1
|
Wang Z, Song A, Tao B, Miao M, Luo YQ, Wang J, Yin Z, Xiao R, Zhou X, Shang XY, Hu S, Liang K, Danko CG, Chen FX. The phosphatase PP1 sustains global transcription by promoting RNA polymerase II pause release. Mol Cell 2024; 84:4824-4842.e7. [PMID: 39603240 DOI: 10.1016/j.molcel.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
RNA polymerase II progression from initiation to elongation is driven in part by a cascade of protein kinases acting on the core transcription machinery. Conversely, the corresponding phosphatases, notably PP2A and PP1-the most abundant serine-threonine phosphatases in cells-are thought to mainly impede polymerase progression, respectively restraining pause release at promoters and elongation at terminators. Here, we reveal an unexpected role of PP1, within the phosphatase 1 nuclear targeting subunit (PNUTS)-PP1 complex, in sustaining global transcriptional activation in human cells. Acute disruption of PNUTS-PP1 leads to severe defects in the release of paused polymerase and subsequent downregulation for the majority of transcribed genes. PNUTS-PP1 promotes pause release by dephosphorylating multiple substrates, including the 7SK small nuclear ribonucleoprotein particle (snRNP) subunit MEPCE, a known pausing regulator. PNUTS-PP1 exhibits antagonistic functions compared with Integrator-PP2A (INTAC) phosphatase, which generally inhibits pause release. Our research thus highlights opposing roles of PP1 and PP2A in modulating genome-wide transcriptional pausing and gene expression.
Collapse
Affiliation(s)
- Zhenning Wang
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Aixia Song
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bolin Tao
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Maojian Miao
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Qing Luo
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingwen Wang
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhinang Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruijing Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xinwen Zhou
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue-Ying Shang
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibin Hu
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kaiwei Liang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Fei Xavier Chen
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
The Plasmodium falciparum Nuclear Protein Phosphatase NIF4 Is Required for Efficient Merozoite Invasion and Regulates Artemisinin Sensitivity. mBio 2022; 13:e0189722. [PMID: 35938722 PMCID: PMC9426563 DOI: 10.1128/mbio.01897-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in Plasmodium falciparum has been associated with a mutation in the NLI-interacting factor-like phosphatase PfNIF4, in addition to the mutations in the Kelch13 protein as the major determinant. We found that PfNIF4 was predominantly expressed at the schizont stage and localized in the nuclei of the parasite. To elucidate the functions of PfNIF4 in P. falciparum, we performed PfNIF4 knockdown (KD) using the inducible ribozyme system. PfNIF4 KD attenuated merozoite invasion and affected gametocytogenesis. PfNIF4 KD parasites also showed significantly increased in vitro susceptibility to artemisinins. Transcriptomic and proteomic analysis revealed that PfNIF4 KD led to the downregulation of gene categories involved in invasion and artemisinin resistance (e.g., mitochondrial function, membrane, and Kelch13 interactome) at the trophozoite and/or schizont stage. Consistent with PfNIF4 being a protein phosphatase, PfNIF4 KD resulted in an overall upregulation of the phosphoproteome of infected erythrocytes. Quantitative phosphoproteomic profiling identified a set of PfNIF4-regulated phosphoproteins with functional similarity to FCP1 substrates, particularly proteins involved in chromatin organization and transcriptional regulation. Specifically, we observed increased phosphorylation of Ser2/5 of the tandem repeats in the C-terminal domain (CTD) of RNA polymerase II (RNAPII) upon PfNIF4 KD. Furthermore, using the TurboID-based proteomic approach, we identified that PfNIF4 interacted with the RNAPII components, AP2-domain transcription factors, and chromatin-modifiers and binders. These findings suggest that PfNIF4 may act as the RNAPII CTD phosphatase, regulating the expression of general and parasite-specific cellular pathways during the blood-stage development.
Collapse
|
3
|
RPAP2 regulates a transcription initiation checkpoint by inhibiting assembly of pre-initiation complex. Cell Rep 2022; 39:110732. [PMID: 35476980 DOI: 10.1016/j.celrep.2022.110732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/31/2021] [Accepted: 04/02/2022] [Indexed: 11/21/2022] Open
Abstract
RNA polymerase II (Pol II)-mediated transcription in metazoans requires precise regulation. RNA Pol II-associated protein 2 (RPAP2) was previously identified to transport Pol II from cytoplasm to nucleus and dephosphorylates Pol II C-terminal domain (CTD). Here, we show that RPAP2 binds hypo-/hyper-phosphorylated Pol II with undetectable phosphatase activity. The structure of RPAP2-Pol II shows mutually exclusive assembly of RPAP2-Pol II and pre-initiation complex (PIC) due to three steric clashes. RPAP2 prevents and disrupts Pol II-TFIIF interaction and impairs in vitro transcription initiation, suggesting a function in inhibiting PIC assembly. Loss of RPAP2 in cells leads to global accumulation of TFIIF and Pol II at promoters, indicating a critical role of RPAP2 in inhibiting PIC assembly independent of its putative phosphatase activity. Our study indicates that RPAP2 functions as a gatekeeper to inhibit PIC assembly and transcription initiation and suggests a transcription checkpoint.
Collapse
|
4
|
Puzanov GA, Senchenko VN. SCP Phosphatases and Oncogenesis. Mol Biol 2021. [DOI: 10.1134/s0026893321030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Kim W, LeBlanc B, Matthews WL, Zhang ZY, Zhang Y. Advancements in chemical biology targeting the kinases and phosphatases of RNA polymerase II-mediated transcription. Curr Opin Chem Biol 2021; 63:68-77. [PMID: 33714893 PMCID: PMC8384638 DOI: 10.1016/j.cbpa.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Phosphorylation of RNA polymerase II (RNAP II) coordinates the temporal progression of eukaryotic transcription. The development and application of chemical genetic methods have enhanced our ability to investigate the intricate and intertwined pathways regulated by the kinases and phosphatases targeting RNAP II to ensure transcription accuracy and efficiency. Although identifying small molecules that modulate these enzymes has been challenging due to their highly conserved structures, powerful new chemical biology strategies such as targeted covalent inhibitors and small molecule degraders have significantly improved chemical probe specificity. The recent success in discovering phosphatase holoenzyme activators and inhibitors, which demonstrates the feasibility of selective targeting of individual phosphatase complexes, opens up new avenues into the study of transcription. Herein, we summarize how chemical biology is used to delineate kinases' identities involved in RNAP II regulation and new concepts in inhibitor/activator design implemented for kinases/phosphatases involved in modulating RNAP II-mediated transcription.
Collapse
Affiliation(s)
- Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Blase LeBlanc
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Wendy L Matthews
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA; The Institute for Cellular and Molecular Biology. University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
7
|
Calvo O. RNA polymerase II phosphorylation and gene looping: new roles for the Rpb4/7 heterodimer in regulating gene expression. Curr Genet 2020; 66:927-937. [PMID: 32508001 DOI: 10.1007/s00294-020-01084-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
In eukaryotes, cellular RNAs are produced by three nuclear RNA polymerases (RNAPI, II, and III), which are multisubunit complexes. They share structural and functional features, although they are specialized in the synthesis of specific RNAs. RNAPII transcribes the vast majority of cellular RNAs, including mRNAs and a large number of noncoding RNAs. The structure of RNAPII is highly conserved in all eukaryotes, consisting of 12 subunits (Rpb1-12) organized into five structural modules, among which the Rpb4 and Rpb7 subunits form the stalk. Early studies suggested an accessory role for Rpb4, because is required for specific gene transcription pathways. Far from this initial hypothesis, it is now well established that the Rpb4/7 heterodimer plays much wider roles in gene expression regulation. It participates in nuclear and cytosolic processes ranging from transcription to translation and mRNA degradation in a cyclical process. For this reason, Rpb4/7 is considered a coordinator of gene expression. New functions have been added to the list of stalk functions during transcription, which will be reviewed herein: first, a role in the maintenance of proper RNAPII phosphorylation levels, and second, a role in the establishment of a looped gene architecture in actively transcribed genes.
Collapse
Affiliation(s)
- Olga Calvo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González 2, Salamanca, 37007, España.
| |
Collapse
|
8
|
Nozaka A, Nishiwaki A, Nagashima Y, Endo S, Kuroki M, Nakajima M, Narukawa M, Kamisuki S, Arazoe T, Taguchi H, Sugawara F, Kamakura T. Chloramphenicol inhibits eukaryotic Ser/Thr phosphatase and infection-specific cell differentiation in the rice blast fungus. Sci Rep 2019; 9:9283. [PMID: 31243315 PMCID: PMC6594944 DOI: 10.1038/s41598-019-41039-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/25/2019] [Indexed: 01/23/2023] Open
Abstract
Chloramphenicol (Cm) is a broad-spectrum classic antibiotic active against prokaryotic organisms. However, Cm has severe side effects in eukaryotes of which the cause remains unknown. The plant pathogenic fungus Magnaporthe oryzae, which causes rice blast, forms an appressorium to infect the host cell via single-cell differentiation. Chloramphenicol specifically inhibits appressorium formation, which indicates that Cm has a novel molecular target (or targets) in the rice blast fungus. Application of the T7 phage display method inferred that MoDullard, a Ser/Thr-protein phosphatase, may be a target of Cm. In animals Dullard functions in cell differentiation and protein synthesis, but in fungi its role is poorly understood. In vivo and in vitro analyses showed that MoDullard is required for appressorium formation, and that Cm can bind to and inhibit MoDullard function. Given that human phosphatase CTDSP1 complemented the MoDullard function during appressorium formation by M. oryzae, CTDSP1 may be a novel molecular target of Cm in eukaryotes.
Collapse
Affiliation(s)
- Akihito Nozaka
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayaka Nishiwaki
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuka Nagashima
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shogo Endo
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Misa Kuroki
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masahiro Nakajima
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Megumi Narukawa
- Osaka University, Research Institute for Microbial Diseases, Department of Molecular Microbiology, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Kamisuki
- Azabu University, Department of Veterinary Science, Laboratory of Basic Education, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, 252-5201, Japan
| | - Takayuki Arazoe
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hayao Taguchi
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Fumio Sugawara
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takashi Kamakura
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
9
|
Gil RS, Vagnarelli P. Protein phosphatases in chromatin structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:90-101. [PMID: 30036566 PMCID: PMC6227384 DOI: 10.1016/j.bbamcr.2018.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
Chromatin structure and dynamics are highly controlled and regulated processes that play an essential role in many aspects of cell biology. The chromatin transition stages and the factors that control this process are regulated by post-translation modifications, including phosphorylation. While the role of protein kinases in chromatin dynamics has been quite well studied, the nature and regulation of the counteracting phosphatases represent an emerging field but are still at their infancy. In this review we summarize the current literature on phosphatases involved in the regulation of chromatin structure and dynamics, with emphases on the major knowledge gaps that should require attention and more investigation.
Collapse
Affiliation(s)
- Raquel Sales Gil
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK.
| |
Collapse
|
10
|
Burkholder NT, Medellin B, Irani S, Matthews W, Showalter SA, Zhang YJ. Chemical Tools for Studying the Impact of cis/trans Prolyl Isomerization on Signaling: A Case Study on RNA Polymerase II Phosphatase Activity and Specificity. Methods Enzymol 2018; 607:269-297. [PMID: 30149861 PMCID: PMC6701646 DOI: 10.1016/bs.mie.2018.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Proline isomerization is ubiquitous in proteins and is important for regulating important processes such as folding, recognition, and enzymatic activity. In humans, peptidyl-prolyl isomerase cis-trans isomerase NIMA interacting 1 (Pin1) is responsible for mediating fast conversion between cis- and trans-conformations of serine/threonine-proline (S/T-P) motifs in a large number of cellular pathways, many of which are involved in normal development as well as progression of several cancers and diseases. One of the major processes that Pin1 regulates is phosphatase activity against the RNA polymerase II C-terminal domain (RNAPII CTD). However, molecular tools capable of distinguishing the effects of proline conformation on phosphatase function have been lacking. A key tool that allows us to understand isomeric specificity of proteins toward their substrates is the usage of proline mimicking isosteres that are locked to prevent cis/trans-proline conversion. These locked isosteres can be incorporated into standard peptide synthesis and then used in replacement of native substrates in various experimental techniques such as kinetic and thermodynamic assays as well as X-ray crystallography. We will describe the application of these chemical tools in detail using CTD phosphatases as an example. We will also discuss alternative methods for analyzing the effect of proline conformation such as 13C NMR and the biological implications of proline isomeric specificity of proteins. The chemical and analytical tools presented in this chapter are widely applicable and should help elucidate many questions on the role of proline isomerization in biology.
Collapse
Affiliation(s)
| | - Brenda Medellin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Seema Irani
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Wendy Matthews
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Scott A Showalter
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
11
|
Parua PK, Booth GT, Sansó M, Benjamin B, Tanny JC, Lis JT, Fisher RP. A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II. Nature 2018; 558:460-464. [PMID: 29899453 PMCID: PMC6021199 DOI: 10.1038/s41586-018-0214-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022]
Abstract
The end of the RNA polymerase II (Pol II) transcription cycle is strictly regulated to prevent interference between neighbouring genes and to safeguard transcriptome integrity 1 . The accumulation of Pol II downstream of the cleavage and polyadenylation signal can facilitate the recruitment of factors involved in mRNA 3'-end formation and termination 2 , but how this sequence is initiated remains unclear. In a chemical-genetic screen, human protein phosphatase 1 (PP1) isoforms were identified as substrates of positive transcription elongation factor b (P-TEFb), also known as the cyclin-dependent kinase 9 (Cdk9)-cyclin T1 (CycT1) complex 3 . Here we show that Cdk9 and PP1 govern phosphorylation of the conserved elongation factor Spt5 in the fission yeast Schizosaccharomyces pombe. Cdk9 phosphorylates both Spt5 and a negative regulatory site on the PP1 isoform Dis2 4 . Sites targeted by Cdk9 in the Spt5 carboxy-terminal domain can be dephosphorylated by Dis2 in vitro, and dis2 mutations retard Spt5 dephosphorylation after inhibition of Cdk9 in vivo. Chromatin immunoprecipitation and sequencing analysis indicates that Spt5 is dephosphorylated as transcription complexes traverse the cleavage and polyadenylation signal, concomitant with the accumulation of Pol II phosphorylated at residue Ser2 of the carboxy-terminal domain consensus heptad repeat 5 . A conditionally lethal Dis2-inactivating mutation attenuates the drop in Spt5 phosphorylation on chromatin, promotes transcription beyond the normal termination zone (as detected by precision run-on transcription and sequencing 6 ) and is genetically suppressed by the ablation of Cdk9 target sites in Spt5. These results suggest that the transition of Pol II from elongation to termination coincides with a Dis2-dependent reversal of Cdk9 signalling-a switch that is analogous to a Cdk1-PP1 circuit that controls mitotic progression 4 .
Collapse
Affiliation(s)
- Pabitra K Parua
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Miriam Sansó
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Bradley Benjamin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Qi Y, Liu Y, Zhang Z, Gao J, Guan Z, Fang W, Chen S, Chen F, Jiang J. The over-expression of a chrysanthemum gene encoding an RNA polymerase II CTD phosphatase-like 1 enzyme enhances tolerance to heat stress. HORTICULTURE RESEARCH 2018; 5:37. [PMID: 29977573 PMCID: PMC6026497 DOI: 10.1038/s41438-018-0037-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 05/21/2023]
Abstract
The enzyme RNAPII CTD phosphatase-like 1 is known as a transcriptional regulator of the plant response to various abiotic stresses. Here, the isolation of CmCPL1, a chrysanthemum (Chrysanthemum morifolium) gene encoding this enzyme is described. Its predicted 955 residue gene product includes the FCPH catalytic domain, two double-stranded RNA binding motifs, and a nuclear localization signal. A sub-cellular localization assay confirmed that CmCPL1 was expressed in the nucleus. CmCPL1 transcription was shown to be significantly inducible by heat stress. The over-expression and knockdown of CmCPL1, respectively, increased and diminished the tolerance of chrysanthemum to heat stress, which maybe dependent on the regulation of CmCPL1 and on the expression of downstream heat stress-responsive genes.
Collapse
Affiliation(s)
- Yuying Qi
- College of Horticulture, Key Laboratory of Landscaping, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yanan Liu
- College of Horticulture, Key Laboratory of Landscaping, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zixin Zhang
- College of Horticulture, Key Laboratory of Landscaping, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiaojiao Gao
- College of Horticulture, Key Laboratory of Landscaping, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Key Laboratory of Landscaping, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Weimin Fang
- College of Horticulture, Key Laboratory of Landscaping, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sumei Chen
- College of Horticulture, Key Laboratory of Landscaping, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fadi Chen
- College of Horticulture, Key Laboratory of Landscaping, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- College of Horticulture, Key Laboratory of Landscaping, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
13
|
Irani S, Yogesha SD, Mayfield J, Zhang M, Zhang Y, Matthews WL, Nie G, Prescott NA, Zhang YJ. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase. Sci Signal 2016; 9:ra24. [PMID: 26933063 DOI: 10.1126/scisignal.aad4805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families.
Collapse
Affiliation(s)
- Seema Irani
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - S D Yogesha
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Joshua Mayfield
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mengmeng Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yong Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wendy L Matthews
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Grace Nie
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A Prescott
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Mayfield JE, Burkholder NT, Zhang YJ. Dephosphorylating eukaryotic RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:372-87. [PMID: 26779935 DOI: 10.1016/j.bbapap.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Schwer B, Ghosh A, Sanchez AM, Lima CD, Shuman S. Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1. RNA (NEW YORK, N.Y.) 2015; 21:1135-46. [PMID: 25883047 PMCID: PMC4436666 DOI: 10.1261/rna.050286.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
Protein phosphatases regulate mRNA synthesis and processing by remodeling the carboxy-terminal domain (CTD) of RNA polymerase II (Pol2) to dynamically inscribe a Pol2 CTD code. Fission yeast Fcp1 (SpFcp1) is an essential 723-amino acid CTD phosphatase that preferentially hydrolyzes Ser2-PO4 of the YS(2)PTSPS repeat. The SpFcp1 catalytic domain (aa 140-580) is composed of a DxDxT acyl-phosphatase module (FCPH) and a BRCT module. Here we conducted a genetic analysis of SpFcp1, which shows that (i) phosphatase catalytic activity is required for vegetative growth of fission yeast; (ii) the flanking amino-terminal domain (aa 1-139) and its putative metal-binding motif C(99)H(101)Cys(109)C(112) are essential; (iii) the carboxy-terminal domain (aa 581-723) is dispensable; (iv) a structurally disordered internal segment of the FCPH domain (aa 330-393) is dispensable; (v) lethal SpFcp1 mutations R271A and R299A are rescued by shortening the Pol2 CTD repeat array; and (vi) CTD Ser2-PO4 is not the only essential target of SpFcp1 in vivo. Recent studies highlight a second CTD code involving threonine phosphorylation of a repeat motif in transcription elongation factor Spt5. We find that Fcp1 can dephosphorylate Thr1-PO4 of the fission yeast Spt5 CTD nonamer repeat T(1)PAWNSGSK. We identify Arg271 as a governor of Pol2 versus Spt5 CTD substrate preference. Our findings implicate Fcp1 as a versatile sculptor of both the Pol2 and Spt5 CTD codes. Finally, we report a new 1.45 Å crystal structure of SpFcp1 with Mg(2+) and AlF3 that mimics an associative phosphorane transition state of the enzyme-aspartyl-phosphate hydrolysis reaction.
Collapse
Affiliation(s)
- Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Agnidipta Ghosh
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Ana M Sanchez
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA Howard Hughes Medical Institute, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
16
|
Fukudome A, Aksoy E, Wu X, Kumar K, Jeong IS, May K, Russell WK, Koiwa H. Arabidopsis CPL4 is an essential C-terminal domain phosphatase that suppresses xenobiotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:27-39. [PMID: 25041272 DOI: 10.1111/tpj.12612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 05/20/2023]
Abstract
Eukaryotic gene expression is both promoted and inhibited by the reversible phosphorylation of the C-terminal domain of RNA polymerase II (pol II CTD). More than 20 Arabidopsis genes encode CTD phosphatase homologs, including four CTD phosphatase-like (CPL) family members. Although in vitro CTD phosphatase activity has been established for some CPLs, none have been shown to be involved in the phosphoregulation of pol II in vivo. Here we report that CPL4 is a CTD phosphatase essential for the viability of Arabidopsis thaliana. Mass spectrometry analysis identified the pol II subunits RPB1, RPB2 and RPB3 in the affinity-purified CPL4 complex. CPL4 dephosphorylates both Ser2- and Ser5-PO(4) of the CTD in vitro, with a preference for Ser2-PO(4). Arabidopsis plants overexpressing CPL4 accumulated hypophosphorylated pol II, whereas RNA interference-mediated silencing of CPL4 promoted hyperphosphorylation of pol II. A D128A mutation in the conserved DXDXT motif of the CPL4 catalytic domain resulted in a dominant negative form of CPL4, the overexpression of which inhibited transgene expression in transient assays. Inhibition was abolished by truncation of the phosphoprotein-binding Breast Cancer 1 C-terminal domain of CPL4, suggesting that both catalytic function and protein-protein interaction are essential for CPL4-mediated regulation of gene expression. We were unable to recover a homozygous cpl4 mutant, probably due to the zygotic lethality of this mutation. The reduction in CPL4 levels in CPL4(RNAi) plants increased transcript levels of a suite of herbicide/xenobiotic-responsive genes and improved herbicide tolerance, thus suggesting an additional role for CPL4 as a negative regulator of the xenobiotic detoxification pathway.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Department of Horticultural Sciences, Vegetable and Fruit Development Center, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wani S, Yuda M, Fujiwara Y, Yamamoto M, Harada F, Ohkuma Y, Hirose Y. Vertebrate Ssu72 regulates and coordinates 3'-end formation of RNAs transcribed by RNA polymerase II. PLoS One 2014; 9:e106040. [PMID: 25166011 PMCID: PMC4148344 DOI: 10.1371/journal.pone.0106040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/26/2014] [Indexed: 01/18/2023] Open
Abstract
In eukaryotes, the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is composed of tandem repeats of the heptapeptide YSPTSPS, which is subjected to reversible phosphorylation at Ser2, Ser5, and Ser7 during the transcription cycle. Dynamic changes in CTD phosphorylation patterns, established by the activities of multiple kinases and phosphatases, are responsible for stage-specific recruitment of various factors involved in RNA processing, histone modification, and transcription elongation/termination. Yeast Ssu72, a CTD phosphatase specific for Ser5 and Ser7, functions in 3′-end processing of pre-mRNAs and in transcription termination of small non-coding RNAs such as snoRNAs and snRNAs. Vertebrate Ssu72 exhibits Ser5- and Ser7-specific CTD phosphatase activity in vitro, but its roles in gene expression and CTD dephosphorylation in vivo remain to be elucidated. To investigate the functions of vertebrate Ssu72 in gene expression, we established chicken DT40 B-cell lines in which Ssu72 expression was conditionally inactivated. Ssu72 depletion in DT40 cells caused defects in 3′-end formation of U2 and U4 snRNAs and GAPDH mRNA. Surprisingly, however, Ssu72 inactivation increased the efficiency of 3′-end formation of non-polyadenylated replication-dependent histone mRNA. Chromatin immunoprecipitation analyses revealed that Ssu72 depletion caused a significant increase in both Ser5 and Ser7 phosphorylation of the Pol II CTD on all genes in which 3′-end formation was affected. These results suggest that vertebrate Ssu72 plays positive roles in 3′-end formation of snRNAs and polyadenylated mRNAs, but negative roles in 3′-end formation of histone mRNAs, through dephosphorylation of both Ser5 and Ser7 of the CTD.
Collapse
Affiliation(s)
- Shotaro Wani
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Masamichi Yuda
- Department of Molecular and Cellular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yosuke Fujiwara
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Masaya Yamamoto
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Fumio Harada
- Department of Molecular and Cellular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yoshiaki Ohkuma
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Yutaka Hirose
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- * E-mail:
| |
Collapse
|
18
|
Hsu PL, Yang F, Smith-Kinnaman W, Yang W, Song JE, Mosley AL, Varani G. Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD. J Mol Biol 2014; 426:2970-81. [PMID: 24951832 PMCID: PMC4119023 DOI: 10.1016/j.jmb.2014.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/07/2023]
Abstract
The phosphorylation state of heptapeptide repeats within the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (PolII) controls the transcription cycle and is maintained by the competing action of kinases and phosphatases. Rtr1 was recently proposed to be the enzyme responsible for the transition of PolII into the elongation and termination phases of transcription by removing the phosphate marker on serine 5, but this attribution was questioned by the apparent lack of enzymatic activity. Here we demonstrate that Rtr1 is a phosphatase of new structure that is auto-inhibited by its own C-terminus. The enzymatic activity of the protein in vitro is functionally important in vivo as well: a single amino acid mutation that reduces activity leads to the same phenotype in vivo as deletion of the protein-coding gene from yeast. Surprisingly, Rtr1 dephosphorylates not only serine 5 on the CTD but also the newly described anti-termination tyrosine 1 marker, supporting the hypothesis that Rtr1 and its homologs promote the transition from transcription to termination.
Collapse
Affiliation(s)
- Peter L. Hsu
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Whitney Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Jae-Eun Song
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington, USA,Corresponding author. , telephone (206) 543-7113
| |
Collapse
|
19
|
Jaramillo-Tatis S, Bamm VV, Vassall KA, Harauz G. Over-expression in E. coli and purification of functional full-length murine small C-terminal domain phosphatase (SCP1, or Golli-interacting protein). Protein Expr Purif 2014; 101:106-14. [PMID: 24925644 DOI: 10.1016/j.pep.2014.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/26/2014] [Accepted: 05/31/2014] [Indexed: 01/13/2023]
Abstract
During myelination in the central nervous system, proteins arising from the gene in the oligodendrocyte lineage (golli) participate in diverse events in signal transduction and gene regulation. One of the interacting partners of the Golli-isoform BG21 was discovered by yeast-2-hybrid means and was denoted the Golli-interacting-protein (GIP). In subsequent in vitro studies of recombinant murine GIP, it was not possible to produce a full-length version of recombinant murine rmGIP in functional form under native conditions, primarily because of solubility issues, necessitating the study of a hexahistidine-tagged, truncated form ΔN-rmGIP. This protein is an acidic phosphatase belonging to the family of RNA-polymerase-2, small-subunit, C-terminal phosphatases (SCP1), and studies of the human ortholog hSCP1 have also been performed on truncated forms. Here, a new SUMO-expression and purification protocol has been developed for the preparation of a functional, full-length mSCP1/GIP (our nomenclature henceforth), with no additional purification tags. Both full-length mSCP1/GIP and the truncated murine form (now denoted ΔN-rmSCP1/GIP) had similar melting temperatures, indicating that the integrity of the catalytic core per se was minimally affected by the N-terminus. Characterization of mSCP1/GIP activity with the artificial substrate p-NPP (p-nitrophenylphosphate) yielded kinetic parameters comparable to those of ΔN-rmSCP1/GIP and the truncated human ortholog ΔN-hSCP1. Similarly, mSCP1/GIP dephosphorylated a more natural CTD-peptide substrate (but not protein kinase C-phosphorylated BG21) with comparable kinetics to ΔN-hSCP1. The successful production of an active, full-length mSCP1/GIP will enable future evaluation of the functional role of its N-terminus in protein-protein interactions (e.g., BG21) that regulate its phosphatase activity.
Collapse
Affiliation(s)
- Sergio Jaramillo-Tatis
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Kenrick A Vassall
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
20
|
Stress induces changes in the phosphorylation of Trypanosoma cruzi RNA polymerase II, affecting its association with chromatin and RNA processing. EUKARYOTIC CELL 2014; 13:855-65. [PMID: 24813189 DOI: 10.1128/ec.00066-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phosphorylation of the carboxy-terminal heptapeptide repeats of the largest subunit of RNA polymerase II (Pol II) controls several transcription-related events in eukaryotes. Trypanosomatids lack these typical repeats and display an unusual transcription control. RNA Pol II associates with the transcription site of the spliced leader (SL) RNA, which is used in the trans-splicing of all mRNAs transcribed on long polycistronic units. We found that Trypanosoma cruzi RNA Pol II associated with chromatin is highly phosphorylated. When transcription is inhibited by actinomycin D, the enzyme runs off from SL genes, remaining hyperphosphorylated and associated with polycistronic transcription units. Upon heat shock, the enzyme is dephosphorylated and remains associated with the chromatin. Transcription is partially inhibited with the accumulation of housekeeping precursor mRNAs, except for heat shock genes. DNA damage caused dephosphorylation and transcription arrest, with RNA Pol II dissociating from chromatin although staying at the SL. In the presence of calyculin A, the hyperphosphorylated form detached from chromatin, including the SL loci. These results indicate that in trypanosomes, the unusual RNA Pol II is phosphorylated during the transcription of SL and polycistronic operons. Different types of stresses modify its phosphorylation state, affecting pre-RNA processing.
Collapse
|
21
|
Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol Cell Biol 2014; 34:2488-98. [PMID: 24752900 DOI: 10.1128/mcb.00181-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The C-terminal domain of the RNA polymerase II largest subunit (the Rpb1 CTD) is composed of tandem heptad repeats of the consensus sequence Y(1)S(2)P(3)T(4)S(5)P(6)S(7). We reported previously that Thr 4 is phosphorylated and functions in histone mRNA 3'-end formation in chicken DT40 cells. Here, we have extended our studies on Thr 4 and to other CTD mutations by using these cells. We found that an Rpb1 derivative containing only the N-terminal half of the CTD, as well as a similar derivative containing all-consensus repeats (26r), conferred full viability, while the C-terminal half, with more-divergent repeats, did not, reflecting a strong and specific defect in snRNA 3'-end formation. Mutation in 26r of all Ser 2 (S2A) or Ser 5 (S5A) residues resulted in lethality, while Ser 7 (S7A) mutants were fully viable. While S2A and S5A cells displayed defects in transcription and RNA processing, S7A cells behaved identically to 26r cells in all respects. Finally, we found that Thr 4 was phosphorylated by cyclin-dependent kinase 9 in cells and dephosphorylated both in vitro and in vivo by the phosphatase Fcp1.
Collapse
|
22
|
Williams BC, Filter JJ, Blake-Hodek KA, Wadzinski BE, Fuda NJ, Shalloway D, Goldberg ML. Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers. eLife 2014; 3:e01695. [PMID: 24618897 PMCID: PMC3949306 DOI: 10.7554/elife.01695] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
During M phase, Endosulfine (Endos) family proteins are phosphorylated by Greatwall kinase (Gwl), and the resultant pEndos inhibits the phosphatase PP2A-B55, which would otherwise prematurely reverse many CDK-driven phosphorylations. We show here that PP2A-B55 is the enzyme responsible for dephosphorylating pEndos during M phase exit. The kinetic parameters for PP2A-B55's action on pEndos are orders of magnitude lower than those for CDK-phosphorylated substrates, suggesting a simple model for PP2A-B55 regulation that we call inhibition by unfair competition. As the name suggests, during M phase PP2A-B55's attention is diverted to pEndos, which binds much more avidly and is dephosphorylated more slowly than other substrates. When Gwl is inactivated during the M phase-to-interphase transition, the dynamic balance changes: pEndos dephosphorylated by PP2A-B55 cannot be replaced, so the phosphatase can refocus its attention on CDK-phosphorylated substrates. This mechanism explains simultaneously how PP2A-B55 and Gwl together regulate pEndos, and how pEndos controls PP2A-B55. DOI: http://dx.doi.org/10.7554/eLife.01695.001.
Collapse
Affiliation(s)
- Byron C Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | | | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, United States
| | - Nicholas J Fuda
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
23
|
Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Molecules 2014; 19:1481-511. [PMID: 24473209 PMCID: PMC4350670 DOI: 10.3390/molecules19021481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications of the heptad repeat sequences in the C-terminal domain (CTD) of RNA polymerase II (Pol II) are well recognized for their roles in coordinating transcription with other nuclear processes that impinge upon transcription by the Pol II machinery; and this is primarily achieved through CTD interactions with the various nuclear factors. The identification of novel modifications on new regulatory sites of the CTD suggests that, instead of an independent action for all modifications on CTD, a combinatorial effect is in operation. In this review we focus on two well-characterized modifications of the CTD, namely serine phosphorylation and prolyl isomerization, and discuss the complex interplay between the enzymes modifying their respective regulatory sites. We summarize the current understanding of how the prolyl isomerization state of the CTD dictates the specificity of writers (CTD kinases), erasers (CTD phosphatases) and readers (CTD binding proteins) and how that correlates to transcription status. Subtle changes in prolyl isomerization states cannot be detected at the primary sequence level, we describe the methods that have been utilized to investigate this mode of regulation. Finally, a general model of how prolyl isomerization regulates the phosphorylation state of CTD, and therefore transcription-coupled processes, is proposed.
Collapse
|
24
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
25
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
26
|
Zhang M, Yogesha SD, Mayfield JE, Gill GN, Zhang Y. Viewing serine/threonine protein phosphatases through the eyes of drug designers. FEBS J 2013; 280:4739-60. [PMID: 23937612 DOI: 10.1111/febs.12481] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/03/2013] [Accepted: 08/02/2013] [Indexed: 01/04/2023]
Abstract
Protein phosphatases, as the counterpart to protein kinases, are essential for homeostatic balance of cell signaling. Small chemical compounds that modulate the specific activity of phosphatases can be powerful tools to elucidate the biological functions of these enzymes. More importantly, many phosphatases are central players in the development of pathological pathways where inactivation can reverse or delay the onset of human diseases. Therefore, potent inhibitors for such phosphatases can be of great therapeutic benefit. In contrast to the seemingly identical enzymatic mechanism and structural characterization of eukaryotic protein kinases, protein phosphatases evolved from diverse ancestors, resulting in different domain architectures, reaction mechanisms and active site properties. In this review, we discuss for each family of serine/threonine protein phosphatases their involvement in biological processes and corresponding strategies for small chemical intervention. Recent advances in modern drug discovery technologies have markedly facilitated the identification of selective inhibitors for some members of the phosphatase family. Furthermore, the rapid growth in knowledge about structure-activity relationships related to possible new drug targets has aided the discovery of natural product inhibitors for the phosphatase family. This review summarizes the current state of investigation of the small molecules that regulate the function of serine/threonine phosphatases, the challenges presented and also strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry and Biochemistry, University of Texas at Austin, TX, USA
| | | | | | | | | |
Collapse
|
27
|
The arabidopsis RNA binding protein with K homology motifs, SHINY1, interacts with the C-terminal domain phosphatase-like 1 (CPL1) to repress stress-inducible gene expression. PLoS Genet 2013; 9:e1003625. [PMID: 23874224 PMCID: PMC3708844 DOI: 10.1371/journal.pgen.1003625] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/27/2013] [Indexed: 12/23/2022] Open
Abstract
The phosphorylation state of the C-terminal domain (CTD) of the RNA polymerase II plays crucial roles in transcription and mRNA processing. Previous studies showed that the plant CTD phosphatase-like 1 (CPL1) dephosphorylates Ser-5-specific CTD and regulates abiotic stress response in Arabidopsis. Here, we report the identification of a K-homology domain-containing protein named SHINY1 (SHI1) that interacts with CPL1 to modulate gene expression. The shi1 mutant was isolated from a forward genetic screening for mutants showing elevated expression of the luciferase reporter gene driven by a salt-inducible promoter. The shi1 mutant is more sensitive to cold treatment during vegetative growth and insensitive to abscisic acid in seed germination, resembling the phenotypes of shi4 that is allelic to the cpl1 mutant. Both SHI1 and SHI4/CPL1 are nuclear-localized proteins. SHI1 interacts with SHI4/CPL1 in vitro and in vivo. Loss-of-function mutations in shi1 and shi4 resulted in similar changes in the expression of some stress-inducible genes. Moreover, both shi1 and shi4 mutants display higher mRNA capping efficiency and altered polyadenylation site selection for some of the stress-inducible genes, when compared with wild type. We propose that the SHI1-SHI4/CPL1 complex inhibits transcription by preventing mRNA capping and transition from transcription initiation to elongation. Plants, including important economic crops, frequently grow under unfavorable conditions that largely reduce their production potential. Plants respond to these stress conditions by adjusting physiological status resulting from changes in gene expression. Many genes that are repressed at normal growth conditions are activated in response to stresses. The presented work here attempted to answer the question as to how stress inducible genes are repressed at normal growth conditions. We established a genetic system to identify genes that are essential for such repression and found a protein complex that plays crucial roles in regulating stress inducible gene expression. Our work also revealed important molecular processes that are modulated by the identified protein complex. These findings will help our understanding about gene expression and regulation in general and the molecular mechanisms governing plant stress response in particular.
Collapse
|
28
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
29
|
Aitken S, Alexander RD, Beggs JD. A rule-based kinetic model of RNA polymerase II C-terminal domain phosphorylation. J R Soc Interface 2013; 10:20130438. [PMID: 23804443 PMCID: PMC3730697 DOI: 10.1098/rsif.2013.0438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complexity of many RNA processing pathways is such that a conventional systems modelling approach is inadequate to represent all the molecular species involved. We demonstrate that rule-based modelling permits a detailed model of a complex RNA signalling pathway to be defined. Phosphorylation of the RNA polymerase II (RNAPII) C-terminal domain (CTD; a flexible tail-like extension of the largest subunit) couples pre-messenger RNA capping, splicing and 3' end maturation to transcriptional elongation and termination, and plays a central role in integrating these processes. The phosphorylation states of the serine residues of many heptapeptide repeats of the CTD alter along the coding region of genes as a function of distance from the promoter. From a mechanistic perspective, both the changes in phosphorylation and the location at which they take place on the genes are a function of the time spent by RNAPII in elongation as this interval provides the opportunity for the kinases and phosphatases to interact with the CTD. On this basis, we synthesize the available data to create a kinetic model of the action of the known kinases and phosphatases to resolve the phosphorylation pathways and their kinetics.
Collapse
Affiliation(s)
- Stuart Aitken
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | | | | |
Collapse
|
30
|
Xiang K, Manley JL, Tong L. An unexpected binding mode for a Pol II CTD peptide phosphorylated at Ser7 in the active site of the CTD phosphatase Ssu72. Genes Dev 2012; 26:2265-70. [PMID: 23070812 DOI: 10.1101/gad.198853.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ssu72, an RNA polymerase II C-terminal domain (CTD) phospho-Ser5 (pSer5) phosphatase, was recently reported to have pSer7 phosphatase activity as well. We report here the crystal structure of a ternary complex of the N-terminal domain of human symplekin, human Ssu72, and a 10-mer pSer7 CTD peptide. Surprisingly, the peptide is bound in the Ssu72 active site with its backbone running in the opposite direction compared with a pSer5 peptide. The pSer7 phosphatase activity of Ssu72 is ∼4000-fold lower than its pSer5 phosphatase activity toward a peptide substrate, consistent with the structural observations.
Collapse
Affiliation(s)
- Kehui Xiang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
31
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 489] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
32
|
Jasnovidova O, Stefl R. The CTD code of RNA polymerase II: a structural view. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:1-16. [DOI: 10.1002/wrna.1138] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Zhang M, Wang XJ, Chen X, Bowman ME, Luo Y, Noel JP, Ellington AD, Etzkorn FA, Zhang Y. Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code. ACS Chem Biol 2012; 7:1462-70. [PMID: 22670809 DOI: 10.1021/cb3000887] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C-terminal domain (CTD) of eukaryotic RNA polymerase II is an essential regulator for RNA polymerase II-mediated transcription. It is composed of multiple repeats of a consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). CTD regulation of transcription is mediated by both phosphorylation of the serines and prolyl isomerization of the two prolines. Interestingly, the phosphorylation sites are typically close to prolines, and thus the conformation of the adjacent proline could impact the specificity of the corresponding kinases and phosphatases. Experimental evidence of cross-talk between these two regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr (pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In the present study, we provide structural snapshots and kinetic evidence that support the concept of cross-talk between prolyl isomerization and phosphorylation. We determined the structures of Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro motifs in cis or trans conformations. The results unequivocally demonstrate the utility of both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound to a protein target. Building on this result, we identified a specific case in which Pin1 differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 and Ssu72) that target the same serine residue in the CTD heptad repeat but have different preferences for the isomerization state of the adjacent proline residue. These data exemplify for the first time how modulation of proline isomerization can kinetically impact signal transduction in transcription regulation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Xiaodong J. Wang
- Department of Chemistry, Virginia Tech, MC 0212, Blacksburg, Virginia 24061,
United States
| | - Xi Chen
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Marianne E. Bowman
- Jack Skirball Chemical Biology
and Protein Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Yonghua Luo
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Joseph P. Noel
- Jack Skirball Chemical Biology
and Protein Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Andrew D. Ellington
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Felicia A. Etzkorn
- Department of Chemistry, Virginia Tech, MC 0212, Blacksburg, Virginia 24061,
United States
| | - Yan Zhang
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Juhász I, Villányi Z, Tombácz I, Boros IM. High Fcp1 phosphatase activity contributes to setting an intense transcription rate required in Drosophila nurse and follicular cells for egg production. Gene 2012; 509:60-7. [PMID: 22903034 DOI: 10.1016/j.gene.2012.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 11/28/2022]
Abstract
During transcription cycles serine side chains in the carboxyl terminal domain (CTD) of the largest subunit of RNA polymerase II undergo dynamic phosphorylation-de-phosphorylation changes, and the modification status of the CTD serves as a signal for proteins involved in transcription and RNA maturation. We show here that the major CTD de-phosphorylating enzyme Fcp1 is expressed at high levels in germline cells of Drosophila. We used transgene constructs to modify the Fcp1 phosphatase level in Drosophila ovaries and found that high levels of Fcp1 are required for intensive gene expression in nurse cells. On the contrary, low Fcp1 levels might limit the rate of transcription. Fcp1 over-expression results in increased expression of microtubules in nurse cells. Our results show that tightly controlled high level Fcp1 expression in the nurse cells of Drosophila ovaries is required for proper egg maturation.
Collapse
Affiliation(s)
- Ildikó Juhász
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | |
Collapse
|
35
|
Fcp1 dephosphorylation of the RNA polymerase II C-terminal domain is required for efficient transcription of heat shock genes. Mol Cell Biol 2012; 32:3428-37. [PMID: 22733996 DOI: 10.1128/mcb.00247-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fcp1 dephosphorylates the C-terminal domain of the largest subunit of RNA polymerase II (Pol II) to recycle it into a form that can initiate a new round of transcription. Previously, we identified Drosophila Fcp1 as an important factor in optimal Hsp70 mRNA accumulation after heat shock. Here, we examine the role of Fcp1 in transcription of heat shock genes in vivo. We demonstrate that Fcp1 localizes to active sites of transcription including the induced Hsp70 gene. The reduced Hsp70 mRNA accumulation seen by RNA interference (RNAi) depletion of Fcp1 in S2 cells is a result of a loss of Pol II in the coding region of highly transcribed heat shock-induced genes: Hsp70, Hsp26, and Hsp83. Moreover, Fcp1 depletion dramatically increases phosphorylation of the non-chromatin-bound Pol II. Reexpression of either wild-type or catalytically dead versions of Fcp1 demonstrates that both the reduced Pol II levels on heat shock genes and the increased levels of phosphorylated free Pol II are dependent on the catalytic activity of Fcp1. Our results indicate that Fcp1 is required to maintain the pool of initiation-competent unphosphorylated Pol II, and this function is particularly important for the highly transcribed heat shock genes.
Collapse
|
36
|
Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell 2011; 45:111-22. [PMID: 22137580 PMCID: PMC3262128 DOI: 10.1016/j.molcel.2011.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/07/2011] [Accepted: 09/30/2011] [Indexed: 11/30/2022]
Abstract
The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II) comprises multiple heptapeptide repeats of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Reversible phosphorylation of Ser2, Ser5, and Ser7 during the transcription cycle mediates the sequential recruitment of transcription/RNA processing factors. Phosphorylation of Ser7 is required for recruitment of the gene type-specific Integrator complex to the Pol II-transcribed small nuclear (sn)RNA genes. Here, we show that RNA Pol II-associated protein 2 (RPAP2) specifically recognizes the phospho-Ser7 mark on the Pol II CTD and also interacts with Integrator subunits. siRNA-mediated knockdown of RPAP2 and mutation of Ser7 to alanine cause similar defects in snRNA gene expression. In addition, we show that RPAP2 is a CTD Ser5 phosphatase. Taken together, our results indicate that during transcription of snRNA genes, Ser7 phosphorylation facilitates recruitment of RPAP2, which in turn both recruits Integrator and dephosphorylates Ser5.
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
37
|
Sukegawa Y, Yamashita A, Yamamoto M. The fission yeast stress-responsive MAPK pathway promotes meiosis via the phosphorylation of Pol II CTD in response to environmental and feedback cues. PLoS Genet 2011; 7:e1002387. [PMID: 22144909 PMCID: PMC3228818 DOI: 10.1371/journal.pgen.1002387] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 10/04/2011] [Indexed: 01/27/2023] Open
Abstract
The RRM-type RNA-binding protein Mei2 is a master regulator of meiosis in fission yeast, in which it stabilizes meiosis-specific mRNAs by blocking their destruction. Artificial activation of Mei2 can provoke the entire meiotic process, and it is suspected that Mei2 may do more than the stabilization of meiosis-specific mRNAs. In our current study using a new screening system, we show that Mei2 genetically interacts with subunits of CTDK-I, which phosphorylates serine-2 residues on the C-terminal domain of RNA polymerase II (Pol II CTD). Phosphorylation of CTD Ser-2 is essential to enable the robust transcription of ste11, which encodes an HMG-type transcription factor that regulates the expression of mei2 and other genes necessary for sexual development. CTD Ser-2 phosphorylation increases under nitrogen starvation, and the stress-responsive MAP kinase pathway, mediated by Wis1 MAPKK and Sty1 MAPK, is critical for this stress response. Sty1 phosphorylates Lsk1, the catalytic subunit of CTDK-I. Furthermore, a feedback loop stemming from activated Mei2 to Win1 and Wis4 MAPKKKs operates in this pathway and eventually enhances CTD Ser-2 phosphorylation and ste11 transcription. Hence, in addition to starting meiosis, Mei2 functions to reinforce the commitment to it, once cells have entered this process. This study also demonstrates clearly that the stress-responsive MAP kinase pathway can modulates gene expression through phosphorylation of Pol II CTD. Hundreds of genes are newly expressed during meiosis, a process to form gametes, and the control of meiosis-specific gene expression is not simple. The master regulator of meiosis in fission yeast, Mei2, blocks an RNA destruction system that selectively degrades meiosis-specific mRNAs, highlighting the importance of post-transcriptional control in meiotic gene expression. Here we present another example of unforeseen regulation for meiosis. Ste11 is a key transcription factor responsible for the early meiotic gene expression in fission yeast. The ste11 gene is transcribed robustly only when serine-2 residues on the C-terminal domain (CTD Ser-2) of RNA polymerase II are phosphorylated. We show that the stress-responsive MAP kinase cascade transmits the environmental signal to stimulate CTD Ser-2 phosphorylation. Sty1 MAP kinase appears to phosphorylate and activate the catalytic subunit of CTDK-I, which in turn phosphorylates CTD Ser-2. We demonstrate further that Mei2, expression of which depends on Ste11, can activate the MAP kinase cascade, forming a feedback loop. Thus, we clarify here three important issues in cellular development: the physiological role of CTD Ser-2 phosphorylation, the molecular function of the stress-responsive MAP kinase pathway, and the presence of positive feedback that reinforces the commitment to meiosis.
Collapse
Affiliation(s)
- Yuko Sukegawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Akira Yamashita
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Abstract
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero- domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.
Collapse
|
39
|
Werner-Allen JW, Lee CJ, Liu P, Nicely NI, Wang S, Greenleaf AL, Zhou P. cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J Biol Chem 2010; 286:5717-26. [PMID: 21159777 DOI: 10.1074/jbc.m110.197129] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase II coordinates co-transcriptional events by recruiting distinct sets of nuclear factors to specific stages of transcription via changes of phosphorylation patterns along its C-terminal domain (CTD). Although it has become increasingly clear that proline isomerization also helps regulate CTD-associated processes, the molecular basis of its role is unknown. Here, we report the structure of the Ser(P)(5) CTD phosphatase Ssu72 in complex with substrate, revealing a remarkable CTD conformation with the Ser(P)(5)-Pro(6) motif in the cis configuration. We show that the cis-Ser(P)(5)-Pro(6) isomer is the minor population in solution and that Ess1-catalyzed cis-trans-proline isomerization facilitates rapid dephosphorylation by Ssu72, providing an explanation for recently discovered in vivo connections between these enzymes and a revised model for CTD-mediated small nuclear RNA termination. This work presents the first structural evidence of a cis-proline-specific enzyme and an unexpected mechanism of isomer-based regulation of phosphorylation, with broad implications for CTD biology.
Collapse
Affiliation(s)
- Jon W Werner-Allen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Arabidopsis SCP1-like small phosphatases differentially dephosphorylate RNA polymerase II C-terminal domain. Biochem Biophys Res Commun 2010; 397:355-60. [DOI: 10.1016/j.bbrc.2010.05.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
41
|
The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster. Gene 2009; 446:58-67. [PMID: 19632310 DOI: 10.1016/j.gene.2009.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/09/2009] [Accepted: 07/17/2009] [Indexed: 11/23/2022]
Abstract
The reversible phosphorylation-dephosphorylation of RNA polymerase II (Pol II) large subunit carboxyl terminal domain (CTD) during transcription cycles in eukaryotic cells generates signals for the steps of RNA synthesis and maturation. The major phosphatase specific for CTD dephosphorylation from yeast to mammals is the TFIIF-interacting CTD-phosphatase, Fcp1. We report here on the in vivo analysis of Fcp1 function in Drosophila using transgenic lines in which the phosphatase production is misregulated. Fcp1 function is essential throughout Drosophila development and ectopic up- or downregulation of fcp1 results in lethality. The fly Fcp1 binds to specific regions of the polytene chromosomes at many sites colocalized with Pol II. In accord with the strong evolutional conservation of Fcp1: (1) the Xenopus fcp1 can substitute the fly fcp1 function, (2) similarly to its S. pombe homologue, Drosophila melanogaster (Dm)Fcp1 interacts with the RPB4 subunit of Pol II, and (3) transient expression of DmFcp1 has a negative effect on transcription in mammalian cells. The in vivo experimental system described here suggests that fly Fcp1 is associated with the transcription engaged Pol II and offers versatile possibilities for studying this evolutionary conserved essential enzyme.
Collapse
|
42
|
Quezada EM, Kane CM. The Hepatitis C Virus NS5A Stimulates NS5B During In Vitro RNA Synthesis in a Template Specific Manner. Open Biochem J 2009; 3:39-48. [PMID: 19590581 PMCID: PMC2701273 DOI: 10.2174/1874091x00903010039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 01/29/2023] Open
Abstract
The hepatitis C virus (HCV) NS5B protein contains the RNA dependent RNA polymerase (RdRp) activity that catalyzes the synthesis of the viral genome with other host and viral factors. NS5A is an HCV-encoded protein previously shown to localize to the replisome and be necessary for viral replication. However, its role in replication has not been defined. Using an in vitro biochemical assay, we detected a stimulatory effect of NS5A on the NS5B replication reaction with minimal natural templates. NS5A stimulates replication by NS5B on two templates derived from the 3’ end of the RNA genome (4 fold ± 1.3 fold). A pre-incubation step with the two proteins prior to the replication reaction and substoichiometric levels of NS5A are required for detecting stimulation. With a template derived from the 3’end complementary to the RNA genome (the negative strand) no stimulation was observed. Furthermore, with a synthetic template that allows studying different phases of replication, NS5A stimulates NS5B during elongation. These findings suggest that NS5A stimulates NS5B during synthesis of the complementary (i.e., negative) strand of the RNA genome.
Collapse
Affiliation(s)
- Elizabeth M Quezada
- Department of Molecular and Cell Biology, University of California - Berkeley. Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
43
|
Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries. Mol Cell Biol 2009; 29:2925-34. [PMID: 19332564 DOI: 10.1128/mcb.01655-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a reiterated heptad sequence (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7) that plays a key role in the transcription cycle, coordinating the exchange of transcription and RNA processing factors. The structure of the CTD is flexible and undergoes conformational changes in response to serine phosphorylation and proline isomerization. Here we report that the Ess1 peptidyl prolyl isomerase functionally interacts with the transcription initiation factor TFIIB and with the Ssu72 CTD phosphatase and Pta1 components of the CPF 3'-end processing complex. The ess1(A144T) and ess1(H164R) mutants, initially described by Hanes and coworkers (Yeast 5:55-72, 1989), accumulate the pSer5 phosphorylated form of Pol II; confer phosphate, galactose, and inositol auxotrophies; and fail to activate PHO5, GAL10, and INO1 reporter genes. These mutants are also defective for transcription termination, but in vitro experiments indicate that this defect is not caused by altering the processing efficiency of the cleavage/polyadenylation machinery. Consistent with a role in initiation and termination, Ess1 associates with the promoter and terminator regions of the PMA1 and PHO5 genes. We propose that Ess1 facilitates pSer5-Pro6 dephosphorylation by generating the CTD structural conformation recognized by the Ssu72 phosphatase and that pSer5 dephosphorylation affects both early and late stages of the transcription cycle.
Collapse
|
44
|
Yang A, Abbott KL, Desjardins A, Di Lello P, Omichinski JG, Legault P. NMR Structure of a Complex Formed by the Carboxyl-Terminal Domain of Human RAP74 and a Phosphorylated Peptide from the Central Domain of the FCP1 Phosphatase. Biochemistry 2009; 48:1964-74. [DOI: 10.1021/bi801549m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ao Yang
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Karen L. Abbott
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Alexandre Desjardins
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Paola Di Lello
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - James G. Omichinski
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Pascale Legault
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
45
|
Ghosh A, Shuman S, Lima CD. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol Cell 2009; 32:478-90. [PMID: 19026779 DOI: 10.1016/j.molcel.2008.09.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/22/2008] [Accepted: 09/11/2008] [Indexed: 11/24/2022]
Abstract
Kinases and phosphatases regulate mRNA synthesis and processing by phosphorylating and dephosphorylating the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. Fcp1 is an essential CTD phosphatase that preferentially hydrolyzes Ser2-PO(4) of the tandem YSPTSPS CTD heptad array. Fcp1 crystal structures were captured at two stages of the reaction pathway: a Mg-BeF(3) complex that mimics the aspartylphosphate intermediate and a Mg-AlF(4)(-) complex that mimics the transition state of the hydrolysis step. Fcp1 is a Y-shaped protein composed of an acylphosphatase domain located at the base of a deep canyon formed by flanking modules that are missing from the small CTD phosphatase (SCP) clade: an Fcp1-specific helical domain and a C-terminal BRCA1 C-terminal (BRCT) domain. The structure and mutational analysis reveals that Fcp1 and Scp1 (a Ser5-selective phosphatase) adopt different CTD-binding modes; we surmise the CTD threads through the Fcp1 canyon to access the active site.
Collapse
Affiliation(s)
- Agnidipta Ghosh
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | |
Collapse
|
46
|
Karagiannis J, Balasubramanian MK. A cyclin-dependent kinase that promotes cytokinesis through modulating phosphorylation of the carboxy terminal domain of the RNA Pol II Rpb1p sub-unit. PLoS One 2007; 2:e433. [PMID: 17502918 PMCID: PMC1855991 DOI: 10.1371/journal.pone.0000433] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/16/2007] [Indexed: 11/19/2022] Open
Abstract
In Schizosaccharomyces pombe, the nuclear-localized kinase, Lsk1p, promotes cytokinesis by positively regulating the Septation Initiation Network (SIN). Although a member of the cyclin-dependent kinase (CDK) family, neither a cyclin partner nor a physiological target has been identified. In this report we identify a cyclin, Lsc1p, that physically interacts and co-localizes with Lsk1p. Furthermore, lsk1Δ, lsc1Δ, as well as kinase-dead lsk1-K306R mutants, display highly similar cytokinesis defects. Lsk1p is related to CDKs that phosphorylate the carboxy-terminal domain (CTD) of the largest sub-unit of RNA polymerase II (Rpb1p). Interestingly, we find that Lsk1p and Lsc1p are required for phosphorylation of Ser-2 residues found in the heptad repeats of the CTD. To determine if Rpb1p could be a physiological target, we replaced the native rpb1 gene with a synthetic gene encoding a Rpb1p protein in which Ser-2 was substituted with the non-phosphorylatable amino-acid alanine in all heptads. Cells carrying this allele were similar to lsk1Δ mutants: They were viable, displayed genetic interactions with the SIN, and were unable to complete cytokinesis upon perturbation of the cell division machinery. We conclude that Ser-2 phosphorylation of the CTD heptads plays a novel physiological role in the regulation of cytokinesis.
Collapse
Affiliation(s)
- Jim Karagiannis
- cLaboratory of Cell Division, Temasek Life Sciences Laboratory, Singapore, Singapore.
| | | |
Collapse
|
47
|
Qian H, Ji C, Zhao S, Chen J, Jiang M, Zhang Y, Yan M, Zheng D, Sun Y, Xie Y, Mao Y. Expression and characterization of HSPC129, a RNA polymerase II C-terminal domain phosphatase. Mol Cell Biochem 2007; 303:183-8. [PMID: 17487459 DOI: 10.1007/s11010-007-9472-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 04/03/2007] [Indexed: 11/25/2022]
Abstract
Phosphorylation status of RNA polymerase (RNAP) II's largest subunit C-terminal domain (CTD) plays an important role during transcription cycles. The reversible phosphorylation mainly occurs at serine 2 and serine 5 of CTD heptapeptide repeats and regulates RNAP II's activity during transcription initiation, elongation and RNA processing. Here we expressed and characterized HSPC129, a putative human protein bearing a CTD phosphatase domain (CPD). PCR analysis showed that it was ubiquitously expressed. HSPC129DeltaTM, the truncate HSPC129 with first 156 N terminal amino acids deleted, exhibited Mg(2+) dependent phosphatase activity at pH 5.0. Its specific CTD phosphatase activity was verified in vitro. Our research suggests that HSPC129 may regulate the dynamic phosphorylation of RNAP II CTD.
Collapse
Affiliation(s)
- Hui Qian
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Room 602, Science Building, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee AM, Wigle TJ, Singleton SF. A complementary pair of rapid molecular screening assays for RecA activities. Anal Biochem 2007; 367:247-58. [PMID: 17601483 PMCID: PMC2041836 DOI: 10.1016/j.ab.2007.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/04/2007] [Accepted: 04/17/2007] [Indexed: 11/23/2022]
Abstract
The bacterial RecA protein has been implicated in the evolution of antibiotic resistance in pathogens, which is an escalating problem worldwide. The discovery of small molecules that can selectively modulate RecA's activities can be exploited to tease apart its roles in the de novo development and transmission of antibiotic resistance genes. Toward the goal of discovering small-molecule ligands that can prevent either the assembly of an active RecA-DNA filament or its subsequent ATP-dependent motor activities, we report the design and initial validation of a pair of rapid and robust screening assays suitable for the identification of inhibitors of RecA activities. One assay is based on established methods for monitoring ATPase enzyme activity and the second is a novel assay for RecA-DNA filament assembly using fluorescence polarization. Taken together, the assay results reveal complementary sets of agents that can either suppress selectively only the ATP-driven motor activities of the RecA-DNA filament or prevent assembly of active RecA-DNA filaments altogether. The screening assays can be readily configured for use in future automated high-throughput screening projects to discover potent inhibitors that may be developed into novel adjuvants for antibiotic chemotherapy that moderate the development and transmission of antibiotic resistance genes and increase the antibiotic therapeutic index.
Collapse
Affiliation(s)
- Andrew M Lee
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | | | | |
Collapse
|
49
|
Reyes-Reyes M, Hampsey M. Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation. Mol Cell Biol 2007; 27:926-36. [PMID: 17101794 PMCID: PMC1800697 DOI: 10.1128/mcb.01361-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/18/2006] [Accepted: 11/01/2006] [Indexed: 12/31/2022] Open
Abstract
The RNA polymerase II (RNAP II) transcription cycle is accompanied by changes in the phosphorylation status of the C-terminal domain (CTD), a reiterated heptapeptide sequence (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)) present at the C terminus of the largest RNAP II subunit. One of the enzymes involved in this process is Ssu72, a CTD phosphatase with specificity for serine-5-P. Here we report that the ssu72-2-encoded Ssu72-R129A protein is catalytically impaired in vitro and that the ssu72-2 mutant accumulates the serine-5-P form of RNAP II in vivo. An in vitro transcription system derived from the ssu72-2 mutant exhibits impaired elongation efficiency. Mutations in RPB1 and RPB2, the genes encoding the two largest subunits of RNAP II, were identified as suppressors of ssu72-2. The rpb1-1001 suppressor encodes an R1281A replacement, whereas rpb2-1001 encodes an R983G replacement. This information led us to identify the previously defined rpb2-4 and rpb2-10 alleles, which encode catalytically slow forms of RNAP II, as additional suppressors of ssu72-2. Furthermore, deletion of SPT4, which encodes a subunit of the Spt4-Spt5 early elongation complex, also suppresses ssu72-2, whereas the spt5-242 allele is suppressed by rpb2-1001. These results define Ssu72 as a transcription elongation factor. We propose a model in which Ssu72 catalyzes serine-5-P dephosphorylation subsequent to addition of the 7-methylguanosine cap on pre-mRNA in a manner that facilitates the RNAP II transition into the elongation stage of the transcription cycle.
Collapse
Affiliation(s)
- Mariela Reyes-Reyes
- Department of Biochemistry, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | | |
Collapse
|
50
|
Satow R, Kurisaki A, Chan TC, Hamazaki TS, Asashima M. Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev Cell 2007; 11:763-74. [PMID: 17141153 DOI: 10.1016/j.devcel.2006.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/20/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate multiple biological processes, including cellular proliferation, adhesion, differentiation, and early development. In Xenopus development, inhibition of the BMP pathway is essential for neural induction. Here, we report that dullard, a gene involved in neural development, functions as a negative regulator of BMP signaling. We show that Dullard promotes the ubiquitin-mediated proteosomal degradation of BMP receptors (BMPRs). Dullard preferentially complexes with the BMP type II receptor (BMPRII) and partially colocalizes with the caveolin-1-positive compartment, suggesting that Dullard promotes BMPR degradation via the lipid raft-caveolar pathway. Dullard also associates with BMP type I receptors and represses the BMP-dependent phosphorylation of the BMP type I receptor. The phosphatase activity of Dullard is essential for the degradation of BMP receptors and neural induction in Xenopus. Together, these observations suggest that Dullard is an essential inhibitor of BMP receptor activation during Xenopus neuralization.
Collapse
Affiliation(s)
- Reiko Satow
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | | | | | |
Collapse
|