1
|
Blake MJ, Page EF, Smith ME, Calhoun TR. Miltefosine impacts small molecule transport in Gram-positive bacteria. RSC Chem Biol 2024; 5:981-988. [PMID: 39363965 PMCID: PMC11446237 DOI: 10.1039/d4cb00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 10/05/2024] Open
Abstract
Miltefosine (MLT) is an alkylphosphocholine with clinical success as an anticancer and antiparasitic drug. Although the mechanism of action of MLT is highly debated, the interaction of MLT with the membrane, specifically lipid rafts of eukaryotes, is well-documented. Recent reports suggest MLT impacts the functional membrane microdomains in bacteria - regions of the membrane structurally and functionally similar to lipid rafts. There have been conflicting reports, however, as to whether MLT impacts the overall fluidity of cellular plasma membranes. Here, we apply steady-state fluorescence techniques, generalized polarization of laurdan and anisotropy of diphenylhexatriene, to discern how MLT impacts the global ordering and lipid packing of Staphylococcus aureus membranes. Additionally, we investigate how the transport of a range of small molecules is impacted by MLT for S. aureus and Bacillus subtilis by employing time-resolved second harmonic scattering. Overall, we observe MLT does not have an influence on the overall ordering and packing of S. aureus membranes. Additionally, we show that the transport of small molecules across the membrane can be significantly altered by MLT - although this is not the case for all molecules studied. The results presented here illustrate the potential use of MLT as an adjuvant to assist in the delivery of drug molecules in bacteria.
Collapse
|
2
|
Nomura W, Inoue Y. Activation of the cell wall integrity pathway negatively regulates TORC2-Ypk1/2 signaling through blocking eisosome disassembly in Saccharomyces cerevisiae. Commun Biol 2024; 7:722. [PMID: 38862688 PMCID: PMC11166964 DOI: 10.1038/s42003-024-06411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
The target of rapamycin complex 2 (TORC2) signaling is associated with plasma membrane (PM) integrity. In Saccharomyces cerevisiae, TORC2-Ypk1/2 signaling controls sphingolipid biosynthesis, and Ypk1/2 phosphorylation by TORC2 under PM stress conditions is increased in a Slm1/2-dependent manner, under which Slm1 is known to be released from an eisosome, a furrow-like invagination PM structure. However, it remains unsolved how the activation machinery of TORC2-Ypk1/2 signaling is regulated. Here we show that edelfosine, a synthetic lysophospholipid analog, inhibits the activation of TORC2-Ypk1/2 signaling, and the cell wall integrity (CWI) pathway is involved in this inhibitory effect. The activation of CWI pathway blocked the eisosome disassembly promoted by PM stress and the release of Slm1 from eisosomes. Constitutive activation of TORC2-Ypk1/2 signaling exhibited increased sensitivity to cell wall stress. We propose that the CWI pathway negatively regulates the TORC2-Ypk1/2 signaling, which is involved in the regulatory mechanism to ensure the proper stress response to cell wall damage.
Collapse
Affiliation(s)
- Wataru Nomura
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8501, Japan.
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Shinshu University, Nagano, 399-4598, Japan.
| | - Yoshiharu Inoue
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
3
|
Faria Braga E, Monteiro de Rezende Ayroza DM, de Macedo Silva MC, Santiago Nascimento T, Gomes Sanches E, Ferreira do Carmo C, Faria Pereira LP, Mazzei Albert AL, Romão Batista W, Lopes RS, Lopes CC. Synthesis of Lysoglycerophosphocholines from Crude Soybean Lecithins as Sustainable and Non-toxic Antifouling Agents against the Golden Mussel Limnoperna fortunei. ACS OMEGA 2022; 7:45197-45207. [PMID: 36530239 PMCID: PMC9753535 DOI: 10.1021/acsomega.2c05645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
This research aimed to produce, on a multigram scale, a new class of non-toxic, halogen- and metal-free antifouling agents from the abundant lecithin byproducts of industrial soybean oil extraction. Three glycerophospholipid analogues were prepared by a facile methanolysis of crude soybean lecithins and a subsequent solvent-free O-alkylation: lysoglycerophosphocholines (LGPCs) and its ether derivatives O-alkyl lysoglycerophosphocholines (ALPCs). As efficient antiproliferative agents, LGPCs and ALPCs are an eco-friendly alternative to current commercial antifoulants which possess significant toxicity to aquatic life. In situ immersion tests of coated stainless-steel nets with previously incorporated automotive paint products, LGPCs and ALPCs (1-O-octadecyl-2-O-acyl-sn-glycero-3-phosphocholine, ALPC18, and 1-O-hexadecyl-2-O-acyl-sn-glycero-3-phosphocholine, ALPC16), in an aquaculture reservoir in SP-Brazil revealed significant growth inhibition against macrofouling species, especially the epibiotic golden mussel (Limnoperna fortunei), when compared with the control. These results promise a more sustainable and ecologically innocuous approach to combating the biofouling phenomenon and the deeply concerning dissemination of the golden mussel which has provoked an economic crisis in the energy and aquaculture sectors.
Collapse
Affiliation(s)
- Esther Faria Braga
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Daercy Maria Monteiro de Rezende Ayroza
- Instituto
de Pesca, Agência Paulista de Tecnologia
dos Agronegócios, Av Francisco Matarazzo, 455, Parque da Água Branca, São Paulo05001-900, São Paulo, Brazil
| | - Maria Clara de Macedo Silva
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Thiana Santiago Nascimento
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Eduardo Gomes Sanches
- Instituto
de Pesca, Agência Paulista de Tecnologia
dos Agronegócios, Av Francisco Matarazzo, 455, Parque da Água Branca, São Paulo05001-900, São Paulo, Brazil
| | - Clovis Ferreira do Carmo
- Instituto
de Pesca, Agência Paulista de Tecnologia
dos Agronegócios, Av Francisco Matarazzo, 455, Parque da Água Branca, São Paulo05001-900, São Paulo, Brazil
| | - Lilian Paula Faria Pereira
- Instituto
de Pesca, Agência Paulista de Tecnologia
dos Agronegócios, Av Francisco Matarazzo, 455, Parque da Água Branca, São Paulo05001-900, São Paulo, Brazil
| | - André Luís Mazzei Albert
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - William Romão Batista
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Rosangela Sabbatini
Capella Lopes
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Claudio Cerqueira Lopes
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| |
Collapse
|
4
|
Clusters of apoptotic signaling molecule-enriched rafts, CASMERs: membrane platforms for protein assembly in Fas/CD95 signaling and targets in cancer therapy. Biochem Soc Trans 2022; 50:1105-1118. [PMID: 35587168 PMCID: PMC9246327 DOI: 10.1042/bst20211115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Mammalian cells show the ability to commit suicide through the activation of death receptors at the cell surface. Death receptors, among which Fas/CD95 is one of their most representative members, lack enzymatic activity, and depend on protein-protein interactions to signal apoptosis. Fas/CD95 death receptor-mediated apoptosis requires the formation of the so-called death-inducing signaling complex (DISC), bringing together Fas/CD95, Fas-associated death domain-containing protein and procaspase-8. In the last two decades, cholesterol-rich lipid raft platforms have emerged as scaffolds where Fas/CD95 can be recruited and clustered. The co-clustering of Fas/CD95 and rafts facilitates DISC formation, bringing procaspase-8 molecules to be bunched together in a limited membrane region, and leading to their autoproteolytic activation by oligomerization. Lipid raft platforms serve as a specific region for the clustering of Fas/CD95 and DISC, as well as for the recruitment of additional downstream signaling molecules, thus forming the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER. These raft/CASMER structures float in the membrane like icebergs, in which the larger portion lies inside the cell and communicates with other subcellular structures to facilitate apoptotic signal transmission. This allows an efficient spatiotemporal compartmentalization of apoptosis signaling machinery during the triggering of cell death. This concept of proapoptotic raft platforms as a basic chemical-biological structure in the regulation of cell death has wide-ranging implications in human biology and disease, as well as in cancer therapy. Here, we discuss how these raft-centered proapoptotic hubs operate as a major linchpin for apoptosis signaling and as a promising target in cancer therapy.
Collapse
|
5
|
Clinical Imaging and Dosimetry of a Pan-Cancer Targeting Alkylphosphocholine Analog, [124I]I-NM404. RADIATION 2022. [DOI: 10.3390/radiation2020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to assess organ dosimetry and clinical use of [124I]I-NM404, a radiotheranostic alkylphosphocholine (APC) analog, for accurate detection and characterization of a wide variety of solid primary and metastatic malignancies anywhere in the body. Methods: Patterns of [124I]I-NM404 uptake were quantitatively analyzed and qualitatively compared with [18F]FDG PET/CT in 14 patients (median age, 61.5 years; 7 males, 7 females) with refractory metastatic cancer who were enrolled in one of two Phase I imaging studies. Primary cancer types included bronchogenic (n = 7), colorectal (n = 1), prostate (n = 1), triple-negative breast (n = 1), head and neck (n = 2), pancreatic (n = 1) carcinoma, and melanoma (n = 1). Patients were administered [124I]I-NM404 and imaged via PET/CT at 1–2, 4–6, 24, and 48 h and at 5–10 days post injection, from top of the skull to mid-thigh. Volumes of interest were drawn over lungs, heart, liver, kidneys, and whole body for dosimetry estimation using OLINDA 1.1 Representative metastatic index lesions were chosen when applicable for each case with active sites of disease to calculate maximum and mean tumor-to-background ratios (TBRmax, TBRmean), using the adjacent normal organ parenchyma as background when possible. Results: Administrations of [124I]-NM404 were safe and well-tolerated. The organs with the highest estimated absorbed dose (mean ± SD) were the lungs (1.74 ± 0.39 mSv/MBq), heart wall (1.52 ± 0.29 mSv/MBq), liver (1.28 ± 0.21 mSv/MBq) and kidneys (1.09 ± 0.20 mSv/MBq). The effective dose was 0.77 ± 0.05 mSv/MBq. Preferential uptake within metastatic foci was observed with all cancer subtypes, TBRmax ranged from 1.95 to 15.36 and TBRmean ranged from 1.63 to 6.63. Robust sensitive imaging of lesions was enhanced by delayed timing (2–6 days after single injection of [124I]I-NM404, respectively) due to persistent tumor retention coupled with progressive washout of background activity. NM404 uptake was evident in pulmonary, nodal, skeletal, CNS, and other metastatic sites of disease. Radiation related injury or necrosis were NM404 negative, whereas certain small number of metastatic brain lesions were false negative for NM404. Conclusions: In addition to being well tolerated, selective tumor uptake of NM404 with prolonged retention was demonstrated within a broad spectrum of highly treated metastatic cancers.
Collapse
|
6
|
Riscal R, Bull CJ, Mesaros C, Finan JM, Carens M, Ho ES, Xu JP, Godfrey J, Brennan P, Johansson M, Purdue MP, Chanock SJ, Mariosa D, Timpson NJ, Vincent EE, Keith B, Blair IA, Skuli N, Simon MC. Cholesterol Auxotrophy as a Targetable Vulnerability in Clear Cell Renal Cell Carcinoma. Cancer Discov 2021; 11:3106-3125. [PMID: 34244212 PMCID: PMC8741905 DOI: 10.1158/2159-8290.cd-21-0211] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by large intracellular lipid droplets containing free and esterified cholesterol; however, the functional significance of cholesterol accumulation in ccRCC cells is unknown. We demonstrate that, surprisingly, genes encoding cholesterol biosynthetic enzymes are repressed in ccRCC, suggesting a dependency on exogenous cholesterol. Mendelian randomization analyses based on 31,000 individuals indicate a causal link between elevated circulating high-density lipoprotein (HDL) cholesterol and ccRCC risk. Depriving ccRCC cells of either cholesterol or HDL compromises proliferation and survival in vitro and tumor growth in vivo; in contrast, elevated dietary cholesterol promotes tumor growth. Scavenger Receptor B1 (SCARB1) is uniquely required for cholesterol import, and inhibiting SCARB1 is sufficient to cause ccRCC cell-cycle arrest, apoptosis, elevated intracellular reactive oxygen species levels, and decreased PI3K/AKT signaling. Collectively, we reveal a cholesterol dependency in ccRCC and implicate SCARB1 as a novel therapeutic target for treating kidney cancer. SIGNIFICANCE We demonstrate that ccRCC cells are auxotrophic for exogenous cholesterol to maintain PI3K/AKT signaling pathway and ROS homeostasis. Blocking cholesterol import through the HDL transporter SCARB1 compromises ccRCC cell survival and tumor growth, suggesting a novel pharmacologic target for this disease. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caroline J. Bull
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jennifer M. Finan
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Madeleine Carens
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Elaine S. Ho
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jimmy P. Xu
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jason Godfrey
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniela Mariosa
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Emma E. Vincent
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Brian Keith
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- The Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- These authors contributed equally
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- These authors contributed equally
- Lead contact
| |
Collapse
|
7
|
Varlamova EA, Isagulieva AK, Morozova NG, Shmendel EV, Maslov MA, Shtil AA. Non-Phosphorus Lipids As New Antitumor Drug Prototypes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Mollinedo F, Gajate C. Mitochondrial Targeting Involving Cholesterol-Rich Lipid Rafts in the Mechanism of Action of the Antitumor Ether Lipid and Alkylphospholipid Analog Edelfosine. Pharmaceutics 2021; 13:763. [PMID: 34065546 PMCID: PMC8161315 DOI: 10.3390/pharmaceutics13050763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
The ether lipid edelfosine induces apoptosis selectively in tumor cells and is the prototypic molecule of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs. Cumulative evidence shows that edelfosine interacts with cholesterol-rich lipid rafts, endoplasmic reticulum (ER) and mitochondria. Edelfosine induces apoptosis in a number of hematological cancer cells by recruiting death receptors and downstream apoptotic signaling into lipid rafts, whereas it promotes apoptosis in solid tumor cells through an ER stress response. Edelfosine-induced apoptosis, mediated by lipid rafts and/or ER, requires the involvement of a mitochondrial-dependent step to eventually elicit cell death, leading to the loss of mitochondrial membrane potential, cytochrome c release and the triggering of cell death. The overexpression of Bcl-2 or Bcl-xL blocks edelfosine-induced apoptosis. Edelfosine induces the redistribution of lipid rafts from the plasma membrane to the mitochondria. The pro-apoptotic action of edelfosine on cancer cells is associated with the recruitment of F1FO-ATP synthase into cholesterol-rich lipid rafts. Specific inhibition of the FO sector of the F1FO-ATP synthase, which contains the membrane-embedded c-subunit ring that constitutes the mitochondrial permeability transcription pore, hinders edelfosine-induced cell death. Taking together, the evidence shown here suggests that the ether lipid edelfosine could modulate cell death in cancer cells by direct interaction with mitochondria, and the reorganization of raft-located mitochondrial proteins that critically modulate cell death or survival. Here, we summarize and discuss the involvement of mitochondria in the antitumor action of the ether lipid edelfosine, pointing out the mitochondrial targeting of this drug as a major therapeutic approach, which can be extrapolated to other alkylphospholipid analogs. We also discuss the involvement of cholesterol transport and cholesterol-rich lipid rafts in the interactions between the organelles as well as in the role of mitochondria in the regulation of apoptosis in cancer cells and cancer therapy.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, C/Ramiro de Maeztu 9, E-28040 Madrid, Spain;
| | | |
Collapse
|
9
|
Choromańska A, Chwiłkowska A, Kulbacka J, Baczyńska D, Rembiałkowska N, Szewczyk A, Michel O, Gajewska-Naryniecka A, Przystupski D, Saczko J. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules 2021; 26:1850. [PMID: 33806009 PMCID: PMC8037978 DOI: 10.3390/molecules26071850] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Modifications of the composition or organization of the cancer cell membrane seem to be a promising targeted therapy. This approach can significantly enhance drug uptake or intensify the response of cancer cells to chemotherapeutics. There are several methods enabling lipid bilayer modifications, e.g., pharmacological, physical, and mechanical. It is crucial to keep in mind the significance of drug resistance phenomenon, ion channel and specific receptor impact, and lipid bilayer organization in planning the cell membrane-targeted treatment. In this review, strategies based on cell membrane modulation or reorganization are presented as an alternative tool for future therapeutic protocols.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| |
Collapse
|
10
|
Bioactive Ether Lipids: Primordial Modulators of Cellular Signaling. Metabolites 2021; 11:metabo11010041. [PMID: 33430006 PMCID: PMC7827237 DOI: 10.3390/metabo11010041] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
The primacy of lipids as essential components of cellular membranes is conserved across taxonomic domains. In addition to this crucial role as a semi-permeable barrier, lipids are also increasingly recognized as important signaling molecules with diverse functional mechanisms ranging from cell surface receptor binding to the intracellular regulation of enzymatic cascades. In this review, we focus on ether lipids, an ancient family of lipids having ether-linked structures that chemically differ from their more prevalent acyl relatives. In particular, we examine ether lipid biosynthesis in the peroxisome of mammalian cells, the roles of selected glycerolipids and glycerophospholipids in signal transduction in both prokaryotes and eukaryotes, and finally, the potential therapeutic contributions of synthetic ether lipids to the treatment of cancer.
Collapse
|
11
|
Sarangi NK, Prabhakaran A, Keyes TE. Interaction of Miltefosine with Microcavity Supported Lipid Membrane: Biophysical Insights from Electrochemical Impedance Spectroscopy. ELECTROANAL 2020. [DOI: 10.1002/elan.202060424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus Dublin 9 D09 W6Y4 Ireland
| | - Amrutha Prabhakaran
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus Dublin 9 D09 W6Y4 Ireland
| | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus Dublin 9 D09 W6Y4 Ireland
| |
Collapse
|
12
|
He H, Liu S, Wu D, Xu B. Enzymatically Formed Peptide Assemblies Sequestrate Proteins and Relocate Inhibitors to Selectively Kill Cancer Cells. Angew Chem Int Ed Engl 2020; 59:16445-16450. [PMID: 32521103 PMCID: PMC7844580 DOI: 10.1002/anie.202006290] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/24/2022]
Abstract
Herein, we show that an enzymatic reaction can generate peptide assemblies that sequestrate proteins to selectively kill cancer cells. A phosphopeptide bearing the antagonistic motif (AVPI) to the inhibitors of apoptotic proteins (IAPs) enters cancer cells and normal cells by caveolin-dependent endocytosis and macropinocytosis, respectively. The AVPI-bearing peptide assemblies sequestrates IAPs and releases bortezomib (BTZ), a proteasome inhibitor, in the cytosol of cancer cells, but rescues the normal cells (namely, HS-5 cells) by trafficking the BTZ into lysosomes. Alkaline phosphatase (ALP) acts as a context-dependent signal for trafficking the peptide/BTZ assemblies and selectively induces the death of the cancer cells. The assemblies of AVPI exhibit enhanced proteolytic resistance. This work, which utilizes the difference in endocytic uptake of enzymatically formed peptide assemblies to selectively kill cancer cells, promises a new way to develop selective cancer therapeutics.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
13
|
He H, Liu S, Wu D, Xu B. Enzymatically Formed Peptide Assemblies Sequestrate Proteins and Relocate Inhibitors to Selectively Kill Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Shuang Liu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Difei Wu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
14
|
Molecular Docking Reveals the Binding Modes of Anticancer Alkylphospholipids and Lysophosphatidylcholine within the Catalytic Domain of Cytidine Triphosphate: Phosphocholine Cytidyltransferase. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:611-635. [PMID: 33715811 PMCID: PMC7193951 DOI: 10.1194/jlr.tr119000439] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain. mailto:
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain
| |
Collapse
|
16
|
Rodríguez-Nogales C, Mura S, Couvreur P, Blanco-Prieto MJ. Squalenoyl-gemcitabine/edelfosine nanoassemblies: Anticancer activity in pediatric cancer cells and pharmacokinetic profile in mice. Int J Pharm 2020; 582:119345. [PMID: 32311470 DOI: 10.1016/j.ijpharm.2020.119345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Despite the great advances accomplished in the treatment of pediatric cancers, recurrences and metastases still exacerbate prognosis in some aggressive solid tumors such as neuroblastoma and osteosarcoma. In view of the poor efficacy and toxicity of current chemotherapeutic treatments, we propose a single multitherapeutic nanotechnology-based strategy by co-assembling in the same nanodevice two amphiphilic antitumor agents: squalenoyl-gemcitabine and edelfosine. Homogeneous batches of nanoassemblies were easily formulated by the nanoprecipitation method. Their anticancer activity was tested in pediatric cancer cell lines and pharmacokinetic studies were performed in mice. In vitro assays revealed a synergistic effect when gemcitabine was co-administered with edelfosine. Squalenoyl-gemcitabine/edelfosine nanoassemblies were found to be capable of intracellular translocation in patient-derived metastatic pediatric osteosarcoma cells and showed a better antitumor profile than squalenoyl-gemcitabine nanoassemblies alone. The intravenous administration of this combinatorial nanomedicine in mice exhibited a controlled release behavior of gemcitabine and diminished edelfosine plasma peak concentrations. These findings make it a suitable pre-clinical candidate for childhood cancer therapy.
Collapse
Affiliation(s)
- C Rodríguez-Nogales
- Chemistry and Pharmaceutical Technology Department, Universidad de Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - S Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296 Châtenay-Malabry, France
| | - P Couvreur
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296 Châtenay-Malabry, France.
| | - M J Blanco-Prieto
- Chemistry and Pharmaceutical Technology Department, Universidad de Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain.
| |
Collapse
|
17
|
Zaremberg V, Ganesan S, Mahadeo M. Lipids and Membrane Microdomains: The Glycerolipid and Alkylphosphocholine Class of Cancer Chemotherapeutic Drugs. Handb Exp Pharmacol 2020; 259:261-288. [PMID: 31302758 DOI: 10.1007/164_2019_222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Synthetic antitumor lipids are metabolically stable lysophosphatidylcholine derivatives, encompassing a class of non-mutagenic drugs that selectively target cancerous cells. In this chapter we review the literature as relates to the clinical efficacy of these antitumor lipid drugs and how our understanding of their mode of action has evolved alongside key advances in our knowledge of membrane structure, organization, and function. First, the history of the development of this class of drugs is described, providing a summary of clinical outcomes of key members including edelfosine, miltefosine, perifosine, erufosine, and erucylphosphocholine. A detailed description of the biophysical properties of these drugs and specific drug-lipid interactions which may contribute to the selectivity of the antitumor lipids for cancer cells follows. An updated model on the mode of action of these lipid drugs as membrane disorganizing agents is presented. Membrane domain organization as opposed to targeting specific proteins on membranes is discussed. By altering membranes, these antitumor lipids inhibit many survival pathways while activating pro-apoptotic signals leading to cell demise.
Collapse
|
18
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Grudzinski JJ, Hernandez R, Marsh I, Patel RB, Aluicio-Sarduy E, Engle J, Morris Z, Bednarz B, Weichert J. Preclinical Characterization of 86/90Y-NM600 in a Variety of Murine and Human Cancer Tumor Models. J Nucl Med 2019; 60:1622-1628. [PMID: 30954941 DOI: 10.2967/jnumed.118.224808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
We characterize the in vivo biodistribution and tumor selectivity of 86Y-NM600, a theranostic alkylphosphocholine radiometal chelate with broad tumor selectivity, in a variety of preclinical cancer models. Methods: Mice bearing flank tumors (representative of lung, pancreatic, prostate, liver, skin, and lymphoid cancers) were injected intravenously with 9.25 MBq of 86Y-NM600 and imaged longitudinally over 4-5 d using small-animal PET/CT. Percentage injected activity per gram (%IA/g) for each volume of interest was measured at each time point for the organs of interest. Mice were euthanized after the final time point, and the tumor and organs of interest were counted with an automatic γ-counter. Absorbed doses delivered by 90Y-NM600 per injected activity (Gy/MBq) were estimated. Mice bearing B78 flank tumors were injected with a prescription of 90Y-NM600 that delivered 2.5 Gy of absorbed tumor dose and was compared with an equivalent absorbed dose delivered via external-beam radiotherapy using tumor volume as a measure of response. Histology and complete blood counts were analyzed in naïve C57BL/6 mice that were injected with 9.25 MBq of 90Y-NM600 at 5, 10, and 28 d after injection. Results: PET imaging showed consistent tumor accumulation and retention across all tumor models investigated, with little off-target retention of NM600 except in the liver, as is characteristic of hepatobiliary metabolism. The tumor uptake was highest in the pancreatic and lymphoid cancer models, reaching peak concentrations of 9.34 ± 2.66 %IA/g (n = 3) and 9.10 ± 0.13 %IA/g (n = 3), respectively, at approximately 40-48 h after injection. These corresponded to tumor dose estimates of 2.72 ± 0.33 Gy/MBq and 2.67 ± 0.32 Gy/MBq, respectively. In the toxicity study, there were no visible signs of acute toxicity by histology, and perturbation of hematologic parameters was transient when observed, returning to pretherapy levels after 28 d. Conclusion: NM600 is a theranostic agent with a unique ability to selectively target a variety of cancer types, presenting a unique opportunity for PET image-guided targeted radionuclide therapy and combination with immunotherapies.
Collapse
Affiliation(s)
- Joseph J Grudzinski
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Reinier Hernandez
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
| | - Ian Marsh
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ravi B Patel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | | | - Jon Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin, Madison, Wisconsin
| | - Zachary Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Bryan Bednarz
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Jamey Weichert
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin, Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
20
|
Chen YY, Tang YP, Shang EX, Zhu ZH, Tao WW, Yu JG, Feng LM, Yang J, Wang J, Su SL, Zhou H, Duan JA. Incompatibility assessment of Genkwa Flos and Glycyrrhizae Radix et Rhizoma with biochemical, histopathological and metabonomic approach. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:222-232. [PMID: 30339979 DOI: 10.1016/j.jep.2018.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As recorded in traditional Chinese medicine (TCM) theory, Genkwa Flos (YH) and Glycyrrhizae Radix et Rhizoma (GC) compose one herbal pair of the so-called "eighteen incompatible medicaments", which indicate pairs of herbs that are mutually incompatible and that theoretically should not be applied simultaneously. However, the theory has been called into question due to a lack of evidence. AIMS OF STUDY In this study, the incompatibility of YH and GC was investigated based on an assessment of the toxic effects of their combination by traditional safety methods and a modern metabonomic approach. MATERIALS AND METHODS Sprague-Dawley rats were used to evaluate the subacute toxicity of YH and YH-GC. The serum, urine, and several tissues were collected for biochemical analysis, histopathological examination, and metabonomic analysis. RESULTS Rats exposed to a dose of 1.0 g/kg YH (3 times of the Chinese Pharmacopoeia maximum dose) exhibited toxicity of the heart, liver, kidney and testes, and rats exposed to a YH-GC combination (1.0 g/kg YH + 1.0 g/kg GC) exhibited similar hepatotoxicity, which aggravated renal and reproductive toxicity. Following this, a metabonomic study tentatively identified 14 potential biomarkers in the YH group and 10 potential biomarkers in the YH-GC group, and metabolic pathways were then constructed. YH disturbed the pathways of glycerophospholipid metabolism, primary bile acid biosynthesis, and sphingolipid metabolism, while YH-GC combination induced disruptions in phenylalanine, tyrosine and tryptophan biosynthesis, tyrosine metabolism, and glycerophospholipid metabolism. CONCLUSION The toxicities of YH and YH-GC combination above the Chinese Pharmacopoeia dose were obvious but different. Metabonomics combined with biochemical and histopathological methods can be applied to elucidate the toxicity mechanism of the YH-GC combination that caused liver, kidney and reproductive injuries in rats.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Gao Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Mei Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jie Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jing Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
21
|
Grudzinski J, Marsh I, Titz B, Jeffery J, Longino M, Kozak K, Lange K, Larrabee J, Weichmann A, Moser A, Bednarz B. CLR 125 Auger Electrons for the Targeted Radiotherapy of Triple-Negative Breast Cancer. Cancer Biother Radiopharm 2018; 33:87-95. [PMID: 29641256 DOI: 10.1089/cbr.2017.2376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Auger electrons emitted by radioisotopes such as 125I have a high linear energy transfer and short mean-free path in tissue (<10 μm), making them suitable for treating micrometastases while sparing normal tissues. The authors developed and subsequently investigated a cancer cell-selective small molecule phospholipid ether analog to deliver 125I to triple-negative breast cancer (TNBC) cells in vivo. METHODS A Current Good Manufacturing Practice (cGMP) method to radiolabel 125I-CLR1404 (CLR 125) with >95% radiochemical purity was established. To estimate CLR 125 in vivo dosimetry and identify dose-limiting organs, the biodistribution of the analog compound 124I-CLR1404 (CLR 124) was investigated using micro-positron emission tomography (PET)/computed tomography (CT) in conjunction with a Monte Carlo dosimetry platform to estimate CLR 125 dosimetry. In vivo antitumor efficacy was tested by injecting nude mice bearing either MDA-MB-231-luc orthotopic xenografts or lung metastases with 74 MBq (3.7 GBq/kg) of CLR 125 or an equivalent mass amount of nonradiolabeled CLR 125. Longitudinal tumor measurements using calipers and bioluminescence imaging were obtained for the xenografts and lung metastases, respectively. RESULTS Dosimetry analysis estimated that CLR 125 would impart the largest absorbed dose to the tumor per injected activity (0.261 ± 0.023 Gy/MBq) while the bone marrow, which is generally the dose-limiting organ for CLR1404, appears to have the lowest (0.063 ± 0.005 Gy/MBq). At administered activities of up to 74 MBq (3.7 GBq/kg), mice did not experience signs of toxicity. In addition, a single dose of CLR 125 reduced the volume of orthotopic primary TNBC xenografts by ∼60% compared to control vehicle (p < 0.001) and significantly extended survival. In addition, CLR 125 was efficacious against preclinical metastatic TNBC models by inhibiting the progression of micrometastases (p < 0.01). CONCLUSIONS Targeted radionuclide therapy with CLR 125 displayed significant antitumor efficacy in vivo, suggesting promise for treatment of TNBC micrometastases.
Collapse
Affiliation(s)
- Joseph Grudzinski
- 1 Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin
| | - Ian Marsh
- 1 Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin
| | | | - Justin Jeffery
- 3 University of Wisconsin Carbone Cancer Center , Madison, Wisconsin
| | - Marc Longino
- 2 Cellectar Biosciences, Inc. , Madison, Wisconsin
| | - Kevin Kozak
- 2 Cellectar Biosciences, Inc. , Madison, Wisconsin
| | | | | | - Ashley Weichmann
- 3 University of Wisconsin Carbone Cancer Center , Madison, Wisconsin
| | - Amy Moser
- 3 University of Wisconsin Carbone Cancer Center , Madison, Wisconsin.,4 Department of Human Oncology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Bryan Bednarz
- 1 Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin.,3 University of Wisconsin Carbone Cancer Center , Madison, Wisconsin.,4 Department of Human Oncology, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
22
|
Degli Esposti M, Matarrese P, Tinari A, Longo A, Recalchi S, Khosravi-Far R, Malorni W, Misasi R, Garofalo T, Sorice M. Changes in membrane lipids drive increased endocytosis following Fas ligation. Apoptosis 2018; 22:681-695. [PMID: 28299505 DOI: 10.1007/s10495-017-1362-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Once activated, some surface receptors promote membrane movements that open new portals of endocytosis, in part to facilitate the internalization of their activated complexes. The prototypic death receptor Fas (CD95/Apo1) promotes a wave of enhanced endocytosis that induces a transient intermixing of endosomes with mitochondria in cells that require mitochondria to amplify death signaling. This initiates a global alteration in membrane traffic that originates from changes in key membrane lipids occurring in the endoplasmic reticulum (ER). We have focused the current study on specific lipid changes occurring early after Fas ligation. We analyzed the interaction between endosomes and mitochondria in Jurkat T cells by nanospray-Time-of-flight (ToF) Mass Spectrometry. Immediately after Fas ligation, we found a transient wave of lipid changes that drives a subpopulation of early endosomes to merge with mitochondria. The earliest event appears to be a decrease of phosphatidylcholine (PC), linked to a metabolic switch enhancing phosphatidylinositol (PI) and phosphoinositides, which are crucial for the formation of vacuolar membranes and endocytosis. Lipid changes occur independently of caspase activation and appear to be exacerbated by caspase inhibition. Conversely, inhibition or compensation of PC deficiency attenuates endocytosis, endosome-mitochondria mixing and the induction of cell death. Deficiency of receptor interacting protein, RIP, also limits the specific changes in membrane lipids that are induced by Fas activation, with parallel reduction of endocytosis. Thus, Fas activation rapidly changes the interconversion of PC and PI, which then drives enhanced endocytosis, thus likely propagating death signaling from the cell surface to mitochondria and other organelles.
Collapse
Affiliation(s)
| | - Paola Matarrese
- Department of Drug Research and Evaluation, Istituto Superiore Sanita', Rome, Italy
| | - Antonella Tinari
- Department of Drug Research and Evaluation, Istituto Superiore Sanita', Rome, Italy
| | - Agostina Longo
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Roya Khosravi-Far
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore Sanita', Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
23
|
Ansari SS, Sharma AK, Zepp M, Ivanova E, Bergmann F, König R, Berger MR. Upregulation of cell cycle genes in head and neck cancer patients may be antagonized by erufosine's down regulation of cell cycle processes in OSCC cells. Oncotarget 2017; 9:5797-5810. [PMID: 29464035 PMCID: PMC5814175 DOI: 10.18632/oncotarget.23537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
The TCGA database was analyzed to identify deregulation of cell cycle genes across 24 cancer types and ensuing effects on patient survival. Pan-cancer analysis showed that head and neck squamous cell carcinoma (HNSCC) ranks amongst the top four cancers showing deregulated cell cycle genes. Also, the median gene expression of all CDKs and cyclins in HNSCC patient samples was higher than that of the global gene expression. This was verified by IHC staining of CCND1 from HNSCC patients. When evaluating the quartiles with highest and lowest expression, increased CCND1/CDK6 levels had negative implication on patient survival. In search for a drug, which may antagonize this tumor profile, the potential of the alkylphosphocholine erufosine was evaluated against cell lines of the HNSCC subtype, oral squamous cell carcinoma (OSCC) using in-vitro and in-vivo assays. Erufosine inhibited growth of OSCC cell lines concentration dependently. Initial microarray findings revealed that cyclins and CDKs were down-regulated concentration dependently upon exposure to erufosine and participated in negative enrichment of cell cycle processes. These findings, indicating a pan-cdk/cyclin inhibition by erufosine, were verified at both, mRNA and protein levels. Erufosine caused a G2/M block and inhibition of colony formation. Significant tumor growth retardation was seen upon treatment with erufosine in a xenograft model. For the decreased cyclin D1 and CDK 4/6 levels found in tumor tissue, these proteins can serve as biomarker for erufosine intervention. The findings demonstrate the potential of erufosine as cell cycle inhibitor in HNSCC treatment, alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Shariq S Ansari
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Ashwini K Sharma
- Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Elizabet Ivanova
- Laboratory for Experimental Chemotherapy, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Bulgaria
| | - Frank Bergmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rainer König
- Integrated Research and Treatment Center Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Network Modeling, Leibniz Institute for Natural Products Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
24
|
Zulueta Díaz YDLM, Fanani ML. Crossregulation between the insertion of Hexadecylphosphocholine (miltefosine) into lipid membranes and their rheology and lateral structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [DOI: 10.1016/j.bbamem.2017.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Treatment of Schistosoma mansoni with miltefosine in vitro enhances serological recognition of defined worm surface antigens. PLoS Negl Trop Dis 2017; 11:e0005853. [PMID: 28841653 PMCID: PMC5589257 DOI: 10.1371/journal.pntd.0005853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/07/2017] [Accepted: 08/04/2017] [Indexed: 11/19/2022] Open
Abstract
Background Miltefosine, an anti-cancer drug that has been successfully repositioned for treatment of Leishmania infections, has recently also shown promising effects against Schistosoma spp targeting all life cycle stages of the parasite. The current study examined the effect of treating Schistosoma mansoni adult worms with miltefosine on exposure of worm surface antigens in vitro. Methodology/Principal findings In an indirect immunofluorescence assay, rabbit anti-S.mansoni adult worm homogenate and anti-S. mansoni infection antisera gave strong immunofluorescence of the S. mansoni adult worm surface after treatment with miltefosine, the latter antiserum having previously been shown to synergistically enhance the schistosomicidal activity of praziquantel. Rabbit antibodies that recognised surface antigens exposed on miltefosine-treated worms were recovered by elution off the worm surface in low pH buffer and were used in a western immunoblotting assay to identify antigenic targets in a homogenate extract of adult worms (SmWH). Four proteins reacting with the antibodies in immunoblots were purified and proteomic analysis (MS/MS) combined with specific immunoblotting indicated they were the S. mansoni proteins: fructose-1,6 bisphosphate aldolase (SmFBPA), Sm22.6, alkaline phosphatase and malate dehydrogenase. These antibodies were also found to bind to the surface of 3-hour schistosomula and induce immune agglutination of the parasites, suggesting they may have a role in immune protection. Conclusion/Significance This study reveals a novel mode of action of miltefosine as an anti-schistosome agent. The immune-dependent hypothesis we investigated has previously been lent credence with praziquantel (PZQ), whereby treatment unmasks parasite surface antigens not normally exposed to the host during infection. Antigens involved in this molecular mechanism could have potential as intervention targets and antibodies against these antigens may act to increase the drug’s anti-parasite efficacy and be involved in the development of resistance to re-infection. Schistosomiasis (Bilharzia) is a serious public health problem caused by a parasite of genus Schistosoma. There is an increasing concern about development of parasite resistance to the only drug available for treatment, praziquantel (PZQ). Miltefosine, a repurposed anti-cancer drug for treatment of Leishmania infection, was shown to have activity against Schistosoma in animal models at all the parasite’s life cycle stages. In this work, we examined the potential that miltefosine could act to expose parasite surface antigens that are normally hidden during natural infection as a way to avoid lethal effects of host immunity. We used two immunobinding techniques, immunofluorescence and western immunoblotting, and a protein identification technique, namely mass spectrometry, to identify proteins exposed on the worm surface following incubation with miltefosine. Four S. mansoni proteins were shown to be exposed by miltefosine treatment: fructose-bisphosphate aldolase (SmFBPA), Sm22.6, alkaline phosphatase and malate dehydrogenase. Antibodies specific for these antigens recognised and bound to the surface of early-stage schistosome larvae and antibodies specific for SmFBPA induced clumping of the larvae, suggesting a potential role in early parasite killing and protection against infection. These antibodies may be utilised to increase miltefosine’s anti-parasite efficacy and may be involved in resistance to re-infection.
Collapse
|
26
|
Koch G, Wermser C, Acosta IC, Kricks L, Stengel ST, Yepes A, Lopez D. Attenuating Staphylococcus aureus Virulence by Targeting Flotillin Protein Scaffold Activity. Cell Chem Biol 2017; 24:845-857.e6. [PMID: 28669526 DOI: 10.1016/j.chembiol.2017.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023]
Abstract
Scaffold proteins are ubiquitous chaperones that bind proteins and facilitate physical interaction of multi-enzyme complexes. Here we used a biochemical approach to dissect the scaffold activity of the flotillin-homolog protein FloA of the multi-drug-resistant human pathogen Staphylococcus aureus. We show that FloA promotes oligomerization of membrane protein complexes, such as the membrane-associated RNase Rny, which forms part of the RNA-degradation machinery called the degradosome. Cells lacking FloA had reduced Rny function and a consequent increase in the targeted sRNA transcripts that negatively regulate S. aureus toxin expression. Small molecules that altered FloA oligomerization also reduced Rny function and decreased the virulence potential of S. aureus in vitro, as well as in vivo, using invertebrate and murine infection models. Our results suggest that flotillin assists in the assembly of protein complexes involved in S. aureus virulence, and could thus be an attractive target for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Charlotte Wermser
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Ivan C Acosta
- National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain
| | - Lara Kricks
- National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain
| | - Stephanie T Stengel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Ana Yepes
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany; National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain.
| |
Collapse
|
27
|
Guzman-Villanueva D, Weissig V. Mitochondria-Targeted Agents: Mitochondriotropics, Mitochondriotoxics, and Mitocans. Handb Exp Pharmacol 2017; 240:423-438. [PMID: 27590226 DOI: 10.1007/164_2016_37] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondria, the powerhouse of the cell, have been known for many years for their central role in the energy metabolism; however, extensive progress has been made and to date substantial evidence demonstrates that mitochondria play a critical role not only in the cell bioenergetics but also in the entire cell metabolome. Mitochondria are also involved in the intracellular redox poise, the regulation of calcium homeostasis, and the generation of reactive oxygen species (ROS), which are crucial for the control of a variety of signaling pathways. Additionally, they are essential for the mitochondrial-mediated apoptosis process. Thus, it is not surprising that disruptions of mitochondrial functions can lead or be associated with human pathologies. Because of diseases like diabetes, Alzheimer, Parkinson's, cancer, and ischemic disease are being increasingly linked to mitochondrial dysfunctions, the interest in mitochondria as a prime pharmacological target has dramatically risen over the last decades and as a consequence a large number of agents, which could potentially impact or modulate mitochondrial functions, are currently under investigation. Based on their site of action, these agents can be classified as mitochondria-targeted and non-mitochondria-targeted agents. As a result of the continuous search for new agents and the design of potential therapeutic agents to treat mitochondrial diseases, terms like mitochondriotropics, mitochondriotoxics, mitocancerotropics, and mitocans have emerged to describe those agents with high affinity to mitochondria that exert a therapeutic or deleterious effect on these organelles. In this chapter, mitochondria-targeted agents and some strategies to deliver agents to and/or into mitochondria will be reviewed.
Collapse
Affiliation(s)
- Diana Guzman-Villanueva
- Department of Pharmaceutical Sciences, Nanomedicine Center of Excellence in Translational Cancer Research, Midwestern University College of Pharmacy-Glendale, Glendale, AZ, 85308, USA.
| | - Volkmar Weissig
- Department of Pharmaceutical Sciences, Nanomedicine Center of Excellence in Translational Cancer Research, Midwestern University College of Pharmacy-Glendale, Glendale, AZ, 85308, USA
| |
Collapse
|
28
|
Biophysics in cancer: The relevance of drug-membrane interaction studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2231-2244. [DOI: 10.1016/j.bbamem.2016.06.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/26/2022]
|
29
|
Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 2016; 165:114-31. [DOI: 10.1016/j.pharmthera.2016.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
|
30
|
González-Fernández Y, Zalacain M, Imbuluzqueta E, Sierrasesumaga L, Patiño-García A, Blanco-Prieto MJ. Lipid nanoparticles enhance the efficacy of chemotherapy in primary and metastatic human osteosarcoma cells. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Delgado-Ramírez M, Morán-Zendejas R, Aréchiga-Figueroa IA, Toro-Castillo C, Ramírez-Martínez JF, Rodríguez-Menchaca AA. Modulation of the voltage-gated potassium channel Kv2.1 by the anti-tumor alkylphospholipid perifosine. Pharmacol Rep 2015; 68:457-61. [PMID: 26922553 DOI: 10.1016/j.pharep.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of the present study was to assess the effects of perifosine-a third generation alkylphospholipid analog with anti-tumor properties-on the activity of Kv2.1 channels. METHODS The whole-cell patch clamp technique was applied to follow the modulatory effect of perifosine on Kv2.1 channels expressed in HEK293 cells. RESULTS Obtained data provide evidence that perifosine application decreases the whole cell Kv2.1 currents in a concentration-independent manner. Perifosine induces a hyperpolarizing shift in the voltage dependence of Kv2.1 channels inactivation without altering the voltage dependence of channels activation. The kinetics of Kv2.1 closed-state inactivation was accelerated by perifosine, with no significant effects on the recovery rate from inactivation. CONCLUSIONS Taken together, these results show that perifosine modified the Kv2.1 inactivation gating resulting in a decrease of the current amplitude. These data will help to elucidate the mechanism of action of this promising anti-cancer drug on ion channels and their possible implications.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Rita Morán-Zendejas
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Ivan A Aréchiga-Figueroa
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Carmen Toro-Castillo
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Jalisco, México
| | - Juan F Ramírez-Martínez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
32
|
Lubner SJ, Mullvain J, Perlman S, Pishvaian M, Mortimer J, Oliver K, Heideman J, Hall L, Weichert J, Liu G. A Phase 1, Multi-Center, Open-Label, Dose-Escalation Study of 131I-CLR1404 in Subjects with Relapsed or Refractory Advanced Solid Malignancies. Cancer Invest 2015; 33:483-9. [PMID: 26536061 DOI: 10.3109/07357907.2015.1081691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study explores the imaging and therapeutic properties of a novel radiopharmaceutical, (131)I-CLR1404. Phase 1a data demonstrated safety and tumor localization by SPECT-CT. This 1b study assessed safety, imaging characteristics, and possible antineoplastic properties and provided further proof-of-concept of phospholipid ether analogues' retention within tumors. A total of 10 patients received (131)I-CLR1404 in an adaptive dose-escalation design. Imaging characteristics were consistent with prior studies, showing tumor uptake in primary tumors and metastases. At doses of 31.25 mCi/m(2) and greater, DLTs were thrombocytopenia and neutropenia. Disease-specific studies are underway to identify cancers most likely to benefit from (131)I-CLR1404 monotherapy.
Collapse
Affiliation(s)
- Sam Joseph Lubner
- a University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | | | - Scott Perlman
- a University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Michael Pishvaian
- b Georgetown University Medical Center , Lombardi Cancer Center, Washington, DC , USA
| | - Joanne Mortimer
- c City of Hope Comprehensive Cancer Center , Duarte , CA , USA
| | | | - Jennifer Heideman
- a University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Lance Hall
- a University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| | - Jamey Weichert
- a University of Wisconsin Carbone Cancer Center , Madison , WI , USA.,d Cellectar Biosciences , Madison , WI , USA
| | - Glenn Liu
- a University of Wisconsin Carbone Cancer Center , Madison , WI , USA
| |
Collapse
|
33
|
Kostadinova A, Topouzova-Hristova T, Momchilova A, Tzoneva R, Berger MR. Antitumor Lipids--Structure, Functions, and Medical Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:27-66. [PMID: 26572975 DOI: 10.1016/bs.apcsb.2015.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels.
Collapse
Affiliation(s)
- Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Martin R Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit, Heidelberg, Germany
| |
Collapse
|
34
|
Mahadeo M, Nathoo S, Ganesan S, Driedger M, Zaremberg V, Prenner EJ. Disruption of lipid domain organization in monolayers of complex yeast lipid extracts induced by the lysophosphatidylcholine analogue edelfosine in vivo. Chem Phys Lipids 2015; 191:153-62. [PMID: 26386399 DOI: 10.1016/j.chemphyslip.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
The lysophosphatidylcholine analogue edelfosine is a potent antitumor and antiparasitic drug that targets cell membranes. Previous studies have shown that edelfosine alters membrane domain organization inducing internalization of sterols and endocytosis of plasma membrane transporters. These early events affect signaling pathways that result in cell death. It has been shown that edelfosine preferentially partitions into more rigid lipid domains in mammalian as well as in yeast cells. In this work we aimed at investigating the effect of edelfosine on membrane domain organization using monolayers prepared from whole cell lipid extracts of cells treated with edelfosine compared to control conditions. In Langmuir monolayers we were able to detect important differences to the lipid packing of the membrane monofilm. Domain formation visualized by means of Brewster angle microscopy also showed major morphological changes between edelfosine treated versus control samples. Importantly, edelfosine resistant cells defective in drug uptake did not display the same differences. In addition, co-spread samples of control lipid extracts with edelfosine added post extraction did not fully mimic the results obtained with lipid extracts from treated cells. Altogether these results indicate that edelfosine induces changes in membrane domain organization and that these changes depend on drug uptake. Our work also validates the use of monolayers derived from complex cell lipid extracts combined with Brewster angle microscopy, as a sensitive approach to distinguish between conditions associated with susceptibility or resistance to lysophosphatidylcholine analogues.
Collapse
Affiliation(s)
- Mark Mahadeo
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Safia Nathoo
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Suriakarthiga Ganesan
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael Driedger
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Elmar J Prenner
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
35
|
Sánchez-Blanco A, Rodríguez-Matellán AG, Reis-Sobreiro M, Sáenz-Narciso B, Cabello J, Mohler WA, Mollinedo F. Caenorhabditis elegans as a platform to study the mechanism of action of synthetic antitumor lipids. Cell Cycle 2015; 13:3375-89. [PMID: 25485582 DOI: 10.4161/15384101.2014.952183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Drugs capable of specifically recognizing and killing cancer cells while sparing healthy cells are of great interest in anti-cancer therapy. An example of such a drug is edelfosine, the prototype molecule of a family of synthetic lipids collectively known as antitumor lipids (ATLs). A better understanding of the selectivity and the mechanism of action of these compounds would lead to better anticancer treatments. Using Caenorhabditis elegans, we modeled key features of the ATL selectivity against cancer cells. Edelfosine induced a selective and direct killing action on C. elegans embryos, which was dependent on cholesterol, without affecting adult worms and larvae. Distinct ATLs ranked differently in their embryonic lethal effect with edelfosine > perifosine > erucylphosphocholine >> miltefosine. Following a biased screening of 57 C. elegans mutants we found that inactivation of components of the insulin/IGF-1 signaling pathway led to resistance against the ATL edelfosine in both C. elegans and human tumor cells. This paper shows that C. elegans can be used as a rapid platform to facilitate ATL research and to further understand the mechanism of action of edelfosine and other synthetic ATLs.
Collapse
Affiliation(s)
- Adolfo Sánchez-Blanco
- a Instituto de Biología Molecular y Celular del Cáncer ; Centro de Investigación del Cáncer ; CSIC-Universidad de Salamanca ; Campus Miguel de Unamuno ; Salamanca , Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Benien P, Solomon MA, Nguyen P, Sheehan EM, Mehanna AS, D’Souza GGM. Hydrophobized triphenyl phosphonium derivatives for the preparation of mitochondriotropic liposomes: choice of hydrophobic anchor influences cytotoxicity but not mitochondriotropic effect. J Liposome Res 2015; 26:21-7. [DOI: 10.3109/08982104.2015.1022557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 2015; 20:584-606. [DOI: 10.1007/s10495-015-1104-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Figg WD, Monga M, Headlee D, Shah A, Chau CH, Peer C, Messman R, Elsayed YA, Murgo AJ, Melillo G, Ryan QC, Kalnitskiy M, Senderowicz AM, Hollingshead M, Arbuck SG, Sausville EA. A phase I and pharmacokinetic study of oral perifosine with different loading schedules in patients with refractory neoplasms. Cancer Chemother Pharmacol 2014; 74:955-67. [PMID: 25183650 PMCID: PMC6361129 DOI: 10.1007/s00280-014-2569-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE To determine the maximum tolerated dose (MTD) of perifosine (NSC 639966), an alkylphospholipid modulator of signal transduction, using different oral loading and maintenance regimens in an effort to avoid gastrointestinal toxicity while seeking maximal sustained plasma concentrations. METHODS Thirty-one patients with advanced neoplasms were treated with monthly cycles of perifosine loading doses of 300, 600, 900, 1,200 and 1,500 mg (dose levels 1 through 5, respectively) on days 1-2 depending on the actual dose of the initial cycle. For subsequent cycles, perifosine loading doses were reduced to 100, 200, 300, 400 and 1,000 mg at the respective corresponding dose levels. Daily perifosine "maintenance" doses of 50, 100, 150, 200 and 250 mg for levels 1 through 5, respectively, commenced on days 2 or 3 and continued for a total of 21 days. No treatment was given for days 22-27. The pharmacokinetics of perifosine with these schedules was characterized. RESULTS Dose-limiting diarrhea developed at or above dose level 4. The MTD and recommended phase II dose was dose level 3B, with a loading dose of 900 mg on day 1 divided into two doses of 450 mg administered 6 h apart and a maintenance dose of 150 mg on day 2 through 21. On subsequent cycles, the loading dose was reduced to 300 mg. Non-gastrointestinal toxicities included three episodes of gout or gout-like syndromes observed at doses above the MTD. The median peak plasma concentration of perifosine achieved at the MTD was approximately 8.3 µg/mL. Four patients had stable disease ranging from 167 to 735 days. CONCLUSIONS Perifosine given according to a loading and maintenance schedule can safely sustain concentrations of drug, approaching concentrations achieved in preclinical models with evidence of anti-tumor effect.
Collapse
Affiliation(s)
- William D. Figg
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA,
| | - Manish Monga
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Donna Headlee
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Avni Shah
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Cindy H. Chau
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Cody Peer
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard Messman
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD, USA
| | - Yusri A. Elsayed
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Anthony J. Murgo
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | | | - Qin C. Ryan
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mikhail Kalnitskiy
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | - Melinda Hollingshead
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD, USA
| | - Susan G. Arbuck
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Edward A. Sausville
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD, USA,
| |
Collapse
|
39
|
Abramowski P, Steinbach K, Zander AR, Martin R. Immunomodulatory effects of the ether phospholipid edelfosine in experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 274:111-24. [PMID: 25086877 DOI: 10.1016/j.jneuroim.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023]
Abstract
The 2-lysophosphatidylcholine analog edelfosine induces apoptosis in highly proliferating cells, e.g. activated immune cells. We examined mechanisms of action of edelfosine on immune functions in experimental autoimmune encephalomyelitis, a well-accepted animal model for multiple sclerosis. We observed activated caspase-3 expression in lymphoid organs and the central nervous system; however, edelfosine did not induce global apoptosis. Edelfosine improved the disease course and led to reduced frequencies of CD4(+) T cells infiltrating into the central nervous system. Our data suggest edelfosine as an interesting treatment candidate for multiple sclerosis.
Collapse
Affiliation(s)
- Pierre Abramowski
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Karin Steinbach
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Axel R Zander
- Department for Stem Cell Transplantation, University Cancer Center Hamburg (UCCH), Martinistr. 52, 20246 Hamburg, Germany
| | - Roland Martin
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland.
| |
Collapse
|
40
|
Ibarguren M, López DJ, Escribá PV. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1518-28. [DOI: 10.1016/j.bbamem.2013.12.021] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 02/06/2023]
|
41
|
Verhaar AP, Wildenberg ME, Peppelenbosch MP, Hommes DW, van den Brink GR. Repurposing miltefosine for the treatment of immune-mediated disease? J Pharmacol Exp Ther 2014; 350:189-95. [PMID: 24833702 DOI: 10.1124/jpet.113.212654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Miltefosine is an ether lipid that was initially developed for cancer treatment in the early 1980s. Miltefosine largely failed development for oncology, although it was approved for the topical treatment of breast cancer metastasis. It was subsequently discovered that miltefosine is a highly effective treatment of visceral Leishmaniasis, a parasitic disease that affects millions worldwide and causes an estimated 30,000 fatalities each year. Oral treatment with miltefosine is generally well tolerated and has relatively few adverse effects. The exact mechanism of action of miltefosine treatment is still under investigation. Its close resemblance to phospholipids allows it to be quickly taken up by cell membranes and affect related processes, such as lipid metabolism and signaling through lipid rafts. These processes play an important role in the immune response and it comes as no surprise that miltefosine has been successfully tested for the treatment of a number of immune-mediated diseases in preclinical models of disease. Drug repurposing of miltefosine for immune-mediated diseases may provide an opportunity to expand the limited number of drugs that are currently available for therapeutic use.
Collapse
Affiliation(s)
- Auke P Verhaar
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| | - Daniel W Hommes
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| |
Collapse
|
42
|
Abramowski P, Otto B, Martin R. The orally available, synthetic ether lipid edelfosine inhibits T cell proliferation and induces a type I interferon response. PLoS One 2014; 9:e91970. [PMID: 24667731 PMCID: PMC3965404 DOI: 10.1371/journal.pone.0091970] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/17/2014] [Indexed: 01/24/2023] Open
Abstract
The drug edelfosine is a synthetic analog of 2-lysophosphatidylcholine. Edelfosine is incorporated by highly proliferating cells, e.g. activated immune cells. It acts on cellular membranes by selectively aggregating the cell death receptor Fas in membrane rafts and interference with phosphatidylcholine (PC) synthesis with subsequent induction of apoptosis. Edelfosine has been proposed for the treatment of autoimmune diseases like multiple sclerosis (MS). Earlier studies on the animal model of MS, experimental autoimmune encephalomyelitis (EAE), have generated first evidence for the efficacy of edelfosine treatment. However, it is unknown if the previously described mechanisms for edelfosine action, which are derived from in vitro studies, are solely responsible for the amelioration of EAE or if edelfosine may exert additional effects, which may be beneficial in the context of autoimmunity. Since it was the purpose of our studies to assess the potential usefulness of edelfosine for the treatment of MS, we examined its mechanism/s of action on immune functions in human T cells. Low doses of edelfosine led to a decrease in homeostatic proliferation, and further studies of the mechanism/s of action by genome-wide transcriptional profiling showed that edelfosine reduces the expression of MHC class II molecules, of molecules involved in MHC class II-associated processing and presentation, and finally upregulated a series of type I interferon-associated genes. The inhibition of homeostatic proliferation, as well as the effects on MHC class II expression and -presentation, and the induction of type I interferon-associated genes are novel and interesting in the context of developing edelfosine for clinical use in MS and possibly also other T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Pierre Abramowski
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (inims), ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Otto
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Chemistry, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Martin
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (inims), ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neuroimmunology and MS Research, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
43
|
Eisenberg T, Büttner S. Lipids and cell death in yeast. FEMS Yeast Res 2013; 14:179-97. [PMID: 24119111 PMCID: PMC4255311 DOI: 10.1111/1567-1364.12105] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/21/2013] [Accepted: 09/25/2013] [Indexed: 01/22/2023] Open
Abstract
Understanding lipid-induced malfunction represents a major challenge of today's biomedical research. The connection of lipids to cellular and organ dysfunction, cell death, and disease (often referred to as lipotoxicity) is more complex than the sole lipotoxic effects of excess free fatty acids and requires genetically tractable model systems for mechanistic investigation. We herein summarize recent advances in the field of lipid-induced toxicity that employ the established model system for cell death and aging research of budding yeast Saccharomyces cerevisiae. Studies in yeast have shed light on various aspects of lipotoxicity, including free fatty acid toxicity, sphingolipid-modulated cell death as well as the involvement of cardiolipin and lipid peroxidation in the mitochondrial pathways of apoptosis. Regimens used range from exogenously applied lipids, genetic modulation of lipolysis and triacylglyceride synthesis, variations in sphingolipid/ceramide metabolism as well as changes in peroxisome function by either genetic or pharmacological means. In future, the yeast model of programmed cell death will further contribute to the clarification of crucial questions of lipid-associated malfunction.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | |
Collapse
|
44
|
Arouri A, Hansen AH, Rasmussen TE, Mouritsen OG. Lipases, liposomes and lipid-prodrugs. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Djafi N, Vergnolle C, Cantrel C, Wietrzyñski W, Delage E, Cochet F, Puyaubert J, Soubigou-Taconnat L, Gey D, Collin S, Balzergue S, Zachowski A, Ruelland E. The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase. FRONTIERS IN PLANT SCIENCE 2013; 4:307. [PMID: 23964284 PMCID: PMC3737466 DOI: 10.3389/fpls.2013.00307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/22/2013] [Indexed: 05/02/2023]
Abstract
Phosphoinositide-dependent phospholipases C (PI-PLCs) are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII) to produce inositol triphosphate and diacylglycerol (DAG) that is phosphorylated into phosphatidic acid (PA) by DAG-kinases (DGKs). The roles of PI4KIIIs, PI-PLCs, and DGKs in basal signaling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 μM wortmannin, or R59022, inhibitors of PI-PLCs, PI4KIIIs, and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs). We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.
Collapse
Affiliation(s)
- Nabila Djafi
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Chantal Vergnolle
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Catherine Cantrel
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | | | - Elise Delage
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Françoise Cochet
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Juliette Puyaubert
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Ludivine Soubigou-Taconnat
- Unité de Recherche en Biologie Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196Evry Cedex, France
| | - Delphine Gey
- Unité de Recherche en Biologie Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196Evry Cedex, France
| | - Sylvie Collin
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Sandrine Balzergue
- Unité de Recherche en Biologie Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196Evry Cedex, France
| | - Alain Zachowski
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Eric Ruelland
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| |
Collapse
|
46
|
Delmas D, Aires V, Colin DJ, Limagne E, Scagliarini A, Cotte AK, Ghiringhelli F. Importance of lipid microdomains, rafts, in absorption, delivery, and biological effects of resveratrol. Ann N Y Acad Sci 2013; 1290:90-7. [DOI: 10.1111/nyas.12177] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dominique Delmas
- University of Burgundy; Dijon France
- Chemotherapy, Lipid Metabolism and Antitumoral Immune Response Team; INSERM Research Center U866; Dijon France
| | - Virginie Aires
- University of Burgundy; Dijon France
- Chemotherapy, Lipid Metabolism and Antitumoral Immune Response Team; INSERM Research Center U866; Dijon France
| | - Didier J. Colin
- Center for Biomedical Imaging (CIBM)-microPET Imaging Laboratory; University of Geneva; Geneva Switzerland
| | - Emeric Limagne
- University of Burgundy; Dijon France
- Chemotherapy, Lipid Metabolism and Antitumoral Immune Response Team; INSERM Research Center U866; Dijon France
| | - Alessandra Scagliarini
- University of Burgundy; Dijon France
- Chemotherapy, Lipid Metabolism and Antitumoral Immune Response Team; INSERM Research Center U866; Dijon France
| | - Alexia K. Cotte
- University of Burgundy; Dijon France
- Chemotherapy, Lipid Metabolism and Antitumoral Immune Response Team; INSERM Research Center U866; Dijon France
| | - François Ghiringhelli
- University of Burgundy; Dijon France
- Chemotherapy, Lipid Metabolism and Antitumoral Immune Response Team; INSERM Research Center U866; Dijon France
| |
Collapse
|
47
|
Ravu RR, Chen YL, Jacob MR, Pan X, Agarwal AK, Khan SI, Heitman J, Clark AM, Li XC. Synthesis and antifungal activities of miltefosine analogs. Bioorg Med Chem Lett 2013; 23:4828-31. [PMID: 23891181 DOI: 10.1016/j.bmcl.2013.06.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 01/22/2023]
Abstract
Miltefosine is an alkylphosphocholine that shows broad-spectrum in vitro antifungal activities and limited in vivo efficacy in mouse models of cryptococcosis. To further explore the potential of this class of compounds for the treatment of systemic mycoses, nine analogs (3a-3i) were synthesized by modifying the choline structural moiety and the alkyl chain length of miltefosine. In vitro testing of these compounds against the opportunistic fungal pathogens Candida albicans, Candida glabrata, Candida krusei, Aspergillus fumigatus, and Cryptococcus neoformans revealed that N-benzyl-N,N-dimethyl-2-{[(hexadecyloxy)hydroxyphosphinyl]oxy}ethanaminium inner salt (3a), N,N-dimethyl-N-(4-nitrobenzyl)-2-{[(hexadecyloxy)hydroxyphosphinyl]oxy}ethanaminium inner salt (3d), and N-(4-methoxybenzyl)-N,N-dimethyl-2-{[(hexadecyloxy)hydroxyphosphinyl]oxy}ethanaminium inner salt (3e) exhibited minimum inhibitory concentrations (MIC) of 2.5-5.0 μg/mL against all tested pathogens, when compared to miltefosine with MICs of 2.5-3.3 μg/mL. Compound 3a showed low in vitro cytotoxicity against three mammalian cell lines similar to miltefosine. In vivo testing of 3a and miltefosine against C. albicans in a mouse model of systemic infection did not demonstrate efficacy. The results of this study indicate that further investigation will be required to determine the potential usefulness of the alkylphosphocholines in the treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Ranga Rao Ravu
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, MS 38677, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit Rev Biochem Mol Biol 2013; 48:20-38. [PMID: 23350810 DOI: 10.3109/10409238.2012.735643] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reorganization of metabolic pathways in cancer facilitates the flux of carbon and reducing equivalents into anabolic pathways at the expense of oxidative phosphorylation. This provides rapidly dividing cells with the necessary precursors for membrane, protein and nucleic acid synthesis. A fundamental metabolic perturbation in cancer is the enhanced synthesis of fatty acids by channeling glucose and/or glutamine into cytosolic acetyl-CoA and upregulation of key biosynthetic genes. This lipogenic phenotype also extends to the production of complex lipids involved in membrane synthesis and lipid-based signaling. Cancer cells display sensitivity to ablation of fatty acid synthesis possibly as a result of diminished capacity to synthesize complex lipids involved in signaling or growth pathways. Evidence has accrued that phosphatidylcholine, the major phospholipid component of eukaryotic membranes, as well as choline metabolites derived from its synthesis and catabolism, contribute to both proliferative growth and programmed cell death. This review will detail our current understanding of how coordinated changes in substrate availability, gene expression and enzyme activity lead to altered phosphatidylcholine synthesis in cancer, and how these changes contribute directly or indirectly to malignant growth. Conversely, apoptosis targets key steps in phosphatidylcholine synthesis and degradation that are linked to disruption of cell cycle regulation, reinforcing the central role that phosphatidylcholine and its metabolites in determining cell fate.
Collapse
Affiliation(s)
- Neale D Ridgway
- Departments of Pediatrics and Biochemistry & Molecular Biology, The Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada.
| |
Collapse
|
49
|
Zhang YH, Khanna R, Nicol GD. Nerve growth factor/p75 neurotrophin receptor-mediated sensitization of rat sensory neurons depends on membrane cholesterol. Neuroscience 2013; 248:562-70. [PMID: 23811397 DOI: 10.1016/j.neuroscience.2013.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022]
Abstract
Nerve growth factor (NGF) is an important mediator in the initiation of the inflammatory response and NGF via activation of the p75 neurotrophin receptor (p75(NTR)) and downstream sphingomyelin signaling leads to significant enhancement of the excitability of small-diameter sensory neurons. Because of the interaction between sphingomyelin and cholesterol in creating membrane liquid-ordered domains known as membrane or lipid rafts, we examined whether neuronal NGF-induced sensitization via p75(NTR) was dependent on the integrity of membrane rafts. Here, we demonstrate that the capacity of NGF to enhance the excitability of sensory neurons may result from the interaction of p75(NTR) with its downstream signaling partner(s) in membrane rafts. Two agents known to disrupt membrane rafts, edelfosine and methyl-β-cyclodextrin (MβCD), block the increase in excitability produced by NGF. In contrast, treatment with MβCD containing saturated amounts of cholesterol does not alter the capacity of NGF to augment excitability. In addition, adding back MβCD with cholesterol restored the NGF-induced sensitization in previously cholesterol-depleted neurons, suggesting that cholesterol and the structural integrity of rafts are key to promoting NGF-mediated sensitization. Using established protocols to isolate detergent-resistant membranes, both p75(NTR) and the neuronal membrane raft marker, flotillin, localize to raft fractions. These results suggest that downstream signaling partners interacting with p75(NTR) in sensory neurons are associated with membrane raft signaling platforms.
Collapse
Affiliation(s)
- Y H Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - R Khanna
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - G D Nicol
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
50
|
Castro BM, Fedorov A, Hornillos V, Delgado J, Acuña AU, Mollinedo F, Prieto M. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids. J Phys Chem B 2013; 117:7929-40. [PMID: 23738749 DOI: 10.1021/jp401407d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-phosphocholine) and miltefosine (hexadecylphosphocholine) are synthetic alkylphospholipids (ALPs) that are reported to selectively accumulate in tumor cell membranes, inducing Fas clustering and activation on lipid rafts, triggering apoptosis. However, the exact mechanism by which these lipids elicit these events is still not fully understood. Recent studies propose that their mode of action might be related with alterations of lipid rafts biophysical properties caused by these lipid drugs. To achieve a clear understanding of this mechanism, we studied the effects of pharmacologically relevant amounts of edelfosine and miltefosine in the properties of model and cellular membranes. The influence of these molecules on membrane order, lateral organization, and lipid rafts molar fraction and size were studied by steady-state and time-resolved fluorescence methods, Förster resonance energy transfer (FRET), confocal and fluorescence lifetime imaging microscopy (FLIM). We found that the global membrane and lipid rafts biophysical properties of both model and cellular membranes were not significantly affected by both the ALPs. Nonetheless, in model membranes, a mild increase in membrane fluidity induced by both alkyl lipids was detected, although this effect was more noticeable for edelfosine than miltefosine. This absence of drastic alterations shows for the first time that ALPs mode of action is unlikely to be directly linked to alterations of lipid rafts biophysical properties caused by these drugs. The biological implications of this result are discussed in the context of ALPs effects on lipid metabolism, mitochondria homeostasis modulation, and their relationship with tumor cell death.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química Física-Molecular and Institute of Nanoscience and Nanotechnology, IST, Universidade Técnica de Lisboa , Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | | | | | | | | | | | |
Collapse
|