1
|
Vamvoukaki R, Chrysoulaki M, Betsi G, Xekouki P. Pituitary Tumorigenesis-Implications for Management. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040812. [PMID: 37109772 PMCID: PMC10145673 DOI: 10.3390/medicina59040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Pituitary neuroendocrine tumors (PitNETs), the third most common intracranial tumor, are mostly benign. However, some of them may display a more aggressive behavior, invading into the surrounding structures. While they may rarely metastasize, they may resist different treatment modalities. Several major advances in molecular biology in the past few years led to the discovery of the possible mechanisms involved in pituitary tumorigenesis with a possible therapeutic implication. The mutations in the different proteins involved in the Gsa/protein kinase A/c AMP signaling pathway are well-known and are responsible for many PitNETS, such as somatotropinomas and, in the context of syndromes, as the McCune-Albright syndrome, Carney complex, familiar isolated pituitary adenoma (FIPA), and X-linked acrogigantism (XLAG). The other pathways involved are the MAPK/ERK, PI3K/Akt, Wnt, and the most recently studied HIPPO pathways. Moreover, the mutations in several other tumor suppressor genes, such as menin and CDKN1B, are responsible for the MEN1 and MEN4 syndromes and succinate dehydrogenase (SDHx) in the context of the 3PAs syndrome. Furthermore, the pituitary stem cells and miRNAs hold an essential role in pituitary tumorigenesis and may represent new molecular targets for their diagnosis and treatment. This review aims to summarize the different cell signaling pathways and genes involved in pituitary tumorigenesis in an attempt to clarify their implications for diagnosis and management.
Collapse
Affiliation(s)
- Rodanthi Vamvoukaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Maria Chrysoulaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Grigoria Betsi
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Paraskevi Xekouki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| |
Collapse
|
2
|
Wang S, Wang A, Zhang Y, Zhu K, Wang X, Chen Y, Wu J. The role of MAPK11/12/13/14 (p38 MAPK) protein in dopamine agonist-resistant prolactinomas. BMC Endocr Disord 2021; 21:235. [PMID: 34814904 PMCID: PMC8609849 DOI: 10.1186/s12902-021-00900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolactinoma is a functional pituitary adenoma that secretes excessive prolactin. Dopamine agonists (DAs) such as bromocriptine (BRC) are the first-line treatment for prolactinomas, but the resistance rate is increasing year by year, creating a clinical challenge. Therefore, it is urgent to explore the molecular mechanism of bromocriptine resistance in prolactinomas. Activation of the P38 MAPK pathway affects multidrug resistance in tumours. Our previous studies have demonstrated that inhibiting MAPK14 can suppress the occurrence of prolactinoma, but the role of MAPK11/12/13/14 (p38 MAPK) signalling in dopamine agonist-resistant prolactinomas is still unclear. METHODS A prolactinoma rat model was established to determine the effect of bromocriptine on MAPK11/12/13/14 signalling. DA-resistant GH3 cells and DA-sensitive MMQ cells were used, and the role of MAPK11/12/13/14 in bromocriptine-resistant prolactinomas was preliminarily verified by western blot, RT-qPCR, ELISA, flow cytometry and CCK-8 experiments. The effects of MAPK11 or MAPK14 on bromocriptine-resistant prolactinomas were further verified by siRNA transfection experiments. RESULTS Bromocriptine was used to treat rat prolactinoma by upregulating DRD2 expression and downregulating the expression level of MAPK11/12/13/14 in vivo experiments. The in vitro experiments showed that GH3 cells are resistant to bromocriptine and that MMQ cells are sensitive to bromocriptine. Bromocriptine could significantly reduce the expression of MAPK12 and MAPK13 in GH3 cells and MMQ cells. Bromocriptine could significantly reduce the expression of MAPK11, MAPK14, NF-κB p65 and Bcl2 in MMQ but had no effect on MAPK11, MAPK14, NF-κB p65 and Bcl2 in GH3 cells. In addition, knockdown of MAPK11 and MAPK14 in GH3 cells by siRNA transfection reversed the resistance of GH3 cells to bromocriptine, and haloperidol (HAL) blocked the inhibitory effect of bromocriptine on MAPK14, MAPK11, and PRL in MMQ cells. Our findings show that MAPK11 and MAPK14 proteins are involved in bromocriptine resistance in prolactinomas. CONCLUSION Bromocriptine reduces the expression of MAPK11/12/13/14 in prolactinomas, and MAPK11 and MAPK14 are involved in bromocriptine resistance in prolactinomas by regulating apoptosis. Reducing the expression of MAPK11 or MAPK14 can reverse bromocriptine resistance in prolactinomas.
Collapse
Affiliation(s)
- Shuman Wang
- Central lab, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, 430060, Hubei, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Aihua Wang
- Health Examination Center, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Yu Zhang
- Central lab, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, 430060, Hubei, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Kejing Zhu
- Central lab, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, 430060, Hubei, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Xiong Wang
- Central lab, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, 430060, Hubei, China
| | - Yonggang Chen
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, 430060, Hubei, China
| | - Jinhu Wu
- Central lab, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China.
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Wei Z, Zhou C, Li M, Huang R, Deng H, Shen S, Wang R. Integrated multi-omics profiling of nonfunctioning pituitary adenomas. Pituitary 2021; 24:312-325. [PMID: 33205234 DOI: 10.1007/s11102-020-01109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Genetic and epigenetic alterations are involved in pituitary adenoma pathogenesis, however the molecular basis of proliferative nonfunctioning pituitary adenomas (NFPAs) remains unclear. Here, we analyzed integrated multi-omics profiling including copy number variation (CNV), DNA methylation and gene expression of 8 NFPAs. METHODS We collected 4 highly proliferative (hpNFPA, Ki-67 ≥ 3) and 4 lowly proliferative (Ki-67 ≤ 1) NFPAs, and comprehensively assessed CNV, DNA methylation, and gene expression by Illumina HumanMethylation450 BeadChip and Affymetrix GeneChip PrimeView Human Gene Expression Array. We performed Ingenuity Pathway Analysis (IPA) for differentially expressed genes to illustrate aberrant pathways and delineated protein-protein networks of selected key genes in dysregulated pathways. RESULTS Aberrant arm level CNV, dysregulated DNA methylation, and associated impacts on gene expressions were observed in 2 early occurring hpNFPAs. Chromosomal losses were associated with attenuated expression of DNA methyltransferases, further altering global methylation in these 2 samples. Correlation analysis between DNA methylation and gene expression in 8 NFPAs indicates methylation in promoter and gene body regions are both involved in gene regulation. IPA showed PPARα/RXRα, dopamine receptor signaling, cAMP-mediated signaling, and calcium signaling were all activated, while p38 MAPK and ERK5 signaling were inhibited in hpNFPAs. Moreover, selected key gene networks in hpNFPAs exhibited concurrent methylation status and expression levels of adenylate cyclase genes, G protein subunits, HLA genes, CXCL12, and CCL2. CONCLUSION This study presents comprehensive multi-omics views of CNV, DNA methylation, and gene expression in 8 NFPAs. Pathway analysis and network maps of key genes provide clues to elucidate the molecular basis of hpNFPA.
Collapse
Affiliation(s)
- Zhenqing Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China.
- Department of Neurosurgery, The First Hospital Affiliated to Dalian Medical University, Dalian, China.
| | - Cuiqi Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Minghui Li
- Sinotech Genomics Co., Ltd., Shenzhen, China
| | | | | | - Stephen Shen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
4
|
LaPierre MP, Godbersen S, Torres Esteban M, Schad AN, Treier M, Ghoshdastider U, Stoffel M. MicroRNA-7a2 Regulates Prolactin in Developing Lactotrophs and Prolactinoma Cells. Endocrinology 2021; 162:6009069. [PMID: 33248443 PMCID: PMC7774778 DOI: 10.1210/endocr/bqaa220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Prolactin production is controlled by a complex and temporally dynamic network of factors. Despite this tightly coordinated system, pathological hyperprolactinemia is a common endocrine disorder that is often not understood, thereby highlighting the need to expand our molecular understanding of lactotroph cell regulation. MicroRNA-7 (miR-7) is the most highly expressed miRNA family in the pituitary gland and the loss of the miR-7 family member, miR-7a2, is sufficient to reduce prolactin gene expression in mice. Here, we used conditional loss-of-function and gain-of-function mouse models to characterize the function of miR-7a2 in lactotroph cells. We found that pituitary miR-7a2 expression undergoes developmental and sex hormone-dependent regulation. Unexpectedly, the loss of mir-7a2 induces a premature increase in prolactin expression and lactotroph abundance during embryonic development, followed by a gradual loss of prolactin into adulthood. On the other hand, lactotroph development is delayed in mice overexpressing miR-7a2. This regulation of lactotroph function by miR-7a2 involves complementary mechanisms in multiple cell populations. In mouse pituitary and rat prolactinoma cells, miR-7a2 represses its target Raf1, which promotes prolactin gene expression. These findings shed light on the complex regulation of prolactin production and may have implications for the physiological and pathological mechanisms underlying hyperprolactinemia.
Collapse
Affiliation(s)
- Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Anaïs Nura Schad
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Mathias Treier
- Max Delbrück Zentrum für molekulare Medizin (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Germany
| | | | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Medical Faculty, University of Zürich, Zürich, Switzerland
- Correspondence: Markus Stoffel, Swiss Federal Institute of Technology, ETH Zürich, Institute for Molecular Health Science, HPL H36, Otto-Stern Weg 7, CH 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Lu M, Wang Y, Zhan X. The MAPK Pathway-Based Drug Therapeutic Targets in Pituitary Adenomas. Front Endocrinol (Lausanne) 2019; 10:330. [PMID: 31231308 PMCID: PMC6558377 DOI: 10.3389/fendo.2019.00330] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) include ERK, p38, and JNK MAPK subfamilies, which are crucial regulators of cellular physiology, cell pathology, and many diseases including cancers. For the MAPK signaling system in pituitary adenomas (PAs), the activation of ERK signaling is generally thought to promote cell proliferation and growth; whereas the activations of p38 and JNK signaling are generally thought to promote cell apoptosis. The role of MAPK in treatment of PAs is demonstrated through the effects of currently used medications such as somatostatin analogs such as SOM230 and OCT, dopamine agonists such as cabergoline and bromocriptine, and retinoic acid which inhibit the MAPK pathway. Further, there are potential novel therapies based on putative molecular targets of the MAPK pathway, including 18beta-glycyrrhetinic acid (GA), dopamine-somatostatin chimeric compound (BIM-23A760), ursolic acid (UA), fulvestrant, Raf kinase inhibitory protein (RKIP), epidermal growth factor pathway substrate number 8 (Eps8), transmembrane protein with EGF-like and two follistatin-like domains (TMEFF2), cold inducible RNA-binding protein (CIRP), miR-16, and mammaliansterile-20-like kinase (MST4). The combined use of ERK inhibitor (e.g., SOM230, OCT, or dopamine) plus p38 activator (e.g., cabergoline, bromocriptine, and fulvestrant) and/or JNK activator (e.g., UA), or the development of single drug (e.g., BIM-23A760) to target both ERK and p38 or JNK pathways, might produce better anti-tumor effects on PAs. This article reviews the advances in understanding the role of MAPK signaling in pituitary tumorigenesis, and the MAPK pathway-based potential therapeutic drugs for PAs.
Collapse
Affiliation(s)
- Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Kang CW, Han YE, Lee MK, Cho YH, Kang N, Koo J, Ku CR, Lee EJ. Olfactory marker protein regulates prolactin secretion and production by modulating Ca 2+ and TRH signaling in lactotrophs. Exp Mol Med 2018; 50:1-11. [PMID: 29622766 PMCID: PMC5938008 DOI: 10.1038/s12276-018-0035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Olfactory marker protein (OMP) is a marker of olfactory receptor-mediated chemoreception, even outside the olfactory system. Here, we report that OMP expression in the pituitary gland plays a role in basal and thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) production and secretion. We found that OMP was expressed in human and rodent pituitary glands, especially in PRL-secreting lactotrophs. OMP knockdown in GH4 rat pituitary cells increased PRL production and secretion via extracellular signal-regulated kinase (ERK)1/2 signaling. Real-time PCR analysis and the Ca2+ influx assay revealed that OMP was critical for TRH-induced PRL secretion. OMP-knockout mice showed lower fertility than control mice, which was associated with increased basal PRL production via activation of ERK1/2 signaling and reduced TRH-induced PRL secretion. However, both in vitro and in vivo results indicated that OMP was only required for hormone production and secretion because ERK1/2 activation failed to stimulate cell proliferation. Additionally, patients with prolactinoma lacked OMP expression in tumor tissues with hyperactivated ERK1/2 signaling. These findings indicate that OMP plays a role in PRL production and secretion in lactotrophs through the modulation of Ca2+ and TRH signaling. Uncovering the regulatory mechanism behind production of the prolactin hormone may help tackle reproductive health problems. As well as triggering milk production in female mammals, prolactin is critical for healthy reproduction in both sexes. An excess of prolactin secreted by cells called lactotrophs in the pituitary gland can cause infertility. While scientists know which hormones stimulate prolactin release, how prolactin levels are regulated is unclear. Eun Jig Lee and Cheol Ryong Ku at Yonsei University in Seoul, Korea, and co-workers demonstrated that the olfactory marker protein (OMP) plays a central role in regulating prolactin production. They found that OMP specifically and highly expressed in lactotrophs. Eliminating OMP expression in mice left a key signalling pathway and calcium ion levels upregulated, resulting in increased prolactin and reduced fertility.
Collapse
Affiliation(s)
- Chan Woo Kang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea.,Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ye Eon Han
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea.,Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Kyung Lee
- Department of Pathology, NHIS Ilsan Hospital, 100 Ilsan-ro Ilsan-donggu, Goyang-si, Gyeonggi-do, 10444, Korea
| | - Yoon Hee Cho
- Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - NaNa Kang
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea.
| | - Eun Jig Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea. .,Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Liu X, Tang C, Wen G, Zhong C, Yang J, Zhu J, Ma C. The Mechanism and Pathways of Dopamine and Dopamine Agonists in Prolactinomas. Front Endocrinol (Lausanne) 2018; 9:768. [PMID: 30740089 PMCID: PMC6357924 DOI: 10.3389/fendo.2018.00768] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
Dopamine agonists such as bromocriptine and cabergoline are the predominant treatment drugs for prolactinoma by inhibiting prolactin secretion and shrinking tumor size. However, the pathways of either dopamine or its agonists that lead to the death of cells are incompletely understood and some are even conflicting conclusions. The main aim of this paper is to review the different pathways of dopamine and its agonists in prolactinomas to help to gain a better understanding of their functions and drug resistance mechanisms.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Science, NJU Advanced Institute for Life Sciences, Nanjing University, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Guodao Wen
- Tungwah Hospital of Sun Yat-Sen University, Dongguan, China
| | - Chunyu Zhong
- School of Medicine, Nanjing Medical University, Nanjing, China
| | - Jin Yang
- School of Medicine, Nanjing Medical University, Nanjing, China
| | - Junhao Zhu
- School of Medicine, Nanjing Medical University, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
- *Correspondence: Chiyuan Ma
| |
Collapse
|
8
|
Reuquen P, Guajardo-Correa E, Oróstica ML, Curotto C, Parada-Bustamante A, Cardenas H, Orihuela PA. Prolactin gene expression in the pituitary of rats subjected to vaginocervical stimulation requires Erk-1/2 signaling. Reprod Biol 2017; 17:357-362. [DOI: 10.1016/j.repbio.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 01/28/2023]
|
9
|
Qi J, Pan W, Tan Y, Luo J, Fan D, Yu J, Wu J, Zhang M. Shexiang Tongxin dropping pill protects against isoproterenol-induced myocardial ischemia in vivo and in vitro. Oncotarget 2017; 8:108958-108969. [PMID: 29312582 PMCID: PMC5752495 DOI: 10.18632/oncotarget.22440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/28/2017] [Indexed: 12/19/2022] Open
Abstract
Shexiang Tongxin dropping pill (STDP) is a formulae of Chinese Medicine commonly used to treating angina pectoris in China. However, its mechanism of action is still yet unclear. This study investigated the roles of STDP on myocardial ischemia injury. We constructed a rat model of myocardial injury (isoproterenol subcutaneous injection, i.h, 85 mg/kg/day for 2 days), and compared among 4 groups: CON (control), ISO (ischemic injury model), MET (metoprolol), and STDP. Serum contents of Troponin I (cTnI), creatine kinase (CK), CK-MB, lactate dehydrogenase (LDH), alpha-hydroxybutyric dehydrogenase (α-HBD), and Aspartate Aminotransferase were detected and five STDP doses (1, 10, 100, 1000 and 10000 mg/kg/day) were chosen to obtain a dose-response curve. Western-blot was used to detect phosphorylations of extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase B (AKT), and camodulin kinase II (CamkII). Furthermore, an ERK1/2 inhibitor PD98059, a phosphatidylinositol-3-kinase inhibitor, LY294002, and a CamKII inhibitor, KN-93 were administered i.h. RESULTS cTnI, CK, CK-MB, α-HBD, and LDH were significantly lower in STDP than ISO (P<0.05). STDP exhibited a dose-dependent effect with a half maximal inhibitory concentration of 42 mg/kg/day. Phosphorylation of ERK1/2 was enhanced in the STDP group (vs. ISO, P<0.05), while AKT and CamkII were not changed. Further, the protective effects of STDP were offset by PD98059 administration i.h. In conclusion, STDP protected against the ISO-induced myocardial ischemic injury via an ERK1/2 signaling pathway, which provided a mechanism to support clinical applications of STDP as treatment for ischemic heart disease.
Collapse
Affiliation(s)
- Jianyong Qi
- AMI Key Laboratory of Chinese Medicine in Guangzhou, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Wenjun Pan
- AMI Key Laboratory of Chinese Medicine in Guangzhou, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Yafang Tan
- AMI Key Laboratory of Chinese Medicine in Guangzhou, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Jiaru Luo
- AMI Key Laboratory of Chinese Medicine in Guangzhou, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Dancai Fan
- AMI Key Laboratory of Chinese Medicine in Guangzhou, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Juan Yu
- Animal Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Jiashin Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| | - Minzhou Zhang
- AMI Key Laboratory of Chinese Medicine in Guangzhou, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
10
|
Roy S, Lu K, Nayak MK, Bhuniya A, Ghosh T, Kundu S, Ghosh S, Baral R, Dasgupta PS, Basu S. Activation of D2 Dopamine Receptors in CD133+ve Cancer Stem Cells in Non-small Cell Lung Carcinoma Inhibits Proliferation, Clonogenic Ability, and Invasiveness of These Cells. J Biol Chem 2016; 292:435-445. [PMID: 27920206 DOI: 10.1074/jbc.m116.748970] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/03/2016] [Indexed: 12/22/2022] Open
Abstract
Lung carcinoma is the leading cause of cancer-related death worldwide, and among this cancer, non-small cell lung carcinoma (NSCLC) comprises the majority of cases. Furthermore, recurrence and metastasis of NSCLC correlate well with CD133+ve tumor cells, a small population of tumor cells that have been designated as cancer stem cells (CSC). We have demonstrated for the first time high expression of D2 dopamine (DA) receptors in CD133+ve adenocarcinoma NSCLC cells. Also, activation of D2 DA receptors in these cells significantly inhibited their proliferation, clonogenic ability, and invasiveness by suppressing extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT, as well as down-regulation of octamer-binding transcription factor 4 (Oct-4) expression and matrix metalloproteinase-9 (MMP-9) secretion by these cells. These results are of significance as D2 DA agonists that are already in clinical use for treatment of other diseases may be useful in combination with conventional chemotherapy and radiotherapy for better management of NSCLC patients by targeting both tumor cells and stem cell compartments in the tumor mass.
Collapse
Affiliation(s)
- Soumyabrata Roy
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Kai Lu
- the Department of Pathology, Ohio State University, Columbus, Ohio 43210
| | - Mukti Kant Nayak
- the Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Avishek Bhuniya
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Tithi Ghosh
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Suman Kundu
- the Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata 700032, India, and
| | - Sarbari Ghosh
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Rathindranath Baral
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Partha Sarathi Dasgupta
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India,
| | - Sujit Basu
- the Department of Pathology, Ohio State University, Columbus, Ohio 43210, .,the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
11
|
Booth A, Trudeau T, Gomez C, Lucia MS, Gutierrez-Hartmann A. Persistent ERK/MAPK activation promotes lactotrope differentiation and diminishes tumorigenic phenotype. Mol Endocrinol 2015; 28:1999-2011. [PMID: 25361391 DOI: 10.1210/me.2014-1168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The signaling pathways that govern the lactotrope-specific differentiated phenotype, and those that control lactotrope proliferation in both physiological and pathological lactotrope expansion, are poorly understood. Moreover, the specific role of MAPK signaling in lactotrope proliferation vs differentiation, whether activated phosphorylated MAPK is sufficient for prolactinoma tumor formation remain unknown. Given that oncogenic Ras mutations and persistently activated phosphorylated MAPK are found in human tumors, including prolactinomas and other pituitary tumors, a better understanding of the role of MAPK in lactotrope biology is required. Here we directly examined the role of persistent Ras/MAPK signaling in differentiation, proliferation, and tumorigenesis of rat pituitary somatolactotrope GH4 cells. We stimulated Ras/MAPK signaling in a persistent, long-term manner (over 6 d) in GH4 cells using two distinct approaches: 1) a doxycycline-inducible, oncogenic V12Ras expression system; and 2) continuous addition of exogenous epidermal growth factor. We find that long-term activation of the Ras/MAPK pathway over 6 days promotes differentiation of the bihormonal somatolactotrope GH4 precursor cell into a prolactin-secreting, lactotrope cell phenotype in vitro and in vivo with GH4 cell xenograft tumors. Furthermore, we show that persistent activation of the Ras/MAPK pathway not only fails to promote cell proliferation, but also diminishes tumorigenic characteristics in GH4 cells in vitro and in vivo. These data demonstrate that activated MAPK promotes differentiation and is not sufficient to drive tumorigenesis, suggesting that pituitary lactotrope tumor cells have the ability to evade the tumorigenic fate that is often associated with Ras/MAPK activation.
Collapse
Affiliation(s)
- Allyson Booth
- Program in Reproductive Sciences and Integrated Physiology (A.B., A.G.-H.) and Departments of Medicine and of Biochemistry and Molecular Genetics (T.T., C.G., A.G.-H.) and Pathology (M.S.L.), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045
| | | | | | | | | |
Collapse
|
12
|
Booth AK, Gutierrez-Hartmann A. Signaling pathways regulating pituitary lactotrope homeostasis and tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:37-59. [PMID: 25472533 DOI: 10.1007/978-3-319-12114-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dysregulation of the signaling pathways that govern lactotrope biology contributes to tumorigenesis of prolactin (PRL)-secreting adenomas, or prolactinomas, leading to a state of pathological hyperprolactinemia. Prolactinomas cause hypogonadism, infertility, osteoporosis, and tumor mass effects, and are the most common type of neuroendocrine tumor. In this review, we highlight signaling pathways involved in lactotrope development, homeostasis, and physiology of pregnancy, as well as implications for signaling pathways in pathophysiology of prolactinoma. We also review mutations found in human prolactinoma and briefly discuss animal models that are useful in studying pituitary adenoma, many of which emphasize the fact that alterations in signaling pathways are common in prolactinomas. Although individual mutations have been proposed as possible driving forces for prolactinoma tumorigenesis in humans, no single mutation has been clinically identified as a causative factor for the majority of prolactinomas. A better understanding of lactotrope-specific responses to intracellular signaling pathways is needed to explain the mechanism of tumorigenesis in prolactinoma.
Collapse
Affiliation(s)
- Allyson K Booth
- Program in Reproductive Sciences and Integrated Physiology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
13
|
Deslauriers J, Desmarais C, Sarret P, Grignon S. Implication of the ERK/MAPK pathway in antipsychotics-induced dopamine D2 receptor upregulation and in the preventive effects of (±)-α-lipoic acid in SH-SY5Y neuroblastoma cells. J Mol Neurosci 2013; 52:378-83. [PMID: 24203573 DOI: 10.1007/s12031-013-0158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022]
Abstract
Chronic administration of antipsychotics (APs) has been associated with dopamine D2 receptor (D2R) upregulation and tardive dyskinesia. We previously showed that haloperidol, a first-generation AP, exerted a more robust increase in D2R expression than amisulpride, a second-generation AP and that (±)-α-lipoic acid pre-treatment reversed the AP-induced D2R upregulation. We also demonstrated that the Akt/GSK-3β/β-catenin pathway is involved in the control of D2R expression levels, but is unlikely implicated in the preventive effects of (±)-α-lipoic acid since co-treatment with haloperidol and (±)-α-lipoic acid exerts synergistic effects on Akt/GSK-3β activation. These findings led us to examine whether the ERK/MAPK signaling pathway may be involved in D2R upregulation elicited by APs, and in its reversal by (±)-α-lipoic acid, in SH-SY5Y human neuroblastoma cells. Our results revealed that haloperidol, in parallel with an elevation in D2R mRNA levels, induced a larger increase of ERK (p42/p44) phosphorylation than amisulpride. Pre-treatment with the selective ERK inhibitor U0126 attenuated haloperidol-induced increase in D2R upregulation. Furthermore, (±)-α-lipoic acid prevented AP-induced ERK activation. These results show that (1) the ERK/MAPK pathway is involved in haloperidol-induced D2R upregulation; (2) the preventive effect of (±)-α-lipoic acid on haloperidol-induced D2R upregulation is in part mediated by an ERK/MAPK-dependent signaling cascade. Taken together, our data suggest that (±)-α-lipoic acid exerts synergistic effects with haloperidol on the Akt/GSK-3β pathway, potentially involved in the therapeutic effects of APs, and antagonism of ERK activation and D2R upregulation, potentially involved in tardive dyskinesia and treatment resistance.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC, Canada, J1H 5N4
| | | | | | | |
Collapse
|
14
|
Ishida M, Mitsui T, Izawa M, Arita J. Activation of D2 dopamine receptors inhibits estrogen response element-mediated estrogen receptor transactivation in rat pituitary lactotrophs. Mol Cell Endocrinol 2013; 375:58-67. [PMID: 23701824 DOI: 10.1016/j.mce.2013.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/15/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022]
Abstract
Estrogen and dopamine are major opposing regulators of the endocrine functions of pituitary lactotrophs. Dopamine inhibits estrogen-induced changes in the synthesis and secretion of prolactin, and lactotroph proliferation. We studied the mechanism of the inhibitory effects of dopaminergic stimulation on estrogen-induced functional changes of rat lactotrophs in primary culture. The dopaminergic agonist, bromocriptine (BC), suppressed 17β-estradiol-stimulated lactotroph proliferation, prolactin promoter activity, and mRNA expression of some estrogen-responsive genes. In lactotroph-enriched pituitary cells, BC treatment inhibited the estrogen response element (ERE) DNA sequence-mediated estrogen receptor (ER) transcriptional activity. Using a lactotroph-specific ERE transcriptional assay, we found that BC inhibition of the ERE-mediated ER transcriptional activity partly involved D2 dopamine receptor-mediated, pertussis toxin-sensitive G protein-coupled, cAMP/protein kinase A-dependent signaling. BC treatment had no effect on the cellular concentration of ERα or its phosphorylation status at Ser-118. Similar transcriptional inhibition by BC was also found in GH4ZR7 cells, a D2 dopamine receptor-expressing somatomammotrophic cell line. These results suggest that activation of the D2 dopamine receptors inhibits estrogen-dependent lactotroph functions in part via attenuation of ERE-mediated ER transactivation.
Collapse
Affiliation(s)
- Maho Ishida
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan.
| | | | | | | |
Collapse
|
15
|
Radl D, De Mei C, Chen E, Lee H, Borrelli E. Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia. Mol Endocrinol 2013; 27:953-65. [PMID: 23608643 DOI: 10.1210/me.2013-1008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine acting through D2 receptors (D2Rs) controls lactotroph proliferation and prolactin (PRL) levels. Ablation of this receptor in mice results in lactotroph hyperplasia and prolactinomas in aged females. Alternative splicing of the Drd2 gene generates 2 independent isoforms, a long (D2L) and a short (D2S) isoform, which are present in all D2R-expressing cells. Here, we addressed the role of D2L and D2S on lactotroph physiology through the generation and analysis of D2S-null mice and their comparison with D2L-null animals. These mice represent a valuable tool with which to investigate dopamine-dependent isoform-specific signaling in the pituitary gland. We sought to assess the existence of a more prominent role of D2L or D2S in controlling PRL expression and lactotroph hyperplasia. Importantly, we found that D2L and D2S are specifically linked to independent transduction pathways in the pituitary. D2L-mediated signaling inhibits the AKT/protein kinase B kinase activity whereas D2S, in contrast, is required for the activation of the ERK 1/2 pathway. Under normal conditions, presence of only 1 of the 2 D2R isoforms in vivo prevents hyperprolactinemia, formation of lactotroph's hyperplasia, and tumorigenesis that is observed when both isoforms are deleted as in D2R-/- mice. However, the protective function of the single D2R isoforms is overridden when single isoform-knockout mice are challenged by chronic estrogen treatments as they show increased PRL production and lactotroph hyperplasia. Our study indicates that signaling from each of the D2R isoforms is sufficient to maintain lactotroph homeostasis in physiologic conditions; however, signaling from both is necessary in conditions simulating pathologic states.
Collapse
Affiliation(s)
- Daniela Radl
- Department of Microbiology and Molecular Genetics, Institut National de la Santé et de la Recherche Médicale INSERM/UCI U904, France
| | | | | | | | | |
Collapse
|
16
|
Venkatesh SK, Kothari D, Manchanda S, Taneja A, Kulshreshtha B. Spontaneous reduction of prolactinoma post cabergoline withdrawal. Indian J Endocrinol Metab 2012; 16:833-835. [PMID: 23087877 PMCID: PMC3475917 DOI: 10.4103/2230-8210.100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Prolactinomas are common pituitary tumors usually highly responsive to dopamine agonists. Around 70-90% of the prolactinomas exhibit decrease in tumor size, though variably with these agents. Uncommonly, there may be little or no shrinkage in pituitary tumor. In the absence of medical therapy, pituitary apoplexy may also result in tumor shrinkage, albeit rarely. We report here a case showing only modest reduction in prolactinoma with cabergoline given for a period of one and a half years. Surprisingly, this tumor showed a 40% reduction in the tumor size 3 months after cabergoline withdrawal in the absence of clinical or radiological evidence of apoplexy.
Collapse
Affiliation(s)
| | - Deepak Kothari
- Department of Endocrinology, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Smita Manchanda
- Department of Radiodiagnosis, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Anil Taneja
- Department of Radiodiagnosis, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Bindu Kulshreshtha
- Department of Endocrinology, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
17
|
Bratton MR, Antoon JW, Duong BN, Frigo DE, Tilghman S, Collins-Burow BM, Elliott S, Tang Y, Melnik LI, Lai L, Alam J, Beckman BS, Hill SM, Rowan BG, McLachlan JA, Burow ME. Gαo potentiates estrogen receptor α activity via the ERK signaling pathway. J Endocrinol 2012; 214:45-54. [PMID: 22562654 PMCID: PMC3614348 DOI: 10.1530/joe-12-0097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The estrogen receptor α (ERα) is a transcription factor that mediates the biological effects of 17β-estradiol (E(2)). ERα transcriptional activity is also regulated by cytoplasmic signaling cascades. Here, several Gα protein subunits were tested for their ability to regulate ERα activity. Reporter assays revealed that overexpression of a constitutively active Gα(o) protein subunit potentiated ERα activity in the absence and presence of E(2). Transient transfection of the human breast cancer cell line MCF-7 showed that Gα(o) augments the transcription of several ERα-regulated genes. Western blots of HEK293T cells transfected with ER±Gα(o) revealed that Gα(o) stimulated phosphorylation of ERK 1/2 and subsequently increased the phosphorylation of ERα on serine 118. In summary, our results show that Gα(o), through activation of the MAPK pathway, plays a role in the regulation of ERα activity.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University, 1430 Tulane Avenue, SL-78, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ahtiainen P, Sharp V, Rulli SB, Rivero-Müller A, Mamaeva V, Röyttä M, Huhtaniemi I. Enhanced LH action in transgenic female mice expressing hCGbeta-subunit induces pituitary prolactinomas; the role of high progesterone levels. Endocr Relat Cancer 2010; 17:611-21. [PMID: 20453081 PMCID: PMC2881531 DOI: 10.1677/erc-10-0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The etiology of pituitary adenomas remains largely unknown, with the exception of involvement of estrogens in the formation of prolactinomas. We have examined the molecular pathogenesis of prolactin-producing pituitary adenomas in transgenic female mice expressing the human choriongonadotropin (hCG) beta-subunit. The LH/CG bioactivity is elevated in the mice, with consequent highly stimulated ovarian progesterone (P(4)) production, in the face of normal estrogen secretion. Curiously, despite normal estrogen levels, large prolactinomas developed in these mice, and we provide here several lines of evidence that the elevated P(4) levels are involved in the growth of these estrogen-dependent tumors. The antiprogestin mifepristone inhibited tumor growth, and combined postgonadectomy estradiol/P(4) treatment was more effective than estrogen alone in inducing tumor growth. Evidence for direct growth-promoting effect of P(4) was obtained from cultures of primary mouse pituitary cells and rat somatomammotroph GH3 cells. The mouse tumors and cultured cells revealed stimulation of the cyclin D1/cyclin-dependent kinase 4/retinoblastoma protein/transcription factor E2F1 pathway in the growth response to P(4). If extrapolated to humans, and given the importance of endogenous P(4) and synthetic progestins in female reproductive functions and their pharmacotherapy, it is relevant to revisit the potential role of these hormones in the origin and growth of prolactinomas.
Collapse
Affiliation(s)
- Petteri Ahtiainen
- Department of PhysiologyUniversity of TurkuFIN-20520, TurkuFinland
- Turku Graduate School of Biomedical ScienceUniversity of TurkuFIN-20520, TurkuFinland
| | - Victoria Sharp
- Department of Surgery and CancerImperial College LondonHammersmith Campus, Du Cane Road, London, W12 0NNUK
| | - Susana B Rulli
- Department of PhysiologyUniversity of TurkuFIN-20520, TurkuFinland
- Institute of Biology and Experimental Medicine-CONICETVuelta de Obligado 2490, , Buenos Aires, 1428Argentina
| | | | - Veronika Mamaeva
- Department of PhysiologyUniversity of TurkuFIN-20520, TurkuFinland
| | - Matias Röyttä
- Department of PathologyUniversity of TurkuTurku, FIN-20520Finland
| | - Ilpo Huhtaniemi
- Department of PhysiologyUniversity of TurkuFIN-20520, TurkuFinland
- Department of Surgery and CancerImperial College LondonHammersmith Campus, Du Cane Road, London, W12 0NNUK
- Correspondence should be addressed to I Huhtaniemi at Department of Surgery and Cancer, Imperial College London, London W12 ONN, UK ()
| |
Collapse
|
19
|
Chen J, Rusnak M, Lombroso PJ, Sidhu A. Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades. Eur J Neurosci 2009; 29:287-306. [PMID: 19200235 DOI: 10.1111/j.1460-9568.2008.06590.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the mechanisms underlying striatal neurodegeneration are poorly understood, we have shown that striatal pathogenesis may be initiated by high synaptic levels of extracellular dopamine (DA). Here we investigated in rat striatal primary neurons the mobilization of the mitogen-activated protein kinase (MAPK) signaling pathways after treatment with DA. Instead of observing an elevation of the archetypical pro-cytotoxic MAPKs, p-JNK and p-p38 MAPK, we found that DA, acting through D1 DA receptors, induced a sustained stimulation of the phosphorylated form of extracellular signal-regulated kinase (p-ERK) via a cAMP/protein kinase A (PKA)/Rap1/B-Raf / MAPK/ERK kinase (MEK) pathway. Blockade of D2 DA receptors, beta-adrenergic receptors or N-methyl-D-aspartate receptors with receptor-specific antagonists had no significant effect on this process. Activation of D1 DA receptors and PKA by DA caused phosphorylation and inactivation of the striatal-enriched tyrosine phosphatase, an important phosphatase for the dephosphorylation and subsequent inactivation of p-ERK in the striatum. Interestingly, p-ERK was primarily retained in the cytoplasm, with only low amounts translocated to the nucleus. The scaffold protein beta-arrestin2 interacted with both p-ERK and D1 DA receptor, triggering the cytosolic retention of p-ERK and inducing striatal neuronal apoptotic death. These data provide unique insight into a novel role of p-ERK in striatal neurodegeneration.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, Georgetown University, Washington DC 20007, USA
| | | | | | | |
Collapse
|
20
|
Nafisi H, Banihashemi B, Daigle M, Albert PR. GAP1(IP4BP)/RASA3 mediates Galphai-induced inhibition of mitogen-activated protein kinase. J Biol Chem 2008; 283:35908-17. [PMID: 18952607 DOI: 10.1074/jbc.m803622200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dopamine D2S receptor (short isoform) couples to inhibitory Galphai/o proteins to inhibit thyrotropin-releasing hormone (TRH)-stimulated p42/p44 mitogen-activated protein kinase (ERK1/2) phosphorylation in GH4ZR7 rat pituitary cells, consistent with its actions to inhibit prolactin gene transcription and cell proliferation. However, the underlying mechanism is unclear. To identify novel Galphai effectors, yeast two-hybrid screening of a GH4ZR7 cDNA library was done using constitutively active Galphai3-Q204L, and multiple clones of the RasGAP cDNA GAP1(IP4BP)/RASA3 were identified. In yeast mating assay, RASA3 preferentially interacted with activated forms of Galphai/o/z proteins, but not with Galphas. A direct interaction was indicated by in vitro pull-down assay, in which S-His-RASA3 preferentially bound guanosine 5'-O-(gamma-thio)triphosphate-activated Galphai3 and Galphai2 compared with guanosine 5'-O-(beta-thio)diphosphate-inactivated proteins. Similarly, in co-immunoprecipitation studies in HEK-293 cells, FLAG-tagged RASA3 preferentially interacted with activated mutants of Galphai3 and Galphai2 compared with wild type proteins. In GH4ZR7 cells, co-immunoprecipitation studies of endogenous proteins demonstrated a Galphai3-RASA3 complex that was induced upon TRH/D2S receptor co-activation. To address RASA3 function in dopamine D2S receptor-induced inhibition of ERK1/2 activity, endogenous RASA3 protein expression was suppressed (70% knockdown) in GH4ZR7 cells stably transfected with full-length antisense cDNA of RASA3. The selected antisense clones had similar levels of dopamine D2S receptor binding and D2S-induced inhibition of cAMP formation compared with parental GH4ZR7 cells. In these clones, D2S-mediated inhibition of TRH-induced phospho-ERK1/2 was reversed by 70-80% compared with parental GH4ZR7 cells. Our results provide a novel mechanism for dopamine D2S-induced inhibition of ERK1/2 and indicate that RASA3 links Galphai proteins to inhibit Gq-induced Ras/ERK1/2 activation.
Collapse
Affiliation(s)
- Houman Nafisi
- Ottawa Health Research Institute (Neuroscience), Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | | | | | | |
Collapse
|
21
|
Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 2008; 28:5671-85. [PMID: 18509028 DOI: 10.1523/jneurosci.1039-08.2008] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Psychostimulants and other drugs of abuse activate extracellular signal-regulated kinase (ERK) in the striatum, through combined stimulation of dopamine D(1) receptors (D1Rs) and glutamate NMDA receptors. Antipsychotic drugs activate similar signaling proteins in the striatum by blocking dopamine D(2) receptors (D2Rs). However, the neurons in which these pathways are activated by psychotropic drugs are not precisely identified. We used transgenic mice, in which enhanced green fluorescent protein (EGFP) expression was driven by D1R promoter (drd1a-EGFP) or D2R promoter (drd2-EGFP). We confirmed the expression of drd1a-EGFP in striatonigral and drd2-EGFP in striatopallidal neurons. Drd2-EGFP was also expressed in cholinergic interneurons, whereas no expression of either promoter was detected in GABAergic interneurons. Acute cocaine treatment increased phosphorylation of ERK and its direct or indirect nuclear targets, mitogen- and stress-activated kinase-1 (MSK1) and histone H3, exclusively in D1R-expressing output neurons in the dorsal striatum and nucleus accumbens. Cocaine-induced expression of c-Fos and Zif268 predominated in D1R-expressing neurons but was also observed in D2R-expressing neurons. One week after repeated cocaine administration, cocaine-induced signaling responses were decreased, with the exception of enhanced ERK phosphorylation in dorsal striatum. The responses remained confined to D1R neurons. In contrast, acute haloperidol injection activated phosphorylation of ERK, MSK1, and H3 only in D2R neurons and induced c-fos and zif268 predominantly in these neurons. Our results demonstrate that cocaine and haloperidol specifically activate signaling pathways in two completely segregated populations of striatal output neurons, providing direct evidence for the selective mechanisms by which these drugs exert their long-term effects.
Collapse
|
22
|
Haloperidol regulates the phosphorylation level of the MEK-ERK-p90RSK signal pathway via protein phosphatase 2A in the rat frontal cortex. Int J Neuropsychopharmacol 2008; 11:509-17. [PMID: 18272021 DOI: 10.1017/s1461145707008292] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Haloperidol, a classical antipsychotic drug, affects the extracellular signal-regulated kinase (ERK) pathway in the brain. However, findings are inconsistent and the mechanism by which haloperidol regulates ERK is poorly understood. Therefore, we examined the ERK pathway and the related protein phosphatase 2A (PP2A) in detail after haloperidol administration. Haloperidol (0.5 and 1 mg/kg) induced biphasic changes in the phosphorylation level of mitogen-activated protein kinase kinase (MEK), ERK, and p90 ribosomal S6 kinase (p90RSK) without changing Raf-1 phosphorylation. Fifteen minutes after haloperidol administration, MEK-ERK-p90RSK phosphorylation increased, whilst PP2A activity decreased. At 60 min, the reverse was observed and the binding of PP2A to MEK and ERK increased. Higher dosages of haloperidol (2 and 4 mg/kg), affected neither MEK-ERK-p90RSK phosphorylation nor PP2A activity. Accordingly, PP2A regulates acute dose- and time-dependent changes in MEK-ERK-p90RSK phosphorylation after haloperidol treatment. These findings suggest the involvement of a dephosphorylating mechanism in the acute action of haloperidol.
Collapse
|
23
|
Molecular architecture of Galphao and the structural basis for RGS16-mediated deactivation. Proc Natl Acad Sci U S A 2008; 105:6243-8. [PMID: 18434540 DOI: 10.1073/pnas.0801569105] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins relay extracellular cues from heptahelical transmembrane receptors to downstream effector molecules. Composed of an alpha subunit with intrinsic GTPase activity and a betagamma heterodimer, the trimeric complex dissociates upon receptor-mediated nucleotide exchange on the alpha subunit, enabling each component to engage downstream effector targets for either activation or inhibition as dictated in a particular pathway. To mitigate excessive effector engagement and concomitant signal transmission, the Galpha subunit's intrinsic activation timer (the rate of GTP hydrolysis) is regulated spatially and temporally by a class of GTPase accelerating proteins (GAPs) known as the regulator of G protein signaling (RGS) family. The array of G protein-coupled receptors, Galpha subunits, RGS proteins and downstream effectors in mammalian systems is vast. Understanding the molecular determinants of specificity is critical for a comprehensive mapping of the G protein system. Here, we present the 2.9 A crystal structure of the enigmatic, neuronal G protein Galpha(o) in the GTP hydrolytic transition state, complexed with RGS16. Comparison with the 1.89 A structure of apo-RGS16, also presented here, reveals plasticity upon Galpha(o) binding, the determinants for GAP activity, and the structurally unique features of Galpha(o) that likely distinguish it physiologically from other members of the larger Galpha(i) family, affording insight to receptor, GAP and effector specificity.
Collapse
|
24
|
Ishida M, Mitsui T, Yamakawa K, Sugiyama N, Takahashi W, Shimura H, Endo T, Kobayashi T, Arita J. Involvement of cAMP response element-binding protein in the regulation of cell proliferation and the prolactin promoter of lactotrophs in primary culture. Am J Physiol Endocrinol Metab 2007; 293:E1529-37. [PMID: 17925456 DOI: 10.1152/ajpendo.00028.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothalamic hormones, including dopamine, regulate critical functions of pituitary cells via the cAMP-protein kinase A (PKA) pathway. The PKA-downstream transcription factor cAMP response element (CRE)-binding protein (CREB) is an integrating molecule that is also activated by many other protein kinase pathways. We investigated the involvement of CREB in the regulation of cell proliferation and the PRL promoter of rat lactotrophs in primary cell culture. Recombinant adenoviruses were used for efficient gene delivery into pituitary cells. Bromocriptine, a dopaminergic agonist known to decrease intracellular cAMP concentrations, caused inhibition of PRL promoter activity and lactotroph proliferation, which was accompanied by decreases in CRE-mediated transcription and CREB phosphorylation in lactotrophs. Expression of a dominant-negative form of CREB (MCREB), which was effective in suppressing CRE-mediated transcription induced by the adenylate cyclase activator forskolin, inhibited basal and forskolin-induced PRL promoter activity and PRL mRNA expression. MCREB expression lowered basal proliferative levels and blocked forskolin-induced proliferation of lactotrophs. Insulin-like growth factor I (IGF-I), a potent mitogen in lactotrophs, did not affect intracellular cAMP concentrations but transiently increased lactotroph CREB phosphorylation. MCREB expression also inhibited IGF-I-induced lactotroph proliferation. These results suggest that CREB is involved in the regulation of cell proliferation and the PRL promoter in normal lactotrophs and that dopamine inhibition of these lactotroph functions is at least in part due to inhibition of the cAMP-PKA-CREB pathway.
Collapse
Affiliation(s)
- Maho Ishida
- Dept. of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, Univ. of Yamanashi, 409-3898, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 2007; 87:933-63. [PMID: 17615393 DOI: 10.1152/physrev.00006.2006] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pituitary gland is a central endocrine organ regulating basic physiological functions, including growth, the stress response, reproduction, metabolic homeostasis, and lactation. Distinct hormone-producing cell types in the anterior pituitary arise from a common ectodermal primordium during development by extrinsic and intrinsic mechanisms, providing a powerful model system for elucidating general principles in mammalian organogenesis. The central purpose of this review is to inspect the integrated signaling and transcriptional events that affect precursor proliferation, cell lineage commitment, terminal differentiation, and physiological regulation by hypothalamic tropic factors.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
26
|
Molinari C, Grossini E, Mary DASG, Uberti F, Ghigo E, Ribichini F, Surico N, Vacca G. Prolactin induces regional vasoconstriction through the beta2-adrenergic and nitric oxide mechanisms. Endocrinology 2007; 148:4080-90. [PMID: 17463060 DOI: 10.1210/en.2006-1577] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prolactin has been associated with many effects and has been implicated in the pathogenesis of pregnancy-related hypertensive disorders, although little is known about its vascular effects. The present study was designed to determine the primary effect of prolactin on regional vascular beds and the mechanisms involved. In 37 anesthetized pigs, the infusion of 0.17 mug/kg min of prolactin at constant heart rate and arterial pressure decreased coronary, mesenteric, renal, and iliac blood flow. This response was graded in further five pigs by increasing the infused dose of the hormone between 0.017 and 1 mug/kg min. In 22 of the 37 pigs, blockade of cholinergic receptors (five pigs) and of alpha-adrenoceptors (five pigs) did not affect the prolactin-induced vascular response, which was abolished by blockade of beta(2)-adrenoceptors (five pigs) and by blockade of vascular nitric oxide (NO) synthase (seven pigs). In 15 of the 37 pigs the increases in measured blood flows caused by iv infusion of isoproterenol (five pigs) and by intraarterial administration of acetylcholine (five pigs) and of sodium nitroprusside (five pigs) were significantly reduced by infusion of prolactin. Moreover, the treatment of porcine aortic endothelial cells by prolactin caused a reduction of NO production and of the phosphorylation of ERK, Akt, and p38, which was prevented by the concomitant treatment by the beta(2)-adrenergic agonist albuterol. The present study showed that iv infusion of prolactin primarily caused coronary, mesenteric, renal, and iliac vasoconstriction. These effects were brought about by the inhibition of a vasodilatory beta(2)-adrenergic receptor-mediated effect related to the NO intracellular pathway.
Collapse
Affiliation(s)
- Claudio Molinari
- Laboratorio di Fisiologia, Dipartimento di Medicina Clinica e Sperimentale, Facoltà di Medicina e Chirurgia, Università del Piemonte Orientale A. Avogadro, via Solaroli 17, I-28100 Novara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Woster AP, Combs CK. Differential ability of a thiazolidinedione PPARgamma agonist to attenuate cytokine secretion in primary microglia and macrophage-like cells. J Neurochem 2007; 103:67-76. [PMID: 17573821 DOI: 10.1111/j.1471-4159.2007.04706.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are known to inhibit select pro-inflammatory changes in models of CNS and systemic inflammation. Recent reports suggest that these anti-inflammatory effects are due to mechanisms other than canonical nuclear receptor-mediated transcriptional alteration. Using primary microglia and the monocytic cell line, THP-1, we demonstrate that rosiglitazone, a PPARgamma-activating thiazolidinedione, decreases pro-inflammatory cytokine secretion as measured by ELISA. Cells were pre-treated with various thiazolidinediones, including rosiglitazone, prior to stimulation with lipopolysaccharide or phorbol 12-myristate 13-acetate (PMA) to stimulate cytokine production. Tumor necrosis factor alpha (TNFalpha) secretion was significantly inhibited in both primary microglia and THP-1 cells differentiated for 72 h in the presence of PMA to induce a macrophage-like phenotype. No reduction in TNFalpha secretion was observed in undifferentiated THP-1 cells with rosiglitazone pre-treatment. Electrophoretic mobility shift assay revealed no significant difference in PPARgamma activation between PMA-differentiated and undifferentiated THP-1 cells. When PMA-differentiated and undifferentiated THP-1 cells were treated with the irreversible PPARgamma antagonist, GW 9662, a significant, dose-dependent decrease in TNFalpha secretion was observed. These results suggest that the anti-inflammatory benefit of PPARgamma ligands occur independently of classical PPARgamma activation.
Collapse
Affiliation(s)
- Andrew P Woster
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | | |
Collapse
|
28
|
Gutierrez-Hartmann A, Duval DL, Bradford AP. ETS transcription factors in endocrine systems. Trends Endocrinol Metab 2007; 18:150-8. [PMID: 17387021 DOI: 10.1016/j.tem.2007.03.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/19/2007] [Accepted: 03/16/2007] [Indexed: 12/31/2022]
Abstract
E26 transformation-specific (ETS) transcription factors have become increasingly recognized as key regulators of differentiation, hormone responses and tumorigenesis in endocrine organs and target tissues. The ETS family is highly diverse, consisting of both transcription activators and repressors that mediate growth factor signaling and regulate gene expression through combinatorial interactions with multiple protein partners on composite DNA elements. ETS proteins have a role in the endocrine system in establishing pituitary-specific gene expression, mammary gland development and cancers of the breast, prostate and reproductive organs.
Collapse
|
29
|
Van-Ham II, Banihashemi B, Wilson AM, Jacobsen KX, Czesak M, Albert PR. Differential signaling of dopamine-D2S and -D2L receptors to inhibit ERK1/2 phosphorylation. J Neurochem 2007; 102:1796-1804. [PMID: 17767702 DOI: 10.1111/j.1471-4159.2007.04650.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although they have distinct functions, the signaling of dopamine-D(2) receptor short and long isoforms (D(2)S and D(2)L) is virtually identical. We compared inhibitory regulation of extracellular signal-regulated kinases (ERK1/2) in GH4 pituitary cells separately transfected with these isoforms. Activation of rat or human dopamine-D(2)S, muscarinic or somatostatin receptors inhibited thyrotropin-releasing hormone-induced ERK1/2 phosphorylation, while the D(2)L receptor failed to inhibit this response. In order to address the structural basis for the differential signaling of D(2)S and D(2)L receptors, we examined the D(2)L-SS mutant, in which a protein kinase C (PKC) pseudosubstrate site that is present in the D(2)L but not D(2)S receptor was converted to a consensus PKC site. In transfected GH4 cells, the D(2)L-SS mutant inhibited thyrotropin-releasing hormone-induced ERK1/2 phosphorylation almost as strongly as the D(2)S receptor. A D(2)S-triple mutant that eliminates PKC sites involved in D(2)S receptor desensitization also inhibited ERK1/2 activation. Similarly, in striatal cultures, the D(2)-selective agonist quinpirole inhibited potassium-stimulated ERK1/2 phosphorylation, indicating the presence of this pathway in neurons. In conclusion, the D(2)S and D(2)L receptors differ in inhibitory signaling to ERK1/2 due to specific residues in the D(2)L receptor alternatively spliced domain, which may account for differences in their function in vivo.
Collapse
Affiliation(s)
- Irit Itzhaki Van-Ham
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Behzad Banihashemi
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Ariel M Wilson
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Kirsten X Jacobsen
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Margaret Czesak
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Paul R Albert
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Obál F, Garcia-Garcia F, Kacsóh B, Taishi P, Bohnet S, Horseman ND, Krueger JM. Rapid eye movement sleep is reduced in prolactin-deficient mice. J Neurosci 2006; 25:10282-9. [PMID: 16267236 PMCID: PMC6725790 DOI: 10.1523/jneurosci.2572-05.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prolactin (PRL) is implicated in the modulation of spontaneous rapid eye movement sleep (REMS). Previous models of hypoprolactinemic animals were characterized by changes in REMS, although associated deficits made it difficult to ascribe changes in REMS to reduced PRL. In the current studies, male PRL knock-out (KO) mice were used; these mice lack functional PRL but have no known additional deficits. Spontaneous REMS was reduced in the PRL KO mice compared with wild-type or heterozygous littermates. Infusion of PRL for 11-12 d into PRL KO mice restored their REMS to that occurring in wild-type or heterozygous controls. Six hours of sleep deprivation induced a non-REMS and a REMS rebound in both PRL KO mice and heterozygous littermates, although the REMS rebound in the KOs was substantially less. Vasoactive intestinal peptide (VIP) induced REMS responses in heterozygous mice but not in KO mice. Similarly, an ether stressor failed to enhance REMS in the PRL KOs but did in heterozygous littermates. Finally, hypothalamic mRNA levels for PRL, VIP, neural nitric oxide synthase (NOS), inducible NOS, and the interferon type I receptor were similar in KO and heterozygous mice. In contrast, tyrosine hydroxylase mRNA was lower in the PRL KO mice than in heterozygous controls and was restored to control values by infusion of PRL, suggesting a functioning short-loop negative feedback regulation in PRL KO mice. Data support the notion that PRL is involved in REMS regulation.
Collapse
Affiliation(s)
- Ferenc Obál
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-6520, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Van Craenenbroeck K, De Bosscher K, Vanden Berghe W, Vanhoenacker P, Haegeman G. Role of glucocorticoids in dopamine-related neuropsychiatric disorders. Mol Cell Endocrinol 2005; 245:10-22. [PMID: 16310935 DOI: 10.1016/j.mce.2005.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 10/14/2005] [Indexed: 01/12/2023]
Abstract
'Psychoneuroendocrinology' is now quickly emerging as a hot interdisciplinary research field that addresses the interplay between neuronal and endocrine signaling in psychiatric diseases. Both glucocorticoid hormones and dopamine have an important role in maintaining normal brain functions. In this review, molecular and mechanistic aspects of glucocorticoid effects on brain function and behavior will be discussed with specific reference to dopamine signaling.
Collapse
Affiliation(s)
- Kathleen Van Craenenbroeck
- Laboratory for Eukaryotic Gene Expression and Signal Transduction, LEGEST, Department of Molecular Biology, Ghent University-UGent, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
32
|
Abstract
In Iran, opium is smoked for pleasure or as a medication by some people. It is a complex mixture of 40 different alkaloids, including morphine and codeine along with many impurities. Although it is well established that opioids or tobacco affect many physiological functions in humans, to our knowledge there has been no specific study looking at these effects in opium smokers. To assess that, we investigated the circulating levels of prolactin, TSH, LH, FSH and testosterone in male opium smokers who also smoke cigarettes (n=23, aged 28.4+/- 4.1 years), and comparing this with the corresponding values for nicotine abusers (n=12, 15-25 cigarettes/day) or a healthy control group (n=20) of the same age. Our results showed that 86.96% of the opium-dependent and 41.67 % of the nicotine-dependent group displayed high prolactin values (p<0.002). In addition, there was a positive correlation between the dose of opium and the plasma prolactin level of opium dependents (p=0.748, p<0.001). Low FSH was detected in 43.48% of the opium smokers and 50% of the cigarette smokers (p<0.001) with normal LH and testosterone levels. TSH of the opium smokers was also lower than that of the other two groups (p<0.002). In conclusion, the present data indicate that chronic opium and cigarette smoking may synergistically influence pituitary hormone production through the effects on neuropeptides produced either locally or systemic.
Collapse
|
33
|
|
34
|
Abstract
Pharmacologic resistance to dopamine agonists is defined here as failure to normalize PRL levels and failure to decrease macroprolactinoma size by >or=50%. Failure to normalize PRL levels is found in about one-quarter of patients treated with bromocriptine and 10-15% of those treated with pergolide or cabergoline. Failure to achieve at least a 50% reduction in tumor size occurs in about one-third of those treated with bromocriptine and 10-15% of those treated with pergolide or cabergoline. The cause of dopamine resistance is primarily a decrease in D(2) receptors but the receptors have normal affinity for dopamine. Treatment approaches for patients resistant to dopamine agonists include changing to another dopamine agonist and increasing the dose of the drug as long as there is continued response to the dose increases and no adverse effects with higher doses. Transsphenoidal surgery is also an option. Clomiphene, gonadotropins, and GnRH can be used if fertility is desired. For those not desiring fertility, estrogen replacement may be used unless there is a macroadenoma, in which case control of tumor growth is also an issue and dopamine agonists are generally necessary. In many patients modest or even no reduction in tumor size may be acceptable as long as there is not tumor growth. Hormone replacement (estrogen or testosterone) may cause a decrease in efficacy of the dopamine agonist so that it must be carried out cautiously. Reduction of endogenous estrogen, use of selective estrogen receptor modulators, and aromatase inhibitors are potential experimental approaches.
Collapse
Affiliation(s)
- Mark E Molitch
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Tarry 15-731, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Chen L, Taishi P, Duricka D, Krueger JM. Brainstem prolactin mRNA is enhanced in mice with suppressed neuronal nitric oxide synthase activity. ACTA ACUST UNITED AC 2004; 129:179-84. [PMID: 15469894 DOI: 10.1016/j.molbrainres.2004.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2004] [Indexed: 11/17/2022]
Abstract
Prolactin (PRL) and vasoactive intestinal polypeptide (VIP) mRNA levels were elevated in the brainstem of neuronal nitric oxide synthase (nNOS) gene knockout (KO) mice compared to the levels in nNOS control mice. In addition, PRL mRNA levels increased in the hypothalamus and the brainstem of nNOS control mice after administration of 7-nitro-indazole (7-NI), a relatively selective nNOS inhibitor. The results suggest that NO inhibits PRL. No differences in the genes measured were observed in inducible NOS KO mice.
Collapse
Affiliation(s)
- Lichao Chen
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, 205 Wegner Hall, P.O. Box 646520, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The D1-like (D1, D5) and D2-like (D2, D3, D4) classes of dopamine receptors each has shared signaling properties that contribute to the definition of the receptor class, although some differences among subtypes within a class have been identified. D1-like receptor signaling is mediated chiefly by the heterotrimeric G proteins Galphas and Galphaolf, which cause sequential activation of adenylate cyclase, cylic AMP-dependent protein kinase, and the protein phosphatase-1 inhibitor DARPP-32. The increased phosphorylation that results from the combined effects of activating cyclic AMP-dependent protein kinase and inhibiting protein phosphatase 1 regulates the activity of many receptors, enzymes, ion channels, and transcription factors. D1 or a novel D1-like receptor also signals via phospholipase C-dependent and cyclic AMP-independent mobilization of intracellular calcium. D2-like receptor signaling is mediated by the heterotrimeric G proteins Galphai and Galphao. These pertussis toxin-sensitive G proteins regulate some effectors, such as adenylate cyclase, via their Galpha subunits, but regulate many more effectors such as ion channels, phospholipases, protein kinases, and receptor tyrosine kinases as a result of the receptor-induced liberation of Gbetagamma subunits. In addition to interactions between dopamine receptors and G proteins, other protein:protein interactions such as receptor oligomerization or receptor interactions with scaffolding and signal-switching proteins are critical for regulation of dopamine receptor signaling.
Collapse
Affiliation(s)
- Kim A Neve
- Veterans Affairs Medical Center and Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | |
Collapse
|
37
|
Chen J, Rusnak M, Luedtke RR, Sidhu A. D1 Dopamine Receptor Mediates Dopamine-induced Cytotoxicity via the ERK Signal Cascade. J Biol Chem 2004; 279:39317-30. [PMID: 15247297 DOI: 10.1074/jbc.m403891200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Postsynaptic striatal neurodegeneration occurs through unknown mechanisms, but it is linked to high extracellular levels of synaptic dopamine. Dopamine-mediated cytotoxicity of striatal neurons occurs through two distinct pathways: autoxidation and the D1 dopamine receptor-linked signaling pathway. Here we investigated the mitogen-activated protein kinase (MAPK) signaling pathways activated upon the acute stimulation of D1 dopamine receptors. In SK-N-MC neuroblastoma cells, endogenously expressing D1 dopamine receptors, dopamine caused activation of phosphorylated (p-)ERK1/2 and of the stress-signaling kinases, p-JNK and p-p38 MAPK, in a time- and dose-dependent manner. Selective stimulation of D1 receptors with the agonist SKF R-38393 caused p-ERK1/2, but not p-JNK or p-p38 MAPK activation, in a manner sensitive to the receptor-selective antagonist SCH 23390, protein kinase A inhibition (KT5720), and MEK1/2 inhibition (U0126 or PD98059). Activation of ERK by D1 dopamine receptors resulted in oxidative stress and cytotoxicity. In cells transfected with a catalytically defective mutant of MEK1, the upstream ERK-specific kinase, both dopamine- and SKF R-38393-mediated cytotoxicity was markedly attenuated, confirming the participation of the ERK signaling pathway. Cell fractionation studies showed that only a small amount of p-ERK1/2 was translocated to the nucleus, with the majority retained in the cytoplasm. From coimmunoprecipitation studies, p-ERK was found to form stable heterotrimeric complexes with the D1 dopamine receptor and beta-arrestin2. In cells transfected with the dominant negative mutant of beta-arrestin2, the formation of such complexes was substantially inhibited. These data provide novel mechanistic insights into the role of ERK in the cytotoxicity mediated upon activation of the D1 dopamine receptor.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, Georgetown University, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
38
|
Fombonne J, Reix S, Rasolonjanahary R, Danty E, Thirion S, Laforge-Anglade G, Bosler O, Mehlen P, Enjalbert A, Krantic S. Epidermal growth factor triggers an original, caspase-independent pituitary cell death with heterogeneous phenotype. Mol Biol Cell 2004; 15:4938-48. [PMID: 15331766 PMCID: PMC524748 DOI: 10.1091/mbc.e04-07-0601] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Programmed cell death (PCD) is physiologically involved in the regulation of cell division and differentiation. It encompasses caspase-dependent mitochondrial and nonmitochondrial pathways. Additional caspase-independent pathways have been characterized in mitochondrial PCDs but remain hypothetical in nonmitochondrial PCDs. Epidermal growth factor (EGF) has been shown to inhibit division of pituitary somato-lactotrope cells occurring in parallel with EGF-mediated differentiation of these precursors into lactotrope cells. We show here that in somato-lactotrope pituitary cell line GH4C1, EGF triggers a PCD characterized by an apoptosis-like DNA fragmentation, insensitivity to broad-range caspase inhibitors, and absence of either cytochrome c or apoptosis-inducing factor release from mitochondria. Dying cells display loose chromatin clustering and numerous cytoplasmic vacuoles, a fraction of which are autophagic, thus conferring a heterogeneous phenotype to this PCD. Moreover, overexpression of cell death inhibitor Bcl-2 prevented not only the EGF-induced PCD but also its prodifferentiation effects, thus pointing to a mechanistic relationship existing between these two phenomena. Overall, the characterized differentiation-linked cell death represents an original form of caspase-independent PCD. The mechanisms underlying this PCD involve combinatorial engagement of discrete death effectors leading to a heterogeneous death phenotype that might be evolutionary related to PCD seen during the differentiation of some unicellular organisms.
Collapse
Affiliation(s)
- Joanna Fombonne
- Interactions Cellulaires Neuroendocriniennes, Unité Mixte de Recherche 6544, Centre National de Recherche Scientifique/Université de la Méditerranée, Institut Jean Roche, Faculté de Médecine Nord, 13916 Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Beom S, Cheong D, Torres G, Caron MG, Kim KM. Comparative Studies of Molecular Mechanisms of Dopamine D2 and D3 Receptors for the Activation of Extracellular Signal-regulated Kinase. J Biol Chem 2004; 279:28304-14. [PMID: 15102843 DOI: 10.1074/jbc.m403899200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dopamine D(2) and D(3) receptors (D(2)R/D(3)R), which have similar structural architecture as well as functional similarities, are expressed in the same brain dopaminergic neurons. It is intriguing that two receptor proteins with virtually the same functional roles are expressed in the same neuron. Recently we have shown that D(2)R and D(3)R possess different regulatory processes including intracellular trafficking properties, which implies that they might employ different signaling mechanisms for regulation of the same cellular processes. Here we studied the signaling pathways of ERK activation mediated by D(2)R and D(3)R in HEK-293 cells and corroborated them with concomitant studies in COS-7 cells and C6 cells. Our results show that Src, phosphatidylinositol 3-kinase, and atypical protein kinase C were commonly involved in D(2)R-/D(3)R-mediated ERK activation. However, beta-arrestin and sequestration of D(2)R/D(3)R were found not to be involved. ERK activations mediated by D(3)R, but not D(2)R, were blocked by betaARK-CT, AG1478 epidermal growth factor receptor (EGFR) inhibitor, and by dominant negative mutants of Ras and Raf, suggesting the involvement of the Gbetagamma(i) pathway. The alpha-subunit of G(o) (Galpha(o)) was able to couple with D(3)R to mediate ERK activation. We conclude that D(3)R mainly utilizes the betagamma pathway of G(i) protein, which involves the transactivation of EGFR in HEK-293 cells. In contrast, the alpha-subunit of the G(i) protein plays a main role in D(2)R-mediated ERK activation. Our study suggests one example of intricate cellular regulations in the brain, that is, dopaminergic neurons could regulate ERK activity more flexibly through alternative usage of either the D(2)R or D(3)R pathway depending on the cellular situation.
Collapse
Affiliation(s)
- SunRyeo Beom
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Kwang-Ju, 500-757 Korea
| | | | | | | | | |
Collapse
|
40
|
Le Gallic L, Virgilio L, Cohen P, Biteau B, Mavrothalassitis G. ERF nuclear shuttling, a continuous monitor of Erk activity that links it to cell cycle progression. Mol Cell Biol 2004; 24:1206-18. [PMID: 14729966 PMCID: PMC321421 DOI: 10.1128/mcb.24.3.1206-1218.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ets domain transcriptional repressor ERF is an effector of the receptor tyrosine kinase/Ras/Erk pathway, which, it has been suggested, is regulated by subcellular localization as a result of Erk-dependent phosphorylation and is capable of suppressing cell proliferation and ras-induced tumorigenicity. Here, we analyze the effect of ERF phosphorylation on nuclear import and export, the timing of its phosphorylation and dephosphorylation in relation to its subcellular location, Erk activity, and the requirements for ERF-induced cell cycle arrest. Our findings indicate that ERF continuously shuttles between the nucleus and the cytoplasm and that both phosphorylation and dephosphorylation of ERF occur within the nucleus. While nuclear import is not affected by phosphorylation, ERF nuclear export and cytoplasmic release require multisite phosphorylation and dephosphorylation. ERF export is CRM1 dependent, although ERF does not have a detectable nuclear export signal. ERF phosphorylation and export correlate with the levels of nuclear Erk activity. The cell cycle arrest induced by nonphosphorylated ERF requires the wild-type retinoblastoma protein and can be suppressed by overexpression of cyclin. These data suggest that ERF may be a very sensitive and constant sensor of Erk activity that can affect cell cycle progression through G(1), providing another link between the Ras/Erk pathway and cellular proliferation.
Collapse
|
41
|
Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17:1263-93. [PMID: 12835716 DOI: 10.1038/sj.leu.2402945] [Citation(s) in RCA: 525] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) cascade couples signals from cell surface receptors to transcription factors, which regulate gene expression. Depending upon the stimulus and cell type, this pathway can transmit signals, which result in the prevention or induction of apoptosis or cell cycle progression. Thus, it is an appropriate pathway to target for therapeutic intervention. This pathway becomes more complex daily, as there are multiple members of the kinase and transcription factor families, which can be activated or inactivated by protein phosphorylation. The diversity of signals transduced by this pathway is increased, as different family members heterodimerize to transmit different signals. Furthermore, additional signal transduction pathways interact with the Raf/MEK/ERK pathway to regulate positively or negatively its activity, or to alter the phosphorylation status of downstream targets. Abnormal activation of this pathway occurs in leukemia because of mutations at Ras as well as genes in other pathways (eg PI3K, PTEN, Akt), which serve to regulate its activity. Dysregulation of this pathway can result in autocrine transformation of hematopoietic cells since cytokine genes such as interleukin-3 and granulocyte/macrophage colony-stimulating factor contain the transacting binding sites for the transcription factors regulated by this pathway. Inhibitors of Ras, Raf, MEK and some downstream targets have been developed and many are currently in clinical trials. This review will summarize our current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors. The prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.
Collapse
Affiliation(s)
- F Chang
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Resistance to dopamine agonists can be defined with respect to failure to normalize PRL levels and failure to decrease tumor size by > or = 50%. Using these definitions, failure to normalize PRL levels is seen in 24% of those treated with bromocriptine, 13% of those treated with pergolide and 11% of those treated with cabergoline. Failure to achieve at least a 50% reduction in tumor size occurs in about one-third of those treated with bromocriptine and 10-15% of those treated with pergolide or cabergoline. Studies of in vitro cell preparations show that the D2 receptors of resistant tumors are decreased in number but have normal affinity. Treatment approaches for resistant patients include switching to another dopamine agonist and raising the dose of the drug as long as there is continued response to the dose increases and no adverse effects. Transsphenoidal surgery can also be done. If fertility is desired, clomiphene, gonadotropins, and GnRH are also options. If fertility is not desired, estrogen replacement may be used unless there is a macroadenoma, in which case control of tumor growth is also an issue and dopamine agonists are generally necessary. However, in many cases modest or even no reduction may be acceptable long-term as long as there is not tumor growth. Hormone replacement (estrogen or testosterone) may cause a decrease in efficacy of the dopamine agonist so that it must be carried out cautiously. Reduction of endogenous estrogen, use of selective estrogen receptor modulators, and aromatase inhibitors are potential experimental approaches.
Collapse
Affiliation(s)
- Mark E Molitch
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|