SCIENCE ADVANCES 2023; 9:eadg0898. [PMID: 37862420 PMCID: PMC10588956 DOI: 10.1126/sciadv.adg0898] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Cancer treatments can damage the ovarian follicle reserve, leading to primary ovarian insufficiency and infertility among survivors. Checkpoint kinase 2 (CHEK2) deficiency prevents elimination of oocytes in primordial follicles in female mice exposed to radiation and preserves their ovarian function and fertility. Here, we demonstrate that CHEK2 also coordinates the elimination of oocytes after exposure to standard-of-care chemotherapy drugs. CHEK2 activates two downstream targets-TAp63 and p53-which direct oocyte elimination. CHEK2 knockout or pharmacological inhibition preserved ovarian follicle reserve after radiation and chemotherapy. However, the lack of specificity for CHEK2 among available inhibitors limits their potential for clinical development. These findings demonstrate that CHEK2 is a master regulator of the ovarian cellular response to damage caused by radiation and chemotherapy and warrant the development of selective inhibitors specific to CHEK2 as a potential avenue for ovario-protective treatments.
Collapse
Affiliation(s)
- Chihiro Emori
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
9
|
Haagsma J, Kolendowski B, Buensuceso A, Valdes YR, DiMattia GE, Shepherd TG. Gain-of-function p53 R175H blocks apoptosis in a precursor model of ovarian high-grade serous carcinoma. Sci Rep 2023; 13:11424. [PMID: 37452087 PMCID: PMC10349050 DOI: 10.1038/s41598-023-38609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Ovarian high-grade serous carcinoma (HGSC) is a highly lethal malignancy for which early detection is a challenge and treatment of late-stage disease is ineffective. HGSC initiation involves exfoliation of fallopian tube epithelial (FTE) cells which form multicellular clusters called spheroids that colonize and invade the ovary. HGSC contains universal mutation of the tumour suppressor gene TP53. However, not all TP53 mutations are the same, as specific p53 missense mutants contain gain-of-function (GOF) properties that drive tumour formation. Additionally, the role of GOF p53 in spheroid-mediated spread is poorly understood. In this study, we developed and characterized an in vitro model of HGSC based on mutation of TP53 in mouse oviductal epithelial cells (OVE). We discovered increased bulk spheroid survival and increased anchorage-independent growth in OVE cells expressing the missense mutant p53R175H compared to OVE parental and Trp53ko cells. Transcriptomic analysis on spheroids identified decreased apoptosis signaling due to p53R175H. Further assessment of the apoptosis pathway demonstrated decreased expression of intrinsic and extrinsic apoptosis signaling molecules due to Trp53 deletion and p53R175H, but Caspase-3 activation was only decreased in spheroids with p53R175H. These results highlight this model as a useful tool for discovering early HGSC transformation mechanisms and uncover a potential anti-apoptosis GOF mechanism of p53R175H.
Collapse
Affiliation(s)
- Jacob Haagsma
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Bart Kolendowski
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
| | - Adrian Buensuceso
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Yudith Ramos Valdes
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
| | - Gabriel E DiMattia
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Trevor G Shepherd
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- London Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, ON, N6A 4L6, Canada.
| |
Collapse
|
10
|
Xu Y, Yang X, Xiong Q, Han J, Zhu Q. The dual role of p63 in cancer. Front Oncol 2023; 13:1116061. [PMID: 37182132 PMCID: PMC10174455 DOI: 10.3389/fonc.2023.1116061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The p53 family is made up of three transcription factors: p53, p63, and p73. These proteins are well-known regulators of cell function and play a crucial role in controlling various processes related to cancer progression, including cell division, proliferation, genomic stability, cell cycle arrest, senescence, and apoptosis. In response to extra- or intracellular stress or oncogenic stimulation, all members of the p53 family are mutated in structure or altered in expression levels to affect the signaling network, coordinating many other pivotal cellular processes. P63 exists as two main isoforms (TAp63 and ΔNp63) that have been contrastingly discovered; the TA and ΔN isoforms exhibit distinguished properties by promoting or inhibiting cancer progression. As such, p63 isoforms comprise a fully mysterious and challenging regulatory pathway. Recent studies have revealed the intricate role of p63 in regulating the DNA damage response (DDR) and its impact on diverse cellular processes. In this review, we will highlight the significance of how p63 isoforms respond to DNA damage and cancer stem cells, as well as the dual role of TAp63 and ΔNp63 in cancer.
Collapse
Affiliation(s)
- Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qunli Xiong
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| |
Collapse
|
11
|
Jiang Q, Wang Y, Xiang M, Hua J, Zhou T, Chen F, Lv X, Huang J, Cai Y. UFL1, a UFMylation E3 ligase, plays a crucial role in multiple cellular stress responses. Front Endocrinol (Lausanne) 2023; 14:1123124. [PMID: 36843575 PMCID: PMC9950256 DOI: 10.3389/fendo.2023.1123124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
The UFM1 conjugation system(UFMylation)is a novel type of ubiquitin-like system that plays an indispensable role in maintaining cell homeostasis under various cellular stress. Similar to ubiquitination, UFMylation consists of a three-step enzymatic reaction with E1-like enzymes ubiquitin-like modifier activating enzyme5 (UBA5), E2-like enzymes ubiquitin-fold modifier-conjugating enzyme 1(UFC1), and E3-like ligase UFM1-specific ligase 1 (UFL1). As the only identified E3 ligase, UFL1 is responsible for specific binding and modification of the substrates to mediate numerous hormone signaling pathways and endocrine regulation under different physiological or pathological stress, such as ER stress, genotoxic stress, oncogenic stress, and inflammation. Further elucidation of the UFL1 working mechanism in multiple cellular stress responses is essential for revealing the disease pathogenesis and providing novel potential therapeutic targets. In this short review, we summarize the recent advances in novel UFL1 functions and shed light on the potential challenges ahead, thus hopefully providing a better understanding of UFMylation-mediated cellular stress.
Collapse
Affiliation(s)
- Qiang Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Minghui Xiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiamin Hua
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianci Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fanghui Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, China
| | - Jinming Huang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Yafei Cai, ; Jinming Huang,
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yafei Cai, ; Jinming Huang,
| |
Collapse
|
12
|
Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2022; 13:974. [PMID: 36400749 PMCID: PMC9674619 DOI: 10.1038/s41419-022-05408-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
TP53, a crucial tumor suppressor gene, is the most commonly mutated gene in human cancers. Aside from losing its tumor suppressor function, mutant p53 (mutp53) often acquires inherent, novel oncogenic functions, which is termed "gain-of-function". Emerging evidence suggests that mutp53 is highly associated with advanced malignancies and poor prognosis, which makes it a target for development of novel cancer therapies. Herein, we provide a summary of our knowledge of the mutp53 types and mutp53 spectrum in cancers. The mechanisms of mutp53 accumulation and gain-of-function are also summarized. Furthermore, we discuss the gain-of-function of mutp53 in cancers: genetic instability, ferroptosis, microenvironment, and stemness. Importantly, the role of mutp53 in the clinic is also discussed, particularly with regard to chemotherapy and radiotherapy. Last, emphasis is given to emerging strategies on how to target mutp53 for tumor therapy. Thus, this review will contribute to better understanding of the significance of mutp53 as a target for therapeutic strategies.
Collapse
|
13
|
Lei J, Li X, Cai M, Guo T, Lin D, Deng X, Li Y. Insights into Allosteric Mechanisms of the Lung-Enriched p53 Mutants V157F and R158L. Int J Mol Sci 2022; 23:ijms231710100. [PMID: 36077492 PMCID: PMC9456101 DOI: 10.3390/ijms231710100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is a leading fatal malignancy in humans. p53 mutants exhibit not only loss of tumor suppressor capability but also oncogenic gain-of-function, contributing to lung cancer initiation, progression and therapeutic resistance. Research shows that p53 mutants V157F and R158L occur with high frequency in lung squamous cell carcinomas. Revealing their conformational dynamics is critical for developing novel lung therapies. Here, we used all-atom molecular dynamics (MD) simulations to investigate the effect of V157F and R158L substitutions on the structural properties of the p53 core domain (p53C). Compared to wild-type (WT) p53C, both V157F and R158L mutants display slightly lesser β-sheet structure, larger radius of gyration, larger volume and larger exposed surface area, showing aggregation-prone structural characteristics. The aggregation-prone fragments (residues 249–267 and 268–282) of two mutants are more exposed to water solution than that of WT p53C. V157F and R158L mutation sites can affect the conformation switch of loop 1 through long-range associations. Simulations also reveal that the local structure and conformation around the V157F and R158L mutation sites are in a dynamic equilibrium between the misfolded and properly folded conformations. These results provide molecular mechanistic insights into allosteric mechanisms of the lung-enriched p53 mutants.
Collapse
Affiliation(s)
- Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
- Correspondence: (J.L.); (Y.L.)
| | - Xuanyao Li
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
- Department of Physics, School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Mengqiang Cai
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Tianjing Guo
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Dongdong Lin
- Department of Physics and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaohua Deng
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Yin Li
- Department of Physics, School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
- Correspondence: (J.L.); (Y.L.)
| |
Collapse
|
14
|
Distinct interactors define the p63 transcriptional signature in epithelial development or cancer. Biochem J 2022; 479:1375-1392. [PMID: 35748701 PMCID: PMC9250260 DOI: 10.1042/bcj20210737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The TP63 is an indispensable transcription factor for development and homeostasis of epithelia and its derived glandular tissue. It is also involved in female germline cell quality control, muscle and thymus development. It is expressed as multiple isoforms transcribed by two independent promoters, in addition to alternative splicing occurring at the mRNA 3′-UTR. Expression of the TP63 gene, specifically the amino-deleted p63 isoform, ΔNp63, is required to regulate numerous biological activities, including lineage specification, self-renewal capacity of epithelial stem cells, proliferation/expansion of basal keratinocytes, differentiation of stratified epithelia. In cancer, ΔNp63 is implicated in squamous cancers pathogenesis of different origin including skin, head and neck and lung and in sustaining self-renewal of cancer stem cells. How this transcription factor can control such a diverse set of biological pathways is central to the understanding of the molecular mechanisms through which p63 acquires oncogenic activity, profoundly changing its down-stream transcriptional signature. Here, we highlight how different proteins interacting with p63 allow it to regulate the transcription of several central genes. The interacting proteins include transcription factors/regulators, epigenetic modifiers, and post-transcriptional modifiers. Moreover, as p63 depends on its interactome, we discuss the hypothesis to target the protein interactors to directly affect p63 oncogenic activities and p63-related diseases.
Collapse
|
15
|
Hassin O, Nataraj NB, Shreberk-Shaked M, Aylon Y, Yaeger R, Fontemaggi G, Mukherjee S, Maddalena M, Avioz A, Iancu O, Mallel G, Gershoni A, Grosheva I, Feldmesser E, Ben-Dor S, Golani O, Hendel A, Blandino G, Kelsen D, Yarden Y, Oren M. Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients. Nat Commun 2022; 13:2800. [PMID: 35589715 PMCID: PMC9120190 DOI: 10.1038/s41467-022-30481-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the differential impact of distinct TP53 mutations on disease features may make TP53 mutational information more actionable, holding potential for better precision-based medicine.
Collapse
Affiliation(s)
- Ori Hassin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martino Maddalena
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Avioz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Grosheva
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Zavileyskiy L, Bunik V. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules 2022; 12:biom12020327. [PMID: 35204825 PMCID: PMC8869670 DOI: 10.3390/biom12020327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
A transcription factor p53 is activated upon cellular exposure to endogenous and exogenous stresses, triggering either homeostatic correction or cell death. Depending on the stress level, often measurable as DNA damage, the dual outcome is supported by p53 binding to a number of regulatory and metabolic proteins. Apart from the nucleus, p53 localizes to mitochondria, endoplasmic reticulum and cytosol. We consider non-nuclear heterologous protein complexes of p53, their structural determinants, regulatory post-translational modifications and the role in intricate p53 functions. The p53 heterologous complexes regulate the folding, trafficking and/or action of interacting partners in cellular compartments. Some of them mainly sequester p53 (HSP proteins, G6PD, LONP1) or its partners (RRM2B, PRKN) in specific locations. Formation of other complexes (with ATP2A2, ATP5PO, BAX, BCL2L1, CHCHD4, PPIF, POLG, SOD2, SSBP1, TFAM) depends on p53 upregulation according to the stress level. The p53 complexes with SIRT2, MUL1, USP7, TXN, PIN1 and PPIF control regulation of p53 function through post-translational modifications, such as lysine acetylation or ubiquitination, cysteine/cystine redox transformation and peptidyl-prolyl cis-trans isomerization. Redox sensitivity of p53 functions is supported by (i) thioredoxin-dependent reduction of p53 disulfides, (ii) inhibition of the thioredoxin-dependent deoxyribonucleotide synthesis by p53 binding to RRM2B and (iii) changed intracellular distribution of p53 through its oxidation by CHCHD4 in the mitochondrial intermembrane space. Increasing knowledge on the structure, function and (patho)physiological significance of the p53 heterologous complexes will enable a fine tuning of the settings-dependent p53 programs, using small molecule regulators of specific protein–protein interactions of p53.
Collapse
Affiliation(s)
- Lev Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Victoria Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Biokinetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
17
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Morrione A, Giordano A, Cenciarelli C. p53 signaling in cancer progression and therapy. Cancer Cell Int 2021; 21:703. [PMID: 34952583 PMCID: PMC8709944 DOI: 10.1186/s12935-021-02396-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The p53 protein is a transcription factor known as the "guardian of the genome" because of its critical function in preserving genomic integrity. The TP53 gene is mutated in approximately half of all human malignancies, including those of the breast, colon, lung, liver, prostate, bladder, and skin. When DNA damage occurs, the TP53 gene on human chromosome 17 stops the cell cycle. If p53 protein is mutated, the cell cycle is unrestricted and the damaged DNA is replicated, resulting in uncontrolled cell proliferation and cancer tumours. Tumor-associated p53 mutations are usually associated with phenotypes distinct from those caused by the loss of the tumor-suppressing function exerted by wild-type p53protein. Many of these mutant p53 proteins have oncogenic characteristics, and therefore modulate the ability of cancer cells to proliferate, escape apoptosis, invade and metastasize. Because p53 deficiency is so common in human cancer, this protein is an excellent option for cancer treatment. In this review, we will discuss some of the molecular pathways by which mutant p53 proteins might perform their oncogenic activities, as well as prospective treatment methods based on restoring tumor suppressive p53 functions.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Giacomo Pozzoli
- Pharmacology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine. Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine. Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | |
Collapse
|
18
|
Feng D, Zhang F, Liu L, Xiong Q, Xu H, Wei W, Liu Z, Yang L. SKA3 Serves as a Biomarker for Poor Prognosis in Kidney Renal Papillary Cell Carcinoma. Int J Gen Med 2021; 14:8591-8602. [PMID: 34849004 PMCID: PMC8627265 DOI: 10.2147/ijgm.s336799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Background There is a surprising paucity of studies investigating the potential mechanism of SKA3 in the progression and prognosis of kidney renal papillary cell carcinoma (KIRP). Methods We used TCGA and other databases to analyze the expression, clinical value, and potential mechanisms of SKA3 in KIRP patients. We also explored therapeutic agents for KIRP through GSCALite. Results SKA3 mRNA expression was significantly upregulated and the area under the curve was 0.792 (95% CI 0.727–0.856). Increased SKA3 expression was related to shorter overall survival, disease-specific survival and progression-free survival. Hub genes in protein–protein interactions were CDK1, CDC20, CCNB1, CCNA2, BUB1, AURKB, BUB1B, PLK1, CCNB2, and MAD2L1, which were differentially expressed and also associated with KIRP prognosis. Gene-set enrichment analysis indicated that E2F targets, epithelial–mesenchymal transition, glycolysis, the WNT signaling pathway, and other pathways were highly enriched upon SKA3 upregulation. Gene-set variation analysis of SKA3 and its ten hub genes showed that the significant correlation of cancer-related pathways included the cell cycle, DNA damage, hormone androgen receptor, hormone estrogen receptor, PI3K/Akt, and Ras/MAPK. In addition, we found that MEK inhibitors, ie, trametinib, selumetinib, PD0325901, and RDEA119, may be feasible targeting agents for KIRP patients. Conclusion SKA3 might contribute to poor prognosis of KIRP through cell cycle, DNA damage, hormone androgen receptor, hormone estrogen receptor, PI3K/Akt, and RAS/MAPK. SKA3 potentially serves as a prognostic biomarker and target for KIRP.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ling Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhenghua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
19
|
Lei J, Cai M, Shen Y, Lin D, Deng X. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation. Phys Chem Chem Phys 2021; 23:23032-23041. [PMID: 34612239 DOI: 10.1039/d1cp03094a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
p53 mutant aggregation can lead to loss-of-function (LoF), dominant-negative (DN) and gain-of-function (GoF) effects, involving in tumor growth. Finding inhibition methods of p53 mutant aggregation is a key step for developing new therapeutics against aggregation-associated cancers. Recent studies have shown that a cell-permeable peptide, ReACp53, can inhibit aggregation of the p53 mutant and restore p53 nuclear function as a transcriptional factor, showing extraordinary therapeutic potential. However, the molecular mechanism underlying the inhibition of p53 mutant aggregation by the ReAp53 peptide is unclear. In this work, we used all-atom molecular dynamics (MD) simulations to investigate the effect of ReACp53 peptide on the structural and dynamic properties of the p53 core domain (p53C) of the aggregation-prone R175H mutant. Our simulations revealed that the ReACp53 peptide can stabilize the ordered secondary structure and decrease the flexibility of disordered loops of the R175H mutant through increasing the intra-interactions of p53C. Moreover, we found that ReACp53 peptide specifically binds to the fragment (residues 180-233) of the R175H mutant through strong hydrophobic interactions with residues L188 and L201 and a salt bridge or hydrogen bond formation with residues D186, E198, D204, E221 and E224. The specific binding pattern protects the aggregation-prone fragment (residues 182-213) from exposure to water. Hence, we suggested that the ReACp53 peptide inhibits aggregation of the R175H mutant by restoring the wild-type conformation from an aggregation-prone state and reducing the exposure of the aggregation-prone segment. These results provide molecular mechanistic insight into inhibition of the ReACp53 peptide on amyloid aggregation of the R175H mutant.
Collapse
Affiliation(s)
- Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Mengqiang Cai
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Yun Shen
- Department of Physics, School of Sciences, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Dongdong Lin
- Department of Physics and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang City 315211, China
| | - Xiaohua Deng
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| |
Collapse
|
20
|
Reichrath J, Reichrath S. The Impact of Notch Signaling for Carcinogenesis and Progression of Nonmelanoma Skin Cancer: Lessons Learned from Cancer Stem Cells, Tumor Angiogenesis, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:123-154. [PMID: 33034030 DOI: 10.1007/978-3-030-55031-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since many decades, nonmelanoma skin cancer (NMSCs) is the most common malignancy worldwide. Basal cell carcinomas (BCC) and squamous cell carcinomas (SCC) are the major types of NMSCs, representing approximately 70% and 25% of these neoplasias, respectively. Because of their continuously rising incidence rates, NMSCs represent a constantly increasing global challenge for healthcare, although they are in most cases nonlethal and curable (e.g., by surgery). While at present, carcinogenesis of NMSC is still not fully understood, the relevance of genetic and molecular alterations in several pathways, including evolutionary highly conserved Notch signaling, has now been shown convincingly. The Notch pathway, which was first developed during evolution in metazoans and that was first discovered in fruit flies (Drosophila melanogaster), governs cell fate decisions and many other fundamental processes that are of high relevance not only for embryonic development, but also for initiation, promotion, and progression of cancer. Choosing NMSC as a model, we give in this review a brief overview on the interaction of Notch signaling with important oncogenic and tumor suppressor pathways and on its role for several hallmarks of carcinogenesis and cancer progression, including the regulation of cancer stem cells, tumor angiogenesis, and senescence.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.,School of Health Professions, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
21
|
Datta N, Chakraborty S, Basu M, Ghosh MK. Tumor Suppressors Having Oncogenic Functions: The Double Agents. Cells 2020; 10:cells10010046. [PMID: 33396222 PMCID: PMC7824251 DOI: 10.3390/cells10010046] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer progression involves multiple genetic and epigenetic events, which involve gain-of-functions of oncogenes and loss-of-functions of tumor suppressor genes. Classical tumor suppressor genes are recessive in nature, anti-proliferative, and frequently found inactivated or mutated in cancers. However, extensive research over the last few years have elucidated that certain tumor suppressor genes do not conform to these standard definitions and might act as “double agents”, playing contrasting roles in vivo in cells, where either due to haploinsufficiency, epigenetic hypermethylation, or due to involvement with multiple genetic and oncogenic events, they play an enhanced proliferative role and facilitate the pathogenesis of cancer. This review discusses and highlights some of these exceptions; the genetic events, cellular contexts, and mechanisms by which four important tumor suppressors—pRb, PTEN, FOXO, and PML display their oncogenic potentials and pro-survival traits in cancer.
Collapse
Affiliation(s)
- Neerajana Datta
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal PIN-743372, India;
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
- Correspondence:
| |
Collapse
|
22
|
Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, Ferrarini M, Morabito F, Fronza G. Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front Oncol 2020; 10:593383. [PMID: 33194757 PMCID: PMC7655923 DOI: 10.3389/fonc.2020.593383] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The human TP53 locus, located on the short arm of chromosome 17, encodes a tumour suppressor protein which functions as a tetrameric transcription factor capable of regulating the expression of a plethora of target genes involved in cell cycle arrest, apoptosis, DNA repair, autophagy, and metabolism regulation. TP53 is the most commonly mutated gene in human cancer cells and TP53 germ-line mutations are responsible for the cancer-prone Li-Fraumeni syndrome. When mutated, the TP53 gene generally presents missense mutations, which can be distributed throughout the coding sequence, although they are found most frequently in the central DNA binding domain of the protein. TP53 mutations represent an important prognostic and predictive marker in cancer. The presence of a TP53 mutation does not necessarily imply a complete P53 inactivation; in fact, mutant P53 proteins are classified based on the effects on P53 protein function. Different models have been used to explore these never-ending facets of TP53 mutations, generating abundant experimental data on their functional impact. Here, we briefly review the studies analysing the consequences of TP53 mutations on P53 protein function and their possible implications for clinical outcome. The focus shall be on Chronic Lymphocytic Leukemia (CLL), which also has generated considerable discussion on the role of TP53 mutations for therapy decisions.
Collapse
Affiliation(s)
- Paola Monti
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Speciale
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera (AO) di Cosenza, Cosenza, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Fortunato Morabito
- Unità di Ricerca Biotecnologica, Azienda Sanitaria Provinciale di Cosenza, Aprigliano, Italy.,Department of Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
23
|
Pavlakis E, Stiewe T. p53's Extended Reach: The Mutant p53 Secretome. Biomolecules 2020; 10:biom10020307. [PMID: 32075247 PMCID: PMC7072272 DOI: 10.3390/biom10020307] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/08/2023] Open
Abstract
p53 suppresses tumorigenesis by activating a plethora of effector pathways. While most of these operate primarily inside of cells to limit proliferation and survival of incipient cancer cells, many extend to the extracellular space. In particular, p53 controls expression and secretion of numerous extracellular factors that are either soluble or contained within extracellular vesicles such as exosomes. As part of the cellular secretome, they execute key roles in cell-cell communication and extracellular matrix remodeling. Mutations in the p53-encoding TP53 gene are the most frequent genetic alterations in cancer cells, and therefore, have profound impact on the composition of the tumor cell secretome. In this review, we discuss how the loss or dominant-negative inhibition of wild-type p53 in concert with a gain of neomorphic properties observed for many mutant p53 proteins, shapes a tumor cell secretome that creates a supportive microenvironment at the primary tumor site and primes niches in distant organs for future metastatic colonization.
Collapse
|
24
|
Ganci F, Pulito C, Valsoni S, Sacconi A, Turco C, Vahabi M, Manciocco V, Mazza EMC, Meens J, Karamboulas C, Nichols AC, Covello R, Pellini R, Spriano G, Sanguineti G, Muti P, Bicciato S, Ailles L, Strano S, Fontemaggi G, Blandino G. PI3K Inhibitors Curtail MYC-Dependent Mutant p53 Gain-of-Function in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2020; 26:2956-2971. [PMID: 31969334 DOI: 10.1158/1078-0432.ccr-19-2485] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/14/2019] [Accepted: 01/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Mutation of TP53 gene is a hallmark of head and neck squamous cell carcinoma (HNSCC) not yet exploited therapeutically. TP53 mutation frequently leads to the synthesis of mutant p53 proteins with gain-of-function activity, associated with radioresistance and high incidence of local recurrences in HNSCC. EXPERIMENTAL DESIGN Mutant p53-associated functions were investigated through gene set enrichment analysis in the Cancer Genome Atlas cohort of HNSCC and in a panel of 22 HNSCC cell lines. Mutant p53-dependent transcripts were analyzed in HNSCC cell line Cal27, carrying mutant p53H193L; FaDu, carrying p53R248L; and Detroit 562, carrying p53R175H. Drugs impinging on mutant p53-MYC-dependent signature were identified interrogating Connectivity Map (https://clue.io) derived from the Library of Integrated Network-based Cellular Signatures (LINCS) database (http://lincs.hms.harvard.edu/) and analyzed in HNSCC cell lines and patient-derived xenografts (PDX) models. RESULTS We identified a signature of transcripts directly controlled by gain-of-function mutant p53 protein and prognostic in HNSCC, which is highly enriched of MYC targets. Specifically, both in PDX and cell lines of HNSCC treated with the PI3Kα-selective inhibitor BYL719 (alpelisib) the downregulation of mutant p53/MYC-dependent signature correlates with response to this compound. Mechanistically, mutant p53 favors the binding of MYC to its target promoters and enhances MYC protein stability. Treatment with BYL719 disrupts the interaction of MYC, mutant p53, and YAP proteins with MYC target promoters. Of note, depletion of MYC, mutant p53, or YAP potentiates the effectiveness of BYL719 treatment. CONCLUSIONS Collectively, the blocking of this transcriptional network is an important determinant for the response to BYL719 in HNSCC.
Collapse
Affiliation(s)
- Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Valsoni
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Turco
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mahrou Vahabi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Manciocco
- Otolaryngology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Emilia Maria Cristina Mazza
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Renato Covello
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Raul Pellini
- Otolaryngology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Spriano
- Otolaryngology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Sanguineti
- Radiation Oncology Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center-McMaster University Hamilton, Ontario, Canada.,Department of Biomedical, Surgical and Dental Sciences, University of Milan La Statale, Milan, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Laurie Ailles
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Sabrina Strano
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
25
|
Tang Q, Su Z, Gu W, Rustgi AK. Mutant p53 on the Path to Metastasis. Trends Cancer 2019; 6:62-73. [PMID: 31952783 DOI: 10.1016/j.trecan.2019.11.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022]
Abstract
Metastasis contributes to the vast majority of cancer-related mortality. Regulatory mechanisms of the multistep invasion-metastasis cascade are being unraveled. TP53 is the most frequently mutated gene across human cancers. Accumulating evidence has shown that mutations of TP53 not only lead to loss of function or dominant negative effects, but also promotes a gain of function. Specifically, gain of function mutant p53 promotes cancer cell motility, invasion, and metastasis. Here, we summarize the mechanisms and functions of mutant p53 that foster metastasis in different types of cancers. We also discuss the prognostic value of mutant p53 and current status of therapeutic strategies targeting mutant p53. Future studies will shed light on discovering novel mechanisms of mutant p53-driven cancer metastasis and developing innovative therapeutics to improve clinical outcomes in patients harboring p53 mutations.
Collapse
Affiliation(s)
- Qiaosi Tang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Zhenyi Su
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
26
|
Hall C, Muller PA. The Diverse Functions of Mutant 53, Its Family Members and Isoforms in Cancer. Int J Mol Sci 2019; 20:ijms20246188. [PMID: 31817935 PMCID: PMC6941067 DOI: 10.3390/ijms20246188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The p53 family of proteins has grown substantially over the last 40 years. It started with p53, then p63, p73, isoforms and mutants of these proteins. The function of p53 as a tumour suppressor has been thoroughly investigated, but the functions of all isoforms and mutants and the interplay between them are still poorly understood. Mutant p53 proteins lose p53 function, display dominant-negative (DN) activity and display gain-of-function (GOF) to varying degrees. GOF was originally attributed to mutant p53′s inhibitory function over the p53 family members p63 and p73. It has become apparent that this is not the only way in which mutant p53 operates as a large number of transcription factors that are not related to p53 are activated on mutant p53 binding. This raises the question to what extent mutant p53 binding to p63 and p73 plays a role in mutant p53 GOF. In this review, we discuss the literature around the interaction between mutant p53 and family members, including other binding partners, the functional consequences and potential therapeutics.
Collapse
|
27
|
Hou Y, Wang Z, Huang S, Sun C, Zhao J, Shi J, Li Z, Wang Z, He X, Tam NL, Wu L. SKA3 Promotes tumor growth by regulating CDK2/P53 phosphorylation in hepatocellular carcinoma. Cell Death Dis 2019; 10:929. [PMID: 31804459 PMCID: PMC6895034 DOI: 10.1038/s41419-019-2163-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023]
Abstract
Spindle and kinetochore-related complex subunit 3 (SKA3) is a component of the spindle and kinetochore-related complexes and is essential for accurate timing of late mitosis. However, the relationship between SKA3 and hepatocellular carcinoma (HCC) has not yet been fully elucidated. Gene expression omnibus (GEO) (GSE62232, GSE45436, GSE6764, and GSE36376) and The Cancer Atlas (TCGA) datasets were analyzed to identify differential expression genes. Cell proliferation ability was analyzed using Cell Counting Kit-8 (CCK8) assay and plate clone formation assay, while scratch wound healing assay and transwell assay were used to analyze cell invasion. The role of SKA3 in vivo was explored using subcutaneous xenotransplantation model and lung metastasis model. Bioinformatics analysis found that hepatocellular carcinoma patients with high levels of expression of SKA3 have a poor prognosis. Similarly, immunohistochemical staining of 236 samples of tumors also found higher SKA3 expression in them, than in adjacent normal liver tissues. Significant levels of inhibition of in vivo and in vitro tumor proliferation and invasion result from the downregulation of SKA3. Mechanistically, SKA3 was found to affect tumor progression through the cell cycle and P53 signaling pathway as shown by the gene enrichment analysis (GSEA). G2/M phase arrest and severe apoptosis was also found to result from SKA3 knockdown, as shown by the inhibition of CDK2/p53 phosphorylation together with downregulation of BAX/Bcl-2 expression in HCC cells. Overall, these findings uncover the role of SKA3 in regulating the apoptosis and proliferation of hepatocellular carcinoma cells. This study was able to uncover new information on the tumorigenesis mechanism in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Ziming Wang
- Department of Biliary and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanzhou Huang
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.,Department of General Surgery, Guangdong Provincial People's Hospital. Guangdong Academy of Medical Sciences, Guangzhou, 510030, China
| | - Chengjun Sun
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jingya Zhao
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiayu Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhongqiu Li
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zekang Wang
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoshun He
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Nga Lei Tam
- Digestive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Linwei Wu
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5:e02624. [PMID: 31840114 PMCID: PMC6893087 DOI: 10.1016/j.heliyon.2019.e02624] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively. Changes in the expression patterns of these isoforms are noted in many human cancers. Proteins of certain human herpesviruses, like Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), interact with p53 family members and alter their expressions in many malignancies. Upon infections in the B cells and epithelial cells, EBV expresses different lytic or latent proteins during viral replication and latency respectively to preserve viral copy number, chromosomal integrity and viral persistence inside the host. In this review, we have surveyed and summarised the interactions of EBV gene products, known so far, with the p53 family proteins. The interactions between P53 and EBV oncoproteins are observed in stomach cancer, non-Hodgkin's lymphoma (NHL) of the head and neck, Nasopharyngeal Cancer (NPC), Gastric carcinoma (GC) and Burkitt's lymphoma (BL). EBV latent protein EBNA1, EBNA3C, LMP-1, and lytic proteins BZLF-1 can alter p53 expressions in many cancer cell lines. Interactions of p63 with EBNA-1, 2, 5, LMP-2A and BARF-1 have also been investigated in several cancers. Similarly, associations of p73 isoform with EBV latent proteins EBNA3C and LMP-1 have been reported. Methylation and single nucleotide polymorphisms in p53 have also been found to be correlated with EBV infection. Therefore, interactions and altered expression strategies of the isoforms of p53 family proteins in EBV associated cancers propose an important field for further molecular research.
Collapse
|
29
|
Genome-Wide Small RNA Sequencing Identifies MicroRNAs Deregulated in Non-Small Cell Lung Carcinoma Harboring Gain-of-Function Mutant p53. Genes (Basel) 2019; 10:genes10110852. [PMID: 31661871 PMCID: PMC6895929 DOI: 10.3390/genes10110852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in the TP53 gene are one of the most frequent events in cancers. Certain missense mutant p53 proteins gain oncogenic functions (gain-of-functions) and drive tumorigenesis. Apart from the coding genes, a few non-coding microRNAs (miRNAs) are implicated in mediating mutant p53-driven cancer phenotypes. Here, we identified miRNAs in mutant p53R273H bearing non-small cell lung carcinoma (NSCLC) cells while using small RNA deep sequencing. Differentially regulated miRNAs were validated in the TCGA lung adenocarcinoma patients with p53 mutations and, subsequently, we identified specific miRNA signatures that are associated with lymph node metastasis and poor survival of the patients. Pathway analyses with integrated miRNA-mRNA expressions further revealed potential regulatory molecular networks in mutant p53 cancer cells. A possible contribution of putative mutant p53-regulated miRNAs in epithelial-to-mesenchymal transition (EMT) is also predicted. Most importantly, we identified a novel miRNA from the unmapped sequencing reads through a systematic computational approach. The newly identified miRNA promotes proliferation, colony-forming ability, and migration of NSCLC cells. Overall, the present study provides an altered miRNA expression profile that might be useful in biomarker discovery for non-small cell lung cancers with TP53 mutations and discovers a hitherto unknown miRNA with oncogenic potential.
Collapse
|
30
|
Sandoval JE, Reich NO. The R882H substitution in the human de novo DNA methyltransferase DNMT3A disrupts allosteric regulation by the tumor supressor p53. J Biol Chem 2019; 294:18207-18219. [PMID: 31640986 DOI: 10.1074/jbc.ra119.010827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
A myriad of protein partners modulate the activity of the human DNA methyltransferase 3A (DNMT3A), whose interactions with these other proteins are frequently altered during oncogenesis. We show here that the tumor suppressor p53 decreases DNMT3A activity by forming a heterotetramer complex with DNMT3A. Mutational and modeling experiments suggested that p53 interacts with the same region in DNMT3A as does the structurally characterized DNMT3L. We observed that the p53-mediated repression of DNMT3A activity is blocked by amino acid substitutions within this interface, but surprisingly, also by a distal DNMT3A residue, R882H. DNMT3A R882H occurs frequently in various cancers, including acute myeloid leukemia, and our results suggest that the effects of R882H and other DNMT3A mutations may go beyond changes in DNMT3A methylation activity. To further understand the dynamics of how protein-protein interactions modulate DNMT3A activity, we determined that p53 has a greater affinity for DNMT3A than for DNMT3L and that p53 readily displaces DNMT3L from the DNMT3A:DNMT3L heterotetramer. Interestingly, this occurred even when the preformed DNMT3A:DNMT3L complex was actively methylating DNA. The frequently identified p53 substitutions (R248W and R273H), whereas able to regulate DNMT3A function when forming the DNMT3A:p53 heterotetramer, no longer displaced DNMT3L from the DNMT3A:DNMT3L heterotetramer. The results of our work highlight the complex interplay between DNMT3A, p53, and DNMT3L and how these interactions are further modulated by clinically derived mutations in each of the interacting partners.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510.
| |
Collapse
|
31
|
Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis. Int J Mol Sci 2019; 20:ijms20143590. [PMID: 31340447 PMCID: PMC6678256 DOI: 10.3390/ijms20143590] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The p63 gene is a member of the p53/p63/p73 family of transcription factors and plays a critical role in development and homeostasis of squamous epithelium. p63 is transcribed as multiple isoforms; ΔNp63α, the predominant p63 isoform in stratified squamous epithelium, is localized to the basal cells and is overexpressed in squamous cell cancers of multiple organ sites, including skin, head and neck, and lung. Further, p63 is considered a stem cell marker, and within the epidermis, ΔNp63α directs lineage commitment. ΔNp63α has been implicated in numerous processes of skin biology that impact normal epidermal homeostasis and can contribute to squamous cancer pathogenesis by supporting proliferation and survival with roles in blocking terminal differentiation, apoptosis, and senescence, and influencing adhesion and migration. ΔNp63α overexpression may also influence the tissue microenvironment through remodeling of the extracellular matrix and vasculature, as well as by enhancing cytokine and chemokine secretion to recruit pro-inflammatory infiltrate. This review focuses on the role of ΔNp63α in normal epidermal biology and how dysregulation can contribute to cutaneous squamous cancer development, drawing from knowledge also gained by squamous cancers from other organ sites that share p63 overexpression as a defining feature.
Collapse
|
32
|
King KE, George AL, Sakakibara N, Mahmood K, Moses MA, Weinberg WC. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol Carcinog 2019; 58:1571-1580. [PMID: 31286584 DOI: 10.1002/mc.23081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ΔNp63α, a member of the p53/p63/p73 family of transcription factors, is a molecular attribute of human squamous cancers of the head and neck, lung and skin. The TP63 gene plays important roles in epidermal morphogenesis and homeostasis, regulating diverse biological processes including epidermal fate decisions and keratinocyte proliferation and survival. When overexpressed experimentally in primary mouse keratinocytes, ΔNp63α maintains a basal cell phenotype including the loss of normal calcium-mediated growth arrest, at least in part through the activation and enhanced nuclear accumulation of the c-rel subunit of NF-κB (Nuclear Factor-kappa B). Initially identified for its role in the immune system and hematopoietic cancers, c-Rel has increasingly been associated with solid tumors and other pathologies. ΔNp63α and c-Rel have been shown to be associated in the nuclei of ΔNp63α overexpressing human squamous carcinoma cells. Together, these transcription factors cooperate in the transcription of genes regulating intrinsic keratinocyte functions, as well as the elaboration of factors that influence the tumor microenvironment (TME). This review provides an overview of the roles of ΔNp63α and c-Rel in normal epidermal homeostasis and elaborates on how these pathways may intersect in pathological conditions such as cancer and the associated TME.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Andrea L George
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Nozomi Sakakibara
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Kanwal Mahmood
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Michael A Moses
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Wendy C Weinberg
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| |
Collapse
|
33
|
Coelomic Fluid of Lumbricus rubellus Synergistically Enhances Cytotoxic Effect of 5-Fluorouracil through Modulation of Focal Adhesion Kinase and p21 in HT-29 Cancer Cell Line. ScientificWorldJournal 2019; 2019:5632859. [PMID: 31097925 PMCID: PMC6487099 DOI: 10.1155/2019/5632859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
Coelomic fluid of Lumbricus rubellus (CFL) has attracted interest due to its pharmacological properties, including antitumor effect. Furthermore, it is necessary to evaluate the response to treatment with new cancer therapeutic agents. This study aims to investigate whether the combination of CFL and 5-fluorouracil could reduce FAK protein level and iCa2+ and enhance p21 level. Furthermore, it is necessary to evaluate the response to treatment with new cancer therapeutic agents. After 24 hours of treatment, it was necessary to assess the percentage of apoptosis, FAK, and p21 protein expression by flow cytometry. iCa2+ concentration was measured using immunofluorescence. The combination therapy of CFL with 5-fluorouracil potently suppressed six treatment groups were included in this study. HT-29 cell lines were cultured and divided into six groups: group 1 was treated with vehicle (negative control), groups 2-5 were treated with 5-fluorouracil, groups 3-5 were treated with either CFL 5, 10, or 20 µg/ml immediately after 5-fluorouracil, and group 6 was treated with CFL 20 µg/ml, the progression of colorectal cancer. Combination of CFL and 5-fluorouracil significantly decreased FAK expression (p<0.05), iCa2+ (p<0.05), and increased p21 expression (p<0.05) in HT-29 cells. Our results suggest that CFL has an anticancer potential in colorectal cancer when combined with 5-fluorouracil.
Collapse
|
34
|
Mutant TP53 modulates metastasis of triple negative breast cancer through adenosine A2b receptor signaling. Oncotarget 2018; 9:34554-34566. [PMID: 30349649 PMCID: PMC6195371 DOI: 10.18632/oncotarget.26177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose The identification of genes with synthetic lethality in the context of mutant TP53 is a promising strategy for the treatment of basal-like triple negative breast cancer (TNBC). This study investigated regulators of mutant TP53 (R248Q) in basal-like TNBC and their impact on tumorigenesis. Experimental Design TNBC cells were analyzed by RNA-seq, and synthetic-lethal shRNA knock-down screening, to identify genes related to the expression of mutant TP53. A tissue microarray of 232 breast cancer samples, that included 66 TNBC cases, was used to assess clinicopathological correlates of tumor protein expression. Functional assays were performed in vitro and in vivo to assess the role of ADORA2B in TNBC. Results Transcriptome profiling identified ADORA2B as up-regulated in basal-like TNBC cell lines with R248Q-mutated TP53, with shRNA-screening suggesting the potential for a synthetic-lethal interaction between these genes. In clinical samples, ADORA2B was highly expressed in 39.4% (26/66) of TNBC patients. ADORA2B-expression was significantly correlated with ER (P < 0.01), PgR (P = 0.027), EGFR (P < 0.01), and tumor size (P = 0.037), and was an independent prognostic factor for outcome (P = 0.036). In line with this, ADORA2B-transduced TNBC cells showed increased tumorigenesis, and ADORA2B knockdown, along with mutant p53 knockdown, decreased metastasis both in vitro and in vivo. Notably, the cytotoxic cyclic peptide SA-I suppressed ADORA2B expression and tumorigenesis in TNBC cell lines. Conclusions ADORA2B expression increases the oncogenic potential of basal-like TNBC and is an independent factor for poor outcome. These data suggest that ADORA2B could serve as a prognostic biomarker and a potential therapeutic target for basal-like TNBC.
Collapse
|
35
|
p53 Isoforms and Their Implications in Cancer. Cancers (Basel) 2018; 10:cancers10090288. [PMID: 30149602 PMCID: PMC6162399 DOI: 10.3390/cancers10090288] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/10/2023] Open
Abstract
In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, recent reports demonstrating abundance of p53 isoforms, especially the N-terminally truncated ones, in the cancerous tissues suggest their involvement in carcinogenesis. These isoforms are ∆40p53, ∆133p53, and ∆160p53 (the names indicate their respective N-terminal truncation). Due to the lack of structural and functional characterizations the modes of action of the p53 isoforms are still unclear. Owing to the deletions in the functional domains, these isoforms can either be defective in DNA binding or more susceptive to altered ‘responsive elements’ than p53. Furthermore, they may exert a ‘dominant negative effect’ or induce more aggressive cancer by the ‘gain of function’. One possible mechanism of p53 inactivation can be through tetramerization with the ∆133p53 and ∆160p53 isoforms—both lacking part of the DNA binding domain. A recent report and unpublished data from our laboratory also suggest that these isoforms may inactivate p53 by fast aggregation—possibly due to ectopic overexpression. We further discuss the evolutionary significance of the p53 isoforms.
Collapse
|
36
|
Bellazzo A, Sicari D, Valentino E, Del Sal G, Collavin L. Complexes formed by mutant p53 and their roles in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:101-112. [PMID: 29950894 PMCID: PMC6011883 DOI: 10.2147/bctt.s145826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women, and mutations in the tumor suppressor p53 are commonly detected in the most aggressive subtypes. The majority of TP53 gene alterations are missense substitutions, leading to expression of mutant forms of the p53 protein that are frequently detected at high levels in cancer cells. P53 mutants not only lose the physiological tumor-suppressive activity of the wild-type p53 protein but also acquire novel powerful oncogenic functions, referred to as gain of function, that may actively confer a selective advantage during tumor progression. Some of the best-characterized oncogenic activities of mutant p53 are mediated by its ability to form aberrant protein complexes with other transcription factors or proteins not directly related to gene transcription. The set of cellular proteins available to interact with mutant p53 is dependent on cell type and extensively affected by environmental signals, so the prognostic impact of p53 mutation is complex. Specific functional interactions of mutant p53 can profoundly impact homeostasis of breast cancer cells, reprogramming gene expression in response to specific extracellular inputs or cell-intrinsic conditions. The list of protein complexes involving mutant p53 in breast cancer is continuously growing, as is the number of oncogenic phenotypes in which they could be involved. In consideration of the functional impact of such complexes, key interactions of mutant p53 may be exploited as potential targets for development of therapies aimed at defusing the oncogenic potential of p53 mutation.
Collapse
Affiliation(s)
- Arianna Bellazzo
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy
| | - Daria Sicari
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elena Valentino
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giannino Del Sal
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Licio Collavin
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
37
|
Sande CM, Chang B, Monga V, Bossler AD, Ma D. Biallelic TP53 gain of function mutations in rapidly progressing solid tumors. Cancer Genet 2018; 222-223:20-24. [PMID: 29666004 DOI: 10.1016/j.cancergen.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 01/04/2023]
Abstract
Recent studies are discovering TP53 mutations with gain of function (GOF) properties that promote tumorigenesis via a variety of mechanisms. To our knowledge, all reported compound mutations are allelic. We identified two patients with biallelic GOF TP53 mutations in their tumors and a third with allelic compound variants. The correlation with p53 expression was also examined. Genomic DNA was extracted from formalin-fixed, paraffin-embedded tissue and mutational analysis was performed using Ion AmpliSeq™Cancer HotSpot Panel V2. Biallelic GOF mutations (p.R273H and p.R273C) were identified in a 19-year-old male with glioblastoma (allele frequencies 94% and 48%) and a 54-year-old with pT3 penile squamous cell carcinoma (allele frequencies 19% and 27%). Immunohistochemistry showed nuclear accumulation of p53. The third patient, a 62-year-old female with metastatic lung adenocarcinoma, had allelic p.P278S (GOF) and p.R283L (non-GOF) variants at frequencies of 61% but with null staining for p53. Germline testing for Patient 1 confirmed wildtype TP53. No other variants were discovered among the genes tested in these cases. All patients succumbed within two years of diagnosis despite aggressive treatment. In conclusion, implementation of TP53 mutation analysis in clinical practice may predict patient outcome, and inhibition of GOF p53 could represent an attractive target for therapy.
Collapse
Affiliation(s)
- Christopher M Sande
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City 52241, IA, USA
| | - Brian Chang
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City 52241, IA, USA
| | - Varun Monga
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City 52241, IA, USA
| | - Aaron D Bossler
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City 52241, IA, USA
| | - Deqin Ma
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City 52241, IA, USA .
| |
Collapse
|
38
|
Wawrzynow B, Zylicz A, Zylicz M. Chaperoning the guardian of the genome. The two-faced role of molecular chaperones in p53 tumor suppressor action. Biochim Biophys Acta Rev Cancer 2018; 1869:161-174. [DOI: 10.1016/j.bbcan.2017.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
|
39
|
Tanaka T, Watanabe M, Yamashita K. Potential therapeutic targets of TP53 gene in the context of its classically canonical functions and its latest non-canonical functions in human cancer. Oncotarget 2018; 9:16234-16247. [PMID: 29662640 PMCID: PMC5882331 DOI: 10.18632/oncotarget.24611] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/10/2018] [Indexed: 12/25/2022] Open
Abstract
In normal tissue, p53 protein has a wide range of functions involving cell homeostasis; its mutation, however, permits a carcinogenic acquisition of function. TP53 gene mutation is a major genomic aberration in various human cancers and is a critical event in the multi-step carcinogenesis process. TP53 mutation is clinically relevant for the molecular classification of carcinogenesis, as most recently described rigorously by the Cancer Genome Atlas Research Network. TP53 gene mutation has been considered to work as a tumor suppressor gene through the loss of its transcriptional activity, which is designated as a canonical function. However, in cancer patients with mutant TP53, mutated p53 protein is frequently overexpressed, suggesting the activation of an oncogenic process through a gain of function (GOF). As part of this GOF, molecular mechanisms explaining the non-canonical function of TP53 gene abnormality have been reported, in which mutant p53 unconventionally binds with various critical molecules suppressing oncogenic properties, such as p63 and p73. Moreover, mutant TP53 gene-targeted therapy has been rigorously developed, and promising clinical trials have been started. In this study, we summarize the novel aspects of mutant p53 and describe its prominent therapeutic potentials in human cancer.
Collapse
Affiliation(s)
- Toshimichi Tanaka
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
40
|
Billant O, Léon A, Le Guellec S, Friocourt G, Blondel M, Voisset C. The dominant-negative interplay between p53, p63 and p73: A family affair. Oncotarget 2018; 7:69549-69564. [PMID: 27589690 PMCID: PMC5342497 DOI: 10.18632/oncotarget.11774] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/10/2016] [Indexed: 12/15/2022] Open
Abstract
The tumor suppression activity of p53 is frequently impaired in cancers even when a wild-type copy of the gene is still present, suggesting that a dominant-negative effect is exerted by some of p53 mutants and isoforms. p63 and p73, which are related to p53, have also been reported to be subjected to a similar loss of function, suggesting that a dominant-negative interplay might happen between p53, p63 and p73. However, to which extent p53 hotspot mutants and isoforms of p53, p63 and p73 are able to interfere with the tumor suppressive activity of their siblings as well as the underlying mechanisms remain undeciphered. Using yeast, we showed that a dominant-negative effect is widely spread within the p53/p63/p73 family as all p53 loss-of-function hotspot mutants and several of the isoforms of p53 and p73 tested exhibit a dominant-negative potential. In addition, we found that this dominant-negative effect over p53 wild-type is based on tetramer poisoning through the formation of inactive hetero-tetramers and does not rely on a prion-like mechanism contrary to what has been previously suggested. We also showed that mutant p53-R175H gains the ability to inhibit p63 and p73 activity by a mechanism that is only partially based on tetramerization.
Collapse
Affiliation(s)
- Olivier Billant
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Alice Léon
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Solenn Le Guellec
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Cécile Voisset
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
41
|
Moscetti I, Cannistraro S, Bizzarri AR. Surface Plasmon Resonance Sensing of Biorecognition Interactions within the Tumor Suppressor p53 Network. SENSORS 2017; 17:s17112680. [PMID: 29156626 PMCID: PMC5713020 DOI: 10.3390/s17112680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022]
Abstract
Surface Plasmon Resonance (SPR) is a powerful technique to study the kinetics of biomolecules undergoing biorecognition processes, particularly suited for protein-protein interactions of biomedical interest. The potentiality of SPR was exploited to sense the interactions occurring within the network of the tumor suppressor p53, which is crucial for maintaining genome integrity and whose function is inactivated, mainly by down regulation or by mutation, in the majority of human tumors. This study includes p53 down-regulators, p53 mutants and also the p53 family members, p63 and p73, which could vicariate p53 protective function. Furthermore, the application of SPR was extended to sense the interaction of p53 with anti-cancer drugs, which might restore p53 function. An extended review of previous published work and unpublished kinetic data is provided, dealing with the interaction between the p53 family members, or their mutants and two anticancer molecules, Azurin and its cell-penetrating peptide, p28. All the kinetic results are discussed in connection with those obtained by a complementary approach operating at the single molecule level, namely Atomic Force Spectroscopy and the related literature data. The overview of the SPR kinetic results may significantly contribute to a deeper understanding of the interactions within p53 network, also in the perspective of designing suitable anticancer drugs.
Collapse
Affiliation(s)
- Ilaria Moscetti
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| | - Salvatore Cannistraro
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| | - Anna Rita Bizzarri
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| |
Collapse
|
42
|
Kim MP, Lozano G. Mutant p53 partners in crime. Cell Death Differ 2017; 25:161-168. [PMID: 29099488 PMCID: PMC5729539 DOI: 10.1038/cdd.2017.185] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Mutant p53 proteins impart changes in cellular behavior and function through interactions with proteins that alter gene expression. The milieu of intracellular proteins available to interact with mutant p53 is context specific and changes with disease, cell type, and environmental conditions. Varying conformations of mutant p53 largely dictate protein–protein interactions as different point mutations within protein-coding regions greatly alter the extent and array of gain-of-function (GOF) activities. Given such variables, how can knowledge regarding p53 missense mutations be translated into predicting or altering biologic activity for therapy? How may knowledge regarding mutant p53 functions within certain disease contexts be harnessed to blunt or ablate mutant p53 GOF for therapy? In this article, we review known proteins that interact with mutant p53 and result in the activation of genes that contribute to p53 GOF with particular emphasis on context dependency and an evolving appreciation of GOF mechanisms.
Collapse
Affiliation(s)
- Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
43
|
Zhou R, Xu A, Gingold J, Strong LC, Zhao R, Lee DF. Li-Fraumeni Syndrome Disease Model: A Platform to Develop Precision Cancer Therapy Targeting Oncogenic p53. Trends Pharmacol Sci 2017; 38:908-927. [PMID: 28818333 DOI: 10.1016/j.tips.2017.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Li-Fraumeni syndrome (LFS) is a rare hereditary autosomal dominant cancer disorder. Germline mutations in TP53, the gene encoding p53, are responsible for most cases of LFS. TP53 is also the most commonly mutated gene in human cancers. Because inhibition of mutant p53 is considered to be a promising therapeutic strategy to treat these diseases, LFS provides a perfect genetic model to study p53 mutation-associated malignancies as well as to screen potential compounds targeting oncogenic p53. In this review we briefly summarize the biology of LFS and current understanding of the oncogenic functions of mutant p53 in cancer development. We discuss the strengths and limitations of current LFS disease models, and touch on existing compounds targeting oncogenic p53 and in vitro clinical trials to develop new ones. Finally, we discuss how recently developed methodologies can be integrated into the LFS induced pluripotent stem cell (iPSC) platform to develop precision cancer therapy.
Collapse
Affiliation(s)
- Ruoji Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; These authors contributed equally to this work
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; These authors contributed equally to this work
| | - Louise C Strong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
44
|
p53-R273H upregulates neuropilin-2 to promote cell mobility and tumor metastasis. Cell Death Dis 2017; 8:e2995. [PMID: 28796261 PMCID: PMC5596564 DOI: 10.1038/cddis.2017.376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/12/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Mounting evidence indicates that hotspot p53 mutant proteins often possess gain-of-function property in promoting cell mobility and tumor metastasis. However, the molecular mechanisms are not totally understood. In this study, we demonstrate that the hotspot mutation, p53-R273H, promotes cell migration, invasion in vitro and tumor metastasis in vivo. p53-R273H significantly represses expression of DLX2, a homeobox protein involved in cell proliferation and pattern formation. We show that p53-R273H-mediated DLX2 repression leads to upregulation of Neuropilin-2 (NRP2), a multifunctional co-receptor involved in tumor initiation, growth, survival and metastasis. p53-R273H-induced cell mobility is effectively suppressed by DLX2 expression. Furthermore, knockdown of NRP2 significantly inhibits p53-R273H-induced tumor metastasis in xenograft mouse model. Together, these results reveal an important role for DLX2-NRP2 in p53-R273H-induced cell mobility and tumor metastasis.
Collapse
|
45
|
Moscetti I, Bizzarri AR, Cannistraro S. Binding kinetics of mutant p53R175H with wild type p53 and p63: A Surface Plasmon Resonance and Atomic Force Spectroscopy study. Biophys Chem 2017; 228:55-61. [PMID: 28697449 DOI: 10.1016/j.bpc.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
The oncogenic mutant p53R175H, one of the most frequently occurring in human cancers and usually associated with poor prognosis and chemo resistance, can exert a dominant negative effect over p53 family members, namely wild type p53, p63 and p73, inhibiting their oncosuppressive function. Novel anticancer strategies based on drugs able to prevent the formation of complexes between p53R175H and the p53 family members call for a deeper knowledge on the molecular mechanisms of their interaction. To this aim, p53R175H/p63 and p53R175H/p53 complexes were investigated in vitro by using Surface Plasmon Resonance and Atomic Force Spectroscopy, two emerging and complementary techniques able to provide interaction kinetic information, in near physiological conditions and without any labelling. Both approaches show that p53R175H forms a very specific and highly stable bimolecular complex with both p63 and p53; with these interactions being characterized by a very high affinity with equilibrium dissociation constant, KD, of about 10-9M. These kinetics results, discussed also in connection with those previously reported for the interaction of p53R175H with p73, could inspire the design of suitable anticancer drugs able to antagonize the interaction of p53R175H with the p53 family members, by restoring then their anti-tumour function.
Collapse
Affiliation(s)
- Ilaria Moscetti
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
| | - Anna Rita Bizzarri
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
| | | |
Collapse
|
46
|
Tracz-Gaszewska Z, Klimczak M, Biecek P, Herok M, Kosinski M, Olszewski MB, Czerwińska P, Wiech M, Wiznerowicz M, Zylicz A, Zylicz M, Wawrzynow B. Molecular chaperones in the acquisition of cancer cell chemoresistance with mutated TP53 and MDM2 up-regulation. Oncotarget 2017; 8:82123-82143. [PMID: 29137250 PMCID: PMC5669876 DOI: 10.18632/oncotarget.18899] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
Utilizing the TCGA PANCAN12 dataset we discovered that cancer patients with mutations in TP53 tumor suppressor and overexpression of MDM2 oncogene exhibited decreased survival post treatment. Interestingly, in the case of breast cancer patients, this phenomenon correlated with high expression level of several molecular chaperones belonging to the HSPA, DNAJB and HSPC families. To verify the hypothesis that such a genetic background may promote chaperone-mediated chemoresistance, we employed breast and lung cancer cell lines that constitutively overexpressed heat shock proteins and have shown that HSPA1A/HSP70 and DNAJB1/HSP40 facilitated the binding of mutated p53 to the TAp73α protein. This chaperone-mediated mutated p53–TAp73α complex induced chemoresistance to DNA damaging reagents, like Cisplatin, Doxorubicin, Etoposide or Camptothecin. Importantly, when the MDM2 oncogene was overexpressed, heat shock proteins were displaced and a stable multiprotein complex comprising of mutated p53-TAp73α-MDM2 was formed, additionally amplifying cancer cells chemoresistance. Our findings demonstrate that molecular chaperones aid cancer cells in surviving the cytotoxic effect of chemotherapeutics and may have therapeutic implications.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Marta Klimczak
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Przemyslaw Biecek
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Herok
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Marcin Kosinski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.,Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | | | - Patrycja Czerwińska
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Laboratory of Gene Therapy, Department of Cancer Immunology, The Greater Poland Cancer Center, Poznan, Poland
| | - Milena Wiech
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Wiznerowicz
- Laboratory of Gene Therapy, Department of Cancer Immunology, The Greater Poland Cancer Center, Poznan, Poland
| | - Alicja Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | |
Collapse
|
47
|
Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers. Int J Mol Sci 2017; 18:ijms18050961. [PMID: 28467351 PMCID: PMC5454874 DOI: 10.3390/ijms18050961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
p53 protein is a well-known tumor suppressor factor that regulates cellular homeostasis. As it has several and key functions exerted, p53 is known as “the guardian of the genome” and either loss of function or gain of function mutations in the TP53 coding protein sequence are involved in cancer onset and progression. The Hippo pathway is a key regulator of developmental and regenerative physiological processes but if deregulated can induce cell transformation and cancer progression. The p53 and Hippo pathways exert a plethora of fine-tuned functions that can apparently be in contrast with each other. In this review, we propose that the p53 status can affect the Hippo pathway function by switching its outputs from tumor suppressor to oncogenic activities. In detail, we discuss: (a) the oncogenic role of the protein complex mutant p53/YAP; (b) TAZ oncogenic activation mediated by mutant p53; (c) the therapeutic potential of targeting mutant p53 to impair YAP and TAZ oncogenic functions in human cancers.
Collapse
|
48
|
Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin. Proc Natl Acad Sci U S A 2017; 114:E3766-E3775. [PMID: 28439015 DOI: 10.1073/pnas.1619832114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence supports the gain-of-function of mutant forms of p53 (mutp53s). However, whether mutp53 directly perturbs the DNA replication checkpoint remains unclear. Previously, we have demonstrated that TopBP1 forms a complex with mutp53s and mediates their gain-of-function through NF-Y and p63/p73. Akt phosphorylates TopBP1 and induces its oligomerization, which inhibits its ATR-activating function. Here we show that various contact and conformational mutp53s bypass Akt to induce TopBP1 oligomerization and attenuate ATR checkpoint response during replication stress. The effect on ATR response caused by mutp53 can be exploited in a synthetic lethality strategy, as depletion of another ATR activator, DNA2, in mutp53-R273H-expressing cancer cells renders cells hypersensitive to cisplatin. Expression of mutp53-R273H also makes cancer cells more sensitive to DNA2 depletion or DNA2 inhibitors. In addition to ATR-activating function during replication stress, TopBP1 interacts with Treslin in a Cdk-dependent manner to initiate DNA replication during normal growth. We find that mutp53 also interferes with TopBP1 replication function. Several contact, but not conformational, mutp53s enhance the interaction between TopBP1 and Treslin and promote DNA replication despite the presence of a Cdk2 inhibitor. Together, these data uncover two distinct mechanisms by which mutp53 enhances DNA replication: (i) Both contact and conformational mutp53s can bind TopBP1 and attenuate the checkpoint response to replication stress, and (ii) during normal growth, contact (but not conformational) mutp53s can override the Cdk2 requirement to promote replication by facilitating the TopBP1/Treslin interaction.
Collapse
|
49
|
Shakya R, Tarulli GA, Sheng L, Lokman NA, Ricciardelli C, Pishas KI, Selinger CI, Kohonen-Corish MRJ, Cooper WA, Turner AG, Neilsen PM, Callen DF. Mutant p53 upregulates alpha-1 antitrypsin expression and promotes invasion in lung cancer. Oncogene 2017; 36:4469-4480. [PMID: 28368395 DOI: 10.1038/onc.2017.66] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 02/05/2017] [Accepted: 02/05/2017] [Indexed: 12/13/2022]
Abstract
Missense mutations in the TP53 tumor-suppressor gene inactivate its antitumorigenic properties and endow the incipient cells with newly acquired oncogenic properties that drive invasion and metastasis. Although the oncogenic effect of mutant p53 transcriptome has been widely acknowledged, the global influence of mutant p53 on cancer cell proteome remains to be fully elucidated. Here, we show that mutant p53 drives the release of invasive extracellular factors (the 'secretome') that facilitates the invasion of lung cancer cell lines. Proteomic characterization of the secretome from mutant p53-inducible H1299 human non-small cell lung cancer cell line discovered that the mutant p53 drives its oncogenic pathways through modulating the gene expression of numerous targets that are subsequently secreted from the cells. Of these genes, alpha-1 antitrypsin (A1AT) was identified as a critical effector of mutant p53 that drives invasion in vitro and in vivo, together with induction of epithelial-mesenchymal transition markers expression. Mutant p53 upregulated A1AT transcriptionally through the involvement with its family member p63. Conditioned medium containing secreted A1AT enhanced cell invasion, while an A1AT-blocking antibody attenuated the mutant p53-driven migration and invasion. Importantly, high A1AT expression correlated with increased tumor stage, elevated p53 staining and shorter overall survival in lung adenocarcinoma patients. Collectively, these findings suggest that A1AT is an indispensable target of mutant p53 with prognostic and therapeutic potential in mutant p53-expressing tumors.
Collapse
Affiliation(s)
- R Shakya
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - G A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - L Sheng
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - N A Lokman
- Discipline of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Proteomics Centre, School of Molecular and Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - C Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - K I Pishas
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - C I Selinger
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - M R J Kohonen-Corish
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales, Australia.,School of Medicine, University of Western Sydney, Parramatta, New South Wales, Australia
| | - W A Cooper
- School of Medicine, University of Western Sydney, Parramatta, New South Wales, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - A G Turner
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - P M Neilsen
- Swinburne University of Technology Sarawak Campus, Kuching, Sarawak, Malaysia
| | - D F Callen
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
50
|
Pfister NT, Prives C. Transcriptional Regulation by Wild-Type and Cancer-Related Mutant Forms of p53. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026054. [PMID: 27836911 DOI: 10.1101/cshperspect.a026054] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TP53 missense mutations produce a mutant p53 protein that cannot activate the p53 tumor suppressive transcriptional response, which is the primary selective pressure for TP53 mutation. Specific codons of TP53, termed hotspot mutants, are mutated at elevated frequency. Hotspot forms of mutant p53 possess oncogenic properties in addition to being deficient in tumor suppression. Such p53 mutants accumulate to high levels in the cells they inhabit, causing transcriptional alterations that produce pro-oncogenic activities, such as increased pro-growth signaling, invasiveness, and metastases. These forms of mutant p53 very likely use features of wild-type p53, such as interactions with the transcriptional machinery, to produce oncogenic effects. In this review, we discuss commonalities between wild-type and mutant p53 proteins with an emphasis on transcriptional processes.
Collapse
Affiliation(s)
- Neil T Pfister
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|