1
|
Fazzari M, Lunghi G, Di Biase E, Maggioni M, Carsana EV, Cioccarelli L, Vigani L, Loberto N, Aureli M, Mauri L, Ciampa MG, Valsecchi M, Takato K, Imamura A, Ishida H, Ben Mariem O, Saporiti S, Palazzolo L, Chiricozzi E, Eberini I, Sonnino S. GM1 structural requirements to mediate neuronal functions. Glycoconj J 2023; 40:655-668. [PMID: 38100017 DOI: 10.1007/s10719-023-10141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Cioccarelli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Vigani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Koichi Takato
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Simona Saporiti
- Analytical Excellence & Program Management, Merck Serono S.p.A, Rome, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
- Data Science Research Center, Università degli Studi di Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| |
Collapse
|
2
|
Koolath S, Murai Y, Suzuki T, Swamy MMM, Usuki S, Monde K. Stereochemistry of Sphingolipids in Ganglioside GM3 Enhances Recovery of Nervous Functionality. ACS Med Chem Lett 2023; 14:1237-1241. [PMID: 37736188 PMCID: PMC10510522 DOI: 10.1021/acsmedchemlett.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
GM3 is a simple monosialylated ganglioside (NeuAcα(2-3)Galβ(1-4)Glcβ1-1'-ceramide). Its aberrant expression in adipocytes is involved in a variety of physiological and pathological processes in diabetes mellitus and obesity. GM3 is exposed on the outer surface of cell membranes and is strongly associated with type 2 diabetes and insulin resistance. Exogenously added GM3 promotes neurite outgrowth in a variety of different neuroblastoma cell lines. Neurite outgrowth is a key process in the development of functional neuronal circuits and neuro-regeneration following nerve injury. Therefore, regulating GM3 levels in nerve tissues might be a potential treatment method for these disorders. Here, we demonstrate the comprehensive synthesis of stereoisomeric GM3s and compare their physicochemical properties with those of natural GM3 and diastereomers of sphingolipids in GM3 to examine the enhancement of biological activity. l-erythro-GM3 was confirmed to increase neurite outgrowth, providing valuable insights for potential neuro-regenerative treatments.
Collapse
Affiliation(s)
- Sajeer Koolath
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Yuta Murai
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Division
of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Sapporo 060-8589, Japan
| | - Tomoya Suzuki
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Mahadeva M. M. Swamy
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Seigo Usuki
- Lipid
Biofunction Section, Frontier Research Center for Advanced Material
and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Kenji Monde
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| |
Collapse
|
3
|
Design, synthesis and neurite outgrowth activity of novel ganglioside GM1 derivatives by remodeling of the fatty acid moiety. Eur J Med Chem 2022; 241:114636. [DOI: 10.1016/j.ejmech.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
4
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
5
|
Gangliosides and the Treatment of Neurodegenerative Diseases: A Long Italian Tradition. Biomedicines 2022; 10:biomedicines10020363. [PMID: 35203570 PMCID: PMC8962287 DOI: 10.3390/biomedicines10020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Gangliosides are glycosphingolipids which are particularly abundant in the plasma membrane of mammalian neurons. The knowledge of their presence in the human brain dates back to the end of 19th century, but their structure was determined much later, in the middle of the 1950s. From this time, neurochemical studies suggested that gangliosides, and particularly GM1 ganglioside, display neurotrophic and neuroprotective properties. The involvement of GM1 in modulating neuronal processes has been studied in detail by in vitro experiments, and the results indicated its direct role in modulating the activity of neurotrophin-dependent receptor signaling, the flux of calcium through the plasma membrane, and stabilizing the correct conformation of proteins, such as α-synuclein. Following, in vivo experiments supported the use of ganglioside drugs for the therapy of peripheral neuropathies, obtaining very positive results. However, the clinical use of gangliosides for the treatment of central neurodegeneration has not been followed due to the poor penetrability of these lipids at the central level. This, together with an ambiguous association (later denied) between ganglioside administration and Guillain-Barrè syndrome, led to the suspension of ganglioside drugs. In this critical review, we report on the evolution of research on gangliosides, on the current knowledge on the role played by gangliosides in regulating the biology of neurons, on the past and present use of ganglioside-based drugs used for therapy of peripheral neuropathies or used in human trials for central neurodegenerations, and on the therapeutic potential represented by the oligosaccharide chain of GM1 ganglioside for the treatment of neurodegenerative diseases.
Collapse
|
6
|
Bouscary A, Quessada C, René F, Spedding M, Turner BJ, Henriques A, Ngo ST, Loeffler JP. Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Semin Cell Dev Biol 2020; 112:82-91. [PMID: 33160824 DOI: 10.1016/j.semcdb.2020.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Sphingolipids are complex lipids. They play a structural role in neurons, but are also involved in regulating cellular communication, and neuronal differentiation and maturation. There is increasing evidence to suggest that dysregulated metabolism of sphingolipids is linked to neurodegenerative processes in amyotrophic lateral sclerosis (ALS), Parkinson's disease and Gaucher's disease. In this review, we provide an overview of the role of sphingolipids in the development and maintenance of the nervous system. We describe the implications of altered metabolism of sphingolipids in the pathophysiology of certain neurodegenerative diseases, with a primary focus on ALS. Finally, we provide an update of potential treatments that could be used to target the metabolism of sphingolipids in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandra Bouscary
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Cyril Quessada
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Frédérique René
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Michael Spedding
- Spedding Research Solutions SAS, 6 rue Ampere, 78650 Le Vesinet, France
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
| | | | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Rd, Brisbane city, QLD 4072, Australia; Centre for Clinical Research, The University of Queensland, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston, QLD 4029, Australia; Queensland Brain Institute Building 79, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France.
| |
Collapse
|
7
|
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 2020; 14:572965. [PMID: 33117120 PMCID: PMC7574889 DOI: 10.3389/fnins.2020.572965] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Gangliosides are glycosphingolipids highly abundant in the nervous system, and carry most of the sialic acid residues in the brain. Gangliosides are enriched in cell membrane microdomains ("lipid rafts") and play important roles in the modulation of membrane proteins and ion channels, in cell signaling and in the communication among cells. The importance of gangliosides in the brain is highlighted by the fact that loss of function mutations in ganglioside biosynthetic enzymes result in severe neurodegenerative disorders, often characterized by very early or childhood onset. In addition, changes in the ganglioside profile (i.e., in the relative abundance of specific gangliosides) were reported in healthy aging and in common neurological conditions, including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), stroke, multiple sclerosis and epilepsy. At least in HD, PD and in some forms of epilepsy, experimental evidence strongly suggests a potential role of gangliosides in disease pathogenesis and potential treatment. In this review, we will summarize ganglioside functions that are crucial to maintain brain health, we will review changes in ganglioside levels that occur in major neurological conditions and we will discuss their contribution to cellular dysfunctions and disease pathogenesis. Finally, we will review evidence of the beneficial roles exerted by gangliosides, GM1 in particular, in disease models and in clinical trials.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Pharmacology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
8
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
9
|
Di Biase E, Lunghi G, Fazzari M, Maggioni M, Pomè DY, Valsecchi M, Samarani M, Fato P, Ciampa MG, Prioni S, Mauri L, Sonnino S, Chiricozzi E. Gangliosides in the differentiation process of primary neurons: the specific role of GM1-oligosaccharide. Glycoconj J 2020; 37:329-343. [PMID: 32198666 DOI: 10.1007/s10719-020-09919-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
It has been recently reported by our group that GM1-oligosaccharide added to neuroblastoma cells or administered to mouse experimental model mimics the neurotrophic and neuroprotective properties of GM1 ganglioside. In addition to this, differently from GM1, GM1-oligosaccharide is not taken up by the cells, remaining solubilized into the extracellular environment interacting with cell surface proteins. Those characteristics make GM1-oligosaccharide a good tool to study the properties of the endogenous GM1, avoiding to interfere with the ganglioside natural metabolic pathway. In this study, we show that GM1-oligosaccharide administered to mice cerebellar granule neurons by interacting with cell surface induces TrkA-MAP kinase pathway activation enhancing neuron clustering, arborization and networking. Accordingly, in the presence of GM1-oligosaccharide, neurons show a higher phosphorylation rate of FAK and Src proteins, the intracellular key regulators of neuronal motility. Moreover, treated cells express increased level of specific neuronal markers, suggesting an advanced stage of maturation compared to controls. In parallel, we found that in the presence of GM1-oligosaccharide, neurons accelerate the expression of complex gangliosides and reduce the level of the simplest ones, displaying the typical ganglioside pattern of mature neurons. Our data confirms the specific role of GM1 in neuronal differentiation and maturation, determined by its oligosaccharide portion. GM1-oligosacchairide interaction with cell surface receptors triggers the activation of intracellular biochemical pathways responsible for neuronal migration, dendrites emission and axon growth.
Collapse
Affiliation(s)
- Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Pamela Fato
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The purpose of this brief review is to gain an understanding on the multiple roles that lipids exert on the brain, and to highlight new ideas in the impact of lipid homeostasis in the regulation of synaptic transmission. RECENT FINDINGS Recent data underline the crucial function of lipid homeostasis in maintaining neuronal function and synaptic plasticity. Moreover, new advances in analytical approaches to study lipid classes and species is opening a new door to understand and monitor how alterations in lipid pathways could shed new light into the pathogenesis of neurodegeneration. SUMMARY Lipids are one of the most essential elements of the brain. However, our understanding of the role of lipids within the central nervous system is still largely unknown. Identifying the molecular mechanism (s) by which lipids can regulate neuronal transmission represents the next frontier in neuroscience, and a new challenge in our understanding of the brain and the mechanism(s) behind neurological disorders.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | | |
Collapse
|
11
|
Chiricozzi E, Lunghi G, Di Biase E, Fazzari M, Sonnino S, Mauri L. GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. Int J Mol Sci 2020; 21:E868. [PMID: 32013258 PMCID: PMC7037093 DOI: 10.3390/ijms21030868] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Many species of ganglioside GM1, differing for the sialic acid and ceramide content, have been characterized and their physico-chemical properties have been studied in detail since 1963. Scientists were immediately attracted to the GM1 molecule and have carried on an ever-increasing number of studies to understand its binding properties and its neurotrophic and neuroprotective role. GM1 displays a well balanced amphiphilic behavior that allows to establish strong both hydrophobic and hydrophilic interactions. The peculiar structure of GM1 reduces the fluidity of the plasma membrane which implies a retention and enrichment of the ganglioside in specific membrane domains called lipid rafts. The dynamism of the GM1 oligosaccharide head allows it to assume different conformations and, in this way, to interact through hydrogen or ionic bonds with a wide range of membrane receptors as well as with extracellular ligands. After more than 60 years of studies, it is a milestone that GM1 is one of the main actors in determining the neuronal functions that allows humans to have an intellectual life. The progressive reduction of its biosynthesis along the lifespan is being considered as one of the causes underlying neuronal loss in aged people and severe neuronal decline in neurodegenerative diseases. In this review, we report on the main knowledge on ganglioside GM1, with an emphasis on the recent discoveries about its bioactive component.
Collapse
Affiliation(s)
| | | | | | | | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Milano, Italy; (E.C.)
| | | |
Collapse
|
12
|
Chiricozzi E, Mauri L, Lunghi G, Di Biase E, Fazzari M, Maggioni M, Valsecchi M, Prioni S, Loberto N, Pomè DY, Ciampa MG, Fato P, Verlengia G, Cattaneo S, Assini R, Wu G, Alselehdar S, Ledeen RW, Sonnino S. Parkinson's disease recovery by GM1 oligosaccharide treatment in the B4galnt1 +/- mouse model. Sci Rep 2019; 9:19330. [PMID: 31852959 PMCID: PMC6920361 DOI: 10.1038/s41598-019-55885-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/03/2019] [Indexed: 01/25/2023] Open
Abstract
Given the recent in vitro discovery that the free soluble oligosaccharide of GM1 is the bioactive portion of GM1 for neurotrophic functions, we investigated its therapeutic potential in the B4galnt1+/− mice, a model of sporadic Parkinson’s disease. We found that the GM1 oligosaccharide, systemically administered, reaches the brain and completely rescues the physical symptoms, reduces the abnormal nigral α-synuclein content, restores nigral tyrosine hydroxylase expression and striatal neurotransmitter levels, overlapping the wild-type condition. Thus, this study supports the idea that the Parkinson’s phenotype expressed by the B4galnt1+/− mice is due to a reduced level of neuronal ganglioside content and lack of interactions between the oligosaccharide portion of GM1 with specific membrane proteins. It also points to the therapeutic potential of the GM1 oligosaccharide for treatment of sporadic Parkinson’s disease.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy.
| | - Laura Mauri
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Pamela Fato
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Gianluca Verlengia
- School of Medicine, University Vita-Salute San Raffaele, Milano, Italy.,Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Stefano Cattaneo
- School of Medicine, University Vita-Salute San Raffaele, Milano, Italy
| | - Robert Assini
- Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Gusheng Wu
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Samar Alselehdar
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Robert W Ledeen
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Sandro Sonnino
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy.
| |
Collapse
|
13
|
Wang DS, Wang ZQ, Chen G, Peng JW, Wang W, Deng YH, Wang FH, Zhang JW, Liang HL, Feng F, Xie CB, Ren C, Jin Y, Shi SM, Fan WH, Lu ZH, Ding PR, Wang F, Xu RH, Li YH. Phase III randomized, placebo-controlled, double-blind study of monosialotetrahexosylganglioside for the prevention of oxaliplatin-induced peripheral neurotoxicity in stage II/III colorectal cancer. Cancer Med 2019; 9:151-159. [PMID: 31724334 PMCID: PMC6943144 DOI: 10.1002/cam4.2693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
Background Monosialotetrahexosylganglioside (GM1) is a neuroprotective glycosphingolipid that repairs nerves. Oxaliplatin‐based chemotherapy is neurotoxic. This study assessed the efficacy of GM1 for preventing oxaliplatin‐induced peripheral neurotoxicity (OIPN) in colorectal cancer (CRC) patients receiving oxaliplatin‐based chemotherapy. Methods In total, 196 patients with stage II/III CRC undergoing adjuvant chemotherapy with mFOLFOX6 were randomly assigned to intravenous GM1 or a placebo. The primary endpoint was the rate of grade 2 or worse cumulative neurotoxicity (NCI‐CTCAE). The secondary endpoints were chronic cumulative neurotoxicity (EORTCQLQ‐CIPN20), time to grade 2 neurotoxicity (NCI‐CTCAE or the oxaliplatin‐specific neuropathy scale), acute neurotoxicity (analog scale), rates of dose reduction or withdrawal due to OIPN, 3‐year disease‐free survival (DFS) and adverse events. Results There were no significant differences between the arms in the rate of NCI‐CTCAE grade 2 or worse neurotoxicity (GM1: 33.7% vs placebo: 31.6%; P = .76) or neuropathy measured by the EORTCQLQ‐CIPN20 or time to grade 2 neurotoxicity using NCI‐CTCAE and the oxaliplatin‐specific neuropathy scale. GM1 substantially decreased participant‐reported acute neurotoxicity (sensitivity to cold items [P < .01], discomfort swallowing cold liquids [P < .01], throat discomfort [P < .01], muscle cramps [P < .01]). The rates of dose reduction or withdrawal were not significantly different between the arms (P = .08). The 3‐year DFS rates were 85% and 83% in the GM1 and placebo arms, respectively (P = .19). There were no differences in toxicity between the arms. Conclusion Patients receiving GM1 were less troubled by the symptoms of acute neuropathy. However, we do not support the use of GM1 to prevent cumulative neurotoxicity. (http://ClinicalTrials.gov number, NCT02251977).
Collapse
Affiliation(s)
- De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Qiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Wei Wang
- The First People's Hospital of Foshan City, Foshan, China
| | - Yan-Hong Deng
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Wei Zhang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Fen Feng
- The First People's Hospital of Foshan City, Foshan, China
| | - Chuan-Bo Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chao Ren
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Mei Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Hua Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhen-Hai Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Rong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
14
|
Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S. Gangliosides: Treatment Avenues in Neurodegenerative Disease. Front Neurol 2019; 10:859. [PMID: 31447771 PMCID: PMC6691137 DOI: 10.3389/fneur.2019.00859] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023] Open
Abstract
Gangliosides are cell membrane components, most abundantly in the central nervous system (CNS) where they exert among others neuro-protective and -restorative functions. Clinical development of ganglioside replacement therapy for several neurodegenerative diseases was impeded by the BSE crisis in Europe during the 1990s. Nowadays, gangliosides are produced bovine-free and new pre-clinical and clinical data justify a reevaluation of their therapeutic potential in neurodegenerative diseases. Clinical experience is greatest with monosialo-tetrahexosyl-ganglioside (GM1) in the treatment of stroke. Fourteen randomized controlled trials (RCTs) in overall >2,000 patients revealed no difference in survival, but consistently superior neurological outcomes vs. placebo. GM1 was shown to attenuate ischemic neuronal injuries in diabetes patients by suppression of ERK1/2 phosphorylation and reduction of stress to the endoplasmic reticulum. There is level-I evidence from 5 RCTs of a significantly faster recovery with GM1 vs. placebo in patients with acute and chronic spinal cord injury (SCI), disturbance of consciousness after subarachnoid hemorrhage, or craniocerebral injuries due to closed head trauma. In Parkinson's disease (PD), two RCTs provided evidence of GM1 to be superior to placebo in improving motor symptoms and long-term to result in a slower than expected symptom progression, suggesting disease-modifying potential. In Alzheimer's disease (AD), the role of gangliosides has been controversial, with some studies suggesting a "seeding" role for GM1 in amyloid β polymerization into toxic forms, and others more recently suggesting a rather protective role in vivo. In Huntington's disease (HD), no clinical trials have been conducted yet. However, low GM1 levels observed in HD cells were shown to increase cell susceptibility to apoptosis. Accordingly, treatment with GM1 increased survival of HD cells in vitro and consistently ameliorated pathological phenotypes in several murine HD models, with effects seen at molecular, cellular, and behavioral level. Given that in none of the clinical trials using GM1 any clinically relevant safety issues have occurred to date, current data supports expanding GM1 clinical research, particularly to conditions with high, unmet medical need.
Collapse
Affiliation(s)
- Pierre J. Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Fred H. Geisler
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jay S. Schneider
- Parkinson's Disease Research Unit, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Chen F, Zhou CC, Yang Y, Liu JW, Yan CH. GM1 Ameliorates Lead-Induced Cognitive Deficits and Brain Damage Through Activating the SIRT1/CREB/BDNF Pathway in the Developing Male Rat Hippocampus. Biol Trace Elem Res 2019; 190:425-436. [PMID: 30414004 DOI: 10.1007/s12011-018-1569-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 02/03/2023]
Abstract
Developmental lead (Pb) exposure involves various serious consequences, especially leading to neurotoxicity. In this study, we examined the possible role of monosialoganglioside (GM1) in lead-induced nervous impairment in the developing rat. Newborn male Sprague-Dawley rat pups were exposed to lead from birth for 30 days and then subjected to GM1 administration (0.4, 2, or 10 mg/kg; i.p.) or 0.9% saline. The results showed that developmental lead exposure significantly impaired spatial learning and memory in the Morris water maze test, reduced GM1 content, induced oxidative stress, and weakened the antioxidative systems in the hippocampus. However, co-treatment with GM1 reversed these effects. Moreover, GM1 counteracted lead-induced apoptosis by decreasing the expression of Bax, cleaved caspase-3, and by increasing the level of Bcl-2 in a dose-dependent manner. Furthermore, we found that GM1 upregulated the expression of SIRT1, CREB phosphorylation, and BDNF, which underlie learning and memory in the lead-treated developing rat hippocampus. In conclusion, our study demonstrated that GM1 exerts a protective effect on lead-induced cognitive deficits via antioxidant activity, preventing apoptosis, and activating SIRT1/CREB/BDNF in the developing rat hippocampus, implying a novel potential assistant therapy for lead poisoning.
Collapse
Affiliation(s)
- Fei Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Can-Can Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Yin Yang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Jian-Wen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
16
|
Chiricozzi E, Maggioni M, di Biase E, Lunghi G, Fazzari M, Loberto N, Elisa M, Scalvini FG, Tedeschi G, Sonnino S. The Neuroprotective Role of the GM1 Oligosaccharide, II 3Neu5Ac-Gg 4, in Neuroblastoma Cells. Mol Neurobiol 2019; 56:6673-6702. [PMID: 30911934 DOI: 10.1007/s12035-019-1556-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
Abstract
Recently, we demonstrated that the GM1 oligosaccharide, II3Neu5Ac-Gg4 (OligoGM1), administered to cultured murine Neuro2a neuroblastoma cells interacts with the NGF receptor TrkA, leading to the activation of the ERK1/2 downstream pathway and to cell differentiation. To understand how the activation of the TrkA pathway is able to trigger key biochemical signaling, we performed a proteomic analysis on Neuro2a cells treated with 50 μM OligoGM1 for 24 h. Over 3000 proteins were identified. Among these, 324 proteins were exclusively expressed in OligoGM1-treated cells. Interestingly, several proteins expressed only in OligoGM1-treated cells are involved in biochemical mechanisms with a neuroprotective potential, reflecting the GM1 neuroprotective effect. In addition, we found that the exogenous administration of OligoGM1 reduced the cellular oxidative stress in Neuro2a cells and conferred protection against MPTP neurotoxicity. These results confirm and reinforce the idea that the molecular mechanisms underlying the GM1 neurotrophic and neuroprotective effects depend on its oligosaccharide chain, suggesting the activation of a positive signaling starting at plasma membrane level.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Erika di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maffioli Elisa
- Department of Veterinary Medicine, University of Milan, via Celoria 10, 20133, Milan, Italy
| | | | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milan, via Celoria 10, 20133, Milan, Italy
- Fondazione Unimi, v.le Ortles 22/4, 20139, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| |
Collapse
|
17
|
Chiricozzi E, Biase ED, Maggioni M, Lunghi G, Fazzari M, Pomè DY, Casellato R, Loberto N, Mauri L, Sonnino S. GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. J Neurochem 2019; 149:231-241. [PMID: 30776097 DOI: 10.1111/jnc.14685] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
Recently, we highlighted that the ganglioside GM1 promotes neuroblastoma cells differentiation by activating the TrkA receptor through the formation of a TrkA-GM1 oligosaccharide complex at the cell surface. To study the TrkA-GM1 interaction, we synthesized two radioactive GM1 derivatives presenting a photoactivable nitrophenylazide group at the end of lipid moiety, 1 or at position 6 of external galactose, 2; and a radioactive oligosaccharide portion of GM1 carrying the nitrophenylazide group at position 1 of glucose, 3. The three compounds were singly administered to cultured neuroblastoma Neuro2a cells under established conditions that allow cell surface interactions. After UV activation of photoactivable compounds, the proteins were analyzed by PAGE separation. The formation of cross-linked TrkA-GM1 derivatives complexes was identified by both radioimaging and immunoblotting. Results indicated that the administration of compounds 2 and 3, carrying the photoactivable group on the oligosaccharide, led to the formation of a radioactive TrkA complex, while the administration of compound 1 did not. This underlines that the TrkA-GM1 interaction directly involves the GM1 oligosaccharide, but not the ceramide. To better understand how GM1 relates to the TrkA, we isolated plasma membrane lipid rafts. As expected, GM1 was found in the rigid detergent-resistant fractions, while TrkA was found as a detergent soluble fraction component. These results suggest that TrkA and GM1 belong to separate membrane domains: probably TrkA interacts by 'flopping' down its extracellular portion onto the membrane, approaching its interplay site to the oligosaccharide portion of GM1.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Riccardo Casellato
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| |
Collapse
|
18
|
Choucry AM, Al-Shorbagy MY, Attia AS, El-Abhar HS. Pharmacological Manipulation of Trk, p75NTR, and NGF Balance Restores Memory Deficit in Global Ischemia/Reperfusion Model in Rats. J Mol Neurosci 2019; 68:78-90. [PMID: 30863991 DOI: 10.1007/s12031-019-01284-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
Long-term memory impairment is reported in more than 50% of cardiac arrest survivors. Monosialoganglioside (GM1) provided neuroprotection in experimental models of stroke but failed to replicate its promise clinically for unknown reasons. GM1 stimulates the release of nerve growth factor (NGF), which is synthesized as a precursor protein (pro-NGF) that either mediates apoptosis through the p75 neurotrophin receptor (p75NTR) or is cleaved by the protease furin (FUR) to yield mature NGF, the latter supporting survival through tropomyosin kinase receptor (Trk). The flavanol epicatechin (EPI) inhibits p75NTR-mediated signaling and apoptosis by pro-NGF. The aim of the current work is to test whether these two drugs affect, or communicate with, each other in the setting of CNS injuries. Using the two-vessel occlusion model of global ischemia/reperfusion (I/R), we tested if pharmacological modulation of Trk, p75NTR, and NGF balance with GM1, EPI, and their combination, can correct the memory deficit that follows this insult. Finally, we tested if FUR insufficiency and/or p75NTR-mediated apoptosis negatively affect the neurotherapeutic effect of GM1. Key proteins for Trk and p75NTR, FUR, and both forms of NGF were assessed. All treatment regiments successfully improved spatial memory retention and acquisition. A week after the insult, most Trk and p75NTR proteins were normal, but pro/mature NGF ratio remained sharply elevated and was associated with the poorest memory performance. Pharmacological correction of this balance was achieved by reinforcing Trk and p75NTR signaling. GM1 increased FUR levels, while concomitant administration of EPI weakened GM1 effect on pro-survival Trk and p75NTR mediators. GM1 neuroprotection is therefore not limited by FUR but could be dependent on p75NTR. Graphical Abstract "."
Collapse
Affiliation(s)
- Ali Mohamed Choucry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt.,Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, Toyama University, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Muhammad Yusuf Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt. .,School of Pharmacy, New Giza University, Giza, Egypt.
| | - Ahmed Sherif Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Hanan Salah El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt
| |
Collapse
|
19
|
Caughlin S, Hepburn J, Liu Q, Wang L, Yeung KKC, Cechetto DF, Whitehead SN. Chloroquine Restores Ganglioside Homeostasis and Improves Pathological and Behavioral Outcomes Post-stroke in the Rat. Mol Neurobiol 2018; 56:3552-3562. [PMID: 30145786 DOI: 10.1007/s12035-018-1317-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
Perturbations of ganglioside homeostasis have been observed following stroke whereby toxic simple gangliosides GM2 and GM3 accumulate, while protective complex species GM1 and GD1 are reduced. Thus, there is a need for therapeutic interventions which can prevent ganglioside dysregulation after stroke. A pharmacological intervention using chloroquine was selected for its transient lysosomotropic properties which disrupt the activity of catabolic ganglioside enzymes. Chloroquine was administered both in vitro (0.1 μM), to primary cortical neurons exposed to GM3 toxicity, and in vivo (45 mg/kg i.p.), to 3-month-old male Wistar rats that underwent a severe stroke injury. Chloroquine was administered for seven consecutive days beginning 3 days prior to the stroke injury. Gangliosides were examined using MALDI imaging mass spectrometry at 3 and 21 days after the injury, and motor deficits were examined using the ladder task. Chloroquine treatment prevented ganglioside dysregulation 3 days post-stroke and partially prevented complex ganglioside depletion 21 days post-stroke. Exogenous GM3 was found to be toxic to primary cortical neurons which was protected by chloroquine treatment. Motor deficits were prevented in the forelimbs of stroke-injured rats with chloroquine treatment and was associated with decreased inflammation, neurodegeneration, and an increase in cell survival at the site of injury. Chloroquine administration prevents ganglioside dysregulation acutely, protects against GM3 toxicity in neurons, and is associated with long-term functional and pathological improvements after stroke in the rat. Therefore, targeting lipid dysregulation using lysosomotropic agents such as chloroquine may represent a novel therapeutic avenue for stroke injuries.
Collapse
Affiliation(s)
- Sarah Caughlin
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Jeffrey Hepburn
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Qingfan Liu
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Lynn Wang
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Ken K-C Yeung
- Department of Chemistry, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - David F Cechetto
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Shawn N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
20
|
Caughlin S, Maheshwari S, Weishaupt N, Yeung KKC, Cechetto DF, Whitehead SN. Age-dependent and regional heterogeneity in the long-chain base of A-series gangliosides observed in the rat brain using MALDI Imaging. Sci Rep 2017; 7:16135. [PMID: 29170521 PMCID: PMC5701003 DOI: 10.1038/s41598-017-16389-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022] Open
Abstract
Alterations in the long chain base of the sphingosine moiety of gangliosides have been shown to play a role in neurodevelopment and neurodegeneration. Indeed, the accumulation of d20:1 sphingosine has been referred to as a metabolic marker of aging in the brain, however, this remains to be shown in simple gangliosides GM2 and GM3. In this study, Matrix-assisted laser desorption/ionization Imaging Mass Spectrometry (MALDI IMS) was used to examine the neuroanatomical distribution of A-series gangliosides with either 18 or 20 carbon sphingosine chains (d18:1 or d20:1) in Fisher 344 rats across the lifespan. The ratio of d20:1/d18:1 species was determined across 11 regions of interest in the brain. Interestingly, a decrease in the d20:1/d18:1 ratio for GM2 and GM3 was observed during early development with the exception of the peri-ventricular corpus callosum, where an age-dependent increase was observed for ganglioside GM3. An age-dependent increase in d20:1 species was confirmed for complex gangliosides GM1 and GD1 with the most significant increase during early development and a high degree of anatomical heterogeneity during aging. The unique neuroanatomically-specific responses of d20:1 ganglioside abundance may lead to a better understanding of regional vulnerability to damage in the aging brain.
Collapse
Affiliation(s)
- Sarah Caughlin
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Shikhar Maheshwari
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Nina Weishaupt
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Ken K-C Yeung
- Department of Chemistry, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David Floyd Cechetto
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Shawn Narain Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
21
|
Chiricozzi E, Pomè DY, Maggioni M, Di Biase E, Parravicini C, Palazzolo L, Loberto N, Eberini I, Sonnino S. Role of the GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells. J Neurochem 2017; 143:645-659. [PMID: 28796418 DOI: 10.1111/jnc.14146] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 11/27/2022]
Abstract
GM1 ganglioside (II3 NeuAc-Gg4 Cer) is known to promote neurite formation in neuroblastoma cells by activating TrkA-MAPK pathway. The molecular mechanism by which GM1 is involved in the neurodifferentiation process is still unknown, however, in vitro and in vivo evidences have suggested that the oligosaccharide portion of this ganglioside could be involved. Here, we report that, similarly to the entire GM1 molecule, its oligosaccharide II3 NeuAc-Gg4, rather than its ceramide (Cer) portion is responsible for the neurodifferentiation process by augmenting neurite elongation and increasing the neurofilament protein expression in murine neuroblastoma cells, Neuro2a. Conversely, asialo-GM1, GM2 and GM3 oligosaccharides are not effective in neurite elongation on Neuro2a cells, whereas the effect exerted by the Fuc-GM1 oligosaccharide (IV2 αFucII3 Neu5Ac-Gg4 ) is similar to that exerted by GM1 oligosaccharide. The neurotrophic properties of GM1 oligosaccharide are exerted by activating the TrkA receptor and the following phosphorylation cascade. By photolabeling experiments performed with a nitrophenylazide containing GM1 oligosaccharide, labeled with tritium, we showed a direct interaction between the GM1 oligosaccharide and the extracellular domain of TrkA receptor. Moreover, molecular docking analyses confirmed that GM1 oligosaccharide binds the TrkA-nerve growth factor complex leading to a binding free energy of approx. -11.5 kcal/mol, acting as a bridge able to increase and stabilize the TrkA-nerve growth factor molecular interactions.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Chiara Parravicini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| |
Collapse
|
22
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
23
|
Dunbar GL, Sandstrom MI, Rossignol J, Lescaudron L. Neurotrophic Enhancers as Therapy for Behavioral Deficits in Rodent Models of Huntington's Disease: Use of Gangliosides, Substituted Pyrimidines, and Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2016; 5:63-79. [PMID: 16801683 DOI: 10.1177/1534582306289367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interest in using neurotrophic factors as potential treatments for neurodegenerative disorders, such as Huntington's disease, has grown in the past decade. A major impediment for the clinical utility of neurotrophic factors is their inability to cross the blood-brain barrier in therapeutically significant amounts. Although several novel mechanisms for delivering exogenous neurotrophins to the brain have been developed, most of them involve invasive procedures or present significant risks. One approach to circumventing these problems is using therapeutic agents that can be administered systemically and have the ability to enhance the activity of neurotrophic factors. This review highlights the use of gangliosides, substituted pyrimidines, and mesenchymal stem cells as neurotrophic enhancers that have significant therapeutic potential while avoiding the pitfalls of delivering exogenous neurotrophic factors through the blood-brain barrier. The review focuses on the potential of these neurotrophic enhancers for treating the behavioral deficits in rodent models of Huntington's disease.
Collapse
|
24
|
Jiang B, Song L, Wang CN, Zhang W, Huang C, Tong LJ. Antidepressant-Like Effects of GM1 Ganglioside Involving the BDNF Signaling Cascade in Mice. Int J Neuropsychopharmacol 2016; 19:pyw046. [PMID: 27207911 PMCID: PMC5043648 DOI: 10.1093/ijnp/pyw046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/02/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Depression is a serious psychiatric disorder that easily causes physical impairments and a high suicide rate. Monosialotetrahexosylganglioside is a crucial ganglioside for the central nervous system and has been reported to affect the function of the brain derived neurotrophic factor system. This study is aimed to evaluate whether monosialotetrahexosylganglioside has antidepressant-like effects. METHODS Antidepressant-like effects of monosialotetrahexosylganglioside were assessed in the chronic social defeat stress model of depression, and various behavioral tests were performed. Changes in the brain derived neurotrophic factor signaling pathway after chronic social defeat stress and monosialotetrahexosylganglioside treatment were also investigated. A tryptophan hydroxylase inhibitor and brain derived neurotrophic factor signaling inhibitors were used to determine the antidepressant mechanisms of monosialotetrahexosylganglioside. RESULTS Monosialotetrahexosylganglioside administration significantly reversed the chronic social defeat stress-induced reduction of sucrose preference and social interaction in mice and also prevented the increased immobility time in the forced swim test and tail suspension test. In addition, monosialotetrahexosylganglioside completely ameliorated the stress-induced dysfunction of brain derived neurotrophic factor signaling cascade in the hippocampus and medial prefrontal cortex, 2 regions closely involved in the pathophysiology of depression. Furthermore, the usage of brain derived neurotrophic factor signaling cascade inhibitors, K252a and anti-brain derived neurotrophic factor antibody, each abolished the antidepressant-like effects of monosialotetrahexosylganglioside, while the usage of a serotonin system inhibitor did not. CONCLUSIONS Taken together, our findings suggest that monosialotetrahexosylganglioside indeed has antidepressant-like effects, and these effects were mediated through the activation of brain derived neurotrophic factor signaling cascade.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China (Dr Jiang, Mrs Song, Dr Zhang, Dr Huang, and Mrs Tong); Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China (Dr Jiang, Mrs Song, Dr Zhang, Dr Huang, and Mrs Tong); Basic Medical Research Centre, Medical College, Nantong University, Nantong, Jiangsu, China (Mr Wang).
| | | | | | | | | | | |
Collapse
|
25
|
Ling ZM, Tang Y, Li YQ, Luo HX, Liu LL, Tu QQ, Zhou LH. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT. PLoS One 2015; 10:e0127685. [PMID: 26010770 PMCID: PMC4444271 DOI: 10.1371/journal.pone.0127685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/17/2015] [Indexed: 01/10/2023] Open
Abstract
Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA.
Collapse
Affiliation(s)
- Ze-Min Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Ying-Qin Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Hao-Xuan Luo
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Lin-Lin Liu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Qing-Qiang Tu
- Small Animal Molecular Imaging Center, Laboratories of Translational Medicine and Clinical Research, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
- * E-mail:
| |
Collapse
|
26
|
GM1 Ganglioside: Past Studies and Future Potential. Mol Neurobiol 2015; 53:1824-1842. [DOI: 10.1007/s12035-015-9136-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
|
27
|
Aureli M, Grassi S, Prioni S, Sonnino S, Prinetti A. Lipid membrane domains in the brain. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1006-16. [PMID: 25677824 DOI: 10.1016/j.bbalip.2015.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/28/2022]
Abstract
The brain is characterized by the presence of cell types with very different functional specialization, but with the common trait of a very high complexity of structures originated by their plasma membranes. Brain cells bear evident membrane polarization with the creation of different morphological and functional subcompartments, whose formation, stabilization and function require a very high level of lateral order within the membrane. In other words, the membrane specialization of brain cells implies the presence of distinct membrane domains. The brain is the organ with the highest enrichment in lipids like cholesterol, glycosphingolipids, and the most recently discovered brain membrane lipid, phosphatidylglucoside, whose collective behavior strongly favors segregation within the membrane leading to the formation of lipid-driven membrane domains. Lipid-driven membrane domains function as dynamic platforms for signal transduction, protein processing, and membrane turnover. Essential events involved in the development and in the maintenance of the functional integrity of the brain depend on the organization of lipid-driven membrane domains, and alterations in lipid homeostasis, leading to deranged lipid-driven membrane organization, are common in several major brain diseases. In this review, we summarize the forces behind the formation of lipid membrane domains and their biological roles in different brain cells. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| |
Collapse
|
28
|
Valdomero A, Perondi MC, Orsingher OA, Cuadra GR. Exogenous GM1 ganglioside increases accumbal BDNF levels in rats. Behav Brain Res 2014; 278:303-6. [PMID: 25453740 DOI: 10.1016/j.bbr.2014.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 01/29/2023]
Abstract
Gangliosides are compounds that are abundant throughout the CNS, participating actively in neuroplasticity. We previously described that exogenous GM1 ganglioside pretreatment enhances the rewarding properties of cocaine, evidenced by a lower number of sessions and/or dosage necessary to induce conditioned place preference (CPP). Since GM1 pretreatment did not modify cocaine's pharmacokinetic parameters, we suspected that the increased rewarding effect found might be mediated by BDNF, a neurotrophic factor closely related to cocaine addiction. This study was performed to investigate the possibility that GM1 may induce changes in BDNF levels in the nucleus accumbens (NAc), a core structure in the brain's reward circuitry, of rats submitted to three conditioning sessions with cocaine (10 mg/kg, i.p.). The results demonstrate that GM1 administration, which showed no rewarding effect by itself in the CPP, induced a significant increase of BDNF protein levels in the NAc, which may account for the increased rewarding effect of cocaine shown in the CPP paradigm.
Collapse
Affiliation(s)
- Analía Valdomero
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-IFEC (CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María C Perondi
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-IFEC (CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Otto A Orsingher
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-IFEC (CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Gabriel R Cuadra
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-IFEC (CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
29
|
Newburn EN, Duchemin AM, Neff NH, Hadjiconstantinou M. GM1 ganglioside enhances Ret signaling in striatum. J Neurochem 2014; 130:541-54. [DOI: 10.1111/jnc.12760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Erin N. Newburn
- Department of Pharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| | - Anne-Marie Duchemin
- Department of Psychiatry; Division of Molecular Psychopharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| | - Norton H. Neff
- Department of Pharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
- Department of Psychiatry; Division of Molecular Psychopharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| | - Maria Hadjiconstantinou
- Department of Pharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
- Department of Psychiatry; Division of Molecular Psychopharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| |
Collapse
|
30
|
Ariga T. Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J Neurosci Res 2014; 92:1227-42. [PMID: 24903509 DOI: 10.1002/jnr.23411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
Abstract
Ganglioside metabolism is altered in several neurodegenerative diseases, and this may participate in several events related to the pathogenesis of these diseases. Most changes occur in specific areas of the brain and their distinct membrane microdomains or lipid rafts. Antiganglioside antibodies may be involved in dysfunction of the blood-brain barrier and disease progression in these diseases. In lipid rafts, interactions of glycosphingolipids, including ganglioside, with proteins may be responsible for the misfolding events that cause the fibril and/or aggregate processing of disease-specific proteins, such as α-synuclein, in Parkinson's disease, huntingtin protein in Huntington's disease, and copper-zinc superoxide dismutase in amyotrophic lateral sclerosis. Targeting ganglioside metabolism may represent an underexploited opportunity to design novel therapeutic strategies for neurodegeneration in these diseases.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Institute of Neuroscience, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
31
|
Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J Neurosci 2014; 34:2477-92. [PMID: 24523539 DOI: 10.1523/jneurosci.4432-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.
Collapse
|
32
|
Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A. Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol 2013; 50:130-48. [DOI: 10.1007/s12035-013-8614-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
|
33
|
Alterations on Na+,K+-ATPase and Acetylcholinesterase Activities Induced by Amyloid-β Peptide in Rat Brain and GM1 Ganglioside Neuroprotective Action. Neurochem Res 2013; 38:2342-50. [DOI: 10.1007/s11064-013-1145-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
|
34
|
Implementing neuronal plasticity in NeuroAIDS: the experience of brain-derived neurotrophic factor and other neurotrophic factors. J Neuroimmune Pharmacol 2013; 9:80-91. [PMID: 23832285 DOI: 10.1007/s11481-013-9488-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
Human immunodeficiency virus type-1 (HIV) causes mild or severe neurological problems, termed HIV-associated neurocognitive disorder (HAND), even when HIV patients receive antiretroviral therapy. Thus, novel adjunctive therapies are necessary to reduce or abolish the neurotoxic effect of HIV. However, new therapies require a better understanding of the molecular and cellular mechanisms of HIV-induced neurotoxicity. HAND subjects are characterized by being profoundly depressed, and they experience deficits in memory, learning and movements. Experimental evidence has also shown that HIV reduces neurogenesis. These deficits resemble those occurring in premature brain aging or in a brain with impaired neural repair properties. Thus, it appears that HIV diminishes neuronal survival, along with reduced neuronal connections. These two phenomena should not occur in the adult and developing brain when synaptic plasticity is promoted by neurotrophic factors, polypeptides that are present in adult synapses. This review will outline experimental evidence as well as present emerging concepts for the use of neurotrophic factors and in particular brain-derived neurotrophic factor as an adjunct therapy to prevent HIV-mediated neuronal degeneration and restore the loss of synaptic connections.
Collapse
|
35
|
Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2013; 76 Pt C:610-27. [PMID: 23791959 DOI: 10.1016/j.neuropharm.2013.05.043] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
|
36
|
Saito M, Saito M. Involvement of sphingolipids in ethanol neurotoxicity in the developing brain. Brain Sci 2013; 3:670-703. [PMID: 24961420 PMCID: PMC4061845 DOI: 10.3390/brainsci3020670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/30/2013] [Accepted: 04/12/2013] [Indexed: 12/16/2022] Open
Abstract
Ethanol-induced neuronal death during a sensitive period of brain development is considered one of the significant causes of fetal alcohol spectrum disorders (FASD). In rodent models, ethanol triggers robust apoptotic neurodegeneration during a period of active synaptogenesis that occurs around the first two postnatal weeks, equivalent to the third trimester in human fetuses. The ethanol-induced apoptosis is mitochondria-dependent, involving Bax and caspase-3 activation. Such apoptotic pathways are often mediated by sphingolipids, a class of bioactive lipids ubiquitously present in eukaryotic cellular membranes. While the central role of lipids in ethanol liver toxicity is well recognized, the involvement of sphingolipids in ethanol neurotoxicity is less explored despite mounting evidence of their importance in neuronal apoptosis. Nevertheless, recent studies indicate that ethanol-induced neuronal apoptosis in animal models of FASD is mediated or regulated by cellular sphingolipids, including via the pro-apoptotic action of ceramide and through the neuroprotective action of GM1 ganglioside. Such sphingolipid involvement in ethanol neurotoxicity in the developing brain may provide unique targets for therapeutic applications against FASD. Here we summarize findings describing the involvement of sphingolipids in ethanol-induced apoptosis and discuss the possibility that the combined action of various sphingolipids in mitochondria may control neuronal cell fate.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| |
Collapse
|
37
|
Ko E, Kamkaew A, Burgess K. Small Molecule Ligands For Active Targeting Of TrkC-expressing Tumor Cells. ACS Med Chem Lett 2012; 3:1008-1012. [PMID: 23411915 DOI: 10.1021/ml300227d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A small molecule motif was used in "active targeting" to deliver cytotoxic substances into tumor cells that express the TrkC receptor. Underlying this study was the hypothesis that internalization of targeted conjugates into cells would be facile if mediated by receptor binding and receptor-ligand internalization. Initial experiments using 6-mercaptopurine gave encouraging data, but demonstrated the importance of maintaining solubility and high cytotoxicity. Conjugates of the targeting agent with a cytotoxic rosamine (similar to a rhodamine) were more successful. Targeting of TrkC was observed, validated in a series of competition experiments featuring other TrkC ligands, and accumulation into lysosomes was observed, as expected for receptor-mediated internalization.
Collapse
Affiliation(s)
- Eunhwa Ko
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
38
|
Li H, Zhang W, Liu G, Li J, Liu H, Li Z. Expression of tyrosine kinase receptors in cultured dorsal root ganglion neurons in the presence of monosialoganglioside and skeletal muscle cells. J Muscle Res Cell Motil 2012; 33:341-50. [PMID: 22968393 DOI: 10.1007/s10974-012-9322-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/03/2012] [Indexed: 12/30/2022]
Abstract
The neurotrophic factor-like activity of monosialoganglioside (GM1) has been shown to activate tyrosine kinase receptors (Trk). Targets of neuronal innervation play a vital role in regulating the survival and differentiation of innervating neurotrophin-responsive neurons. Both GM1 and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons. However, much less is known about the effects of GM1 or/and target SKM cells on the expression of Trk receptors in dorsal root ganglion (DRG) neurons. Here we have tested what extent to the expression of TrkA, TrkB, and TrkC receptors in primary cultured of DRG neurons in absence or presence of GM1 or/and SKM cells. In this experiment, we found that: (1) GM1 promoted expression of TrkA and TrkB but not TrkC in primary cultured DRG neurons; (2) target SKM cells promoted expression of TrkC but not TrkA and TrkB in neuromuscular cocultures without GM1 treatment; and (3) GM1 and target SKM cells had additional effects on expression of these three Trk receptors. The results of the present study offered new clues for a better understanding of the association of GM1 and target SKM on the expression of Trk receptors.
Collapse
Affiliation(s)
- Hao Li
- Department of Anatomy, Shandong University School of Medicine, Jinan 250012, China.
| | | | | | | | | | | |
Collapse
|
39
|
Dhanushkodi A, McDonald MP. Intracranial V. cholerae sialidase protects against excitotoxic neurodegeneration. PLoS One 2011; 6:e29285. [PMID: 22195039 PMCID: PMC3240658 DOI: 10.1371/journal.pone.0029285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/24/2011] [Indexed: 01/12/2023] Open
Abstract
Converging evidence shows that GD3 ganglioside is a critical effector in a number of apoptotic pathways, and GM1 ganglioside has neuroprotective and noötropic properties. Targeted deletion of GD3 synthase (GD3S) eliminates GD3 and increases GM1 levels. Primary neurons from GD3S−/− mice are resistant to neurotoxicity induced by amyloid-β or hyperhomocysteinemia, and when GD3S is eliminated in the APP/PSEN1 double-transgenic model of Alzheimer's disease the plaque-associated oxidative stress and inflammatory response are absent. To date, no small-molecule inhibitor of GD3S exists. In the present study we used sialidase from Vibrio cholerae (VCS) to produce a brain ganglioside profile that approximates that of GD3S deletion. VCS hydrolyzes GD1a and complex b-series gangliosides to GM1, and the apoptogenic GD3 is degraded. VCS was infused by osmotic minipump into the dorsal third ventricle in mice over a 4-week period. Sensorimotor behaviors, anxiety, and cognition were unaffected in VCS-treated mice. To determine whether VCS was neuroprotective in vivo, we injected kainic acid on the 25th day of infusion to induce status epilepticus. Kainic acid induced a robust lesion of the CA3 hippocampal subfield in aCSF-treated controls. In contrast, all hippocampal regions in VCS-treated mice were largely intact. VCS did not protect against seizures. These results demonstrate that strategic degradation of complex gangliosides and GD3 can be used to achieve neuroprotection without adversely affecting behavior.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michael P. McDonald
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
40
|
Pontier SM, Schweisguth F. Glycosphingolipids in signaling and development: From liposomes to model organisms. Dev Dyn 2011; 241:92-106. [DOI: 10.1002/dvdy.22766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2011] [Indexed: 01/05/2023] Open
|
41
|
Kreutz F, Frozza RL, Breier AC, de Oliveira VA, Horn AP, Pettenuzzo LF, Netto CA, Salbego CG, Trindade VMT. Amyloid-β induced toxicity involves ganglioside expression and is sensitive to GM1 neuroprotective action. Neurochem Int 2011; 59:648-55. [PMID: 21723896 DOI: 10.1016/j.neuint.2011.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/30/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023]
Abstract
The effect of Aβ25-35 peptide, in its fibrillar and non-fibrillar forms, on ganglioside expression in organotypic hippocampal slice cultures was investigated. Gangliosides were endogenously labeled with D-[1-C(14)] galactose and results showed that Aβ25-35 affected ganglioside expression, depending on the peptide aggregation state, that is, fibrillar Aβ25-35 caused an increase in GM3 labeling and a reduction in GD1b labeling, whereas the non-fibrillar form was able to enhance GM1 expression. Interestingly, GM1 exhibited a neuroprotective effect in this organotypic model, since pre-treatment of the hippocampal slices with GM1 10 μM was able to prevent the toxicity triggered by the fibrillar Aβ25-35, when measured by propidium iodide uptake protocol. With the purpose of further investigating a possible mechanism of action, we analyzed the effect of GM1 treatment (1, 6, 12 and 24h) upon the Aβ-induced alterations on GSK3β dephosphorylation/activation state. Results demonstrated an important effect after 24-h incubation, with GM1 preventing the Aβ-induced dephosphorylation (activation) of GSK3β, a signaling pathway involved in apoptosis triggering and neuronal death in models of Alzheimer's disease. Taken together, present results provide a new and important support for ganglioside participation in development of Alzheimer's disease experimental models and suggest a protective role for GM1 in Aβ-induced toxicity. This may be useful for designing new therapeutic strategies for Alzheimer's treatment.
Collapse
Affiliation(s)
- Fernando Kreutz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Takamura A, Higaki K, Ninomiya H, Takai T, Matsuda J, Iida M, Ohno K, Suzuki Y, Nanba E. Lysosomal accumulation of Trk protein in brain of GM1-gangliosidosis mouse and its restoration by chemical chaperone. J Neurochem 2011; 118:399-406. [DOI: 10.1111/j.1471-4159.2011.07310.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Lim ST, Esfahani K, Avdoshina V, Mocchetti I. Exogenous gangliosides increase the release of brain-derived neurotrophic factor. Neuropharmacology 2010; 60:1160-7. [PMID: 20971126 DOI: 10.1016/j.neuropharm.2010.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/24/2010] [Accepted: 10/14/2010] [Indexed: 11/18/2022]
Abstract
Gangliosides are lipophilic compounds found in cell plasma membranes throughout the brain that play a role in neuronal plasticity and regeneration. Indeed, absence or abnormal accumulation of gangliosides has been shown to lead to neurological disorders. Experimental data have shown that exogenous gangliosides exhibit properties similar to the neurotrophins, a family of neurotrophic factors that are important in the survival and maintenance of neurons and prevention of neurological diseases. Brain-derived neurotrophic factor (BDNF) is the most abundant of the neurotrophins. This work was done to reveal the neurotrophic mechanism of exogenous gangliosides. In particular, we examined whether gangliosides promote the release of BDNF. Rat hippocampal neurons or human neuroblastoma cells were transduced with a recombinant adenovirus expressing BDNF-flag to facilitate detection of BDNF. Release of BDNF was then determined by Western blot analysis and a two-site immunoassay of culture medium. The depolarizing agent KCl was used as a comparison. In hippocampal neurons, both GM1 ganglioside and KCl evoked within minutes the release of mature BDNF. In human cells, GM1 and other gangliosides released both mature BDNF and pro-BDNF. The effect of gangliosides was structure-dependent. In fact, GT1b preferentially released mature BDNF whereas GM1 released both mature and pro-BDNF. Ceramide and sphingosine did not modify the release of BDNF. This work provides additional experimental evidence that exogenous gangliosides can be used to enhance the neurotrophic factor environment and promote neuronal survival in neurological diseases. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Seung T Lim
- Department of Neuroscience, Georgetown University Medical Center, New Research Building EP-04, 3970 Reservoir Rd, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
44
|
Valdomero A, Hansen C, de Burgos NG, Cuadra GR, Orsingher OA. GM1 ganglioside enhances the rewarding properties of cocaine in rats. Eur J Pharmacol 2010; 630:79-83. [PMID: 20044989 DOI: 10.1016/j.ejphar.2009.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/26/2009] [Accepted: 12/15/2009] [Indexed: 11/28/2022]
Abstract
GM1 pretreatment enhanced the rewarding properties of cocaine as assessed in the conditioned place preference paradigm. This effect was shown by the lower dosage of cocaine necessary to induce conditioning compared with rats receiving cocaine alone, as well as by the fewer number of sessions necessary to induce place preference. GM1 pretreatment did not modify the plasma level of cocaine, but it induced a significant increase in the brain cocaine level compared with animals receiving cocaine alone. In order to evaluate the possibility that GM1 pretreatment may alter the pharmacokinetic parameters of cocaine, the brain and plasma esterase activities, the plasma bound/free cocaine ratio and the brain blood barrier permeability to i.v. Evans Blue administration were assessed. None of these parameters was modified by the GM1 administration. In addition, GM1 (100microM) did not alter the dopamine transporter inhibition induced by cocaine (10(-7)-10(-5)M), as determined by the uptake of [(3-)H]-dopamine in the microsacs of nucleus accumbens. In conclusion, GM1 pretreatment, which did not have any effect per se, increased the rewarding effect of cocaine, a phenomenon correlated with a significant increase in the brain cocaine levels. The different pharmacokinetic parameters evaluated, as well as the inhibitory effect of cocaine on the dopamine transporter, were not modified by GM1, but it modifies the brain cocaine disposition. Thus, the mechanisms by which GM1 enhanced the rewarding effects of cocaine merit further study.
Collapse
Affiliation(s)
- Analía Valdomero
- Departamento de Farmacología (IFEC - CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
45
|
Wang L, Li H, Liu Z, Xu X, Wang H, Li Z. Co-administration of monosialoganglioside and skeletal muscle cells on dorsal root ganglion neuronal phenotypes in vitro. Cell Mol Neurobiol 2010; 30:43-9. [PMID: 19582569 DOI: 10.1007/s10571-009-9429-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
The neuropeptide-immunoreactive (IR) and neurofilament-IR neurons are two major phenotypical classes in dorsal root ganglion (DRG). Targets of neuronal innervation play a vital role in regulating the survival and differentiation of innervating neurotrophin-responsive neurons. Monosialoganglioside (GM1) has been considered to have a neurotrophic factor-like activity. Both GM1 and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons. However, whether target SKM cells and GM1, alone or associated, generate neuropeptide or neurofilament expression remains unclear. The aim of the present study is to investigate the effects of GM1 or/and SKM on DRG neuronal phenotypes. DRG neurons containing the neuropeptide substance P (SP) and neurofilament 200 (NF-200) were quantified using immunofluorescent labeling in cultures of DRG, which was dissected out at times before (at embryonic days 12.5, E12.5) and after (at E19.5) sensory neurons contact peripheral targets in vivo. DRG neurons were cultured in absence or presence of GM1 or/and SKM cells. In this experiment, we found that: (1) GM1 promoted expression of SP and NF-200 in E12.5 DRG cultures; (2) SKM cells promoted expression of NF-200 but not SP in E12.5 DRG cultures; (3) GM1 and target SKM cells had additive effects on expression of SP and NF-200 in E12.5 DRG cultures; and (4) SKM or/and GM1 did not have effects on expression of SP and NF-200 in E19.5 DRG cultures. These results suggested that GM1 could influence DRG, two major neuronal phenotypes, before sensory neurons contact peripheral targets in vivo. Target SKM cells could only influence neurofilament-expressed neuronal phenotype before sensory neurons contact peripheral targets in vivo. GM1 and SKM cells had the additive effects on two major DRG neuronal classes, which express neuropeptide or neurofilament when DRG cells were harvested before sensory neurons contact peripheral targets in vivo. These results offered new clues for a better understanding of the association of GM1 or/and SKM with neuronal phenotypes.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong Province, China
| | | | | | | | | | | |
Collapse
|
46
|
Vlasova YA, Zakharova IO, Sokolova TI, Furaev VV, Rychkova MP, Avrova NF. Role of tyrosine kinase of Trk-Receptors in realization of antioxidant effect of ganglioside GM1 in PC12 cells. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093009050028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 2009; 584:1748-59. [PMID: 20006608 DOI: 10.1016/j.febslet.2009.12.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/03/2009] [Accepted: 12/09/2009] [Indexed: 12/22/2022]
Abstract
Simple sphingolipids such as ceramide and sphingomyelin (SM) as well as more complex glycosphingolipids play very important roles in cell function under physiological conditions and during disease development and progression. Sphingolipids are particularly abundant in the nervous system. Due to their amphiphilic nature they localize to cellular membranes and many of their roles in health and disease result from membrane reorganization and from lipid interaction with proteins within cellular membranes. In this review we discuss some of the functions of sphingolipids in processes that entail cellular membranes and their role in neurodegenerative diseases, with an emphasis on SM, ceramide and gangliosides.
Collapse
|
48
|
Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 2009; 584:1914-22. [DOI: 10.1016/j.febslet.2009.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 12/19/2022]
|
49
|
Nitric oxide and potassium channels mediate GM1 ganglioside-induced vasorelaxation. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:487-95. [PMID: 19894035 DOI: 10.1007/s00210-009-0469-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 10/15/2009] [Indexed: 12/13/2022]
Abstract
Monosialotetrahexosylganglioside (GM1) is a glycosphingolipid present in most cell membranes that displays antioxidant and neuroprotective properties. It has been recently described that GM1 induces pial vessel vasodilation and increases NO( x ) content in cerebral cortex, which are fully prevented by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). However, it is not known whether GM1 relaxes larger vessels, as well as the mechanisms by which GM1 causes vasorelaxation. In this study, we demonstrate that GM1 (10, 30, 100, 300 microM, 1 and 3 mM) induces vascular relaxation determined by isometric tension studies in rat mesenteric artery rings contracted with 1 microM phenylephrine. The vasorelaxation induced by GM1 was abolished by endothelium removal, by incubation with L-NAME (1 microM), and partially inhibited by the blockade of potassium channels by 1 mM tetraethylammonium, 10 microM glibenclamide, by the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (10 microM), and by 50 nM charybdotoxin, a blocker of large and intermediate conductance calcium-activated potassium channels. Moreover, GM1-induced relaxation was not affected by apamin (50 nM), a small conductance calcium-activated potassium channel blocker. The results indicate that direct and indirect nitric oxide pathways play a pivotal role in vasorelaxation induced by GM1, which is mediated mainly by potassium channels activation. We suggest that vasodilation may underlie some of the biological effects of exogenous GM1 ganglioside.
Collapse
|
50
|
Huang F, Dong X, Zhang L, Zhang X, Zhao D, Bai X, Li Z. The neuroprotective effects of NGF combined with GM1 on injured spinal cord neurons in vitro. Brain Res Bull 2009; 79:85-8. [PMID: 19133317 DOI: 10.1016/j.brainresbull.2008.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 11/29/2022]
Abstract
Monosialoganglioside (GM1) has been considered to have a neurotrophic factor-like activity. Nerve growth factor (NGF), a member of the neurotrophin family, is essential for neuronal survival, differentiation and maturation. The aim of the present study was to investigate whether co-administration of GM1 and NGF reverses glutamate (Glu) neurotoxicity in primary cultured rat embryonic spinal cord neurons. Spinal cord neurons were exposed to Glu (2 mmol/l), Glu (2 mmol/l) plus GM1 (10 mg/ml), Glu (2 mmol/l) plus NGF (10 ng/ml), Glu (2 mmol/l) plus GM1 (5 mg/ml) and NGF (5 ng/ml) and then processed for detecting intracellular concentrations of Ca2+([Ca2+]i) by confocal laser scanning microscopy and growth associated protein 43 (GAP43) mRNA by RT-PCR. The fluorescent intensity in Glu plus GM1 and NGF incubated neurons was the lowest as compared with that in other groups. The expression of GAP43 mRNA in Glu plus GM1 and NGF incubated neurons was the highest as compared with that in other groups. These results implicated that GM1 and NGF have synergistic neuroprotective effects on spinal cord neurons with excitotoxicity induced by Glu in vitro.
Collapse
Affiliation(s)
- Fei Huang
- Department of Human Anatomy, Binzhou Medical College, No. 346 Guanhai Road, Yantai 264003, China
| | | | | | | | | | | | | |
Collapse
|