1
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Lappalainen P, Kotila T, Jégou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol 2022; 23:836-852. [PMID: 35918536 DOI: 10.1038/s41580-022-00508-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Polymerization of actin filaments against membranes produces force for numerous cellular processes, such as migration, morphogenesis, endocytosis, phagocytosis and organelle dynamics. Consequently, aberrant actin cytoskeleton dynamics are linked to various diseases, including cancer, as well as immunological and neurological disorders. Understanding how actin filaments generate forces in cells, how force production is regulated by the interplay between actin-binding proteins and how the actin-regulatory machinery responds to mechanical load are at the heart of many cellular, developmental and pathological processes. During the past few years, our understanding of the mechanisms controlling actin filament assembly and disassembly has evolved substantially. It has also become evident that the activities of key actin-binding proteins are not regulated solely by biochemical signalling pathways, as mechanical regulation is critical for these proteins. Indeed, the architecture and dynamics of the actin cytoskeleton are directly tuned by mechanical load. Here we discuss the general mechanisms by which key actin regulators, often in synergy with each other, control actin filament assembly, disassembly, and monomer recycling. By using an updated view of actin dynamics as a framework, we discuss how the mechanics and geometry of actin networks control actin-binding proteins, and how this translates into force production in endocytosis and mesenchymal cell migration.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
4
|
An R, Wang J, Chen X, Xu R, Hu J, Liu Z, Wei C, Zhang C, Yuan B. YAP signaling is involved in WDR1-regulated proliferation and migration of non-small-cell lung cancer cells. Exp Biol Med (Maywood) 2022; 247:1619-1629. [PMID: 35861209 PMCID: PMC9597210 DOI: 10.1177/15353702221110645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As a major co-factor of F-actin depolymerization, WD-repeat domain 1 (WDR1) affects the cellular microenvironment by cytoskeleton remodeling, thereby influencing cell molecular behavior. Our previous study showed that WDR1 activates YAP (Yes-associated protein) signaling in non-small-cell lung cancer (NSCLC) cells, but the mechanism remains unclear. We discovered that knockdown WDR1 in NSCLC cells decreased the expression of YAP and the nucleus-to-cytoplasm ratio. Disruption of cortical stress by drugs significantly inhibited YAP nuclear trafficking and enhanced YAP phosphorylation. In WDR1-knockdown NSCLC cells, inhibition of Hippo pathway reduced the nuclear exclusion of YAP and phosphorylated YAP. Our data suggest that WDR1-mediated cortical stress might be involved in regulating YAP signaling, thereby affecting the proliferation and migration of NSCLC cells.
Collapse
Affiliation(s)
- Ran An
- Biomedical Research Institute, College
of Life Science and Health, Wuhan University of Science and Technology, Wuhan
430081, P.R. China
| | - Junyan Wang
- Biomedical Research Institute, College
of Life Science and Health, Wuhan University of Science and Technology, Wuhan
430081, P.R. China
| | - Xuan Chen
- Biomedical Research Institute, College
of Life Science and Health, Wuhan University of Science and Technology, Wuhan
430081, P.R. China
| | - Ruifeng Xu
- Biomedical Research Institute, College
of Life Science and Health, Wuhan University of Science and Technology, Wuhan
430081, P.R. China
| | - Jisheng Hu
- Biomedical Research Institute, College
of Life Science and Health, Wuhan University of Science and Technology, Wuhan
430081, P.R. China
| | - Zhongying Liu
- Biomedical Research Institute, College
of Life Science and Health, Wuhan University of Science and Technology, Wuhan
430081, P.R. China
| | - Chanjuan Wei
- Biomedical Research Institute, College
of Life Science and Health, Wuhan University of Science and Technology, Wuhan
430081, P.R. China
| | - Chenxi Zhang
- Central Laboratory, Nanjing Chest
Hospital, The Affiliated Nanjing Brain Hospital of Nanjing Medical University,
Nanjing 210029, P. R. China
| | - Baiyin Yuan
- Biomedical Research Institute, College
of Life Science and Health, Wuhan University of Science and Technology, Wuhan
430081, P.R. China,Baiyin Yuan.
| |
Collapse
|
5
|
Holz D, Hall AR, Usukura E, Yamashiro S, Watanabe N, Vavylonis D. A mechanism with severing near barbed ends andannealing explains structure and dynamics of dendriticactin networks. eLife 2022; 11:69031. [PMID: 35670664 PMCID: PMC9252579 DOI: 10.7554/elife.69031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/04/2022] [Indexed: 11/13/2022] Open
Abstract
Single molecule imaging has shown that part of actin disassembles within a few seconds after incorporation into the dendritic filament network in lamellipodia, suggestive of frequent destabilization near barbed ends. To investigate the mechanisms behind network remodeling, we created a stochastic model with polymerization, depolymerization, branching, capping, uncapping, severing, oligomer diffusion, annealing, and debranching. We find that filament severing, enhanced near barbed ends, can explain the single molecule actin lifetime distribution, if oligomer fragments reanneal to free ends with rate constants comparable to in vitro measurements. The same mechanism leads to actin networks consistent with measured filament, end, and branch concentrations. These networks undergo structural remodeling, leading to longer filaments away from the leading edge, at the +/- 35𝑜 orientation pattern. Imaging of actin speckle lifetimes at sub-second resolution verifies frequent disassembly of newly-assembled actin. We thus propose a unified mechanism that fits a diverse set of basic lamellipodia phenomenology.
Collapse
Affiliation(s)
| | | | - Eiji Usukura
- Laboratory of Single-Molecule Cell Biology, Kyoto University
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University
| | | |
Collapse
|
6
|
Zhang D, Wan L, Yang F, Liu W, Liu L, He S, Xie N. VWCE Functions as a Tumor Suppressor in Breast Cancer Cells. Front Oncol 2020; 10:586342. [PMID: 33194737 PMCID: PMC7643001 DOI: 10.3389/fonc.2020.586342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer remains a leading cause of cancer-related death, for which the majority of deaths result from metastases. Von Willebrand factor C and EGF domain (VWCE) is a member of the Von Willebrand factor (VWF) gene family; however, its function, regulatory mechanism, and clinical value in breast cancer remain unclear. In the present study, we sought to elucidate the role of VWCE in breast cancer metastasis. We examined the expression of VWCE in breast cancer tissues and normal control tissues of 50 breast cancer patients. We found that VWCE expression was downregulated in breast cancer cells and tissues compared to normal breast epithelial cells or the adjacent normal tissues. To explore the role of VWCE in human breast cancer development, we introduced a VWCE-overexpressing or control lentiviral vector into the breast cancer MDA-MB-453 and MDA-MB-231 lines in vitro. The overexpression of VWCE inhibited the proliferation, migration, invasion, and chemoresistance of the breast cancer cell lines. More importantly, the forced expression of VWCE suppressed tumor formation and metastasis in nude mice. iTRAQ-based quantitative proteomic analysis revealed that VWCE overexpression induced a 10-fold decrease in the level of WD-repeat domain 1 (WDR1) protein expression. Rescue experiments further verified that WDR1 was a downstream molecule of VWCE, and WDR1 overexpression reversed the above effects of VWCE overexpression on tumor growth. Therefore, VWCE may represent a novel tumor suppressor, for which its deregulation promotes breast cancer progression via the upregulation of WDR1.
Collapse
Affiliation(s)
- Dan Zhang
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lili Wan
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fan Yang
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenlan Liu
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Litao Liu
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shengnan He
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ni Xie
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Jin ZL, Yao XR, Wen L, Hao G, Kwon JW, Hao J, Kim NH. AIP1 and Cofilin control the actin dynamics to modulate the asymmetric division and cytokinesis in mouse oocytes. FASEB J 2020; 34:11292-11306. [PMID: 32602619 DOI: 10.1096/fj.202000093r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 11/11/2022]
Abstract
Actin-interacting protein 1 (AIP1), also known as WD repeat-containing protein 1 (WDR1), is ubiquitous in eukaryotic organisms, and it plays critical roles in the dynamic reorganization of the actin cytoskeleton. However, the biological function and mechanism of AIP1 in mammalian oocyte maturation is still largely unclear. In this study, we demonstrated that AIP1 boosts ADF/Cofilin activity in mouse oocytes. AIP1 is primarily distributed around the spindle region during oocyte maturation, and its depletion impairs meiotic spindle migration and asymmetric division. The knockdown of AIP1 resulted in the gathering of a large number of actin-positive patches around the spindle region. This effect was reduced by human AIP1 (hAIP1) or Cofilin (S3A) expression. AIP1 knockdown also reduced the phosphorylation of Cofilin near the spindle, indicating that AIP1 interacts with ADF/Cofilin-decorated actin filaments and enhances filament disassembly. Moreover, the deletion of AIP1 disrupts Cofilin localization in metaphase I (MI) and induces cytokinesis defects in metaphase II (MII). Taken together, our results provide evidence that AIP1 promotes actin dynamics and cytokinesis via Cofilin in the gametes of female mice.
Collapse
Affiliation(s)
- Zhe-Long Jin
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Xue-Rui Yao
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Liu Wen
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Guo Hao
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeong-Woo Kwon
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Jiang Hao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Nam-Hyung Kim
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
8
|
Sizes of actin networks sharing a common environment are determined by the relative rates of assembly. PLoS Biol 2019; 17:e3000317. [PMID: 31181075 PMCID: PMC6586355 DOI: 10.1371/journal.pbio.3000317] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/20/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Within the cytoplasm of a single cell, several actin networks can coexist with distinct sizes, geometries, and protein compositions. These actin networks assemble in competition for a limited pool of proteins present in a common cellular environment. To predict how two distinct networks of actin filaments control this balance, the simultaneous assembly of actin-related protein 2/3 (Arp2/3)-branched networks and formin-linear networks of actin filaments around polystyrene microbeads was investigated with a range of actin accessory proteins (profilin, capping protein, actin-depolymerizing factor [ADF]/cofilin, and tropomyosin). Accessory proteins generally affected actin assembly rates for the distinct networks differently. These effects at the scale of individual actin networks were surprisingly not always correlated with corresponding loss-of-function phenotypes in cells. However, our observations agreed with a global interpretation, which compared relative actin assembly rates of individual actin networks. This work supports a general model in which the size of distinct actin networks is determined by their relative capacity to assemble in a common and competing environment. A biomimetic assay using polystyrene beads compares the rates of actin assembly on linear and branched networks, revealing how the size of rival actin networks in cells is regulated by their relative capacity to assemble in a common environment.
Collapse
|
9
|
Hayakawa K, Sekiguchi C, Sokabe M, Ono S, Tatsumi H. Real-Time Single-Molecule Kinetic Analyses of AIP1-Enhanced Actin Filament Severing in the Presence of Cofilin. J Mol Biol 2018; 431:308-322. [PMID: 30439520 DOI: 10.1016/j.jmb.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022]
Abstract
Rearrangement of actin filaments by polymerization, depolymerization, and severing is important for cell locomotion, membrane trafficking, and many other cellular functions. Cofilin and actin-interacting protein 1 (AIP1; also known as WDR1) are evolutionally conserved proteins that cooperatively sever actin filaments. However, little is known about the biophysical basis of the actin filament severing by these proteins. Here, we performed single-molecule kinetic analyses of fluorescently labeled AIP1 during the severing process of cofilin-decorated actin filaments. Results demonstrated that binding of a single AIP molecule was sufficient to enhance filament severing. After AIP1 binding to a filament, severing occurred with a delay of 0.7 s. Kinetics of binding and dissociation of a single AIP1 molecule to/from actin filaments followed a second-order and a first-order kinetics scheme, respectively. AIP1 binding and severing were detected preferentially at the boundary between the cofilin-decorated and bare regions on actin filaments. Based on the kinetic parameters explored in this study, we propose a possible mechanism behind the enhanced severing by AIP1.
Collapse
Affiliation(s)
- Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Carina Sekiguchi
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Shoichiro Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology (KIT), Ishikawa 924-0838, Japan.
| |
Collapse
|
10
|
Pfajfer L, Mair NK, Jiménez-Heredia R, Genel F, Gulez N, Ardeniz Ö, Hoeger B, Bal SK, Madritsch C, Kalinichenko A, Chandra Ardy R, Gerçeker B, Rey-Barroso J, Ijspeert H, Tangye SG, Simonitsch-Klupp I, Huppa JB, van der Burg M, Dupré L, Boztug K. Mutations affecting the actin regulator WD repeat–containing protein 1 lead to aberrant lymphoid immunity. J Allergy Clin Immunol 2018; 142:1589-1604.e11. [DOI: 10.1016/j.jaci.2018.04.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/12/2018] [Accepted: 04/06/2018] [Indexed: 11/28/2022]
|
11
|
Watanabe N, Tohyama K, Yamashiro S. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization. Biochem Biophys Res Commun 2018; 506:323-329. [PMID: 30309655 DOI: 10.1016/j.bbrc.2018.09.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/30/2018] [Indexed: 01/28/2023]
Abstract
The actin cytoskeleton has two faces. One side provides the relatively stable scaffold to maintain the shape of cell cortex fit to the organs. The other side rapidly changes morphology in response to extracellular stimuli including chemical signal and physical strain. Our series of studies employing single-molecule speckle analysis of actin have revealed diverse F-actin lifetimes spanning a range of seconds to minutes in live cells. The dynamic part of the actin turnover is tightly coupled with actin nucleation activities of formin homology proteins (formins), which serve as rapid and efficient F-actin restoration mechanisms in cells under physical stress. More recently, our two studies revealed stabilization of F-actin either by actomyosin contractile force or by helical rotation of processively-actin polymerizing diaphanous-related formin mDia1. These findings quantitatively explain our proposed anti-mechanostress cascade in that G-actin released from F-actin upon loss of tension triggers frequent nucleation and subsequent fast elongation of F-actin by formins. This formin-restored F-actin may become specifically stabilized over long distance by helical polymerization-mediated filament untwisting. In this review, we discuss how and to what extent formins-mediated F-actin restoration might confer mechanostress resistance to the cell. We also give thought to the possible involvement of helical polymerization-mediated filament untwisting in the formation of diverse actin architectures including chirality control.
Collapse
Affiliation(s)
- Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan.
| | - Kiyoshi Tohyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan
| |
Collapse
|
12
|
Yuan B, Zhang R, Hu J, Liu Z, Yang C, Zhang T, Zhang C. WDR1 Promotes Cell Growth and Migration and Contributes to Malignant Phenotypes of Non-small Cell Lung Cancer through ADF/cofilin-mediated Actin Dynamics. Int J Biol Sci 2018; 14:1067-1080. [PMID: 29989053 PMCID: PMC6036740 DOI: 10.7150/ijbs.23845] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
The characteristic of carcinoma is cell migration and invasion, which involve in strong actin dynamics. Regulations of actin dynamics have been implicated in cancer cell migration and tumor progression. WDR1 (WD-repeat domain 1) is a major cofactor of the actin depolymerizing factor (ADF)/cofilin, strongly accelerating ADF/cofilin-mediated actin disassembly. The role of WDR1 in non-small cell lung cancer (NSCLC) progression has been unknown. Here, we show that the expression levels of WDR1 are increased in human NSCLC tissues compared with adjacent non-tumor tissues, and high WDR1 level correlates with poor prognosis in NSCLC patients. Knockdown of WDR1 in NSCLC cells significantly inhibits cell migration, invasion, EMT process and tumor cell growth in vitro and in vivo. Otherwise, overexpression of WDR1 promotes NSCLC cell proliferation and migration. Mechanically, our data suggested WDR1 regulated tumor cells proliferation and migration might through actin cytoskeleton-mediated regulation of YAP, and we demonstrated that WDR1 contributes to NSCLC progression through ADF/cofilin-mediated actin disassembly. Our findings implicate that the ADF/cofilin-WDR1-actin axis as an activator of malignant phenotype that will be a promising therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Ruirui Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Chao Yang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province 210029, P.R. China
| |
Collapse
|
13
|
Mentel M, Ionescu AE, Puscalau-Girtu I, Helm MS, Badea RA, Rizzoli SO, Szedlacsek SE. WDR1 is a novel EYA3 substrate and its dephosphorylation induces modifications of the cellular actin cytoskeleton. Sci Rep 2018; 8:2910. [PMID: 29440662 PMCID: PMC5811557 DOI: 10.1038/s41598-018-21155-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Eyes absent (EYA) proteins are unusual proteins combining in a single polypeptide chain transactivation, threonine phosphatase, and tyrosine phosphatase activities. They play pivotal roles in organogenesis and are involved in a variety of physiological and pathological processes including innate immunity, DNA damage repair or cancer metastasis. The molecular targets of EYA tyrosine phosphatase activity are still elusive. Therefore, we sought to identify novel EYA substrates and also to obtain further insight into the tyrosine-dephosphorylating role of EYA proteins in various cellular processes. We show here that Src kinase phosphorylates tyrosine residues in two human EYA family members, EYA1 and EYA3. Both can autodephosphorylate these residues and their nuclear and cytoskeletal localization seems to be controlled by Src phosphorylation. Next, using a microarray of phosphotyrosine-containing peptides, we identified a phosphopeptide derived from WD-repeat-containing protein 1 (WDR1) that is dephosphorylated by EYA3. We further demonstrated that several tyrosine residues on WDR1 are phosphorylated by Src kinase, and are efficiently dephosphorylated by EYA3, but not by EYA1. The lack of phosphorylation generates major changes to the cellular actin cytoskeleton. We, therefore, conclude that WDR1 is an EYA3-specific substrate, which implies that EYA3 is a key modulator of the cytoskeletal reorganization.
Collapse
Affiliation(s)
- Mihaela Mentel
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Aura E Ionescu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Ioana Puscalau-Girtu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Martin S Helm
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany.,Max-Planck Research School Molecular Biology, Göttingen, 37077, Germany
| | - Rodica A Badea
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany
| | - Stefan E Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania.
| |
Collapse
|
14
|
Elam WA, Cao W, Kang H, Huehn A, Hocky GM, Prochniewicz E, Schramm AC, Negrón K, Garcia J, Bonello TT, Gunning PW, Thomas DD, Voth GA, Sindelar CV, De La Cruz EM. Phosphomimetic S3D cofilin binds but only weakly severs actin filaments. J Biol Chem 2017; 292:19565-19579. [PMID: 28939776 PMCID: PMC5712599 DOI: 10.1074/jbc.m117.808378] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Many biological processes, including cell division, growth, and motility, rely on rapid remodeling of the actin cytoskeleton and on actin filament severing by the regulatory protein cofilin. Phosphorylation of vertebrate cofilin at Ser-3 regulates both actin binding and severing. Substitution of serine with aspartate at position 3 (S3D) is widely used to mimic cofilin phosphorylation in cells and in vitro The S3D substitution weakens cofilin binding to filaments, and it is presumed that subsequent reduction in cofilin occupancy inhibits filament severing, but this hypothesis has remained untested. Here, using time-resolved phosphorescence anisotropy, electron cryomicroscopy, and all-atom molecular dynamics simulations, we show that S3D cofilin indeed binds filaments with lower affinity, but also with a higher cooperativity than wild-type cofilin, and severs actin weakly across a broad range of occupancies. We found that three factors contribute to the severing deficiency of S3D cofilin. First, the high cooperativity of S3D cofilin generates fewer boundaries between bare and decorated actin segments where severing occurs preferentially. Second, S3D cofilin only weakly alters filament bending and twisting dynamics and therefore does not introduce the mechanical discontinuities required for efficient filament severing at boundaries. Third, Ser-3 modification (i.e. substitution with Asp or phosphorylation) "undocks" and repositions the cofilin N terminus away from the filament axis, which compromises S3D cofilin's ability to weaken longitudinal filament subunit interactions. Collectively, our results demonstrate that, in addition to inhibiting actin binding, Ser-3 modification favors formation of a cofilin-binding mode that is unable to sufficiently alter filament mechanical properties and promote severing.
Collapse
Affiliation(s)
- W Austin Elam
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Wenxiang Cao
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Hyeran Kang
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Andrew Huehn
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Glen M Hocky
- the Department of Chemistry, University of Chicago, Chicago, Illinois 60637
| | - Ewa Prochniewicz
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Anthony C Schramm
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Karina Negrón
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Jean Garcia
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Teresa T Bonello
- the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Peter W Gunning
- the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - David D Thomas
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Gregory A Voth
- the Department of Chemistry, University of Chicago, Chicago, Illinois 60637
| | - Charles V Sindelar
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Enrique M De La Cruz
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520,
| |
Collapse
|
15
|
Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 2017; 506:315-322. [PMID: 29056508 DOI: 10.1016/j.bbrc.2017.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), are conserved among eukaryotes and play critical roles in dynamic reorganization of the actin cytoskeleton. AIP1 preferentially promotes disassembly of ADF/cofilin-decorated actin filaments but exhibits minimal effects on bare actin filaments. Therefore, AIP1 has been often considered to be an ancillary co-factor of ADF/cofilin that merely boosts ADF/cofilin activity level. However, genetic and cell biological studies show that AIP1 deficiency often causes lethality or severe abnormalities in multiple tissues and organs including muscle, epithelia, and blood, suggesting that AIP1 is a major regulator of many biological processes that depend on actin dynamics. This review summarizes recent progress in studies on the biochemical mechanism of actin filament severing by AIP1 and in vivo functions of AIP1 in model organisms and human diseases.
Collapse
|
16
|
Standing ASI, Malinova D, Hong Y, Record J, Moulding D, Blundell MP, Nowak K, Jones H, Omoyinmi E, Gilmour KC, Medlar A, Stanescu H, Kleta R, Anderson G, Nanthapisal S, Gomes SM, Klein N, Eleftheriou D, Thrasher AJ, Brogan PA. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. THE JOURNAL OF EXPERIMENTAL MEDICINE 2017. [PMID: 27994071 DOI: 10.1084/jem.20161228)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The importance of actin dynamics in the activation of the inflammasome is becoming increasingly apparent. IL-1β, which is activated by the inflammasome, is known to be central to the pathogenesis of many monogenic autoinflammatory diseases. However, evidence from an autoinflammatory murine model indicates that IL-18, the other cytokine triggered by inflammasome activity, is important in its own right. In this model, autoinflammation was caused by mutation in the actin regulatory gene WDR1 We report a homozygous missense mutation in WDR1 in two siblings causing periodic fevers with immunodeficiency and thrombocytopenia. We found impaired actin dynamics in patient immune cells. Patients had high serum levels of IL-18, without a corresponding increase in IL-18-binding protein or IL-1β, and their cells also secreted more IL-18 but not IL-1β in culture. We found increased caspase-1 cleavage within patient monocytes indicative of increased inflammasome activity. We transfected HEK293T cells with pyrin and wild-type and mutated WDR1 Mutant protein formed aggregates that appeared to accumulate pyrin; this could potentially precipitate inflammasome assembly. We have extended the findings from the mouse model to highlight the importance of WDR1 and actin regulation in the activation of the inflammasome, and in human autoinflammation.
Collapse
Affiliation(s)
- Ariane S I Standing
- University College London Institute of Child Health, London WC1E 6BT, England, UK .,Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU2 8DL, England, UK
| | - Dessislava Malinova
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Ying Hong
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Julien Record
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Dale Moulding
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Michael P Blundell
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Karolin Nowak
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Hannah Jones
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Ebun Omoyinmi
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Kimberly C Gilmour
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Alan Medlar
- University College London Division of Medicine, London WC1E 6BT, England, UK
| | - Horia Stanescu
- University College London Division of Medicine, London WC1E 6BT, England, UK
| | - Robert Kleta
- University College London Institute of Child Health, London WC1E 6BT, England, UK.,University College London Division of Medicine, London WC1E 6BT, England, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Glenn Anderson
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Sira Nanthapisal
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Sonia Melo Gomes
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Nigel Klein
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Despina Eleftheriou
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Adrian J Thrasher
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Paul A Brogan
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| |
Collapse
|
17
|
Standing ASI, Malinova D, Hong Y, Record J, Moulding D, Blundell MP, Nowak K, Jones H, Omoyinmi E, Gilmour KC, Medlar A, Stanescu H, Kleta R, Anderson G, Nanthapisal S, Gomes SM, Klein N, Eleftheriou D, Thrasher AJ, Brogan PA. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med 2016; 214:59-71. [PMID: 27994071 PMCID: PMC5206503 DOI: 10.1084/jem.20161228] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/11/2016] [Accepted: 11/29/2016] [Indexed: 11/04/2022] Open
Abstract
The importance of actin dynamics in the activation of the inflammasome is becoming increasingly apparent. IL-1β, which is activated by the inflammasome, is known to be central to the pathogenesis of many monogenic autoinflammatory diseases. However, evidence from an autoinflammatory murine model indicates that IL-18, the other cytokine triggered by inflammasome activity, is important in its own right. In this model, autoinflammation was caused by mutation in the actin regulatory gene WDR1 We report a homozygous missense mutation in WDR1 in two siblings causing periodic fevers with immunodeficiency and thrombocytopenia. We found impaired actin dynamics in patient immune cells. Patients had high serum levels of IL-18, without a corresponding increase in IL-18-binding protein or IL-1β, and their cells also secreted more IL-18 but not IL-1β in culture. We found increased caspase-1 cleavage within patient monocytes indicative of increased inflammasome activity. We transfected HEK293T cells with pyrin and wild-type and mutated WDR1 Mutant protein formed aggregates that appeared to accumulate pyrin; this could potentially precipitate inflammasome assembly. We have extended the findings from the mouse model to highlight the importance of WDR1 and actin regulation in the activation of the inflammasome, and in human autoinflammation.
Collapse
Affiliation(s)
- Ariane S I Standing
- University College London Institute of Child Health, London WC1E 6BT, England, UK .,Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU2 8DL, England, UK
| | - Dessislava Malinova
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Ying Hong
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Julien Record
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Dale Moulding
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Michael P Blundell
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Karolin Nowak
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Hannah Jones
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Ebun Omoyinmi
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Kimberly C Gilmour
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Alan Medlar
- University College London Division of Medicine, London WC1E 6BT, England, UK
| | - Horia Stanescu
- University College London Division of Medicine, London WC1E 6BT, England, UK
| | - Robert Kleta
- University College London Institute of Child Health, London WC1E 6BT, England, UK.,University College London Division of Medicine, London WC1E 6BT, England, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Glenn Anderson
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Sira Nanthapisal
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Sonia Melo Gomes
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Nigel Klein
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Despina Eleftheriou
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Adrian J Thrasher
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Paul A Brogan
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| |
Collapse
|
18
|
Lee JH, Kim JE, Kim BG, Han HH, Kang S, Cho NH. STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell Signal 2016; 28:1753-60. [PMID: 27521604 DOI: 10.1016/j.cellsig.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
WD repeat domain 1 (WDR1), a protein that assists cofilin-mediated actin filament disassembly, is overexpressed in the invading front of invasive ductal carcinoma (IDC), but its implication of overexpression and how to be regulated have not been studied. In our study, we demonstrated that STAT3 bound to the 5' upstream sequence (-1971 to -1964), a putative promoter region, of WDR1 gene, and its activation induced WDR1 overexpression in breast cancer cells. The exogenous overexpression of WDR1 increased the migration of MDA-MB-231, which was attenuated by WDR1 knockdown. In the analysis of breast cancer patients, WDR1 overexpression was associated with a shorter distant metastasis-free survival (DMFS), more specifically in basal-like tumors.
Collapse
Affiliation(s)
- Joo Hyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Han
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suki Kang
- The Severance Biomedical Science Institute, Seoul, Republic of Korea
| | - Nam Hoon Cho
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; The Severance Biomedical Science Institute, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Zhao S, Jiang Y, Zhao Y, Huang S, Yuan M, Zhao Y, Guo Y. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor. THE PLANT CELL 2016; 28:1422-39. [PMID: 27268429 PMCID: PMC4944410 DOI: 10.1105/tpc.16.00078] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/06/2016] [Indexed: 05/03/2023]
Abstract
The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanxiu Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Shekhar S, Pernier J, Carlier MF. Regulators of actin filament barbed ends at a glance. J Cell Sci 2016; 129:1085-91. [PMID: 26940918 DOI: 10.1242/jcs.179994] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cells respond to external stimuli by rapidly remodeling their actin cytoskeleton. At the heart of this function lies the intricately controlled regulation of individual filaments. The barbed end of an actin filament is the hotspot for the majority of the biochemical reactions that control filament assembly. Assays performed in bulk solution and with single filaments have enabled characterization of a plethora of barbed-end-regulating proteins. Interestingly, many of these regulators work in tandem with other proteins, which increase or decrease their affinity for the barbed end in a spatially and temporally controlled manner, often through simultaneous binding of two regulators at the barbed ends, in addition to standard mutually exclusive binding schemes. In this Cell Science at a Glance and the accompanying poster, we discuss key barbed-end-interacting proteins and the kinetic mechanisms by which they regulate actin filament assembly. We take F-actin capping protein, gelsolin, profilin and barbed-end-tracking polymerases, including formins and WH2-domain-containing proteins, as examples, and illustrate how their activity and competition for the barbed end regulate filament dynamics.
Collapse
Affiliation(s)
- Shashank Shekhar
- Cytoskeleton Dynamics and Cell Motility, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Julien Pernier
- Cytoskeleton Dynamics and Cell Motility, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Cell Motility, I2BC, CNRS, Gif-sur-Yvette 91198, France
| |
Collapse
|
21
|
Nomura K, Hayakawa K, Tatsumi H, Ono S. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner. J Biol Chem 2016; 291:5146-56. [PMID: 26747606 DOI: 10.1074/jbc.m115.713495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 02/02/2023] Open
Abstract
Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics.
Collapse
Affiliation(s)
- Kazumi Nomura
- From the Departments of Pathology and Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Hitoshi Tatsumi
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan, and the Department of Applied Biosciences, Kanazawa Institute of Technology, Kanazawa 924-0838, Japan
| | - Shoichiro Ono
- From the Departments of Pathology and Cell Biology, Emory University, Atlanta, Georgia 30322,
| |
Collapse
|
22
|
Ydenberg CA, Johnston A, Weinstein J, Bellavance D, Jansen S, Goode BL. Combinatorial genetic analysis of a network of actin disassembly-promoting factors. Cytoskeleton (Hoboken) 2015; 72:349-61. [PMID: 26147656 PMCID: PMC5014199 DOI: 10.1002/cm.21231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
The patterning of actin cytoskeleton structures in vivo is a product of spatially and temporally regulated polymer assembly balanced by polymer disassembly. While in recent years our understanding of actin assembly mechanisms has grown immensely, our knowledge of actin disassembly machinery and mechanisms has remained comparatively sparse. Saccharomyces cerevisiae is an ideal system to tackle this problem, both because of its amenabilities to genetic manipulation and live‐cell imaging and because only a single gene encodes each of the core disassembly factors: cofilin (COF1), Srv2/CAP (SRV2), Aip1 (AIP1), GMF (GMF1/AIM7), coronin (CRN1), and twinfilin (TWF1). Among these six factors, only the functions of cofilin are essential and have been well defined. Here, we investigated the functions of the nonessential actin disassembly factors by performing genetic and live‐cell imaging analyses on a combinatorial set of isogenic single, double, triple, and quadruple mutants in S. cerevisiae. Our results show that each disassembly factor makes an important contribution to cell viability, actin organization, and endocytosis. Further, our data reveal new relationships among these factors, providing insights into how they work together to orchestrate actin turnover. Finally, we observe specific combinations of mutations that are lethal, e.g., srv2Δ aip1Δ and srv2Δ crn1Δ twf1Δ, demonstrating that while cofilin is essential, it is not sufficient in vivo, and that combinations of the other disassembly factors perform vital functions. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Casey A Ydenberg
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Adam Johnston
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Jaclyn Weinstein
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Danielle Bellavance
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Silvia Jansen
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| |
Collapse
|
23
|
Coronin Enhances Actin Filament Severing by Recruiting Cofilin to Filament Sides and Altering F-Actin Conformation. J Mol Biol 2015; 427:3137-47. [PMID: 26299936 DOI: 10.1016/j.jmb.2015.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022]
Abstract
High rates of actin filament turnover are essential for many biological processes and require the activities of multiple actin-binding proteins working in concert. The mechanistic role of the actin filament severing protein cofilin is now firmly established; however, the contributions of other conserved disassembly-promoting factors including coronin have remained more obscure. Here, we have investigated the mechanism by which yeast coronin (Crn1) enhances F-actin turnover. Using multi-color total internal reflection fluorescence microscopy, we show that Crn1 enhances Cof1-mediated severing by accelerating Cof1 binding to actin filament sides. Further, using biochemical assays to interrogate F-actin conformation, we show that Crn1 alters longitudinal and lateral actin-actin contacts and restricts opening of the nucleotide-binding cleft in actin subunits. Moreover, Crn1 and Cof1 show opposite structural effects on F-actin yet synergize in promoting release of phalloidin from filaments, suggesting that Crn1/Cof1 co-decoration may increase local discontinuities in filament topology to enhance severing.
Collapse
|
24
|
Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, Han J, Chen L, Sun K, Wu J, Wu X, Huang X, Chen J. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis 2015; 6:e1818. [PMID: 26181199 PMCID: PMC4650729 DOI: 10.1038/cddis.2015.182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022]
Abstract
In mammals, spermatogonial stem cells (SSCs) arise from early germ cells called gonocytes, which are derived from primordial germ cells during embryogenesis and remain quiescent until birth. After birth, these germ cells migrate from the center of testicular cord, through Sertoli cells, and toward the basement membrane to form the SSC pool and establish the SSC niche architecture. However, molecular mechanisms underlying germ cell migration and niche establishment are largely unknown. Here, we show that the actin disassembly factor actin interacting protein 1 (AIP1) is required in both germ cells and Sertoli cells to regulate this process. Germ cell-specific or Sertoli cell-specific deletion of Aip1 gene each led to significant defects in germ cell migration after postnatal day 4 or 5, accompanied by elevated levels of actin filaments (F-actin) in the affected cells. Furthermore, our data demonstrated that interaction between germ cells and Sertoli cells, likely through E-cadherin-mediated cell adhesion, is critical for germ cells' migration toward the basement membrane. At last, Aip1 deletion in Sertoli cells decreased SSC self-renewal, increased spermatogonial differentiation, but did not affect the expression and secretion levels of growth factors, suggesting that the disruption of SSC function results from architectural changes in the postnatal niche.
Collapse
Affiliation(s)
- J Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - P Wan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - M Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - J Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - X Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - B Hu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - J Han
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - L Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - K Sun
- Bio-X Institute, Shanghai Jiaotong University, Shanghai, China
| | - J Wu
- Bio-X Institute, Shanghai Jiaotong University, Shanghai, China
| | - X Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - X Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - J Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Jansen S, Collins A, Chin SM, Ydenberg CA, Gelles J, Goode BL. Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat Commun 2015; 6:7202. [PMID: 25995115 PMCID: PMC4443854 DOI: 10.1038/ncomms8202] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 04/17/2015] [Indexed: 12/25/2022] Open
Abstract
The mechanisms by which cells destabilize and rapidly disassemble filamentous actin networks have remained elusive; however, Coronin, Cofilin and AIP1 have been implicated in this process. Here using multi-wavelength single-molecule fluorescence imaging, we show that mammalian Cor1B, Cof1 and AIP1 work in concert through a temporally ordered pathway to induce highly efficient severing and disassembly of actin filaments. Cor1B binds to filaments first, and dramatically accelerates the subsequent binding of Cof1, leading to heavily decorated, stabilized filaments. Cof1 in turn recruits AIP1, which rapidly triggers severing and remains bound to the newly generated barbed ends. New growth at barbed ends generated by severing was blocked specifically in the presence of all three proteins. This activity enabled us to reconstitute and directly visualize single actin filaments being rapidly polymerized by formins at their barbed ends while simultanteously being stochastically severed and capped along their lengths, and disassembled from their pointed ends. The roles of Coronin, Cofilin and AIP1 in promoting actin disassembly have not been well understood. Here using single-molecule fluorescence imaging, Jansen et al. show that the three proteins act together in a coordinated, temporal pathway to induce rapid severing and disassembly of actin filaments.
Collapse
Affiliation(s)
- Silvia Jansen
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Agnieszka Collins
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Samantha M Chin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Casey A Ydenberg
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| |
Collapse
|
26
|
Gressin L, Guillotin A, Guérin C, Blanchoin L, Michelot A. Architecture dependence of actin filament network disassembly. Curr Biol 2015; 25:1437-47. [PMID: 25913406 DOI: 10.1016/j.cub.2015.04.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Turnover of actin networks in cells requires the fast disassembly of aging actin structures. While ADF/cofilin and Aip1 have been identified as central players, how their activities are modulated by the architecture of the networks remains unknown. Using our ability to reconstitute a diverse array of cellular actin organizations, we found that ADF/cofilin binding and ADF/cofilin-mediated disassembly both depend on actin geometrical organization. ADF/cofilin decorates strongly and stabilizes actin cables, whereas its weaker interaction to Arp2/3 complex networks is correlated with their dismantling and their reorganization into stable architectures. Cooperation of ADF/cofilin with Aip1 is necessary to trigger the full disassembly of all actin filament networks. Additional experiments performed at the single-molecule level indicate that this cooperation is optimal above a threshold of 23 molecules of ADF/cofilin bound as clusters along an actin filament. Our results indicate that although ADF/cofilin is able to dismantle selectively branched networks through severing and debranching, stochastic disassembly of actin filaments by ADF/cofilin and Aip1 represents an efficient alternative pathway for the full disassembly of all actin networks. Our data support a model in which the binding of ADF/cofilin is required to trigger a structural change of the actin filaments, as a prerequisite for their disassembly by Aip1.
Collapse
Affiliation(s)
- Laurène Gressin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Audrey Guillotin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Christophe Guérin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Laurent Blanchoin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France.
| | - Alphée Michelot
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France.
| |
Collapse
|
27
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
28
|
Chen Q, Courtemanche N, Pollard TD. Aip1 promotes actin filament severing by cofilin and regulates constriction of the cytokinetic contractile ring. J Biol Chem 2014; 290:2289-300. [PMID: 25451933 DOI: 10.1074/jbc.m114.612978] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aip1 (actin interacting protein 1) is ubiquitous in eukaryotic organisms, where it cooperates with cofilin to disassemble actin filaments, but neither its mechanism of action nor its biological functions have been clear. We purified both fission yeast and human Aip1 and investigated their biochemical activities with or without cofilin. Both types of Aip1 bind actin filaments with micromolar affinities and weakly nucleate actin polymerization. Aip1 increases up to 12-fold the rate that high concentrations of yeast or human cofilin sever actin filaments, most likely by competing with cofilin for binding to the side of actin filaments, reducing the occupancy of the filaments by cofilin to a range favorable for severing. Aip1 does not cap the barbed ends of filaments severed by cofilin. Fission yeast lacking Aip1 are viable and assemble cytokinetic contractile rings normally, but rings in these Δaip1 cells accumulate 30% less myosin II. Further, these mutant cells initiate the ingression of cleavage furrows earlier than normal, shortening the stage of cytokinetic ring maturation by 50%. The Δaip1 mutation has negative genetic interactions with deletion mutations of both capping protein subunits and cofilin mutations with severing defects, but no genetic interaction with deletion of coronin.
Collapse
Affiliation(s)
- Qian Chen
- From the Departments of Molecular Cellular and Developmental Biology
| | | | - Thomas D Pollard
- From the Departments of Molecular Cellular and Developmental Biology, Molecular Biophysics and Biochemistry, and Cell Biology Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
29
|
Nadkarni AV, Brieher WM. Aip1 destabilizes cofilin-saturated actin filaments by severing and accelerating monomer dissociation from ends. Curr Biol 2014; 24:2749-57. [PMID: 25448002 DOI: 10.1016/j.cub.2014.09.048] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/28/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Depolymerization of actin filaments is vital for the morphogenesis of dynamic cytoskeletal arrays and actin-dependent cell motility. Cofilin is necessary for actin disassembly in cells, and it severs filaments most efficiently at low cofilin to actin ratios, whereas higher concentrations of cofilin suppress severing. However, the cofilin concentration in thymocytes is too high to allow the severing of single-actin filaments. RESULTS We observed that filaments sever efficiently in thymus cytosol. We identified Aip1 as a critical factor responsible for the severing and destabilization of actin filaments even in the presence of high amounts of cofilin. By fluorescence resonance energy transfer (FRET)-based spectroscopy and single-filament imaging of actin, we show that, besides driving the rapid severing of cofilin-actin filaments, Aip1 also augments the monomer dissociation rate at both the barbed and pointed ends of actin. Our results also demonstrate that Aip1 does not cap the barbed ends of actin filaments, as was previously thought. CONCLUSIONS Our results indicate that Aip1 is a cofilin-dependent actin depolymerization factor and not a barbed-end-capping factor as was previously thought. Aip1 inverts the rules of cofilin-mediated actin disassembly such that increasing ratios of cofilin to actin now result in filament destabilization through faster severing and accelerated monomer loss from barbed and pointed ends. Aip1 therefore offers a potential control point for disassembly mechanisms in cells to switch from a regime of cofilin-saturation and stabilization to one that favors fast disassembly and destabilization.
Collapse
Affiliation(s)
- Ambika V Nadkarni
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
30
|
Berro J, Pollard TD. Synergies between Aip1p and capping protein subunits (Acp1p and Acp2p) in clathrin-mediated endocytosis and cell polarization in fission yeast. Mol Biol Cell 2014; 25:3515-27. [PMID: 25143407 PMCID: PMC4230613 DOI: 10.1091/mbc.e13-01-0005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aip1p cooperates with actin-depolymerizing factor (ADF)/cofilin to disassemble actin filaments in vitro and in vivo, and is proposed to cap actin filament barbed ends. We address the synergies between Aip1p and the capping protein heterodimer Acp1p/Acp2p during clathrin-mediated endocytosis in fission yeast. Using quantitative microscopy and new methods we have developed for data alignment and analysis, we show that heterodimeric capping protein can replace Aip1p, but Aip1p cannot replace capping protein in endocytic patches. Our quantitative analysis reveals that the actin meshwork is organized radially and is compacted by the cross-linker fimbrin before the endocytic vesicle is released from the plasma membrane. Capping protein and Aip1p help maintain the high density of actin filaments in meshwork by keeping actin filaments close enough for cross-linking. Our experiments also reveal new cellular functions for Acp1p and Acp2p independent of their capping activity. We identified two independent pathways that control polarization of endocytic sites, one depending on acp2(+) and aip1(+) during interphase and the other independent of acp1(+), acp2(+), and aip1(+) during mitosis.
Collapse
Affiliation(s)
- Julien Berro
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103 Nanobiology Institute, Yale University, New Haven, CT 06520-8103 Institut Camille Jordan, UMR CNRS 5208, Université de Lyon, 69622 Villeurbanne-Cedex, France Centre de Génétique et de Physiologie Moléculaire et Cellulaire, UMR CNRS 5534, Université de Lyon, 69622 Villeurbanne-Cedex, France
| | - Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103 Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
31
|
Abstract
The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.
Collapse
Affiliation(s)
- Dale A Moulding
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
32
|
Elam WA, Kang H, De La Cruz EM. Competitive displacement of cofilin can promote actin filament severing. Biochem Biophys Res Commun 2013; 438:728-31. [PMID: 23911787 DOI: 10.1016/j.bbrc.2013.07.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/27/2013] [Indexed: 11/30/2022]
Abstract
Cofilin is an essential actin filament severing protein that functions in the dynamic remodeling of the actin cytoskeleton. Filament severing activity is most efficient at sub-stoichiometric cofilin binding densities (i.e. <1 cofilin per actin filament subunit), and peaks when the number density of boundaries (i.e. junctions) between bare and cofilin-decorated segments is maximal. A model in which local topological and mechanical discontinuities lead to preferential fragmentation at boundaries accounts for available experimental data, including direct visualization of cofilin and actin during real-time severing events. The boundary-severing model predicts that ligands (e.g. other actin-binding proteins) that compete with cofilin for actin filament binding and modulate cofilin occupancy on filaments will alter the bare-decorated segment boundary density, and thus, the filament severing activity of cofilin. Here, we directly test this model prediction by evaluating the effects of phalloidin and myosin, two ligands that compete with cofilin for filament binding, on the actin filament binding and severing activities of cofilin. Our experiments demonstrate that competitive displacement of cofilin lowers cofilin occupancy and promotes severing when initial cofilin occupancy is high (i.e. >50%). Even in the presence of competitive ligands, maximum severing activity occurs when cofilin-decorated boundary density is highest, consistent with preferential fragmentation at boundaries. We propose a general "severodyne" framework for the modulation of cofilin-mediated actin filament severing by small molecule or actin-binding protein ligands that compete with cofilin for actin filament binding.
Collapse
Affiliation(s)
- W Austin Elam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
33
|
Bravo-Cordero JJ, Magalhaes MAO, Eddy RJ, Hodgson L, Condeelis J. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 2013; 14:405-15. [PMID: 23778968 DOI: 10.1038/nrm3609] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, a consensus has emerged that cofilin severing activity can generate free actin filament ends that are accessible for F-actin polymerization and depolymerization without changing the rate of G-actin association and dissociation at either filament end. The structural basis of actin filament severing by cofilin is now better understood. These results have been integrated with recently discovered mechanisms for cofilin activation in migrating cells, which led to new models for cofilin function that provide insights into how cofilin regulation determines the temporal and spatial control of cell behaviour.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
34
|
Song JJ, Adler HJ, Lee HS, Jang JH, Park MH, Lee JH, Chang SO, Oh SH. WDR1 expression in normal and noise-damaged Sprague-Dawley rat cochleae. J Comp Neurol 2013; 521:1470-81. [PMID: 22821633 DOI: 10.1002/cne.23197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/07/2022]
Abstract
WD40 repeat protein 1 (WDR1) has been suggested as a protective mechanism or a sign of regeneration in avian cochlea. However, its role in mammalian cochlea has yet to be determined. Hence, we investigated WDR1 expression in sound-overstimulated Sprague-Dawley rats. Rats were divided into three groups (the permanent and temporary threshold shift [PTS and TTS] groups and the control group) according to the extent of noise exposure and euthanized immediately, 3, or 7 days after noise exposure for cochlear harvest. Immunocytochemistry localized WDR1 to outer hair cells, Deiter's cells, outer sulcus cells, and Reissner's membrane in the control group, and the PTS and TTS groups exhibited stronger WDR1 expression in the same cochlear regions than the controls. Moreover, WDR1 expression in these noise-exposed groups was extended to inner hair cells and basal cells of the stria vascularis. The expression of WDR1 in the PTS and TTS groups showed differences in intensity and shifts of localization, based on exposure length and recovery duration. Contrary to the avian cochlea, hair cell regeneration does not naturally occur in the acoustically damaged mammalian cochlea. Therefore, elevated WDR1 expression after acoustic overstimulation in the current experiments may provide a mechanism for protection against noise exposure.
Collapse
Affiliation(s)
- Jae-Jin Song
- Department of Otorhinolaryngology Head-and-Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Watanabe N, Yamashiro S, Vavylonis D, Kiuchi T. Molecular viewing of actin polymerizing actions and beyond: Combination analysis of single-molecule speckle microscopy with modeling, FRAP and s-FDAP (sequential fluorescence decay after photoactivation). Dev Growth Differ 2013; 55:508-14. [DOI: 10.1111/dgd.12060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology; Tohoku University Graduate School of Life Sciences; Aoba-ku; Sendai; Miyagi; 980-8578; Japan
| | - Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology; Tohoku University Graduate School of Life Sciences; Aoba-ku; Sendai; Miyagi; 980-8578; Japan
| | - Dimitrios Vavylonis
- Department of Physics; Lehigh University; 16 Memorial Drive East; Bethlehem; Pennsylvania; 18017; USA
| | - Tai Kiuchi
- Laboratory of Single-Molecule Cell Biology; Tohoku University Graduate School of Life Sciences; Aoba-ku; Sendai; Miyagi; 980-8578; Japan
| |
Collapse
|
36
|
Can filament treadmilling alone account for the F-actin turnover in lamellipodia? Cytoskeleton (Hoboken) 2013; 70:179-90. [DOI: 10.1002/cm.21098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/07/2022]
|
37
|
Higashida C, Kiuchi T, Akiba Y, Mizuno H, Maruoka M, Narumiya S, Mizuno K, Watanabe N. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins. Nat Cell Biol 2013; 15:395-405. [DOI: 10.1038/ncb2693] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/14/2013] [Indexed: 12/12/2022]
|
38
|
Shi M, Xie Y, Zheng Y, Wang J, Su Y, Yang Q, Huang S. Oryza sativa actin-interacting protein 1 is required for rice growth by promoting actin turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:747-60. [PMID: 23134061 DOI: 10.1111/tpj.12065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 05/03/2023]
Abstract
Rapid actin turnover is essential for numerous actin-based processes. However, how it is precisely regulated remains poorly understood. Actin-interacting protein 1 (AIP1) has been shown to be an important factor by acting coordinately with actin-depolymerizing factor (ADF)/cofilin in promoting actin depolymerization, the rate-limiting factor in actin turnover. However, the molecular mechanism by which AIP1 promotes actin turnover remains largely unknown in plants. Here, we provide a demonstration that AIP1 promotes actin turnover, which is required for optimal growth of rice plants. Specific down-regulation of OsAIP1 increased the level of filamentous actin and reduced actin turnover, whereas over-expression of OsAIP1 induced fragmentation and depolymerization of actin filaments and enhanced actin turnover. In vitro biochemical characterization showed that, although OsAIP1 alone does not affect actin dynamics, it enhances ADF-mediated actin depolymerization. It also caps the filament barbed end in the presence of ADF, but the capping activity is not required for their coordinated action. Real-time visualization of single filament dynamics showed that OsAIP1 enhanced ADF-mediated severing and dissociation of pointed end subunits. Consistent with this, the filament severing frequency and subunit off-rate were enhanced in OsAIP1 over-expressors but decreased in RNAi protoplasts. Importantly, OsAIP1 acts coordinately with ADF and profilin to induce massive net actin depolymerization, indicating that AIP1 plays a major role in the turnover of actin, which is required to optimize F-actin levels in plants.
Collapse
Affiliation(s)
- Meng Shi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Michelot A, Grassart A, Okreglak V, Costanzo M, Boone C, Drubin DG. Actin filament elongation in Arp2/3-derived networks is controlled by three distinct mechanisms. Dev Cell 2013; 24:182-95. [PMID: 23333351 DOI: 10.1016/j.devcel.2012.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
Spatial and temporal control of actin filament barbed end elongation is crucial for force generation by actin networks. In this study, genetics, cell biology, and biochemistry were used to reveal three complementary mechanisms that regulate actin filament barbed end elongation in Arp2/3-derived networks. Aip1 inhibits elongation of aged ADP-actin filaments decorated with cofilin and, together with capping protein (CP), maintains a high level of assembly-competent actin species. We identified Abp1 and Aim3 as two additional proteins that work together to inhibit barbed end elongation. Abp1/Aim3 collaborates with CP to control elongation of newly assembled ATP-actin filaments to organize filament polarity within actin networks. Thus, three distinct mechanisms control filament elongation in different regions of Arp2/3 networks, maintaining pools of assembly-competent actin species while ensuring proper filament polarity and facilitating force production.
Collapse
Affiliation(s)
- Alphée Michelot
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | | | | | | | |
Collapse
|
40
|
Distributed actin turnover in the lamellipodium and FRAP kinetics. Biophys J 2013; 104:247-57. [PMID: 23332077 DOI: 10.1016/j.bpj.2012.11.3819] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/01/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022] Open
Abstract
Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.
Collapse
|
41
|
Chaudhry F, Breitsprecher D, Little K, Sharov G, Sokolova O, Goode BL. Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin. Mol Biol Cell 2012; 24:31-41. [PMID: 23135996 PMCID: PMC3530777 DOI: 10.1091/mbc.e12-08-0589] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dual-color total internal reflection fluorescence microscopy revealed that the N-terminal half of Srv2 (N-Srv2) directly catalyzes severing of cofilin-decorated actin filaments. N-Srv2 formed novel six-bladed structures resembling ninja throwing stars (shurikens), and N-Srv2 activities were critical for actin organization in vivo and were lethal in combination with Aip1. Actin filament severing is critical for the dynamic turnover of cellular actin networks. Cofilin severs filaments, but additional factors may be required to increase severing efficiency in vivo. Srv2/cyclase-associated protein (CAP) is a widely expressed protein with a role in binding and recycling actin monomers ascribed to domains in its C-terminus (C-Srv2). In this paper, we report a new biochemical and cellular function for Srv2/CAP in directly catalyzing cofilin-mediated severing of filaments. This function is mediated by its N-terminal half (N-Srv2), and is physically and genetically separable from C-Srv2 activities. Using dual-color total internal reflection fluorescence microscopy, we determined that N-Srv2 stimulates filament disassembly by increasing the frequency of cofilin-mediated severing without affecting cofilin binding to filaments. Structural analysis shows that N-Srv2 forms novel hexameric star-shaped structures, and disrupting oligomerization impairs N-Srv2 activities and in vivo function. Further, genetic analysis shows that the combined activities of N-Srv2 and Aip1 are essential in vivo. These observations define a novel mechanism by which the combined activities of cofilin and Srv2/CAP lead to enhanced filament severing and support an emerging view that actin disassembly is controlled not by cofilin alone, but by a more complex set of factors working in concert.
Collapse
Affiliation(s)
- Faisal Chaudhry
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
42
|
Brieher WM, Yap AS. Cadherin junctions and their cytoskeleton(s). Curr Opin Cell Biol 2012; 25:39-46. [PMID: 23127608 DOI: 10.1016/j.ceb.2012.10.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/14/2022]
Abstract
Classical cadherin adhesion receptors exert many of their biological effects through close cooperation with the cytoskeleton. Much attention has focused on attempting to understand the physical interactions between cadherin molecular complexes and cortical actin filaments. In this review we aim to draw attention to other issues that highlight the diverse and dynamic cytoskeletons that contribute to cadherin function. First, we discuss the regulation of actin filament dynamics in the cadherin-based junctional cytoskeleton, focusing on the emerging role of Arp2/3 as a junctional actin nucleator and its implications for actin homeostasis at junctions. Second, we review recent developments in understanding the impact of microtubules on cadherin function. Together, these emphasize that cadherins cooperate with multiple dynamic cytoskeletal networks at cell-cell junctions.
Collapse
Affiliation(s)
- William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
43
|
Cervero P, Himmel M, Krüger M, Linder S. Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres. Eur J Cell Biol 2012; 91:908-22. [DOI: 10.1016/j.ejcb.2012.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/24/2022] Open
|
44
|
Normoyle KPM, Brieher WM. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH. J Biol Chem 2012; 287:35722-35732. [PMID: 22904322 DOI: 10.1074/jbc.m112.396051] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.
Collapse
Affiliation(s)
- Kieran P M Normoyle
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801.
| |
Collapse
|
45
|
Abstract
Platelet (PLT) production represents the final stage of megakaryocyte (MK) development. During differentiation, bone marrow MKs extend and release long, branched proPLTs into sinusoidal blood vessels, which undergo repeated abscissions to yield circulating PLTs. Circular-prePLTs are dynamic intermediate structures in this sequence that have the capacity to reversibly convert into barbell-proPLTs and may be related to "young PLTs" and "large PLTs" of both inherited and acquired macrothrombocytopenias. Conversion is regulated by the diameter and thickness of the peripheral microtubule coil, and PLTs are capable of enlarging in culture to generate barbell-proPLTs that divide to yield 2 smaller PLT products. Because PLT number and size are inversely proportional, this raises the question: do macrothrombocytopenias represent a failure in the intermediate stages of PLT production? This review aims to bring together and contextualize our current understanding of terminal PLT production against the backdrop of human macrothrombocytopenias to establish how "large PLTs" observed in both conditions are similar, how they are different, and what they can teach us about PLT formation. A better understanding of the cytoskeletal mechanisms that regulate PLT formation and determine PLT size offers the promise of improved therapies for clinical disorders of PLT production and an important source of PLTs for infusion.
Collapse
|
46
|
Augustine RC, Pattavina KA, Tüzel E, Vidali L, Bezanilla M. Actin interacting protein1 and actin depolymerizing factor drive rapid actin dynamics in Physcomitrella patens. THE PLANT CELL 2011; 23:3696-710. [PMID: 22003077 PMCID: PMC3229144 DOI: 10.1105/tpc.111.090753] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics.
Collapse
Affiliation(s)
- Robert C. Augustine
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
| | - Kelli A. Pattavina
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
| | - Erkan Tüzel
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Magdalena Bezanilla
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
- Address correspondence to
| |
Collapse
|
47
|
Poukkula M, Kremneva E, Serlachius M, Lappalainen P. Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 2011; 68:471-90. [PMID: 21850706 DOI: 10.1002/cm.20530] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/29/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Abstract
Actin filaments form contractile and protrusive structures that play central roles in many processes such as cell migration, morphogenesis, endocytosis, and cytokinesis. During these processes, the dynamics of the actin filaments are precisely regulated by a large array of actin-binding proteins. The actin-depolymerizing factor homology (ADF-H) domain is a structurally conserved protein motif, which promotes cytoskeletal dynamics by interacting with monomeric and/or filamentous actin, and with the Arp2/3 complex. Despite their structural homology, the five classes of ADF-H domain proteins display distinct biochemical activities and cellular roles, only parts of which are currently understood. ADF/cofilin promotes disassembly of aged actin filaments, whereas twinfilin inhibits actin filament assembly via sequestering actin monomers and interacting with filament barbed ends. GMF does not interact with actin, but instead binds Arp2/3 complex and promotes dissociation of Arp2/3-mediated filament branches. Abp1 and drebrin are multidomain proteins that interact with actin filaments and regulate the activities of other proteins during various actin-dependent processes. The exact function of coactosin is currently incompletely understood. In this review article, we discuss the biochemical functions, cellular roles, and regulation of the five groups of ADF-H domain proteins.
Collapse
Affiliation(s)
- Minna Poukkula
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
48
|
|
49
|
Ishikawa-Ankerhold HC, Gerisch G, Müller-Taubenberger A. Genetic evidence for concerted control of actin dynamics in cytokinesis, endocytic traffic, and cell motility by coronin and Aip1. Cytoskeleton (Hoboken) 2010; 67:442-55. [PMID: 20506401 DOI: 10.1002/cm.20456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coronin and actin-interacting protein 1 (Aip1) are actin-binding proteins that by different mechanisms inhibit actin polymerization or enhance the disassembly of actin filaments. Cells of Dictyostelium discoideum lacking both proteins are retarded in growth and early development and often fail to proceed to fruiting body formation. Coronin/Aip1-null cells show numerous surface protrusions enriched in filamentous actin and cofilin. We show that the double-null cells are characterized by an increase in filamentous actin that causes a thickening of the cell cortex. This imbalance has severe consequences for processes that rely on the dynamic reorganization of the actin cytoskeleton, such as cell motility, cytokinesis and endocytosis. Although cell motility is considerably slowed down, the double-mutant cells are still capable of orientating in a gradient of chemoattractant. The cytokinesis defect is caused by the lack of proper cleavage furrow formation, a defect that is partially rescued by low concentrations of latrunculin A, an inhibitor of actin polymerization. Furthermore, we demonstrate that the disassembly of the actin coat after phagocytic or macropinocytic uptake is significantly delayed in the double-mutant cells. Our results prove that coronin and Aip1 are important effectors that act together in maintaining the balance of actin polymerization and depolymerization in living cells.
Collapse
|
50
|
Choi CH, Patel H, Barber DL. Expression of actin-interacting protein 1 suppresses impaired chemotaxis of Dictyostelium cells lacking the Na+-H+ exchanger NHE1. Mol Biol Cell 2010; 21:3162-70. [PMID: 20668166 PMCID: PMC2938382 DOI: 10.1091/mbc.e09-12-1058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium cells lacking the intracellular pH regulator NHE1 have defective chemotaxis. A modifier screen and reconstitution studies show expression of recombinant actin interacting protein 1 (Aip1) suppresses the Ddnhe1-phenotype. Aip1 promotes cofilin-dependent actin remodeling, which is likely a major determinant in pH-dependent chemotaxis. Increased intracellular pH is an evolutionarily conserved signal necessary for directed cell migration. We reported previously that in Dictyostelium cells lacking H+ efflux by a Na+-H+ exchanger (NHE; Ddnhe1−), chemotaxis is impaired and the assembly of filamentous actin (F-actin) is attenuated. We now describe a modifier screen that reveals the C-terminal fragment of actin-interacting protein 1 (Aip1) enhances the chemotaxis defect of Ddnhe1− cells but has no effect in wild-type Ax2 cells. However, expression of full-length Aip1 mostly suppresses chemotaxis defects of Ddnhe1− cells and restores F-actin assembly. Aip1 functions to promote cofilin-dependent actin remodeling, and we found that although full-length Aip1 binds cofilin and F-actin, the C-terminal fragment binds cofilin but not F-actin. Because pH-dependent cofilin activity is attenuated in mammalian cells lacking H+ efflux by NHE1, our current data suggest that full-length Aip1 facilitates F-actin assembly when cofilin activity is limited. We predict the C-terminus of Aip1 enhances defective chemotaxis of Ddnhe1− cells by sequestering the limited amount of active cofilin without promoting F-actin assembly. Our findings indicate a cooperative role of Aip1 and cofilin in pH-dependent cell migration, and they suggest defective chemotaxis in Ddnhe1− cells is determined primarily by loss of cofilin-dependent actin dynamics.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|