1
|
Maxwell CB, Bhakta N, Denniff MJ, Sandhu JK, Kessler T, Ng LL, Jones DJ, Webb TR, Morris GE. Deep plasma and tissue proteome profiling of knockout mice reveals pathways associated with Svep1 deficiency. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100283. [PMID: 39895831 PMCID: PMC11782998 DOI: 10.1016/j.jmccpl.2025.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Despite strong causal associations with cardiovascular and metabolic disorders including coronary artery disease, hypertension, and type 2 diabetes, as well as a range of other diseases, the exact function of the protein SVEP1 remains largely unknown. Animal models have been employed to investigate how SVEP1 contributes to disease, with a focus on murine models exploring its role in development, cardiometabolic disease and platelet biology. In this study, we aimed to comprehensively phenotype the proteome of Svep1 +/- mice compared to wild-type (WT) littermates using liquid chromatography-tandem mass spectrometry (LC-MS/MS) bottom-up proteomics in plasma, heart, aorta, lung, and kidney to identify dysregulated pathways and biological functions associated with Svep1 deficiency. Our findings reveal that Svep1 deficiency leads to significant proteomic alterations across the mouse, with the highest number of dysregulated proteins observed in plasma and kidney. Key dysregulated proteins in plasma include upregulation of ADGRV1, CDH1, and MYH6, and downregulation of MTIF2 and AKAP13 which, alongside other proteins dysregulated across tissues, indicate disruption in cell adhesion, extracellular matrix organisation, platelet degranulation, and Rho GTPase pathways. Novel findings include significant enrichment of complement cascades in plasma, suggesting dysregulation of innate immune responses and hemostasis due to Svep1 deficiency. Pathways related to chylomicron assembly and lipid metabolism were also enriched. Additionally, we developed a high-throughput quantitative targeted LC-MS/MS assay to measure endogenous levels of murine SVEP1. SVEP1 was detectable in lung homogenate and showed a significant reduction in SVEP1 levels in Svep1 +/- vs. WT, but was not identified in plasma, heart, aorta, or kidney, likely due to expression levels below the assay's detection limit. Overall, this deep phenotyping study provides insight into the systemic impact of Svep1 deficiency.
Collapse
Affiliation(s)
- Colleen B. Maxwell
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Nikita Bhakta
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Matthew J. Denniff
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Jatinderpal K. Sandhu
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, 80636 Munich, Germany
| | - Leong L. Ng
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Donald J.L. Jones
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
- Leicester Cancer Research Centre, RKCSB, University of Leicester, Leicester LE2 7LX, UK
| | - Tom R. Webb
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Gavin E. Morris
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
2
|
Lee M, Wakigawa T, Jia Q, Liu C, Huang R, Huang S, Nagao A, Suzuki T, Tomita K, Iwasaki S, Takeuchi-Tomita N. Selection of initiator tRNA and start codon by mammalian mitochondrial initiation factor 3 in leaderless mRNA translation. Nucleic Acids Res 2025; 53:gkaf021. [PMID: 39878211 PMCID: PMC11775629 DOI: 10.1093/nar/gkaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/04/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
The mammalian mitochondrial protein synthesis system produces 13 essential subunits of oxidative phosphorylation (OXPHOS) complexes. Translation initiation in mammalian mitochondria is characterized by the use of leaderless messenger RNAs (mRNAs) and non-AUG start codons, where the proofreading function of IF-3mt still remains elusive. Here, we developed a reconstituted mammalian mitochondrial translation system using in vitro transcribed and native mitochondrial transfer RNAs (tRNAs) to investigate IF-3mt's proofreading function. Similar to bacterial IF-3, IF-3mt permits an initiator tRNA to participate in initiation by discriminating the three G-C pairs in its anticodon stem, and by the cognate interactions of its anticodon with the AUG start codon. As a result, IF-3mt promotes the accurate initiation of leaderless mRNAs. Nevertheless, IF-3mt can also facilitate initiation from the non-AUG(AUA) start codon through its unique N- and C-terminal extensions, in concert with the 5-methylcytidine (m5C) or 5-formylcytidine (f5C) modification at the anticodon wobble position of mt-tRNAMet. This is partly because the IF-3mt-specific N- and C-terminal extensions and the KKGK-motif favor leaderless mRNA initiation and relax non-AUG start codon discrimination. Analyses of IF-3mt-depleted human cells revealed that IF-3mt indeed participates in translating the open reading frames (ORFs) of leaderless mRNAs, as well as the internal ORFs of dicistronic mRNAs.
Collapse
MESH Headings
- Codon, Initiator
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Humans
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/genetics
- Protein Biosynthesis
- Mitochondria/genetics
- Mitochondria/metabolism
- Anticodon/genetics
- Animals
- Peptide Chain Initiation, Translational
- RNA, Mitochondrial/metabolism
- RNA, Mitochondrial/genetics
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Cytidine/analogs & derivatives
Collapse
Affiliation(s)
- Muhoon Lee
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Taisei Wakigawa
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Qimin Jia
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Chang Liu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Ruiyuan Huang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shuai Huang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Nono Takeuchi-Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| |
Collapse
|
3
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
4
|
Baleva MV, Piunova UE, Chicherin IV, Levitskii SA, Kamenski PA. Diversity and Evolution of Mitochondrial Translation Apparatus. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1832-1843. [PMID: 38105202 DOI: 10.1134/s0006297923110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023]
Abstract
The evolution of mitochondria has proceeded independently in different eukaryotic lines, which is reflected in the diversity of mitochondrial genomes and mechanisms of their expression in eukaryotic species. Mitochondria have lost most of bacterial ancestor genes by transferring them to the nucleus or eliminating them. However, mitochondria of almost all eukaryotic cells still retain relatively small genomes, as well as their replication, transcription, and translation apparatuses. The dependence on the nuclear genome, specific features of mitochondrial transcripts, and synthesis of highly hydrophobic membrane proteins in the mitochondria have led to significant changes in the translation apparatus inherited from the bacterial ancestor, which retained the basic structure necessary for protein synthesis but became more specialized and labile. In this review, we discuss specific properties of translation initiation in the mitochondria and how the evolution of mitochondria affected the functions of main factors initiating protein biosynthesis in these organelles.
Collapse
Affiliation(s)
- Mariya V Baleva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ulyana E Piunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan V Chicherin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey A Levitskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Piotr A Kamenski
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
5
|
Chrzanowska-Lightowlers ZM, Lightowlers RN. Translation in Mitochondrial Ribosomes. Methods Mol Biol 2023; 2661:53-72. [PMID: 37166631 DOI: 10.1007/978-1-0716-3171-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial protein synthesis is essential for the life of aerobic eukaryotes. Without it, oxidative phosphorylation cannot be coupled. Evolution has shaped a battery of factors and machinery that are key to production of just a handful of critical proteins. In this general concept chapter, we attempt to briefly summarize our current knowledge of the overall process in mitochondria from a variety of species, breaking this down to the four parts of translation: initiation, elongation, termination, and recycling. Where appropriate, we highlight differences between species and emphasize gaps in our understanding. Excitingly, with the current revolution in cryoelectron microscopy and mitochondrial genome editing, it is highly likely that many of these gaps will be resolved in the near future. However, the absence of a faithful in vitro reconstituted system to study mitochondrial translation is still problematic.
Collapse
Affiliation(s)
- Zofia M Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK.
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Koc EC, Hunter CA, Koc H. Phosphorylation of mammalian mitochondrial EF-Tu by Fyn and c-Src kinases. Cell Signal 2023; 101:110524. [PMID: 36379377 DOI: 10.1016/j.cellsig.2022.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Src Family Kinases (SFKs) are tyrosine kinases known to regulate glucose and fatty acid metabolism as well as oxidative phosphorylation (OXPHOS) in mammalian mitochondria. We and others discovered the association of the SFK kinases Fyn and c-Src with mitochondrial translation components. This translational system is responsible for the synthesis of 13 mitochondrial (mt)-encoded subunits of the OXPHOS complexes and is, thus, essential for energy generation. Mitochondrial ribosomal proteins and various translation elongation factors including Tu (EF-Tumt) have been identified as possible Fyn and c-Src kinase targets. However, the phosphorylation of specific residues in EF-Tumt by these kinases and their roles in the regulation of protein synthesis are yet to be explored. In this study, we report the association of EF-Tumt with cSrc kinase and mapping of phosphorylated Tyr (pTyr) residues by these kinases. We determined that a specific Tyr residue in EF-Tumt at position 266 (EF-Tumt-Y266), located in a highly conserved c-Src consensus motif is one of the major phosphorylation sites. The potential role of EF-Tumt-Y266 phosphorylation in regulation of mitochondrial translation investigated by site-directed mutagenesis. Its phosphomimetic to Glu residue (EF-Tumt-E266) inhibited ternary complex (EF-Tumt•GTP•aatRNA) formation and translation in vitro. Our findings along with data mining analysis of the c-Src knock out (KO) mice proteome suggest that the SFKs have possible roles for regulation of mitochondrial protein synthesis and oxidative energy metabolism in animals.
Collapse
Affiliation(s)
- Emine C Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States of America.
| | - Caroline A Hunter
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States of America
| | - Hasan Koc
- Department of Pharmacological Science, School of Pharmacy, Marshall University, Huntington, WV 25755, United States of America.
| |
Collapse
|
7
|
Koc EC, Koc FC, Kartal F, Tirona M, Koc H. Role of mitochondrial translation in remodeling of energy metabolism in ER/PR(+) breast cancer. Front Oncol 2022; 12:897207. [PMID: 36119536 PMCID: PMC9472243 DOI: 10.3389/fonc.2022.897207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Remodeling of mitochondrial energy metabolism is essential for the survival of tumor cells in limited nutrient availability and hypoxic conditions. Defects in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis also cause a switch in energy metabolism from oxidative to aerobic glycolysis contributing to the tumor heterogeneity in cancer. Specifically, the aberrant expressions of mitochondrial translation components such as ribosomal proteins (MRPs) and translation factors have been increasingly associated with many different cancers including breast cancer. The mitochondrial translation is responsible for the synthesis 13 of mitochondrial-encoded OXPHOS subunits of complexes. In this study, we investigated the contribution of mitochondrial translation in the remodeling of oxidative energy metabolism through altered expression of OXPHOS subunits in 26 ER/PR(+) breast tumors. We observed a significant correlation between the changes in the expression of mitochondrial translation-related proteins and OXPHOS subunits in the majority of the ER/PR(+) breast tumors and breast cancer cell lines. The reduced expression of OXPHOS and mitochondrial translation components also correlated well with the changes in epithelial-mesenchymal transition (EMT) markers, E-cadherin (CHD1), and vimentin (VIM) in the ER/PR(+) tumor biopsies. Data mining analysis of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) breast cancer proteome further supported the correlation between the reduced OXPHOS subunit expression and increased EMT and metastatic marker expression in the majority of the ER/PR(+) tumors. Therefore, understanding the role of MRPs in the remodeling of energy metabolism will be essential in the characterization of heterogeneity at the molecular level and serve as diagnostic and prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| | - Fatih C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Funda Kartal
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria Tirona
- Department of Medical Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Hasan Koc
- Department of Pharmaceutical Science, School of Pharmacy, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| |
Collapse
|
8
|
Bhanja SK, Goel A, Mehra M, Bag S, Kharchec SD, Malakar D, Dash B. Microarray analysis and PCR validation of genes associated with facultative parthenogenesis in Meleagris gallopavo (Turkey). Theriogenology 2022; 186:86-94. [DOI: 10.1016/j.theriogenology.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
9
|
mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth. BMC Biol 2022; 20:12. [PMID: 34996455 PMCID: PMC8742369 DOI: 10.1186/s12915-021-01215-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. Results We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. Conclusion We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01215-w.
Collapse
|
10
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
11
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
12
|
Müller‐Nedebock AC, Westhuizen FH, Kõks S, Bardien S. Nuclear Genes Associated with Mitochondrial
DNA
Processes as Contributors to Parkinson's Disease Risk. Mov Disord 2021; 36:815-831. [DOI: 10.1002/mds.28475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amica C. Müller‐Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | | | - Sulev Kõks
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch Western Australia Australia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
13
|
Levitskii SA, Baleva MV, Chicherin IV, Krasheninnikov IA, Kamenski PA. Protein Biosynthesis in Mitochondria: Past Simple, Present Perfect, Future Indefinite. BIOCHEMISTRY (MOSCOW) 2021; 85:257-263. [PMID: 32564730 DOI: 10.1134/s0006297920030013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondria are obligate organelles of most eukaryotic cells that perform many different functions important for cellular homeostasis. The main role of mitochondria is supplying cells with energy in a form of ATP, which is synthesized in a chain of oxidative phosphorylation reactions on the organelle inner membrane. It is commonly believed now that mitochondria have the endosymbiotic origin. In the course of evolution, they have lost most of their genetic material as a result of genome reduction and gene transfer to the nucleus. The majority of mitochondrial proteins are synthesized in the cytosol and then imported to the mitochondria. However, almost all known mitochondria still contain genomes that are maintained and expressed. The processes of protein biosynthesis in the mitochondria - mitochondrial translation - substantially differs from the analogous processes in bacteria and the cytosol of eukaryotic cells. Mitochondrial translation is characterized by a high degree of specialization and specific regulatory mechanisms. In this review, we analyze available information on the common principles of mitochondrial translation with emphasis on the molecular mechanisms of translation initiation in the mitochondria of yeast and mammalian cells.
Collapse
Affiliation(s)
- S A Levitskii
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - M V Baleva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - I V Chicherin
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - I A Krasheninnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - P A Kamenski
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.
| |
Collapse
|
14
|
Ferrari A, Del'Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett 2020; 595:1025-1061. [PMID: 33314036 DOI: 10.1002/1873-3468.14024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria control life and death in eukaryotic cells. Harboring a unique circular genome, a by-product of an ancient endosymbiotic event, mitochondria maintains a specialized and evolutionary divergent protein synthesis machinery, the mitoribosome. Mitoribosome biogenesis depends on elements encoded in both the mitochondrial genome (the RNA components) and the nuclear genome (all ribosomal proteins and assembly factors). Recent cryo-EM structures of mammalian mitoribosomes have illuminated their composition and provided hints regarding their assembly and elusive mitochondrial translation mechanisms. A growing body of literature involves the mitoribosome in inherited primary mitochondrial disorders. Mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors impede mitoribosome biogenesis, causing protein synthesis defects that lead to respiratory chain failure and mitochondrial disorders such as encephalo- and cardiomyopathy, deafness, neuropathy, and developmental delays. In this article, we review the current fundamental understanding of mitoribosome assembly and function, and the clinical landscape of mitochondrial disorders driven by mutations in mitoribosome components and assembly factors, to portray how basic and clinical studies combined help us better understand both mitochondrial biology and medicine.
Collapse
Affiliation(s)
- Alberto Ferrari
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| | - Samuel Del'Olio
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
15
|
Rudler DL, Hughes LA, Viola HM, Hool LC, Rackham O, Filipovska A. Fidelity and coordination of mitochondrial protein synthesis in health and disease. J Physiol 2020; 599:3449-3462. [PMID: 32710561 DOI: 10.1113/jp280359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome. Their genome varies in size from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genomes thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy.
Collapse
Affiliation(s)
- Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Helena M Viola
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia
| | - Livia C Hool
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, 6102, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
16
|
Yokokawa T, Mori R, Suga T, Isaka T, Hayashi T, Fujita S. Muscle denervation reduces mitochondrial biogenesis and mitochondrial translation factor expression in mice. Biochem Biophys Res Commun 2020; 527:146-152. [DOI: 10.1016/j.bbrc.2020.04.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/13/2020] [Indexed: 11/30/2022]
|
17
|
Yeast Mitochondrial Translation Initiation Factor 3 Interacts with Pet111p to Promote COX2 mRNA Translation. Int J Mol Sci 2020; 21:ijms21103414. [PMID: 32408541 PMCID: PMC7279496 DOI: 10.3390/ijms21103414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial genomes code for several core components of respiratory chain complexes. Thus, mitochondrial translation is of great importance for the organelle as well as for the whole cell. In yeast, mitochondrial translation initiation factor 3, Aim23p, is not essential for the organellar protein synthesis; however, its absence leads to a significant quantitative imbalance of the mitochondrial translation products. This fact points to a possible specific action of Aim23p on the biosynthesis of some mitochondrial protein species. In this work, we examined such peculiar effects of Aim23p in relation to yeast mitochondrial COX2 mRNA translation. We show that Aim23p is indispensable to this process. According to our data, this is mediated by Aimp23p interaction with the known specific factor of the COX2 mRNA translation, Pet111p. If there is no Aim23p in the yeast cells, an increased amount of Pet111p ensures proper COX2 mRNA translation. Our results demonstrate the additional non-canonical function of initiation factor 3 in yeast mitochondrial translation.
Collapse
|
18
|
Initiation Factor 3 is Dispensable For Mitochondrial Translation in Cultured Human Cells. Sci Rep 2020; 10:7110. [PMID: 32346061 PMCID: PMC7188818 DOI: 10.1038/s41598-020-64139-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/13/2020] [Indexed: 11/08/2022] Open
Abstract
The initiation of protein synthesis in bacteria is ruled by three canonical factors: IF1, IF2, and IF3. This system persists in human mitochondria; however, it functions in a rather different way due to specialization and adaptation to the organellar micro-environment. We focused on human mitochondrial IF3, which was earlier studied in vitro, but no knock-out cellular models have been published up to date. In this work, we generated human HeLa cell lines deficient in the MTIF3 gene and analyzed their mitochondrial function. Despite the lack of IF3mt in these cells, they preserved functional mitochondria capable of oxygen consumption and protein synthesis; however, the translation of ATP6 mRNA was selectively decreased which compromised the assembly of ATP synthase. Together with the analogous results obtained earlier for baker's yeast mitochondrial IF3, our findings point to a functional divergence of mitochondrial initiation factors from their bacterial ancestors.
Collapse
|
19
|
Rudler DL, Hughes LA, Perks KL, Richman TR, Kuznetsova I, Ermer JA, Abudulai LN, Shearwood AMJ, Viola HM, Hool LC, Siira SJ, Rackham O, Filipovska A. Fidelity of translation initiation is required for coordinated respiratory complex assembly. SCIENCE ADVANCES 2019; 5:eaay2118. [PMID: 31903419 PMCID: PMC6924987 DOI: 10.1126/sciadv.aay2118] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/30/2019] [Indexed: 05/22/2023]
Abstract
Mammalian mitochondrial ribosomes are unique molecular machines that translate 11 leaderless mRNAs; however, it is not clear how mitoribosomes initiate translation, since mitochondrial mRNAs lack untranslated regions. Mitochondrial translation initiation shares similarities with prokaryotes, such as the formation of a ternary complex of fMet-tRNAMet, mRNA and the 28S subunit, but differs in the requirements for initiation factors. Mitochondria have two initiation factors: MTIF2, which closes the decoding center and stabilizes the binding of the fMet-tRNAMet to the leaderless mRNAs, and MTIF3, whose role is not clear. We show that MTIF3 is essential for survival and that heart- and skeletal muscle-specific loss of MTIF3 causes cardiomyopathy. We identify increased but uncoordinated mitochondrial protein synthesis in mice lacking MTIF3, resulting in loss of specific respiratory complexes. Ribosome profiling shows that MTIF3 is required for recognition and regulation of translation initiation of mitochondrial mRNAs and for coordinated assembly of OXPHOS complexes in vivo.
Collapse
Affiliation(s)
- Danielle L. Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Laetitia A. Hughes
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Kara L. Perks
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Tara R. Richman
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Judith A. Ermer
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Laila N. Abudulai
- Centre for Microscopy, Characterisation and Analysis and School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Anne-Marie J. Shearwood
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Helena M. Viola
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Livia C. Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Stefan J. Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Corresponding author.
| |
Collapse
|
20
|
Chicherin IV, Baleva MV, Levitskii SA, Dashinimaev EB, Krasheninnikov IA. Mitochondrial Translation Initiation Factor 3: Structure, Functions, Interactions, and Implication in Human Health and Disease. BIOCHEMISTRY (MOSCOW) 2019; 84:1143-1150. [PMID: 31694510 DOI: 10.1134/s0006297919100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondria are essential organelles of eukaryotic cell that provide its respiratory function by means of the electron transfer chain. Expression of mitochondrial genes is organized in a bacterial-like manner; however multiple evolutionary differences are observed between the two systems, including translation initiation machinery. This review is dedicated to the mitochondrial translation initiation factor 3 (IF3mt), which plays a key role in the protein synthesis in mitochondria. Involvement of IF3mt in human health and disease is discussed.
Collapse
Affiliation(s)
- I V Chicherin
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia. .,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - M V Baleva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S A Levitskii
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - E B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117977, Russia
| | - I A Krasheninnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| |
Collapse
|
21
|
Ayyub SA, Varshney U. Translation initiation in mammalian mitochondria- a prokaryotic perspective. RNA Biol 2019; 17:165-175. [PMID: 31696767 DOI: 10.1080/15476286.2019.1690099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
ATP is generated in mitochondria of eukaryotic cells by oxidative phosphorylation (OXPHOS). The OXPHOS complex, which is crucial for cellular metabolism, comprises of both nuclear and mitochondrially encoded subunits. Also, the occurrence of several pathologies because of mutations in the mitochondrial translation apparatus indicates the importance of mitochondrial translation and its regulation. The mitochondrial translation apparatus is similar to its prokaryotic counterpart due to a common origin of evolution. However, mitochondrial translation has diverged from prokaryotic translation in many ways by reductive evolution. In this review, we focus on mammalian mitochondrial translation initiation, a highly regulated step of translation, and present a comparison with prokaryotic translation.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
22
|
Luo Y, Su R, Wang Y, Xie W, Liu Z, Huang Y. Schizosaccharomyces pombe Mti2 and Mti3 act in conjunction during mitochondrial translation initiation. FEBS J 2019; 286:4542-4553. [PMID: 31350787 DOI: 10.1111/febs.15021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023]
Abstract
Mitochondrial DNA encodes key subunits of the oxidative phosphorylation complexes essential for ATP production. Translation initiation in mitochondria requires two general factors, mtIF2 and mtIF3, whose counterparts in bacteria are essential for protein synthesis. In this study, we report the characterization of the fission yeast Schizosaccharomyces pombe mtIF2 (Mti2) and mtIF3 (Mti3). Deletion of mti2 impairs cell growth on the respiratory medium. The growth defect of the mti2 deletion mutant can be suppressed by expressing IFM1, the Saccharomyces cerevisiae homolog of Mti2, demonstrating functional conservation between the two proteins. Deletion of mti2 also impairs mitochondrial protein synthesis. Unlike mti2, deletion of mti3 does not affect cell growth on respiratory media and mitochondrial translation. However, deletion of mti3 exacerbates the growth defect of the Δmti2 mutant, suggesting that the two proteins have distinct, but partially overlapping functions during the process of mitochondrial translation initiation in S. pombe. Both Mti2 and Mti3 are associated with the small subunit of the mitochondrial ribosome (mitoribosome). Disruption of mti2, but not mti3, causes dissociation of the mitoribosome and also abolishes Mti3 binding to the small subunit of the mitoribosome. Our results suggest that Mti2 and Mti3 bind in a sequential manner to the small subunit of the mitoribosome and that Mti3 facilitates the function of Mti2 in mitochondrial translation initiation. Our findings also support the view that the importance of the mitochondrial translation initiation factors varies among the organisms.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Ruyue Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Wanqiu Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Zecheng Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
23
|
Koripella RK, Sharma MR, Risteff P, Keshavan P, Agrawal RK. Structural insights into unique features of the human mitochondrial ribosome recycling. Proc Natl Acad Sci U S A 2019; 116:8283-8288. [PMID: 30962385 PMCID: PMC6486771 DOI: 10.1073/pnas.1815675116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing proteins that are essential for oxidative phosphorylation (ATP generation). Despite their common ancestry with bacteria, the composition and structure of the human mitoribosome and its translational factors are significantly different from those of their bacterial counterparts. The mammalian mitoribosome recycling factor (RRFmt) carries a mito-specific N terminus extension (NTE), which is necessary for the function of RRFmt Here we present a 3.9-Å resolution cryo-electron microscopic (cryo-EM) structure of the human 55S mitoribosome-RRFmt complex, which reveals α-helix and loop structures for the NTE that makes multiple mito-specific interactions with functionally critical regions of the mitoribosome. These include ribosomal RNA segments that constitute the peptidyl transferase center (PTC) and those that connect PTC with the GTPase-associated center and with mitoribosomal proteins L16 and L27. Our structure reveals the presence of a tRNA in the pe/E position and a rotation of the small mitoribosomal subunit on RRFmt binding. In addition, we observe an interaction between the pe/E tRNA and a mito-specific protein, mL64. These findings help understand the unique features of mitoribosome recycling.
Collapse
Affiliation(s)
- Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Paul Risteff
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509;
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY
| |
Collapse
|
24
|
Chicherin IV, Zinina VV, Levitskiy SA, Serebryakova MV, Kamenski PA. Aim23p Interacts with the Yeast Mitochondrial Ribosomal Small Subunit. BIOCHEMISTRY (MOSCOW) 2019; 84:40-46. [DOI: 10.1134/s000629791901005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Koripella RK, Sharma MR, Haque ME, Risteff P, Spremulli LL, Agrawal RK. Structure of Human Mitochondrial Translation Initiation Factor 3 Bound to the Small Ribosomal Subunit. iScience 2019; 12:76-86. [PMID: 30677741 PMCID: PMC6352543 DOI: 10.1016/j.isci.2018.12.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 11/20/2022] Open
Abstract
The human mitochondrial translational initiation factor 3 (IF3mt) carries mitochondrial-specific amino acid extensions at both its N and C termini (N- and C-terminal extensions [NTE and CTE, respectively]), when compared with its eubacterial counterpart. Here we present 3.3- to 3.5-Å-resolution cryoelectron microscopic structures of the mammalian 28S mitoribosomal subunit in complex with human IF3mt. Unique contacts observed between the 28S subunit and N-terminal domain of IF3mt explain its unusually high affinity for the 28S subunit, whereas the position of the mito-specific NTE suggests NTE's role in binding of initiator tRNA to the 28S subunit. The location of the C-terminal domain (CTD) clarifies its anti-association activity, whereas the orientation of the mito-specific CTE provides a mechanistic explanation for its role in destabilizing initiator tRNA in the absence of mRNA. Furthermore, our structure hints at a possible role of the CTD in recruiting leaderless mRNAs for translation initiation. Our findings highlight unique features of IF3mt in mitochondrial translation initiation. High-resolution cryo-EM study of the mammalian 28S mitoribosome-IF3mt complex Interaction between the 28S and IF3mt's NTD explains NTD's unusual high affinity Provides insights into role of IF3mt's N-terminal extension in initiator tRNA binding Provides insights into roles of IF3mt's CTD and C-terminal extension in mRNA sensing
Collapse
Affiliation(s)
- Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - Md Emdadul Haque
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC, USA
| | - Paul Risteff
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - Linda L Spremulli
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY, USA.
| |
Collapse
|
26
|
Derbikova K, Kuzmenko A, Levitskii S, Klimontova M, Chicherin I, Baleva MV, Krasheninnikov IA, Kamenski P. Biological and Evolutionary Significance of Terminal Extensions of Mitochondrial Translation Initiation Factor 3. Int J Mol Sci 2018; 19:ijms19123861. [PMID: 30518034 PMCID: PMC6321546 DOI: 10.3390/ijms19123861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 01/14/2023] Open
Abstract
Protein biosynthesis in mitochondria is organized in a bacterial manner. However, during evolution, mitochondrial translation mechanisms underwent many organelle-specific changes. In particular, almost all mitochondrial translation factors, being orthologous to bacterial proteins, are characterized by some unique elements of primary or secondary structure. In the case of the organellar initiation factor 3 (IF3), these elements are several dozen amino acids long N- and C-terminal extensions. This study focused on the terminal extensions of baker's yeast mitochondrial IF3, Aim23p. By in vivo deletion and complementation analysis, we show that at least one extension is necessary for Aim23p function. At the same time, human mitochondrial IF3 is fully functional in yeast mitochondria even without both terminal extensions. While Escherichia coli IF3 itself is poorly active in yeast mitochondria, adding Aim23p terminal extensions makes the resulting chimeric protein as functional as the cognate factor. Our results show that the terminal extensions of IF3 have evolved as the "adaptors" that accommodate the translation factor of bacterial origin to the evolutionary changed protein biosynthesis system in mitochondria.
Collapse
Affiliation(s)
- Ksenia Derbikova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| | - Anton Kuzmenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
- Institute of Molecular Genetics, Russian Academy of Science, 119991 Moskva, Russia.
| | - Sergey Levitskii
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| | - Maria Klimontova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany.
| | - Ivan Chicherin
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| | - Maria V Baleva
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| | | | - Piotr Kamenski
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| |
Collapse
|
27
|
Yokokawa T, Kido K, Suga T, Isaka T, Hayashi T, Fujita S. Exercise-induced mitochondrial biogenesis coincides with the expression of mitochondrial translation factors in murine skeletal muscle. Physiol Rep 2018; 6:e13893. [PMID: 30369085 PMCID: PMC6204255 DOI: 10.14814/phy2.13893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 01/01/2023] Open
Abstract
The process of mitochondrial translation, in which mitochondrial (mt)DNA-encoded genes are translated into proteins, is crucial for mitochondrial function and biogenesis. In each phase, a series of mitochondrial translation factors is required for the synthesis of mtDNA-encoded mitochondrial proteins. Two mitochondrial initiation factors (mtIF2 and mtIF3), three mitochondrial elongation factors (mtEFTu, mtEFTs, and mtEFG1), one mitochondrial release factor (mtRF1L), and two mitochondrial recycling factors (mtRRF1 and mtRRF2) are mitochondrial translation factors that coordinate each translational phase. Exercise increases both nuclear DNA- and mtDNA-encoded mitochondrial proteins, resulting in mitochondrial biogenesis in skeletal muscles. Therefore, mitochondrial translation factors are likely regulated by exercise; however, it is unclear whether exercise affects mitochondrial translation factors in the skeletal muscles. We investigated whether exercise training comprehensively increases this series of mitochondrial translation factors, as well as mtDNA-encoded proteins, in the skeletal muscle. Mice were randomly assigned to either the sedentary or exercise group and housed in standard cages with or without a running wheel for 1 and 8 weeks. The expression levels of mitochondrial translation factors in the plantaris and soleus muscles were then measured. Exercise training concomitantly upregulated mitochondrial translation factors and mitochondrial proteins in the plantaris muscle. However, in the soleus muscle, these comprehensive upregulations were not detected. These results indicate that exercise-induced mitochondrial biogenesis coincides with the upregulation of mitochondrial translation factors.
Collapse
Affiliation(s)
- Takumi Yokokawa
- Laboratory of Sports and Exercise MedicineGraduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Kohei Kido
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Tadashi Suga
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Tadao Isaka
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise MedicineGraduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Satoshi Fujita
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
28
|
Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature 2018; 560:263-267. [PMID: 30089917 DOI: 10.1038/s41586-018-0373-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/17/2018] [Indexed: 11/09/2022]
Abstract
Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.
Collapse
|
29
|
Müller D, Telieps T, Eugster A, Weinzierl C, Jolink M, Ziegler AG, Bonifacio E. Novel minor HLA DR associated antigens in type 1 diabetes. Clin Immunol 2018; 194:87-91. [PMID: 29990590 DOI: 10.1016/j.clim.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/04/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes is an autoimmune disease leading to insulin deficiency. Autoantibodies to beta cell proteins are already present in the asymptomatic phase of type 1 diabetes. Recent findings have suggested a number of additional minor autoantigens in patients with type 1 diabetes. We have established luciferase immunoprecipitation systems (LIPS) for anti-MTIF3, anti-PPIL2, anti-NUP50 and anti-MLH1 and analyzed samples from 500 patients with type 1 diabetes at onset of clinical disease and 200 healthy individuals who had a family history of type 1 diabetes but no evidence of beta cell autoantibodies. We show significantly higher frequencies of anti-MTIF3, anti-PPIL2 and anti-MLH1 in recent onset type 1 diabetes patients in comparison to controls. In addition, antibodies to NUP50 were associated with HLA-DRB1*03 and antibodies to MLH1 were associated with HLA-DRB1*04 genotypes.
Collapse
Affiliation(s)
- Denise Müller
- DFG Research Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tanja Telieps
- Helmholtz Zentrum München, Institute for Diabetes and Obesity, Neuherberg, Germany
| | - Anne Eugster
- DFG Research Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christina Weinzierl
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Manja Jolink
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany; Forschergruppe Diabetes e.V, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ezio Bonifacio
- DFG Research Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Helmholtz Zentrum München, Institute for Diabetes and Obesity, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
30
|
Ferreira N, Rackham O, Filipovska A. Regulation of a minimal transcriptome by repeat domain proteins. Semin Cell Dev Biol 2018; 76:132-141. [DOI: 10.1016/j.semcdb.2017.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
31
|
Kühl I, Miranda M, Atanassov I, Kuznetsova I, Hinze Y, Mourier A, Filipovska A, Larsson NG. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. eLife 2017; 6:30952. [PMID: 29132502 PMCID: PMC5703644 DOI: 10.7554/elife.30952] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five knockout mouse strains deficient in essential factors required for mitochondrial DNA gene expression, leading to OXPHOS dysfunction. Moreover, we describe sequential protein changes during post-natal development and progressive OXPHOS dysfunction in time course analyses in control mice and a middle lifespan knockout, respectively. Very unexpectedly, we identify a new response pathway to OXPHOS dysfunction in which the intra-mitochondrial synthesis of coenzyme Q (ubiquinone, Q) and Q levels are profoundly decreased, pointing towards novel possibilities for therapy. Our extensive omics analyses provide a high-quality resource of altered gene expression patterns under severe OXPHOS deficiency comparing several mouse models, that will deepen our understanding, open avenues for research and provide an important reference for diagnosis and treatment.
Collapse
Affiliation(s)
- Inge Kühl
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC) UMR9198, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Yvonne Hinze
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Arnaud Mourier
- The Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, Bordeaux, France
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Abstract
The eukaryotic initiation factor 3 (eIF3) is one of the most complex translation initiation factors in mammalian cells, consisting of several subunits (eIF3a to eIF3m). It is crucial in translation initiation and termination, and in ribosomal recycling. Accordingly, deregulated eIF3 expression is associated with different pathological conditions, including cancer. In this manuscript, we discuss the interactome and function of each subunit of the human eIF3 complex. Furthermore, we review how altered levels of eIF3 subunits correlate with neurodegenerative disorders and cancer onset and development; in addition, we evaluate how such misregulation may also trigger infection cascades. A deep understanding of the molecular mechanisms underlying eIF3 role in human disease is essential to develop new eIF3-targeted therapeutic approaches and thus, overcome such conditions.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Rafaela Lacerda
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Juliane Menezes
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Luísa Romão
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
33
|
Ayyub SA, S L A, Dobriyal D, Aluri S, Spremulli LL, Varshney U. Fidelity of translation in the presence of mammalian mitochondrial initiation factor 3. Mitochondrion 2017; 39:1-8. [PMID: 28804013 DOI: 10.1016/j.mito.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/14/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
Initiation factor 3 (IF3) is a conserved translation factor. Mutations in mitochondrial IF3 (IF3mt) have been implicated in disease pathology. Escherichia coli infCΔ55, compromised for IF3 activity, has provided an excellent heterologous system for IF3mt structure-function analysis. IF3mt allowed promiscuous initiation from AUA, AUU and ACG codons but avoided initiation with initiator tRNAs lacking the conserved 3GC pairs in their anticodon stems. Expression of IF3mt N-terminal domain, or IF3mt devoid of its typical N-, and C-terminal extensions improved fidelity of initiation in E. coli. The observations suggest that the IF3mt terminal extensions relax the fidelity of translational initiation in mitochondria.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Aswathy S L
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Divya Dobriyal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Srinivas Aluri
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Linda L Spremulli
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
34
|
Affiliation(s)
- Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Alexey Amunts
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden;
| | - Alan Brown
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
35
|
Ostojić J, Panozzo C, Bourand-Plantefol A, Herbert CJ, Dujardin G, Bonnefoy N. Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria. Nucleic Acids Res 2016; 44:5785-97. [PMID: 27257059 PMCID: PMC4937339 DOI: 10.1093/nar/gkw490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/20/2016] [Indexed: 01/07/2023] Open
Abstract
Mitochondria have their own translation machinery that produces key subunits of the OXPHOS complexes. This machinery relies on the coordinated action of nuclear-encoded factors of bacterial origin that are well conserved between humans and yeast. In humans, mutations in these factors can cause diseases; in yeast, mutations abolishing mitochondrial translation destabilize the mitochondrial DNA. We show that when the mitochondrial genome contains no introns, the loss of the yeast factors Mif3 and Rrf1 involved in ribosome recycling neither blocks translation nor destabilizes mitochondrial DNA. Rather, the absence of these factors increases the synthesis of the mitochondrially-encoded subunits Cox1, Cytb and Atp9, while strongly impairing the assembly of OXPHOS complexes IV and V. We further show that in the absence of Rrf1, the COX1 specific translation activator Mss51 accumulates in low molecular weight forms, thought to be the source of the translationally-active form, explaining the increased synthesis of Cox1. We propose that Rrf1 takes part in the coordination between translation and OXPHOS assembly in yeast mitochondria. These interactions between general and specific translation factors might reveal an evolutionary adaptation of the bacterial translation machinery to the set of integral membrane proteins that are translated within mitochondria.
Collapse
Affiliation(s)
- Jelena Ostojić
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Cristina Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Alexa Bourand-Plantefol
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Christopher J Herbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Geneviève Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
36
|
Kuzmenko A, Derbikova K, Salvatori R, Tankov S, Atkinson GC, Tenson T, Ott M, Kamenski P, Hauryliuk V. Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis. Sci Rep 2016; 6:18749. [PMID: 26728900 PMCID: PMC4700529 DOI: 10.1038/srep18749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system’s components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Ksenia Derbikova
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Stoyan Tankov
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Martin Ott
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| |
Collapse
|
37
|
Two novel mitogenomes of Dipodidae species and phylogeny of Rodentia inferred from the complete mitogenomes. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Hinttala R, Sasarman F, Nishimura T, Antonicka H, Brunel-Guitton C, Schwartzentruber J, Fahiminiya S, Majewski J, Faubert D, Ostergaard E, Smeitink JA, Shoubridge EA. An N-terminal formyl methionine on COX 1 is required for the assembly of cytochrome c oxidase. Hum Mol Genet 2015; 24:4103-13. [PMID: 25911677 DOI: 10.1093/hmg/ddv149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 11/12/2022] Open
Abstract
Protein synthesis in mitochondria is initiated by formylmethionyl-tRNA(Met) (fMet-tRNA(Met)), which requires the activity of the enzyme MTFMT to formylate the methionyl group. We investigated the molecular consequences of mutations in MTFMT in patients with Leigh syndrome or cardiomyopathy. All patients studied were compound heterozygotes. Levels of MTFMT in patient fibroblasts were almost undetectable by immunoblot analysis, and BN-PAGE analysis showed a combined oxidative phosphorylation (OXPHOS) assembly defect involving complexes I, IV and V. The synthesis of only a subset of mitochondrial polypeptides (ND5, ND4, ND1, COXII) was decreased, whereas all others were translated at normal or even increased rates. Expression of the wild-type cDNA rescued the biochemical phenotype when MTFMT was expressed near control levels, but overexpression produced a dominant-negative phenotype, completely abrogating assembly of the OXPHOS complexes, suggesting that MTFMT activity must be tightly regulated. fMet-tRNA(Met) was almost undetectable in control cells and absent in patient cells by high-resolution northern blot analysis, but accumulated in cells overexpressing MTFMT. Newly synthesized COXI was under-represented in complex IV immunoprecipitates from patient fibroblasts, and two-dimensional BN-PAGE analysis of newly synthesized mitochondrial translation products showed an accumulation of free COXI. Quantitative mass spectrophotometry of an N-terminal COXI peptide showed that the ratio of formylated to unmodified N-termini in the assembled complex IV was ∼350:1 in controls and 4:1 in patient cells. These results show that mitochondrial protein synthesis can occur with inefficient formylation of methionyl-tRNA(Met), but that assembly of complex IV is impaired if the COXI N-terminus is not formylated.
Collapse
Affiliation(s)
- Reetta Hinttala
- Department of Human Genetics and Montreal Neurological Institute, McGill University, Montreal, QC., Canada, Department of Children and Adolescents, Division of Pediatric Neurology, PEDEGO Research Group and Medical Research Center Oulu, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Florin Sasarman
- Montreal Neurological Institute, McGill University, Montreal, QC., Canada, Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, Que., Canada
| | - Tamiko Nishimura
- Montreal Neurological Institute, McGill University, Montreal, QC., Canada
| | - Hana Antonicka
- Montreal Neurological Institute, McGill University, Montreal, QC., Canada
| | - Catherine Brunel-Guitton
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, Que., Canada
| | | | | | | | - Denis Faubert
- Institut de Recherches Clinique de Montreal (IRCM), Montreal, Que., Canada
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark and
| | - Jan A Smeitink
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Mitochondrial Disorders, Nijmegen, The Netherlands
| | - Eric A Shoubridge
- Department of Human Genetics and Montreal Neurological Institute, McGill University, Montreal, QC., Canada,
| |
Collapse
|
39
|
Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM. Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. FEBS Lett 2014; 588:2496-503. [PMID: 24911204 PMCID: PMC4099522 DOI: 10.1016/j.febslet.2014.05.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022]
Abstract
Mitochondrial protein synthesis is essential for all mammals, being responsible for providing key components of the oxidative phosphorylation complexes. Although only thirteen different polypeptides are made, the molecular details of this deceptively simple process remain incomplete. Central to this process is a non-canonical ribosome, the mitoribosome, which has evolved to address its unique mandate. In this review, we integrate the current understanding of the molecular aspects of mitochondrial translation with recent advances in structural biology. We identify numerous key questions that we will need to answer if we are to increase our knowledge of the molecular mechanisms underlying mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Robert N Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Agata Rozanska
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Zofia M Chrzanowska-Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
40
|
Kuzmenko AV, Levitskii SA, Vinogradova EN, Atkinson GC, Hauryliuk V, Zenkin N, Kamenski PA. Protein biosynthesis in mitochondria. BIOCHEMISTRY (MOSCOW) 2014; 78:855-66. [PMID: 24228873 DOI: 10.1134/s0006297913080014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis.
Collapse
Affiliation(s)
- A V Kuzmenko
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Boczonadi V, Horvath R. Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol 2014; 48:77-84. [PMID: 24412566 PMCID: PMC3988845 DOI: 10.1016/j.biocel.2013.12.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/13/2013] [Accepted: 12/26/2013] [Indexed: 10/28/2022]
Abstract
Defects of the mitochondrial protein synthesis cause a subgroup of mitochondrial diseases, which are usually associated with decreased activities of multiple respiratory chain (RC) enzymes. The clinical presentations of these disorders are often disabling, progressive or fatal, affecting the brain, liver, skeletal muscle, heart and other organs. Currently there are no effective cures for these disorders and treatment is at best symptomatic. The diagnosis in patients with multiple respiratory chain complex defects is particularly difficult because of the massive number of nuclear genes potentially involved in intra-mitochondrial protein synthesis. Many of these genes are not yet linked to human disease. Whole exome sequencing rapidly changed the diagnosis of these patients by identifying the primary defect in DNA, and preventing the need for invasive and complex biochemical testing. Better understanding of the mitochondrial protein synthesis apparatus will help us to explore disease mechanisms and will provide clues for developing novel therapies.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
42
|
Abstract
Mitochondrial genome contains 13 protein coding genes, all being part of the oxidative phosphorylation complexes. The process of translation of these protein coding mRNAs in mitochondrial matrix is a good miniature model of translation in cytoplasm. In this work, we have simulated three phases of mitochondrial translation viz. initiation, elongation and termination (including ribosome recycling). The kinetic equations for these phases have been deduced based on the information available in literature. Various factors involved in the process have been included explicitly. Kinetic simulation was done using Octave, open source software. Scripts were written individually for each phase. Initiation begins with mitoribosome, mRNA, fMet-tRNA and initiation factors. The final product of the initiation script, the initiation complex, was introduced as the start point in the successive step, i.e. elongation. Elongation is a particular extensive process where the various aminoacyl-tRNAs already present in the matrix check for matching with the triplet codon in A-site of mitoribosome. This script consists of two parts: one with the time behaviour of the factors involved in the molecular process (using ordinary differential equation solver) and the other including the reading of triplet codon on the mRNA and incorporating the corresponding aminoacyl-tRNA, and then at each step elongating the peptide chain (using loops and conditions). The peptide chain thus formed in the elongation step (in the loops and conditions segment) was released in the termination step. This was followed by mitoribosome recycling where the mitoribosome reached the native state and was ready for the next cycle of translation.
Collapse
Affiliation(s)
- Kalyani Korla
- a Department of Biochemistry, School of Life Sciences, University of Hyderabad , Hyderabad , 500046 , India
| | | |
Collapse
|
43
|
Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T, Hauryliuk V, Kamenski P. Mitochondrial translation initiation machinery: conservation and diversification. Biochimie 2013; 100:132-40. [PMID: 23954798 PMCID: PMC3978653 DOI: 10.1016/j.biochi.2013.07.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components – mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. Mitochondrially-encoded proteins are mostly respiratory chain components. The mitochondrial translation system is thus organized in a very specific way. Initiation involves mRNA-specific activators and bacteria-like initiation factors. We show that Saccharomyces cerevisiae Aim23p is a functional ortholog of bacterial IF3. We review the lineage specific features of mitochondrial translation initiation.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Sergey Levitskii
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
44
|
Abstract
INTRODUCTION In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. SOURCES OF DATA In this article, a review of the current mitochondrial genetics literature was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). In addition, this review makes use of a growing number of publically available databases including MITOMAP, a human mitochondrial genome database (www.mitomap.org), the Human DNA polymerase Gamma Mutation Database (http://tools.niehs.nih.gov/polg/) and PhyloTree.org (www.phylotree.org), a repository of global mtDNA variation. AREAS OF AGREEMENT The disruption in cellular energy, resulting from defects in mtDNA or defects in the nuclear-encoded genes responsible for mitochondrial maintenance, manifests in a growing number of human diseases. AREAS OF CONTROVERSY The exact mechanisms which govern the inheritance of mtDNA are hotly debated. GROWING POINTS Although still in the early stages, the development of in vitro genetic manipulation could see an end to the inheritance of the most severe mtDNA disease.
Collapse
Affiliation(s)
| | - Gavin Hudson
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
45
|
Agrawal RK, Sharma MR. Structural aspects of mitochondrial translational apparatus. Curr Opin Struct Biol 2012; 22:797-803. [PMID: 22959417 DOI: 10.1016/j.sbi.2012.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 10/27/2022]
Abstract
During the last decade groundbreaking progress has been made towards the understanding of structure and function of cell's translational machinery. Cryo-electron microscopic (cryo-EM) and X-ray crystallographic structures of cytoplasmic ribosomes from several bacterial and eukaryotic species are now available in various ligand-bound states. Significant advances have also been made in structural studies on ribosomes of the cellular organelles, such as those present in the chloroplasts and mitochondria, using cryo-EM techniques. Here we review the progress made in structure determination of the mitochondrial ribosomes, with an emphasis on the mammalian mitochondrial ribosome and one of its translation initiation factors, and discuss challenges that lie ahead in obtaining their high-resolution structures.
Collapse
Affiliation(s)
- Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, United States.
| | | |
Collapse
|
46
|
Anvret A, Ran C, Westerlund M, Sydow O, Willows T, Olson L, Galter D, Belin AC. Genetic Screening of the Mitochondrial Rho GTPases MIRO1 and MIRO2 in Parkinson's Disease. Open Neurol J 2012; 6:1-5. [PMID: 22496713 PMCID: PMC3322431 DOI: 10.2174/1874205x01206010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/18/2022] Open
Abstract
MIRO1 and MIRO2 (mitochondrial Ras homolog gene family, member T1 and T2) also referred to as RHOT1 and RHOT2, belong to the mitochondrial Rho GTPase family and are involved in axonal transport of mitochondria in neurons. Because mitochondrial dysfunction is strongly implicated in Parkinson’s disease (PD), MIRO1 and MIRO2 can be considered as new candidate genes for PD. We analyzed two non-synonymous polymorphisms and one synonymous polymorphism in MIRO1 and two non-synonymous polymorphisms in MIRO2, in a Swedish Parkinson case-control material consisting of 241 patients and 307 neurologically healthy controls. None of the analyzed polymorphisms in MIRO1 and MIRO2 were significantly associated with PD. Although we did not find a significant association with PD in our Swedish case-control material, we cannot exclude these Rho GTPases as candidate genes for PD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Anvret
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Atkinson GC, Kuzmenko A, Kamenski P, Vysokikh MY, Lakunina V, Tankov S, Smirnova E, Soosaar A, Tenson T, Hauryliuk V. Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae. Nucleic Acids Res 2012; 40:6122-34. [PMID: 22457064 PMCID: PMC3401457 DOI: 10.1093/nar/gks272] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial translation is essentially bacteria-like, reflecting the bacterial endosymbiotic ancestry of the eukaryotic organelle. However, unlike the translation system of its bacterial ancestors, mitochondrial translation is limited to just a few mRNAs, mainly coding for components of the respiratory complex. The classical bacterial initiation factors (IFs) IF1, IF2 and IF3 are universal in bacteria, but only IF2 is universal in mitochondria (mIF2). We analyse the distribution of mitochondrial translation initiation factors and their sequence features, given two well-propagated claims: first, a sequence insertion in mitochondrial IF2 (mIF2) compensates for the universal lack of IF1 in mitochondria, and secondly, no homologue of mitochondrial IF3 (mIF3) is identifiable in Saccharomyces cerevisiae. Our comparative sequence analysis shows that, in fact, the mIF2 insertion is highly variable and restricted in length and primary sequence conservation to vertebrates, while phylogenetic and in vivo complementation analyses reveal that an uncharacterized S. cerevisiae mitochondrial protein currently named Aim23p is a bona fide evolutionary and functional orthologue of mIF3. Our results highlight the lineage-specific nature of mitochondrial translation and emphasise that comparative analyses among diverse taxa are essential for understanding whether generalizations from model organisms can be made across eukaryotes.
Collapse
|
48
|
Infantile Progressive Hepatoencephalomyopathy with Combined OXPHOS Deficiency due to Mutations in the Mitochondrial Translation Elongation Factor Gene GFM1. JIMD Rep 2011; 5:113-22. [PMID: 23430926 DOI: 10.1007/8904_2011_107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases caused by defects in the oxidative phosphorylation (OXPHOS) system. Given the complexity and intricacy of the OXPHOS system, it is not surprising that the underlying molecular defect remains unidentified in many patients with a mitochondrial disorder. Here, we report the clinical features and diagnostic workup leading to the elucidation of the genetic basis for a combined complex I and IV OXPHOS deficiency secondary to a mitochondrial translational defect in an infant who presented with rapidly progressive liver failure, encephalomyopathy, and severe refractory lactic acidemia. Sequencing of the GFM1 gene revealed two inherited novel, heterozygous mutations: a.539delG (p.Gly180AlafsX11) in exon 4 which resulted in a frameshift mutation, and a second c.688G > A (p.Gly230Ser) mutation in exon 5. This missense mutation is likely to be pathogenic since it affects an amino acid residue that is highly conserved across species and is absent from the dbSNP and 1,000 genomes databases. Review of literature and comparison were made with previously reported cases of this recently identified mitochondrial disorder encoded by a nuclear gene. Although limited in number, nuclear gene defects causing mitochondrial translation abnormalities represent a new, rapidly expanding field of mitochondrial medicine and should potentially be considered in the diagnostic investigation of infants with progressive hepatoencephalomyopathy and combined OXPHOS disorders.
Collapse
|
49
|
Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1035-54. [PMID: 22172991 DOI: 10.1016/j.bbagrm.2011.11.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/25/2023]
Abstract
Protein synthesis in mammalian mitochondria produces 13 proteins that are essential subunits of the oxidative phosphorylation complexes. This review provides a detailed outline of each phase of mitochondrial translation including initiation, elongation, termination, and ribosome recycling. The roles of essential proteins involved in each phase are described. All of the products of mitochondrial protein synthesis in mammals are inserted into the inner membrane. Several proteins that may help bind ribosomes to the membrane during translation are described, although much remains to be learned about this process. Mutations in mitochondrial or nuclear genes encoding components of the translation system often lead to severe deficiencies in oxidative phosphorylation, and a summary of these mutations is provided. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Brooke E Christian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
50
|
Škrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N, Lai CK, Eberhard Y, Bartoszko J, Spagnuolo P, Rutledge AC, Datti A, Ketela T, Moffat J, Robinson BH, Cameron JH, Wrana J, Eaves CJ, Minden MD, Wang JC, Dick JE, Humphries K, Nislow C, Giaever G, Schimmer AD. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2011; 20:674-88. [PMID: 22094260 PMCID: PMC3221282 DOI: 10.1016/j.ccr.2011.10.015] [Citation(s) in RCA: 506] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/05/2011] [Accepted: 10/14/2011] [Indexed: 12/17/2022]
Abstract
To identify FDA-approved agents targeting leukemic cells, we performed a chemical screen on two human leukemic cell lines and identified the antimicrobial tigecycline. A genome-wide screen in yeast identified mitochondrial translation inhibition as the mechanism of tigecycline-mediated lethality. Tigecycline selectively killed leukemia stem and progenitor cells compared to their normal counterparts and also showed antileukemic activity in mouse models of human leukemia. ShRNA-mediated knockdown of EF-Tu mitochondrial translation factor in leukemic cells reproduced the antileukemia activity of tigecycline. These effects were derivative of mitochondrial biogenesis that, together with an increased basal oxygen consumption, proved to be enhanced in AML versus normal hematopoietic cells and were also important for their difference in tigecycline sensitivity.
Collapse
Affiliation(s)
- Marko Škrtić
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Shrivani Sriskanthadevan
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Bozhena Jhas
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Marinella Gebbia
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Xiaoming Wang
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Zezhou Wang
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Rose Hurren
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Yulia Jitkova
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Marcela Gronda
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Neil Maclean
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Courteney K. Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Yanina Eberhard
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Justyna Bartoszko
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Paul Spagnuolo
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Angela C. Rutledge
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Alessandro Datti
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5 Canada
| | - Troy Ketela
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Jason Moffat
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Brian H. Robinson
- Genetics and Genome Biology, The Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
| | - Jessie H. Cameron
- Genetics and Genome Biology, The Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
| | - Jeffery Wrana
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5 Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Mark D. Minden
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Jean C.Y. Wang
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
- Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, Ontario M5G 1L7, Canada
| | - John E. Dick
- Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, Ontario M5G 1L7, Canada
| | - Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Corey Nislow
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Guri Giaever
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Aaron D. Schimmer
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
- To whom correspondence should be addressed: Aaron D. Schimmer, Princess Margaret Hospital, Rm 9-516, 610 University Ave, Toronto, ON, Canada M5G 2M9, Tel: 416-946-2838, Fax: 416-946-6546,
| |
Collapse
|