1
|
Singh Y, Cudic P, Cudic M. Exploring Glycan Binding Specificity of Odorranalectin by Alanine Scanning Library. European J Org Chem 2022; 2022:e202200302. [PMID: 36120398 PMCID: PMC9479679 DOI: 10.1002/ejoc.202200302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Fluorescently labelled alanine scan analogues of odorranalectin (OL), a cyclic peptide that exhibits lectin like properties, were screened for binding BSA-conjugated monosaccharides using an enzyme-linked lectin assay (ELLA). Results revealed that Lys5, Phe7, Tyr9, Gly12, Leu14, and Thr17 were crucial for binding BSA-L-fucose, BSA-D-galactose and BSA-N-acetyl-D-galactosamine. Notably, Ala substitution of Ser3, Pro4, and Val13 resulted in higher binding affinities compared to the native OL. The obtained data also indicated that Arg8 plays an important role in differentiation of binding for BSA-L-fucose/D-galactose from BSA-N-acetyl-D-galactosamine. The thermodynamics of binding of the selected alanine analogues was evaluated by isothermal titration calorimetry. Low to moderate binding affinities were determined for the tetravalent MUC1 glycopeptide and asialofetuin, respectively, and high for the fucose rich polysaccharide, fucoidan. The thermodynamic profile of interactions with asialofetuin exhibits shift to an entropy-driven mechanism compared to the fucoidan, which displayed an enthalpyentropy compensation, typically associated with the carbohydratelectin recognition process.
Collapse
Affiliation(s)
- YashoNandini Singh
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Predrag Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
2
|
Hafez RA, Hassan ME, Haggag MG, Atef N, Abdallah AL, Gerges MA. Association of Interleukin 13 rs20541 Gene Polymorphism and Serum Periostin with Asthma and Allergic Conjunctivitis Among Egyptian Patients. J Asthma Allergy 2022; 15:971-982. [PMID: 35923761 PMCID: PMC9342469 DOI: 10.2147/jaa.s373098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Raghda Abdellatif Hafez
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manar E Hassan
- Microbiology, Immunology and Parasitology Department, Research Institute of Ophthalmology, Giza, Egypt
| | - Maha G Haggag
- Microbiology, Immunology and Parasitology Department, Research Institute of Ophthalmology, Giza, Egypt
| | - Nora Atef
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Alshimaa L Abdallah
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian A Gerges
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Correspondence: Marian A Gerges, Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt, Tel +2 01003819530, Email
| |
Collapse
|
3
|
Kim GB, Aragon-Sanabria V, Randolph L, Jiang H, Reynolds JA, Webb BS, Madhankumar A, Lian X, Connor JR, Yang J, Dong C. High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioact Mater 2020; 5:624-635. [PMID: 32405577 PMCID: PMC7212185 DOI: 10.1016/j.bioactmat.2020.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM), the deadliest form of brain cancer, presents long-standing problems due to its localization. Chimeric antigen receptor (CAR) T cell immunotherapy has emerged as a powerful strategy to treat cancer. IL-13-receptor-α2 (IL13Rα2), present in over 75% of GBMs, has been recognized as an attractive candidate for anti-glioblastoma therapy. Here, we propose a novel multidisciplinary approach to target brain tumors using a combination of fluorescent, therapeutic nanoparticles and CAR T cells modified with a targeted-quadruple-mutant of IL13 (TQM-13) shown to have high binding affinity to IL13Rα2-expressing glioblastoma cells with low off-target toxicity. Azide-alkyne cycloaddition conjugation of nanoparticles to the surface of T cells allowed a facile, selective, and high-yielding clicking of the nanoparticles. Nanoparticles clicked onto T cells were retained for at least 8 days showing that the linkage is stable and promising a suitable time window for in vivo delivery. T cells clicked with doxorubicin-loaded nanoparticles showed a higher cytotoxic effect in vitro compared to bare T cells. In vitro and in vivo T cells expressing TQM-13 served as delivery shuttles for nanoparticles and significantly increased the number of nanoparticles reaching brain tumors compared to nanoparticles alone. This work represents a new platform to allow the delivery of therapeutic nanoparticles and T cells to solid tumors.
Collapse
Affiliation(s)
- Gloria B. Kim
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Virginia Aragon-Sanabria
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Lauren Randolph
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Hali Jiang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Joshua A. Reynolds
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Becky S. Webb
- Department of Neurosurgery, M. S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, 17033, United States
| | - Achuthamangalam Madhankumar
- Department of Neurosurgery, M. S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, 17033, United States
| | - Xiaojun Lian
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - James R. Connor
- Department of Neurosurgery, M. S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, 17033, United States
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Cheng Dong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| |
Collapse
|
4
|
Anti-IL-13Rα2 therapy promotes recovery in a murine model of inflammatory bowel disease. Mucosal Immunol 2019; 12:1174-1186. [PMID: 31308480 PMCID: PMC6717533 DOI: 10.1038/s41385-019-0189-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/21/2019] [Accepted: 06/23/2019] [Indexed: 02/08/2023]
Abstract
There continues to be a major need for more effective inflammatory bowel disease (IBD) therapies. IL-13Rα2 is a decoy receptor that binds the cytokine IL-13 with high affinity and diminishes its STAT6-mediated effector functions. Previously, we found that IL-13Rα2 was necessary for IBD in mice deficient in the anti-inflammatory cytokine IL-10. Here, we tested for the first time a therapeutic antibody specifically targeting IL-13Rα2. We also used the antibody and Il13ra2-/- mice to dissect the role of IL-13Rα2 in IBD pathogenesis and recovery. Il13ra2-/- mice were modestly protected from induction of dextran sodium sulfate (DSS)-induced colitis. Following a 7-day recovery period, Il13ra2-/- mice or wild-type mice administered the IL-13Rα2-neutralizing antibody had significantly improved colon health compared to control mice. Neutralizing IL-13Rα2 to increase IL-13 bioavailability promoted resolution of IBD even if neutralization occurred only during recovery. To link our observations in mice to a large human cohort, we conducted a phenome-wide association study of a more active variant of IL-13 (R130Q) that has reduced affinity for IL-13Rα2. Human subjects carrying R130Q reported a lower risk for Crohn's disease. Our findings endorse moving anti-IL-13Rα2 into preclinical drug development with the goal of accelerating recovery and maintaining remission in Crohn's disease patients.
Collapse
|
5
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
6
|
Liao N, Zhao H, Chen ML, Xie ZF. Association of the IL-13 polymorphisms rs1800925 and rs20541 with chronic obstructive pulmonary disease risk: An updated meta-analysis. Medicine (Baltimore) 2017; 96:e8556. [PMID: 29381928 PMCID: PMC5708927 DOI: 10.1097/md.0000000000008556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to investigate if 2 common single nucleotide polymorphisms (SNPs) in the interleukin-13 (IL-13) gene, rs1800925 and rs20541 are associated with chronic obstructive pulmonary disease (COPD) risk.Case-control association studies were retrieved systematically from PubMed, Scopus, ISI Web of Science, China National Knowledge Infrastructure, and Wanfang databases using standardized subject terms.Eleven studies including 3077 participants (1896 cases and 1181 controls) were analyzed. Evidence for a positive association between the T allele of the IL-13 SNP rs1800925 and COPD risk was found in the overall population (odds ratio [OR] = 1.57, 95% confidence interval [95% CI]: 1.21-2.04, Pz = .001). In subgroup analysis according to ethnicity, the T allele of rs1800925 was associated with an increased risk of COPD in Asians (OR = 1.88, 95% CI: 1.23-2.87, Pz = .004) and Caucasians (OR = 1.30, 95% CI: 1.01-1.67, Pz = .041), respectively. For rs20541, the results suggested an association between rs20541 and COPD risk in Caucasians under the recessive model (OR = 2.79, 95% CI: 1.13-6.92, Pz = .026), whereas this SNP was not associated with COPD in Asians.This meta-analysis suggests that the T allele of rs1800925 is associated with the increased risk of COPD in both Asians and Caucasians, whereas rs20541 is associated with the risk of COPD in Caucasians but not in Asians.
Collapse
|
7
|
Sonawane P, Choi YA, Pandya H, Herpai DM, Fokt I, Priebe W, Debinski W. Novel Molecular Multilevel Targeted Antitumor Agents. CANCER TRANSLATIONAL MEDICINE 2017; 3:69-79. [PMID: 28825042 PMCID: PMC5558462 DOI: 10.4103/ctm.ctm_12_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A multifunctional fusion protein, IL-13.E13K-D2-NLS, effectively recognizes glioblastoma (GBM) cells and delivers its portion to the cell nucleus. IL-13.E13K-D2-NLS is composed of a cancer cell targeting ligand (IL-13.E13K), specialized cytosol translocation bacterial toxin domain 2 of Pseudomonas exotoxin A (D2) and SV40 T antigen nuclear localization signal (NLS). We have now tested whether we can produce proteins that would serve as a delivery vehicle to lysosomes and mitochondria as well. Moreover, we examined whether IL-13.E13K-D2-NLS can deliver anti-cancer drugs like doxorubicin to their nuclear site of action in cancer cells. We have thus constructed two novel proteins: IL-13.E13K-D2-LLS which incorporates lysosomal localization signal (LLS) of a human lysosomal associated membrane protein (LAMP-1) for targeting to lysosomes and IL-13-D2-KK2, which incorporates a pro-apoptotic peptide (KLAKLAK)2 (KK2) exerting its action in mitochondria. Furthermore, we have produced IL-13.E13K-D2-NLS and IL-13.E13K-D2-LLS versions containing a cysteine for site-specific conjugation with a modified doxorubicin, WP936. We found that single-chain recombinant proteins IL-13.E13K-D2-LLS and IL-13-D2-KK2 are internalized and localized mostly to the lysosomal and mitochondrial compartments, respectively, without major trafficking to cells' nuclei. We also determined that IL-13.E13K-D2-NLS-cys[WP936], IL-13.E13K-D2-LAMP-cys[WP936] and IL-13-D2-KK2 were cytotoxic to GBM cells overexpressing IL-13RA2, while much less cytotoxic to GBM cell lines expressing low levels of the receptor. IL-13.E13K-D2-NLS-cys[WP936] was the most potent of the tested anti-tumor agents including free WP936. We believe that our receptor-directed intracellular organelle-targeted proteins can be employed for numerous specific and safer treatment applications when drugs have specific intracellular sites of their action.
Collapse
Affiliation(s)
- Poonam Sonawane
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| | - Young A. Choi
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| | - Hetal Pandya
- National Institutes of Health, Bethesda, MD, USA
| | - Denise M. Herpai
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| | | | | | - Waldemar Debinski
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| |
Collapse
|
8
|
Sai KKS, Sattiraju A, Almaguel FG, Xuan A, Rideout S, Krishnaswamy RS, Zhang J, Herpai DM, Debinski W, Mintz A. Peptide-based PET imaging of the tumor restricted IL13RA2 biomarker. Oncotarget 2017; 8:50997-51007. [PMID: 28881623 PMCID: PMC5584224 DOI: 10.18632/oncotarget.16549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Peptides that target cancer cell surface receptors are promising platforms to deliver diagnostic and therapeutic payloads specifically to cancer but not normal tissue. IL13RA2 is a tumor-restricted receptor found to be present in several aggressive malignancies, including in the vast majority of high-grade gliomas and malignant melanoma. This receptor has been successfully targeted for diagnostic and therapeutic purposes using modified IL-13 ligand and more recently using a specific peptide, Pep-1L. In the current work, we establish the in vitro and in vivo tumor binding properties of radiolabeled Pep-1L, designed for tumor imaging. We radiolabeled Pep-1L with Copper-64 and demonstrated specific cell uptake in the IL13RA2-over expressing G48 glioblastoma cell line having abundant IL13RA2 expression. [64Cu]Pep-1L binding was blocked by unlabeled ligand, demonstrating specificity. To demonstrate in vivo tumor uptake, we intravenously injected into tumor-bearing mice and demonstrated that [64Cu]Pep-1L specifically bound tumors at 24 hours, which was significantly blocked (3-fold) by pre-injecting unlabeled peptide. To further demonstrate specificity of Pep-1L towards IL13RA2 in vivo, we exploited an IL13RA2-inducible melanoma tumor model that does not express receptor at baseline but expresses abundant receptor after treatment with doxycycline. We injected [64Cu]Pep-1L into mice bearing IL13RA2-inducible melanoma tumors and performed in vivo PET/CT and post-necropsy biodistribution studies and found that tumors that were induced to express IL13RA2 receptor by doxycycline pretreatment bound radiolabeled Pep-1L 3-4 fold greater than uninduced tumors, demonstrating receptor specificity. This work demonstrates that [64Cu]Pep-1L selectively binds hIL13RA2-expressing tumors and validates Pep-1L as an effective platform to deliver diagnostics and therapeutics to IL13RA2-expressing cancers.
Collapse
Affiliation(s)
| | - Anirudh Sattiraju
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Frankis G Almaguel
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ang Xuan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephanie Rideout
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - JoAnn Zhang
- MicroPET/CT Imaging Section, TriFoil Imaging, Chatsworth, CA, USA
| | - Denise M Herpai
- Department of Cancer Biology, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Resende EP, Todo-Bom A, Loureiro C, Mota Pinto A, Oliveiros B, Mesquita L, Silva HC. Asthma and rhinitis have different genetic profiles for IL13, IL17A and GSTP1 polymorphisms. REVISTA PORTUGUESA DE PNEUMOLOGIA 2016; 23:10-16. [PMID: 27561723 DOI: 10.1016/j.rppnen.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/07/2016] [Accepted: 06/27/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Asthma and rhinitis have a complex etiology, depending on multiple genetic and environmental risk factors. An increasing number of susceptibility genes are currently being identified, but the majority of reported associations have not been consistently replicated across populations of different genetic backgrounds. PURPOSE To evaluate whether polymorphisms of IL4R (rs1805015), IL13 (rs20541), IL17A (rs2275913) and GSTP1 (rs1695) genes are associated with rhinitis and/or asthma in adults of Portuguese ancestry. METHODS 192 unrelated healthy individuals and 232 patients, 83 with rhinitis and 149 with asthma, were studied. All polymorphisms were detected by real time polymerase chain reaction (PCR) using TaqMan assays. RESULTS Comparing to controls, significant association with asthma was observed for GSTP1 rs1695 AA genotype (odds ratio (OR) - 1.96; 95% CI - 1.18 to 3.25; p=0.010). The association sustains for allergic asthma (OR - 2.17; 95% CI - 1.23 to 3.80; p=0.007). IL13 rs20541 GG genotype was associated with less susceptibility to asthma (OR - 0.55, 95% CI - 0.33 to 0.94, p=0.028). Among patients, IL17A rs2275913 AA genotype was less associated with asthma than with rhinitis (OR - 0.20; 95% CI of 0.07 to 0.56; p=0.002). A similar association was found for IL13 rs20541 GG genotype (OR - 0.48; 95% CI of 0.25 to 0.93; p=0.031). There were no significant differences in the distribution of allelic and genotypic frequencies between patients and controls for the IL4R polymorphism' analyzed. CONCLUSION These results support the existence of a significant association between GSTP1 rs1695 and IL13 rs20541 SNPs, with susceptibility to asthma, in the population studied. Different genotype profiles of IL17A and IL13 genes seem to influence the clinical pattern of disease expression mainly confined to the upper airways, as rhinitis, or including the lower airways, as asthma.
Collapse
Affiliation(s)
- E P Resende
- Genetics Institute, Faculty of Medicine, University of Coimbra, Portugal.
| | - A Todo-Bom
- Immunoallergology Department, Coimbra University Hospital, Portugal; CIMAGO - Centre of Investigation of Environment, Genetics and Oncobiology, Coimbra, Portugal
| | - C Loureiro
- Immunoallergology Department, Coimbra University Hospital, Portugal
| | - A Mota Pinto
- Laboratory of General Pathology, Faculty of Medicine, University of Coimbra, Portugal; CIMAGO - Centre of Investigation of Environment, Genetics and Oncobiology, Coimbra, Portugal
| | - B Oliveiros
- Laboratory for Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, Portugal
| | - L Mesquita
- Genetics Institute, Faculty of Medicine, University of Coimbra, Portugal
| | - H C Silva
- Genetics Institute, Faculty of Medicine, University of Coimbra, Portugal; CIMAGO - Centre of Investigation of Environment, Genetics and Oncobiology, Coimbra, Portugal
| |
Collapse
|
10
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
11
|
Fung DKC, Ma Y, Xia T, Luk JCH, Yan A. Signaling by the heavy-metal sensor CusS involves rearranged helical interactions in specific transmembrane regions. Mol Microbiol 2016; 100:774-87. [DOI: 10.1111/mmi.13348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Danny Ka Chun Fung
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Yongzheng Ma
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Tingying Xia
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | | | - Aixin Yan
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
- Institute of Scientific and Industrial Research, Osaka University; Yamadaoka 1-1 Suita Osaka 565-0871 Japan
| |
Collapse
|
12
|
Li W, Holsinger RMD, Kruse CA, Flügel A, Graeber MB. The potential for genetically altered microglia to influence glioma treatment. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:750-62. [PMID: 24047526 DOI: 10.2174/18715273113126660171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 01/06/2023]
Abstract
Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells.
Collapse
Affiliation(s)
- W Li
- Brain and Mind Research Institute, The University of Sydney, Camperdown, NSW, Australia.
| | | | | | | | | |
Collapse
|
13
|
Baiz D, Hassan S, Choi YA, Flores A, Karpova Y, Yancey D, Pullikuth A, Sui G, Sadelain M, Debinski W, Kulik G. Combination of the PI3K inhibitor ZSTK474 with a PSMA-targeted immunotoxin accelerates apoptosis and regression of prostate cancer. Neoplasia 2013; 15:1172-83. [PMID: 24204196 PMCID: PMC3819633 DOI: 10.1593/neo.13986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is activated in most advanced prostate cancers, yet so far treatments with PI3K inhibitors have been at best tumorostatic in preclinical cancer models and do not show significant antitumor efficacy in clinical trials. Results from tissue culture experiments in prostate cancer cells suggest that PI3K inhibitors should be combined with other cytotoxic agents; however, the general toxicity of such combinations prevents translating these experimental data into preclinical and clinical models. We investigated the emerging concept of tumor-targeted synthetic lethality in prostate cancer cells by using the pan-PI3K inhibitor ZSTK474 and the immunotoxin J591PE, a protein chimera between the single-chain variable fragment of the monoclonal antibody J591 against the prostate-specific membrane antigen (PSMA) and the truncated form of the Pseudomonas aeruginosa exotoxin A (PE38QQR). The combination of ZSTK474 and J591PE increased apoptosis within 6 hours and cell death (monitored at 24-48 hours) in the PSMA-expressing cells LNCaP, C4-2, and C4-2Luc but not in control cells that do not express PSMA (PC3 and BT549 cells). Mechanistic analysis suggested that induction of apoptosis requires Bcl-2-associated death promoter (BAD) dephosphorylation and decreased expression of myeloid leukemia cell differentiation protein 1 (MCL-1). A single injection of ZSTK474 and J591PE into engrafted prostate cancer C4-2Luc cells led to consistent and stable reduction of luminescence within 6 days. These results suggest that the combination of a PI3K inhibitor and a PSMA-targeted protein synthesis inhibitor toxin represents a promising novel strategy for advanced prostate cancer therapy that should be further investigated.
Collapse
Affiliation(s)
- Daniele Baiz
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Sazzad Hassan
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Young A Choi
- Department of Neurosurgery and Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC
| | - Anabel Flores
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Yelena Karpova
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Dana Yancey
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ashok Pullikuth
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Guangchao Sui
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Michel Sadelain
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Waldemar Debinski
- Department of Neurosurgery and Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC
| | - George Kulik
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
14
|
He YF, Hua L, Bao YX, Liu QH, Chu Y, Fang DZ. IL-13 R110Q, a Naturally Occurring IL-13 Polymorphism, Confers Enhanced Functional Activity in Cultured Human Bronchial Smooth Muscle Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2013; 5:377-82. [PMID: 24179684 PMCID: PMC3810544 DOI: 10.4168/aair.2013.5.6.377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/07/2013] [Accepted: 01/24/2013] [Indexed: 12/01/2022]
Abstract
Purpose Interleukin (IL)-13, a Th2-type cytokine, plays a pivotal role in the pathogenesis of asthma through its direct effects on airway smooth muscles. A naturally occurring IL-13 polymorphism, R110Q, is strongly associated with increased total serum IgE levels and asthma. In the present study, we aimed to determine whether the IL-13 R110Q variant would display different biochemical properties or altered functions in comparison with wild-type (WT) IL-13 in cultured human bronchial smooth muscle cells (hBSMCs). Methods Culture supernatants and cell proteins were collected from cultured hBSMCs that were treated with 50 ng/mL IL-13 or IL-13 R110Q for 24 hours. Eotaxin released into hBSMC culture medium was determined by ELISA. The expression levels of the high-affinity IgE receptor (FcεRI) α-chain, smooth muscle-specific actin alpha chain (α-SMA), smooth muscle myosin heavy chain (SmMHC), and calreticulin in the cells were measured on Western blots. Results Compared with WT IL-13, treatment with the IL-13 R110Q variant resulted in a significant increase in eotaxin release as well as significant, although modest, increases in the expression levels of α-SMA, SmMHC, calreticulin, and FcεRI α-chain. Conclusions The results of the present study suggenst that the IL-13 R110Q variant may enhance enhanced functional activities in hBSMCs.
Collapse
Affiliation(s)
- Ya-Fang He
- Department of Pediatrics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Asthma affects nearly 300 million people worldwide. The majority respond to inhaled corticosteroid treatment with or without beta-adrenergic agonists. However, a subset of 5 to 10% with severe asthma do not respond optimally to these medications. Different phenotypes of asthma may explain why current therapies show limited benefits in subgroups of patients. Interleukin-13 is implicated as a central regulator in IgE synthesis, mucus hypersecretion, airway hyperresponsiveness, and fibrosis. Promising research suggests that the interleukin-13 pathway may be an important target in the treatment of the different asthma phenotypes.
Collapse
|
16
|
Nguyen V, Conyers JM, Zhu D, Gibo DM, Hantgan RR, Larson SM, Debinski W, Mintz A. A novel ligand delivery system to non-invasively visualize and therapeutically exploit the IL13Rα2 tumor-restricted biomarker. Neuro Oncol 2012; 14:1239-53. [PMID: 22952195 DOI: 10.1093/neuonc/nos211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our objective was to exploit a novel ligand-based delivery system for targeting diagnostic and therapeutic agents to cancers that express interleukin 13 receptor alpha 2 (IL13Rα2), a tumor-restricted plasma membrane receptor overexpressed in glioblastoma multiforme (GBM), meningiomas, peripheral nerve sheath tumors, and other peripheral tumors. On the basis of our prior work, we designed a novel IL13Rα2-targeted quadruple mutant of IL13 (TQM13) to selectively bind the tumor-restricted IL13Rα2 with high affinity but not significantly interact with the physiologically abundant IL13Rα1/IL4Rα heterodimer that is also expressed in normal brain. We then assessed the in vitro binding profile of TQM13 and its potential to deliver diagnostic and therapeutic radioactivity in vivo. Surface plasmon resonance (SPR; Biacore) binding experiments demonstrated that TQM13 bound strongly to recombinant IL13Rα2 (Kd∼5 nM). In addition, radiolabeled TQM13 specifically bound IL13Rα2-expressing GBM cells and specimens but not normal brain. Of importance, TQM13 did not functionally activate IL13Rα1/IL4Rα in cells or bind to it in SPR binding assays, in contrast to wtIL13. Furthermore, in vivo targeting of systemically delivered radiolabeled TQM13 to IL13Rα2-expressing subcutaneous tumors was demonstrated and confirmed non-invasively for the first time with 124I-TQM13 positron emission tomography imaging. In addition, 131I-TQM13 demonstrated in vivo efficacy against subcutaneous IL13Rα2-expressing GBM tumors and in an orthotopic synergeic IL13Rα2-positive murine glioma model, as evidenced by statistically significant survival advantage. Our results demonstrate that we have successfully generated an optimized biomarker-targeted scaffolding that exhibited specific binding activity toward the tumor-associated IL13Rα2 in vitro and potential to deliver diagnostic and therapeutic payloads in vivo.
Collapse
Affiliation(s)
- Van Nguyen
- The Brain Tumor Center of Excellence, Department of Neurosurgery, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pandya H, Gibo DM, Debinski W. Molecular targeting of intracellular compartments specifically in cancer cells. Genes Cancer 2011; 1:421-33. [PMID: 20740056 DOI: 10.1177/1947601910375274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/14/2010] [Accepted: 05/16/2010] [Indexed: 11/15/2022] Open
Abstract
We have implemented a strategy in which a genetically engineered, single-chain protein specifically recognizes cancer cells and is trafficked to a targeted subcellular compartment, such as the nucleus. The recombinant protein termed IL-13.E13K-D2-NLS has a triple functional property: (1) it binds a cancer-associated receptor, interleukin 13 receptor alpha 2 (IL-13Rα2), using modified IL-13 ligand, IL-13.E13K; (2) it exports its C-terminal portion out of the endosomal compartment using Pseudomonas aeruginosa exotoxin A (PE) translocation domain (D2); and (3) it travels to and accumulates in the nucleus guided by the nuclear localization signal (NLS). Here, we have demonstrated that this protein is transported into the brain tumor cells' nucleus, using 3 different methods of protein conjugation to dyes for the purpose of direct visualization of the protein's intracellular trafficking. IL-13.E13K-D2-NLS, and not the controls such as IL-13.E13K-D2, IL-13.E13K-NLS, or IL-13.E13K, accumulated in nuclei very efficiently, which increased with the time the cells were exposed to the protein. Also, IL-13.E13K-D2-NLS did not exhibit nuclear transport in cells with low expression levels of IL-13Rα2. Thus, it is possible to recognize cancer cells through their specific receptors and deliver a conjugated protein that travels specifically to the nucleus. Hence, our molecular targeting strategy succeeded in generating a single-chain proteinaceous agent capable of delivering drugs/labels needed to be localized to the cells' nuclei or potentially any other subcellular compartment, for their optimal efficacy or ability to exert their specific action.
Collapse
Affiliation(s)
- Hetal Pandya
- Departments of Neurosurgery, Radiation Oncology, and Cancer Biology, The Brain Tumor Center of Excellence, Wake Forest University, School of Medicine, Winston-Salem, NC, USA
| | | | | |
Collapse
|
18
|
Pandya H, Gibo DM, Garg S, Kridel S, Debinski W. An interleukin 13 receptor α 2-specific peptide homes to human Glioblastoma multiforme xenografts. Neuro Oncol 2011; 14:6-18. [PMID: 21946118 DOI: 10.1093/neuonc/nor141] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interleukin 13 receptor α 2 (IL-13Rα2) is a glioblastoma multiforme (GBM)-associated plasma membrane receptor, a brain tumor of dismal prognosis. Here, we isolated peptide ligands for IL-13Rα2 with use of a cyclic disulphide-constrained heptapeptide phages display library and 2 in vitro biopanning schemes with GBM cells that do (G26-H2 and SnB19-pcDNA cells) or do not (G26-V2 and SnB19-asIL-13Rα2 cells) over-express IL-13Rα2. We identified 3 peptide phages that bind to IL-13Rα2 in cellular and protein assays. One of the 3 peptide phages, termed Pep-1, bound to IL-13Rα2 with the highest specificity, surprisingly, also in a reducing environment. Pep-1 was thus synthesized and further analyzed in both linear and disulphide-constrained forms. The linear peptide bound to IL-13Rα2 more avidly than did the disulphide-constrained form and was efficiently internalized by IL-13Rα2-expressing GBM cells. The native ligand, IL-13, did not compete for the Pep-1 binding to the receptor and vice versa in any of the assays, indicating that the peptide might be binding to a site on the receptor different from the native ligand. Furthermore, we demonstrated by noninvasive near infrared fluorescence imaging in nude mice that Pep-1 binds and homes to both subcutaneous and orthotopic human GBM xenografts expressing IL-13Rα2 when injected by an intravenous route. Thus, we identified a linear heptapeptide specific for the IL-13Rα2 that is capable of crossing the blood-brain tumor barrier and homing to tumors. Pep-1 can be further developed for various applications in cancer and/or inflammatory diseases.
Collapse
Affiliation(s)
- Hetal Pandya
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
19
|
Hussein YM, El-Tarhouny SA, Shalaby SM, Mohamed RH, Hassan TH, El-Sherbeny HM, Mohamed NA. Interleukin-13 receptor A1 gene polymorphism and IL-13 serum level in atopic and non-atopic Egyptian children. Immunol Invest 2011; 40:523-34. [PMID: 21425907 DOI: 10.3109/08820139.2011.565106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To assess serum interleukin (IL) 13 levels in atopic diseases and to determine the role of IL-13R A(1) gene polymorphism (+1398 A/G) in pathogenesis of these diseases. METHODS Serum total immunoglobulin (Ig) E and IL-13 levels were measured by ELISA and the IL-13R A(1) gene (+1398 A/G) was screened by PCR-restriction fragment length polymorphism (RFLP) in 240 asthmatic children (120 atopic and 120 nonatopic) and 120 allergic rhinitis patients compared with 120 age-matched controls. RESULTS No significant association was observed between genotype frequencies of the IL-13R A(1) +1398 A/G polymorphism in patients groups compared to in controls. There was a significant increase in serum levels of total IgE & IL-13 towards heterozygous AG and homozygous GG than homozygous AA in atopic asthma, non-atopic asthma and allergic rhinitis groups (P < 0.001 for each). A highly significant increase of serum IL-13 in atopic asthma as compared with controls (P < 0.001) and with nonatopic asthmatics (P < 0.001) was shown. CONCLUSION The IL-13R A(1) +1398 A/G polymorphism does not contribute to asthma or allergic rhinitis susceptibility, yet serum IL-13 can be used as a marker in atopic diseases and to differentiate between atopic and non-atopic asthma.
Collapse
|
20
|
Ito T, Suzuki S, Kanaji S, Shiraishi H, Ohta S, Arima K, Tanaka G, Tamada T, Honjo E, Garcia KC, Kuroki R, Izuhara K. Distinct structural requirements for interleukin-4 (IL-4) and IL-13 binding to the shared IL-13 receptor facilitate cellular tuning of cytokine responsiveness. J Biol Chem 2009; 284:24289-96. [PMID: 19586918 PMCID: PMC2782022 DOI: 10.1074/jbc.m109.007286] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 06/22/2009] [Indexed: 11/06/2022] Open
Abstract
Both interleukin-4 (IL-4) and IL-13 can bind to the shared receptor composed of the IL-4 receptor alpha chain and the IL-13 receptor alpha1 chain (IL-13Ralpha1); however, the mechanisms by which these ligands bind to the receptor chains are different, enabling the principal functions of these ligands to be different. We have previously shown that the N-terminal Ig-like domain in IL-13Ralpha1, called the D1 domain, is the specific and critical binding unit for IL-13. However, it has still remained obscure which amino acid has specific binding capacity to IL-13 and why the D1 domain acts as the binding site for IL-13, but not IL-4. To address these questions, in this study we performed mutational analyses for the D1 domain, combining the structural data to identify the amino acids critical for binding to IL-13. Mutations of Lys-76, Lys-77, or Ile-78 in c' strand in which the crystal structure showed interaction with IL-13, and those of Trp-65 and Ala-79 adjacent to the interacting site, resulted in significant impairment of IL-13 binding, demonstrating that these amino acids generate the binding site. Furthermore, mutations of Val-35, Leu-38, or Val-42 at the N-terminal beta-strand also resulted in loss of IL-13 binding, probably from decreased structural stability. None of the mutations employed here affected IL-4 binding. These results demonstrate that the D1 domain of IL-13Ralpha1 acts as an affinity converter, through direct cytokine interactions, that allows the shared receptor to respond differentially to IL-4 and IL-13.
Collapse
Affiliation(s)
- Takachika Ito
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
- Department of Emergency Medicine, and
| | - Shoichi Suzuki
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Sachiko Kanaji
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Hiroshi Shiraishi
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga 849-8501, Japan
| | - Kazuhiko Arima
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Go Tanaka
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Taro Tamada
- the Molecular Structural Biology Group, Neutron Science Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and
| | - Eijiro Honjo
- the Molecular Structural Biology Group, Neutron Science Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and
| | - K. Christopher Garcia
- the Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Ryota Kuroki
- the Molecular Structural Biology Group, Neutron Science Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and
| | - Kenji Izuhara
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
- Department of Laboratory Medicine, Saga Medical School, Saga 849-8501, Japan
| |
Collapse
|
21
|
Nekrasov AN, Petrovskaya LE, Toporova VA, Kryukova EA, Rodina AV, Moskaleva EY, Kirpichnikov MP. Design of a novel interleukin-13 antagonist from analysis of informational structure. BIOCHEMISTRY (MOSCOW) 2009; 74:399-405. [PMID: 19463093 DOI: 10.1134/s0006297909040075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Interleukin-13 (IL-13) is one of the cytokines involved in the development of Th2-type immune response. It plays an important role in the pathogenesis of asthma and other allergic diseases. Two deletion forms of IL-13 were constructed on a basis of informational structure analysis and expressed in E. coli cells. They were found to differ in ability to stimulate proliferation of TF-1 cell line. Deletion variant 146 (DV146) completely lacks such activity, whereas DV148 provides about 50% of the proliferation stimulation. The simultaneous addition of DV146 with full-length IL-13 suppresses proliferation depending on the concentration of the deletion form. Thus, the designed protein acts as an antagonist of IL-13.
Collapse
Affiliation(s)
- A N Nekrasov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Liu TF, Cai J, Gibo DM, Debinski W. Reoxygenation of hypoxic glioblastoma multiforme cells potentiates the killing effect of an interleukin-13-based cytotoxin. Clin Cancer Res 2009; 15:160-8. [PMID: 19118043 DOI: 10.1158/1078-0432.ccr-08-2151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hypoxia is a cause for resistance to cancer therapies. Molecularly targeted recombinant cytotoxins have shown clinical efficacy in the treatment of patients with primary brain tumors, glioblastoma multiforme, but it is not known whether hypoxia influences their antitumor effect. EXPERIMENTAL DESIGN We have exposed glioblastoma multiforme cells, such as U-251 MG, U-373 MG, SNB-19, and A-172 MG, to either anoxia or hypoxia and then reoxygenated them while treating with an interleukin (IL)-13-based diphtheria toxin (DT)-containing cytotoxin, DT-IL13QM. We measured the levels of immunoreactive IL-13Ralpha2, a receptor that mediates IL-13-cytotoxin cell killing, and the levels of active form of furin, a protease that activates the bacterial toxin portion in a cytotoxin. RESULTS We found that anoxia/hypoxia significantly alters the responsiveness of glioblastoma multiforme cells to DT-IL13QM. Interestingly, bringing these cells back to normoxia caused them to become even more susceptible to the cytotoxin than the cells maintained under normoxia. Anoxia/hypoxia caused a highly prominent decrease in the immunoreactive levels of both IL-13R and active forms of furin, and reoxygenation not only restored their levels but also became higher than that in normoxic glioblastoma multiforme cells. CONCLUSIONS Our results show that a recombinant cytotoxin directed against glioblastoma multiforme cells kills these cells much less efficiently under anoxic/hypoxic conditions. The reoxygenation brings unexpected additional benefit of making glioblastoma multiforme cells even more responsive to the killing effect of a cytotoxin.
Collapse
Affiliation(s)
- Tie Fu Liu
- Brain Tumor Center of Excellence, Department of Neurosurgery Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
23
|
Mintz A, Gibo DM, Madhankumar AB, Cladel NM, Christensen ND, Debinski W. Protein- and DNA-based active immunotherapy targeting interleukin-13 receptor alpha2. Cancer Biother Radiopharm 2009; 23:581-9. [PMID: 18976118 DOI: 10.1089/cbr.2008.0462] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
High-grade astrocytoma (HGA) is an invariably fatal malignancy with a mean survival of 14 months despite surgery, radiation, and chemotherapy. We have found that a restricted receptor for interleukin-13 (IL-13), IL-13 receptor alpha 2 (IL13Ralpha2), is abundantly overexpressed in the vast majority of HGAs but is not appreciably expressed in normal tissue, with the exception of the testes. Therefore, IL-13Ralpha2 is a very attractive target for anti-HGA immunotherapy. In order to test protein and genetic vaccines that target IL13Ralpha2, we developed a G26-IL13Ralpha2-expressing syngeneic immunocompetent murine glioma model. Using this glioma model, mice were immunized with recombinant extracellular IL13Ralpha2 protein (IL13Ralpha2ex) or a DNA expression vector containing the gene for IL13Ralpha2 and were subsequently challenged with IL13Ralpha2( + ) G26 tumors. Mice immunized with either recombinant or genetic IL13Ralpha2, but not mock-immunized controls, demonstrated complete protection against IL13Ralpha2( + ) glioma growth and mortality. Of interest, only the recombinant-protein-based vaccines generated detectable anti-IL13Ralpha2 antibodies. These studies demonstrate the in vivo efficiency of protein- and DNA-based immunotherapy strategies that target IL13Ralpha2 that may play a clinical role to eradicate the residual microscopic HGA cells that inevitably cause disease recurrence and mortality.
Collapse
Affiliation(s)
- Akiva Mintz
- Brain Tumor Center of Excellence, Department of Neurosurgery & Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1082, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Kasaian MT, Miller DK. IL-13 as a therapeutic target for respiratory disease. Biochem Pharmacol 2008; 76:147-55. [PMID: 18502398 DOI: 10.1016/j.bcp.2008.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/07/2008] [Accepted: 04/10/2008] [Indexed: 11/17/2022]
Abstract
Interleukin-13 (IL-13) is a critical mediator of asthma pathology. On B cells, monocytes, epithelial cells, and smooth muscle cells, IL-13 acts through the IL-13Ralpha1/IL-4Ralpha complex to directly induce activation responses that contribute to atopic disease. In human populations, genetic polymorphisms in IL-13, its receptor components, or the essential signaling element STAT6, have all been associated with increased risk of atopy and asthma. Animal studies using IL-13 deficient mice, IL-13 transgenic animals, and IL-13 neutralization strategies have confirmed an essential role for this cytokine in driving major correlates of asthma pathology, including airway hyperresponsiveness (AHR), lung eosinophilia, mucus generation, and fibrosis. Ongoing studies continue to define both overlapping and distinct roles for IL-13 and the related cytokine, IL-4, in promoting asthmatic changes. Furthermore, new evidence concerning the role of the "decoy" receptor, IL-13Ralpha2, has prompted re-evaluation of the receptor forms that underlie the numerous activities of IL-13. In this review, we summarize the essential role of IL-13 in asthma, compare the relative contributions of IL-13 and IL-4 to key aspects of the asthmatic phenotype, and outline novel therapeutic strategies to target this critical cytokine.
Collapse
Affiliation(s)
- Marion T Kasaian
- Department of Discovery Inflammation, Wyeth Research, 200 CambridgePark Drive, Cambridge, MA 02140, USA.
| | | |
Collapse
|
25
|
Kasaian MT, Tan XY, Jin M, Fitz L, Marquette K, Wood N, Cook TA, Lee J, Widom A, Agostinelli R, Bree A, Schlerman FJ, Olland S, Wadanoli M, Sypek J, Gill D, Goldman SJ, Tchistiakova L. Interleukin-13 neutralization by two distinct receptor blocking mechanisms reduces immunoglobulin E responses and lung inflammation in cynomolgus monkeys. J Pharmacol Exp Ther 2008; 325:882-92. [PMID: 18337474 DOI: 10.1124/jpet.108.136515] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin (IL)-13 is a key cytokine driving allergic and asthmatic responses and contributes to airway inflammation in cynomolgus monkeys after segmental challenge with Ascaris suum antigen. IL-13 bioactivity is mediated by a heterodimeric receptor (IL-13Ralpha1/IL-4Ralpha) and can be inhibited in vitro by targeting IL-13 interaction with either chain. However, in cytokine systems, in vitro neutralization activity may not always predict inhibitory function in vivo. To address the efficacy of two different IL-13 neutralization mechanisms in a primate model of atopic disease, two humanized monoclonal antibodies to IL-13 were generated, with highly homologous properties, differing in epitope recognition. Ab01 blocks IL-13 interaction with IL-4Ralpha, and Ab02 blocks IL-13 interaction with IL-13Ralpha1. In a cynomolgus monkey model of IgE responses to A. suum antigen, both Ab01 and Ab02 effectively reduced serum titers of Ascaris-specific IgE and diminished ex vivo Ascaris-triggered basophil histamine release, assayed 8 weeks after a single administration of antibody. The two antibodies also produced comparable reductions in pulmonary inflammation after lung segmental challenge with Ascaris antigen. Increased serum levels of IL-13, lacking demonstrable biological activity, were seen postchallenge in animals given either anti-IL-13 antibody but not in control animals given human IgG of irrelevant specificity. These findings demonstrate a potent effect of IL-13 neutralization on IgE-mediated atopic responses in a primate system and show that IL-13 can be efficiently neutralized by targeting either the IL-4Ralpha-binding epitope or the IL-13Ralpha1-binding epitope.
Collapse
Affiliation(s)
- Marion T Kasaian
- Department of Inflammation, Wyeth Research, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
O'Toole M, Legault H, Ramsey R, Wynn TA, Kasaian MT. A novel and sensitive ELISA reveals that the soluble form of IL-13R-alpha2 is not expressed in plasma of healthy or asthmatic subjects. Clin Exp Allergy 2008; 38:594-601. [PMID: 18307523 DOI: 10.1111/j.1365-2222.2007.02921.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND IL-13 plays a key regulatory role in asthmatic responses and immunity to parasitic infection. In vivo, IL-13R-alpha2 is a critical modulator of IL-13 bioactivity. When inducibly expressed on the surface of fibroblasts and other cell types under inflammatory conditions, IL-13R-alpha2 contributes to resolution of IL-13 responses. A soluble form of IL-13R-alpha2 (sIL-13R-alpha2) can be detected in murine circulation, and functions as a regulator of IL-13 bioactivity. In humans, sIL-13R-alpha2 has been more difficult to detect. Recently, novel assay systems have been described to quantitate sIL-13R-alpha2 in human circulation, and revealed unexpectedly high levels of sIL-13R-alpha2 in healthy subjects. OBJECTIVE To verify sIL-13R-alpha2 quantitation in human plasma samples under stringent conditions of signal verification and false-positive detection. METHODS A standard ELISA protocol was evaluated for specificity using false-positive detection reagents. A more stringent ELISA protocol was developed by optimizing the composition of blocking and dilution buffers. RESULTS Using the stringent assay protocol, endogenous sIL-13R-alpha2 was undetectable in plasma samples from a total of 120 asthmatics and 20 healthy subjects, and in bronchoalveolar lavage fluid from 10 asthmatics and eight healthy subjects undergoing allergen challenge. CONCLUSION These results underscore the necessity to perform rigorous assay controls in the biological matrix to be tested. Because the soluble form could not be demonstrated, our findings question a role for sIL-13R-alpha2 in the regulation of IL-13 bioactivity, and highlight the potentially important contribution of the membrane-bound form of IL-13R-alpha2 in humans.
Collapse
Affiliation(s)
- M O'Toole
- Department of Biological Technologies, Wyeth Research, Cambridge, MA 02140, USA
| | | | | | | | | |
Collapse
|
27
|
Zhang J, Paré PD, Sandford AJ. Recent advances in asthma genetics. Respir Res 2008; 9:4. [PMID: 18197984 PMCID: PMC2244620 DOI: 10.1186/1465-9921-9-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 01/15/2008] [Indexed: 12/20/2022] Open
Abstract
There are over 100 genes that have been reported to be associated with asthma or related phenotypes. In 2006–2007 alone there were 53 novel candidate gene associations reported in the literature. Replication of genetic associations and demonstration of a functional mechanism for the associated variants are needed to confirm an asthma susceptibility gene. For most of the candidate genes there is little functional information. In a previous review by Hoffjan et al. published in 2003, functional information was reported for 40 polymorphisms and here we list another 22 genes which have such data. Some important genes such as filaggrin, interleukin-13, interleukin-17 and the cysteinyl leukotriene receptor-1 which not only were replicated by independent association studies but also have functional data are reviewed in this article.
Collapse
Affiliation(s)
- Jian Zhang
- James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, St, Paul's Hospital, Vancouver, B,C,, V6Z 1Y6,
| | | | | |
Collapse
|
28
|
Madhankumar AB, Slagle-Webb B, Mintz A, Sheehan JM, Connor JR. Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol Cancer Ther 2007; 5:3162-9. [PMID: 17172420 DOI: 10.1158/1535-7163.mct-06-0480] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The difficulties associated with treatment of malignant brain tumors are well documented. For example, local infiltration of high-grade astrocytomas prevents the complete resection of all malignant cells. It is, therefore, critical to develop delivery systems for chemotherapeutic agents that ablate individual cancer cells without causing diffuse damage to surrounding brain tissue. Here, we describe sterically stable human interleukin-13 (IL-13)-conjugated liposomes, which efficiently bind to the brain cancer cells that overexpress the IL-13 receptor alpha2 protein. The conjugated liposomes bind to glioblastoma multiforme tissue specimens but not to normal cortex. Conjugating the liposomes with human IL-13 allows for specific binding to glioma cells and uptake of the liposomes via endocytosis. Delivering doxorubicin to glioma cells by IL-13-conjugated liposomes results in enhanced cytotoxicity and increased accumulation and retention of drug in the glioma cells compared with delivery of free drug. The therapeutic potential and targeting efficacy of the IL-13-conjugated liposomes carrying doxorubicin was tested in vivo using a s.c. glioma tumor mouse model. Animals receiving i.p. injections of IL-13-conjugated liposomes carrying doxorubicin for 7 weeks had a mean tumor volume of 37 mm3 compared with a mean volume of 192 mm3 in animals injected with nontargeted liposomes. These results strongly suggest that IL-13-conjugated liposomes carrying cytotoxic agents are a feasible approach for creating a nanovesicle drug delivery system for brain tumor therapy.
Collapse
Affiliation(s)
- A B Madhankumar
- Department of Neurosurgery (H110), G.M. Leader Family Laboratory for Alzheimer's Disease Research, Milton S. Hershey Medical Center, Penn State University, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | | | | | |
Collapse
|
29
|
Yoshida Y, Ohkuri T, Takeda C, Kuroki R, Izuhara K, Imoto T, Ueda T. Analysis of internal motions of interleukin-13 variant associated with severe bronchial asthma using (15)N NMR relaxation measurements. Biochem Biophys Res Commun 2007; 358:292-7. [PMID: 17482144 DOI: 10.1016/j.bbrc.2007.04.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 04/19/2007] [Indexed: 11/19/2022]
Abstract
The single nucleotide polymorphism interleukin-13 (IL-13) R110Q is associated with severe bronchial asthma because its lower affinity leads to the augmentation of local IL-13 concentration, resulting in an increase in the signal transduction via IL-13R. Since the mutation site does not directly bind to IL-13Ralpha2, we carried out NMR relaxation analyses of the wild-type IL-13 and IL-13-R110Q in order to examine whether the R110Q mutation affects the internal motions in IL-13 molecules. The results showed that the internal motion in the micro- to millisecond time scale on helix D, which is suggested to be important for the interaction between IL-13 and IL-13Ralpha2, is increased in IL-13-R110Q compared with that in the wild-type IL-13. It therefore appears that the difference in the internal motions on helix D between the wild-type IL-13 and IL-13-R110Q may be involved in their affinity differences with IL-13Ralpha2.
Collapse
Affiliation(s)
- Yuichiro Yoshida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Kraich M, Klein M, Patiño E, Harrer H, Nickel J, Sebald W, Mueller TD. A modular interface of IL-4 allows for scalable affinity without affecting specificity for the IL-4 receptor. BMC Biol 2006; 4:13. [PMID: 16640778 PMCID: PMC1479839 DOI: 10.1186/1741-7007-4-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 04/26/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interleukin 4 (IL-4) is a key regulator of the immune system and an important factor in the development of allergic hypersensitivity. Together with interleukin 13 (IL-13), IL-4 plays an important role in exacerbating allergic and asthmatic symptoms. For signal transduction, both cytokines can utilise the same receptor, consisting of the IL-4Ralpha and the IL-13Ralpha1 chain, offering an explanation for their overlapping biological functions. Since both cytokine ligands share only moderate similarity on the amino acid sequence level, molecular recognition of the ligands by both receptor subunits is of great interest. IL-4 and IL-13 are interesting targets for allergy and asthma therapies. Knowledge of the binding mechanism will be important for the generation of either IL-4 or IL-13 specific drugs. RESULTS We present a structure/function analysis of the IL-4 ligand-receptor interaction. Structural determination of a number of IL-4 variants together with in vitro binding studies show that IL-4 and its high-affinity receptor subunit IL-4Ralpha interact via a modular protein-protein interface consisting of three independently-acting interaction clusters. For high-affinity binding of wild-type IL-4 to its receptor IL-4Ralpha, only two of these clusters (i.e. cluster 1 centered around Glu9 and cluster 2 around Arg88) contribute significantly to the free binding energy. Mutating residues Thr13 or Phe82 located in cluster 3 to aspartate results in super-agonistic IL-4 variants. All three clusters are fully engaged in these variants, generating a three-fold higher binding affinity for IL-4Ralpha. Mutagenesis studies reveal that IL-13 utilizes the same main binding determinants, i.e. Glu11 (cluster 1) and Arg64 (cluster 2), suggesting that IL-13 also uses this modular protein interface architecture. CONCLUSION The modular architecture of the IL-4-IL-4Ralpha interface suggests a possible mechanism by which proteins might be able to generate binding affinity and specificity independently. So far, affinity and specificity are often considered to co-vary, i.e. high specificity requires high affinity and vice versa. Although the binding affinities of IL-4 and IL-13 to IL-4Ralpha differ by a factor of more than 1000, the specificity remains high because the receptor subunit IL-4Ralpha binds exclusively to IL-4 and IL-13. An interface formed by several interaction clusters/binding hot-spots allows for a broad range of affinities by selecting how many of these interaction clusters will contribute to the overall binding free energy. Understanding how proteins generate affinity and specificity is essential as more and more growth factor receptor families show promiscuous binding to their respective ligands. This limited specificity is, however, not accompanied by low binding affinities.
Collapse
Affiliation(s)
- Michael Kraich
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Markus Klein
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Edwin Patiño
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Henning Harrer
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Joachim Nickel
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Walter Sebald
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Rudolf-Virchow Zentrum, DFG Forschungszentrum für Experimentelle Biomedizin, Versbacher Str. 9, D-97078 Würzburg, Germany
| | - Thomas D Mueller
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
31
|
Rustamzadeh E, Hall WA, Todhunter DA, Low WC, Liu H, Panoskaltsis-Mortari A, Vallera DA. Intracranial therapy of glioblastoma with the fusion protein DTIL13 in immunodeficient mice. Int J Cancer 2006; 118:2594-601. [PMID: 16358262 DOI: 10.1002/ijc.21647] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A fusion protein consisting of human interleukin-13 and the first 389 amino acids of diphtheria toxin was assembled in order to target human glioblastoma cell lines in a murine intracranial model. In vitro studies to determine specificity indicated that the protein called DTIL13 was highly selective for human glioblastoma. In vivo, the maximum tolerated dose of DTIL13 was 1 microg/injection given every other day and repeated for 3 days. Doses that exceeded this amount resulted in weight loss and liver damage as determined by histology and enzyme assay. Experiments in IL-4 receptor knockout mice revealed that liver toxicity was receptor-related. This same dose given to nude mice with established U373 MG brain tumors resulted in significant reductions in tumor volume and significantly prolonged survival (p<0.0001). Magnetic resonance imaging (MRI) proved to be extremely useful in (i) determining the ability of DTIL13 to reduce tumor size and (ii) for studying toxicity since diffusion-weighted and gradient echo-weighted MRI revealed that vascular leak syndrome was not a limiting toxicity at this dose. These results suggest that DTIL13 is as effective in an intracranial rodent model as it was in a flank model in previous studies and that DTIL13 might be an effective treatment for glioblastoma multiforme.
Collapse
Affiliation(s)
- Edward Rustamzadeh
- Department of Neurosurgery, University of Minnesota Cancer Research Center, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Vladich FD, Brazille SM, Stern D, Peck ML, Ghittoni R, Vercelli D. IL-13 R130Q, a common variant associated with allergy and asthma, enhances effector mechanisms essential for human allergic inflammation. J Clin Invest 2005; 115:747-54. [PMID: 15711639 PMCID: PMC548315 DOI: 10.1172/jci22818] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 12/21/2004] [Indexed: 01/25/2023] Open
Abstract
Genetic factors are known to strongly influence susceptibility to allergic inflammation. The Th2 cytokine IL-13 is a central mediator of allergy and asthma, and common single-nucleotide polymorphisms in IL13 are associated with allergic phenotypes in several ethnically diverse populations. In particular, IL13+2044GA is expected to result in the nonconservative replacement of arginine 130 (R130) with glutamine (Q). We examined the impact of IL13+2044GA on the functional properties of IL-13 by directly comparing the activity of WT IL-13 and IL-13 R130Q on primary human cells involved in the effector mechanisms of allergic inflammation. Our results show that IL-13 R130Q was significantly more active than WT IL-13 in inducing STAT6 phosphorylation and CD23 expression in monocytes and hydrocortisone-dependent IgE switching in B cells. Notably, IL-13 R130Q was neutralized less effectively than WT IL-13 by an IL-13R2 decoy. Decreased neutralization of the minor variant could contribute to its enhanced in vivo activity. Neither IL-13 variant was able to engage T cells, which suggests that increased allergic inflammation in carriers of IL13+2044A depends on enhanced IL-13-mediated Th2 effector functions rather than increased Th2 differentiation. Collectively, our data indicate that natural variation in the coding region of IL13 may be an important genetic determinant of susceptibility to allergy.
Collapse
Affiliation(s)
- Frank D Vladich
- Functional Genomics Laboratory, Arizona Respiratory Center and Department of Cell Biology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
33
|
Arima K, Sato K, Tanaka G, Kanaji S, Terada T, Honjo E, Kuroki R, Matsuo Y, Izuhara K. Characterization of the interaction between interleukin-13 and interleukin-13 receptors. J Biol Chem 2005; 280:24915-22. [PMID: 15870068 DOI: 10.1074/jbc.m502571200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-13 (IL-13) possesses two types of receptor: the heterodimer, composed of the IL-13Ralpha1 chain (IL-13Ralpha1) and the IL-4Ralpha chain (IL-4Ralpha), transducing the IL-13 signals; and the IL-13Ralpha2 chain (IL-13Ralpha2), acting as a nonsignaling "decoy" receptor. Extracellular portions of both IL-13Ralpha1 and IL-13Ralpha2 are composed of three fibronectin type III domains, D1, D2, and D3, of which the last two comprise the cytokine receptor homology modules (CRHs), a common structure of the class I cytokine receptor superfamily. Thus far, there has been no information about the critical amino acids of the CRHs or the role of the D1 domains of IL-13Ralpha1 and IL-13Ralpha2 in binding to IL-13. In this study, we first built the homology modeling of the IL-13.hIL-13 receptor complexes and then predicted the amino acids involved in binding to IL-13. By incorporating mutations into these amino acids, we identified Tyr-207, Asp-271, Tyr-315, and Asp-318 in the CRH of human IL-13Ralpha2, and Leu-319 and Tyr-321 in the CRH of human IL-13Ralpha1, as critical residues for binding to IL-13. Tyr-315 in IL-13Ralpha2 and Leu-319 in IL-13Ralpha1 are positionally conserved hydrophobic amino acid residues. Furthermore, by using D1 domain-deleted mutants, we found that the D1 domain is needed for the expression of IL-13Ralpha2, but not IL-13Ralpha1, and that the D1 domain of IL-13Ralpha1 is important for binding to IL-13, but not to IL-4. These results provide the basis for a precise understanding of the interaction between IL-13 and its receptors.
Collapse
Affiliation(s)
- Kazuhiko Arima
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Center for Comprehensive Community Medicine, Saga Medical School, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vladich FD, Brazille SM, Stern D, Peck ML, Ghittoni R, Vercelli D. IL-13 R130Q, a common variant associated with allergy and asthma, enhances effector mechanisms essential for human allergic inflammation. J Clin Invest 2005. [DOI: 10.1172/jci200522818] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Madhankumar AB, Mintz A, Debinski W. Interleukin 13 mutants of enhanced avidity toward the glioma-associated receptor, IL13Ralpha2. Neoplasia 2004; 6:15-22. [PMID: 15068667 PMCID: PMC1508627 DOI: 10.1016/s1476-5586(04)80049-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin 13 (IL13) binds a receptor that is highly overexpressed in malignant gliomas, IL13Ralpha2. IL13 protein is composed of four helices: alpha-helix A, B, C, and D, and we found a new "hot spot" in alpha-helix D that is crucial for the binding of IL13 to IL13Ralpha2. Lys-105 plus Lys-106 and Arg-109 represent this hot spot. In the current study, we have made substitutions at these three positions in IL13. We examined both neutralization of an IL13-based cytotoxin's glioma cell killing and direct receptor binding of the new IL13 mutants. We observed that Lys-105 and Arg-109 are critical for IL13 binding to IL13Ralpha2, indeed. However, new mutants of important properties were identified with regard to tumor targeting. IL13.K105R mutant, in which lysine was substituted by arginine, neutralized the killing of IL13Ralpha2-positive cells by IL13-based cytotoxin more efficiently than wild-type IL13. However, IL13.K105L or IL13.K105A was deprived of any such activity. Furthermore, IL13.K105R and IL13.R109K competed 77- and 27-fold better, respectively, with the binding of [(125)I]IL13 to the IL13Ralpha2 binding sites when compared with wild-type IL13. Thus, we have uncovered the first forms of IL13 of higher avidity toward IL13Ralpha2. These mutants should prove useful in the further design of anticancer diagnostics/therapeutics.
Collapse
Affiliation(s)
- A B Madhankumar
- Department of Neurosurgery/H110, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|