1
|
Molecular Biology of Escherichia Coli Shiga Toxins' Effects on Mammalian Cells. Toxins (Basel) 2020; 12:toxins12050345. [PMID: 32456125 PMCID: PMC7290813 DOI: 10.3390/toxins12050345] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Shiga toxins (Stxs), syn. Vero(cyto)toxins, are potent bacterial exotoxins and the principal virulence factor of enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin-producing E. coli (STEC). EHEC strains, e.g., strains of serovars O157:H7 and O104:H4, may cause individual cases as well as large outbreaks of life-threatening diseases in humans. Stxs primarily exert a ribotoxic activity in the eukaryotic target cells of the mammalian host resulting in rapid protein synthesis inhibition and cell death. Damage of endothelial cells in the kidneys and the central nervous system by Stxs is central in the pathogenesis of hemolytic uremic syndrome (HUS) in humans and edema disease in pigs. Probably even more important, the toxins also are capable of modulating a plethora of essential cellular functions, which eventually disturb intercellular communication. The review aims at providing a comprehensive overview of the current knowledge of the time course and the consecutive steps of Stx/cell interactions at the molecular level. Intervention measures deduced from an in-depth understanding of this molecular interplay may foster our basic understanding of cellular biology and microbial pathogenesis and pave the way to the creation of host-directed active compounds to mitigate the pathological conditions of STEC infections in the mammalian body.
Collapse
|
2
|
Hattori T, Watanabe-Takahashi M, Nishikawa K, Naito M. Acquired Resistance to Shiga Toxin-Induced Apoptosis by Loss of CD77 Expression in Human Myelogenous Leukemia Cell Line, THP-1. Biol Pharm Bull 2018; 41:1475-1479. [PMID: 30175782 DOI: 10.1248/bpb.b18-00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shiga toxin (Stx) is a main virulence factor of Enterohemorrhagic Escherichia coli (EHEC) that causes diarrhea and hemorrhagic colitis and occasionally fatal systemic complications. Stx induces rapid apoptotic cell death in some cells, such as human myelogenous leukemia THP-1 cells expressing CD77, a receptor for Stx internalization, and the induction of apoptotic cell death is thought to be crucial for the fatal systemic complications. Therefore, in order to suppress the fatal toxicity, it is important to understand the mechanism how cells can escape from apoptotic cell death in the presence of Stx. In this study, we isolated resistant clones to Stx-induced apoptosis from highly sensitive THP-1 cells by continuous exposure with lethal dose of Stx. All of the ten resistant clones lost the expression of CD77 as a consequence of the reduction in CD77 synthase mRNA expression. These results suggest that downregulation of CD77 or CD77 synthase expression could be a novel approach to suppress the fatal toxicity of Stx in EHEC infected patient.
Collapse
Affiliation(s)
- Takayuki Hattori
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| | | | | | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| |
Collapse
|
3
|
Yi L, Huang X, Guo F, Zhou Z, Chang M, Tang J, Huan J. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway. Front Cell Infect Microbiol 2016; 6:133. [PMID: 27807512 PMCID: PMC5069405 DOI: 10.3389/fcimb.2016.00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/30/2016] [Indexed: 01/21/2023] Open
Abstract
Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis.
Collapse
Affiliation(s)
- Lei Yi
- Department of Orthopedics, Shanghai Fengxian Central Hospital, Branch of The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University Shanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Feng Guo
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Mengling Chang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Jiajun Tang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
4
|
Hattori T, Watanabe-Takahashi M, Shiina I, Ohashi Y, Dan S, Nishikawa K, Yamori T, Naito M. M-COPA, a novel Golgi system disruptor, suppresses apoptosis induced by Shiga toxin. Genes Cells 2016; 21:901-6. [PMID: 27302278 DOI: 10.1111/gtc.12386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022]
Abstract
Shiga toxin (Stx) is a main virulence factor of Stx-producing Escherichia coli (STEC) that contributes to diarrhea and hemorrhagic colitis and occasionally to fatal systemic complications. Therefore, the development of an antidote to neutralize Stx toxicity is urgently needed. After internalization into cells, Stx is transferred to the Golgi apparatus via a retrograde vesicular transport system. We report here that 2-methylcoprophilinamide (M-COPA), a compound that induces disassembly of the Golgi apparatus by inactivating ADP-ribosylation factor 1 (Arf1), suppresses Stx-induced apoptosis. M-COPA inhibited transport of Stx from the plasma membrane to the Golgi apparatus and suppressed degradation of anti-apoptotic proteins and the activation of caspases. These findings suggest that inhibition of Stx retrograde transport by M-COPA could be a novel approach to suppress Stx toxicity.
Collapse
Affiliation(s)
- Takayuki Hattori
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Miho Watanabe-Takahashi
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakotani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yoshimi Ohashi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kiyotaka Nishikawa
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakotani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.,Center for Product Evaluation, Pharmaceuticals and Medical Device Agency, Shin-Kasumigaseki Building 3-3-2 Kasumigaseki, Tokyo, 100-0013, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| |
Collapse
|
5
|
Haddad G, Zhu LF, Rayner DC, Murray AG. Experimental glomerular endothelial injury in vivo. PLoS One 2013; 8:e78244. [PMID: 24143262 PMCID: PMC3797051 DOI: 10.1371/journal.pone.0078244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/16/2013] [Indexed: 12/03/2022] Open
Abstract
The microvascular endothelium of the kidney glomerulus is injured in Shiga-like toxigenic bacterial infection, genetic or acquired loss of complement regulatory protein function, and allo-immune responses of solid-organ or bone marrow transplantation. Existing models of diseases with glomerular endothelial cell (EC) injury, collectively grouped as thrombotic microangiopathies, are problematic, impeding investigation of the mechanisms of microvascular defense and repair. To develop a model of glomerular endothelial injury in the mouse, we conjugated the M. oreades lectin to the cytotoxin, saporin, (LS) to selectively injure the glomerular endothelium. Injury of the microvasculature was evaluated by light, immunofluorescence, and electron microscopy, and by quantitative RT-PCR of cell-type specific transcripts. Renal function was evaluated by quantitation of serum creatinine. The toxin conjugate induced apoptosis of microvascular ECs in vitro, and subtle histologic features of thrombotic microangiopathy in vivo that were enhanced by co-injection of 50 μg/kg LPS. Among LS/LPS-treated animals, loss of glomerular EC staining correlated with decreased expression of EC-specific transcripts, and impaired kidney function. Selective injury of the glomerular microvasculature with LS toxin conjugate and LPS elicits histologic features of thrombotic microangiopathy and acute kidney failure.
Collapse
Affiliation(s)
- George Haddad
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lin Fu Zhu
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - David C. Rayner
- Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Allan G. Murray
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
6
|
Wilms' tumor 1 gene modulates Fas-related death signals and anti-apoptotic functions in hepatocellular carcinoma. J Gastroenterol 2013; 48:1069-80. [PMID: 23142971 DOI: 10.1007/s00535-012-0708-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/16/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND The Wilms' tumor 1 (WT1) gene is known to be overexpressed in hepatocellular carcinoma (HCC) and to upregulate tumor growth and oncogenic potential, although the detailed mechanisms remain to be elucidated. METHODS We identified host genes involved in WT1 gene modulation of human liver cancer cell lines in vitro, and further characterized genes related to apoptosis. Moreover, we evaluated the alteration of genes by WT1 in 40 HCC and 58 non-HCC human liver samples collected at resection. RESULTS Analysis of the effect of small interfering RNAs-mediated knock-down of WT1 on apoptosis using an annexin V labeling assay, and on modulation of the activity of caspases-3, -8 and -9, indicated that WT1 has an anti-apoptotic role. We identified three apoptosis-related genes that were modulated by WT1; the cellular FLICE-inhibitory proteins (cFLIP) gene was upregulated, and Fas-associated death domain (FADD) and nuclear factor kappa B (NF-κB) were downregulated. Interestingly, knock-down of FADD or NF-κB resulted in the upregulation of WT1, and the expression of cFLIP changed in parallel with WT1 expression. We further evaluated WT1-mediated alteration of genes in HCC and non-HCC human liver samples. Both HCC and non-HCC tissues that expressed relatively high levels of WT1 showed cFLIP overexpression. CONCLUSIONS WT1 modulates cFLIP, FADD and NF-κB, and has an anti-apoptotic role in HCC. This mechanism of action of WT1 could be related to the tumor growth and oncogenic potential of HCC.
Collapse
|
7
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
8
|
Shiga toxin 1 induces on lipopolysaccharide-treated astrocytes the release of tumor necrosis factor-alpha that alter brain-like endothelium integrity. PLoS Pathog 2012; 8:e1002632. [PMID: 22479186 PMCID: PMC3315494 DOI: 10.1371/journal.ppat.1002632] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 02/23/2012] [Indexed: 01/09/2023] Open
Abstract
The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS. Hemolytic-uremic syndrome (HUS) is generally caused by Shiga toxin (Stx)-producing Escherichia coli but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Acute renal failure is the main feature of HUS, but in severe cases, patients develop neurological complications, which are usually associated with death. Although the mechanisms of neurological damage remain uncertain, alterations/injury of brain endothelial cells (ECs) which constitute the blood-brain barrier (BBB) is clear. Astrocytes (ASTs) are inflammatory cells enclosing ECs and are responsible of the normal function of the barrier. We have recently demonstrated that Stx1, one of the most common types of Stx, induce an inflammatory response in LPS-treated ASTs. We then study the effects of factors released by ASTs in response to LPS and/or Stx1 on brain-like ECs. We demonstrate that Stx1 induces in LPS-treated ASTs the release of factors that alter brain properties in ECs, including the permeability; turning them more susceptible to Stx1 toxic effects. Furthermore, they activate ECs, neutrophils (PMN) and platelets and render ECs into a proagregant state promoting PMN and platelet adhesion. Our results suggest that ASTs could influence brain ECs integrity and BBB function once Stx in combination with bacterial factors reach the brain parenchyma.
Collapse
|
9
|
Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors. BMC Genomics 2011; 12:383. [PMID: 21801446 PMCID: PMC3164646 DOI: 10.1186/1471-2164-12-383] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/30/2011] [Indexed: 11/10/2022] Open
Abstract
Background Corynebacterium ulcerans has been detected as a commensal in domestic and wild animals that may serve as reservoirs for zoonotic infections. During the last decade, the frequency and severity of human infections associated with C. ulcerans appear to be increasing in various countries. As the knowledge of genes contributing to the virulence of this bacterium was very limited, the complete genome sequences of two C. ulcerans strains detected in the metropolitan area of Rio de Janeiro were determined and characterized by comparative genomics: C. ulcerans 809 was initially isolated from an elderly woman with fatal pulmonary infection and C. ulcerans BR-AD22 was recovered from a nasal sample of an asymptomatic dog. Results The circular chromosome of C. ulcerans 809 has a total size of 2,502,095 bp and encodes 2,182 predicted proteins, whereas the genome of C. ulcerans BR-AD22 is 104,279 bp larger and comprises 2,338 protein-coding regions. The minor difference in size of the two genomes is mainly caused by additional prophage-like elements in the C. ulcerans BR-AD22 chromosome. Both genomes show a highly similar order of orthologous coding regions; and both strains share a common set of 2,076 genes, demonstrating their very close relationship. A screening for prominent virulence factors revealed the presence of phospholipase D (Pld), neuraminidase H (NanH), endoglycosidase E (EndoE), and subunits of adhesive pili of the SpaDEF type that are encoded in both C. ulcerans genomes. The rbp gene coding for a putative ribosome-binding protein with striking structural similarity to Shiga-like toxins was additionally detected in the genome of the human isolate C. ulcerans 809. Conclusions The molecular data deduced from the complete genome sequences provides considerable knowledge of virulence factors in C. ulcerans that is increasingly recognized as an emerging pathogen. This bacterium is apparently equipped with a broad and varying set of virulence factors, including a novel type of a ribosome-binding protein. Whether the respective protein contributes to the severity of human infections (and a fatal outcome) remains to be elucidated by genetic experiments with defined bacterial mutants and host model systems.
Collapse
|
10
|
Abstract
Shiga toxins and ricin are ribosome-inactivating proteins which share the property of inhibiting protein synthesis by catalytic inactivation of eukaryotic ribosomes. There is now abundant evidence that Shiga toxins and ricin induce apoptosis in epithelial, endothelial, lymphoid and myeloid cells in vitro, and in multiple organs in animals when administered these toxins. Many studies suggest that protein synthesis inhibition and apoptosis induction mediated by Shiga toxins and ricin may be dissociated. In some cells, non-enzymatic toxin components (Shiga toxin B-subunits, ricin B-chain) appear capable of inducing apoptosis. The toxins appear capable of activating components of both the extrinsic or death receptor-mediated and intrinsic or mitochondrial-mediated pathways of apoptosis induction. Although the toxins have been shown to be capable of activating several cell stress response pathways, the precise signaling mechanisms by which Shiga toxins and ricin induce apoptosis remain to be fully characterized. This chapter provides an overview of studies describing Shiga toxin- and ricin-induced apoptosis and reviews evidence that signaling through the ribotoxic stress response and the unfolded protein response may be involved in apoptosis induction in some cell types.
Collapse
|
11
|
Signaling through C/EBP homologous protein and death receptor 5 and calpain activation differentially regulate THP-1 cell maturation-dependent apoptosis induced by Shiga toxin type 1. Infect Immun 2010; 78:3378-91. [PMID: 20515924 DOI: 10.1128/iai.00342-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Shiga toxins (Stxs) induce apoptosis via activation of the intrinsic and extrinsic pathways in many cell types. Toxin-mediated activation of the endoplasmic reticulum (ER) stress response was shown to be instrumental in initiating apoptosis in THP-1 myeloid leukemia cells. THP-1 cells responded to Shiga toxin type 1 (Stx1) in a cell maturation-dependent manner, undergoing rapid apoptosis in the undifferentiated state but reduced and delayed apoptosis in differentiated cells. The onset of apoptosis was associated with calpain activation and changes in expression of C/EBP homologous protein (CHOP), Bcl-2 family members, and death receptor 5 (DR5). Ligation of DR5 by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) activates the extrinsic pathway of apoptosis. We show here that expression of TRAIL and DR5 is increased by Stx1 treatment. Addition of exogenous TRAIL enhances, and anti-TRAIL antibodies inhibit, Stx1-induced apoptosis of THP-1 cells. Silencing of CHOP or DR5 expression selectively prevented caspase activation, loss of mitochondrial membrane potential, and Stx1-induced apoptosis of macrophage-like THP-1 cells. In contrast, the rapid kinetics of apoptosis induction in monocytic THP-1 cells correlated with rates of calpain cleavage. The results suggest that CHOP-DR5 signaling and calpain activation differentially contribute to cell maturation-dependent Stx1-induced apoptosis. Inhibition of these signaling pathways may protect cells from Stx cytotoxicity.
Collapse
|
12
|
Caspase-8-mediated cleavage of Bid and protein phosphatase 2A-mediated activation of Bax are necessary for Verotoxin-1-induced apoptosis in Burkitt's lymphoma cells. Cell Signal 2010; 22:467-75. [DOI: 10.1016/j.cellsig.2009.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/20/2022]
|
13
|
Abstract
Shiga toxins comprise a family of structurally and functionally related protein toxins expressed by Shigella dysenteriae serotype 1 and multiple serotypes of Escherichia coli. While the capacity of Shiga toxins to inhibit protein synthesis by catalytic inactivation of eukaryotic ribosomes has been well described, it is also apparent that Shiga toxins trigger apoptosis in many cell types. This review presents evidence that Shiga toxins induce apoptosis of epithelial, endothelial, leukocytic, lymphoid and neuronal cells. Apoptotic signaling pathways activated by the toxins are reviewed with an emphasis on signaling mechanisms that are shared among different cell types. Data suggesting that Shiga toxins induce apoptosis through the endoplasmic reticulum stress response and clinical evidence demonstrating apoptosis in humans infected with Shiga toxin-producing bacteria are briefly discussed. The potential for use of Shiga toxins to induce apoptosis in cancer cells is briefly reviewed.
Collapse
Affiliation(s)
- Vernon L Tesh
- Department of Microbial & Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| |
Collapse
|
14
|
Li JH, D'Alessio A, Pober JS. Lipopolysaccharide can trigger a cathepsin B-dependent programmed death response in human endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1124-35. [PMID: 19661440 DOI: 10.2353/ajpath.2009.090113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, we examined the mechanisms that contribute to lipopolysaccharide (LPS)-induced death responses in cultured human umbilical vein endothelial cells (HUVECs). In the presence of the protein synthesis inhibitor cycloheximide, LPS primarily induces caspase-dependent apoptotic cell death of HUVECs, which is blocked by siRNA-mediated knockdown of myeloid differentiation factor 88 adaptor protein but not of Toll-like receptor-associated interferon-inducing factor. Knockdown of Fas-associated death domain protein (FADD) by either siRNA or overexpression of a truncated version of FADD that lacks the N-terminal death effector domain (FADD(DN)) increases the sensitivity of HUVECs to LPS plus cycloheximide-mediated death. However, based on the use of proteinase inhibitors, cell death changes from being principally caspase-dependent to being principally cathepsin B (Cat B)-dependent. Knockdown of cellular FLICE inhibitory protein potentiates the caspase-dependent pathway but does not activate the Cat B-dependent death response. Knockdown of either myeloid differentiation factor 88 or Toll-like receptor-associated interferon-inducing factor expression does not affect the LPS-triggered Cat B death response in FADD-deficient HUVECs. Finally, in the presence of either the phosphatidylinositol 3 kinase inhibitor LY294002 or the inflammatory cytokine interferon-gamma, LPS activates both caspase- and Cat B-dependent death pathways. We conclude that LPS can activate a Cat-B-dependent programmed death response in human endothelial cells that is independent of both myeloid differentiation factor 88 and Toll-like receptor-associated interferon-inducing factor, is blocked by both FADD and phosphatidylinositol 3 kinase, and is potentiated by interferon-gamma.
Collapse
Affiliation(s)
- Jie H Li
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8089, USA
| | | | | |
Collapse
|
15
|
Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect Immun 2008; 76:3679-89. [PMID: 18541659 DOI: 10.1128/iai.01581-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Shiga toxin 1 (Stx1) and Stx2 produced by Escherichia coli O157 are known to be cytotoxic to Vero and HeLa cells by inhibiting protein synthesis and by inducing apoptosis. In the present study, we have demonstrated that 10 ng/ml Stx2 induced DNA fragmentation in human brain microvascular endothelial cells (HBMEC), with cleavage activation of caspase-3, -6, -8, and -9. A microarray approach used to search for apoptotic potential signals in response to Stx2 revealed that Stx2 treatment induced a marked upregulation of C/EBP homologous protein (CHOP)/growth arrest and DNA damage-inducible protein 153 (GADD153). Increased CHOP expression was dependent on enzymatically active Stx1. Knockdown of CHOP mRNA reduced the activation of caspase-3 and prevented apoptotic cell death. These results suggest that Stx2-induced apoptosis is mediated by CHOP in HBMEC and involves activation of both the intrinsic and extrinsic pathways of apoptosis.
Collapse
|
16
|
Synergistic interactions between interferon-gamma and TRAIL modulate c-FLIP in endothelial cells, mediating their lineage-specific sensitivity to thrombotic thrombocytopenic purpura plasma-associated apoptosis. Blood 2008; 112:340-9. [PMID: 18339897 DOI: 10.1182/blood-2007-10-119552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microvascular endothelial cell (MVEC) injury coupled to progression of platelet microthrombi facilitated by ADAMTS13 deficiency is characteristic of idiopathic and HIV-linked thrombotic thrombocytopenic purpura (TTP). Cytokines capable of inducing MVEC apoptosis in vitro are up-regulated in both TTP and HIV infection. However, the concentrations of these cytokines required to elicit EC apoptosis in vitro are 2- to 3-log-fold greater than present in patient plasmas. We report that clinically relevant levels of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interferon (IFN)-gamma act in synergy to induce apoptosis in dermal MVECs, but have no effect on large-vessel ECs or pulmonary MVECs. This reflects the tissue distribution of TTP lesions in vivo. Sensitivity to TTP plasma or TRAIL plus IFN-gamma is paralleled by enhanced ubiquitination of the caspase-8 regulator cellular FLICE-like inhibitory protein (c-FLIP), targeting it for proteasome degradation. c-FLIP silencing with anti-FLIP short interfering RNA (siRNA) in pulmonary MVECs rendered them susceptible to TTP plasma- and cytokine-mediated apoptosis, while up-regulation of c-FLIP by gene transfer partially protected dermal MVECs from such injury. TTP plasma-mediated apoptosis appears to involve cytokine-induced acceleration of c-FLIP degradation, sensitizing cells to TRAIL-mediated caspase-8 activation and cell death. Suppression of TRAIL or modulation of immunoproteasome activity may have therapeutic relevance in TTP.
Collapse
|
17
|
Damico RL, Chesley A, Johnston L, Bind EP, Amaro E, Nijmeh J, Karakas B, Welsh L, Pearse DB, Garcia JGN, Crow MT. Macrophage migration inhibitory factor governs endothelial cell sensitivity to LPS-induced apoptosis. Am J Respir Cell Mol Biol 2008; 39:77-85. [PMID: 18239193 DOI: 10.1165/rcmb.2007-0248oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human endothelial cells (EC) are typically resistant to the apoptotic effects of stimuli associated with lung disease. The determinants of this resistance remain incompletely understood. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by human pulmonary artery EC (HPAEC). Its expression increases in response to various death-inducing stimuli, including lipopolysaccharide (LPS). We show here that silencing MIF expression by RNA interference (MIF siRNA) dramatically reduces MIF mRNA expression and the LPS-induced increase in MIF protein levels, thereby sensitizing HPAECs to LPS-induced cell death. Addition of recombinant human MIF (rhMIF) protein prevents the death-sensitizing effect of MIF siRNA. A common mediator of apoptosis resistance in ECs is the death effector domain (DED)-containing protein, FLIP (FLICE-like inhibitory protein). We show that LPS induces a transcription-independent increase in the short isoform of FLIP (FLIP(s)). This increase is blocked by MIF siRNA but restored with the addition of recombinant MIF protein (rHMIF). While FLIP(s) siRNA also sensitizes HPAECs to LPS-induced death, the addition of rhMIF does not affect this sensitization, placing MIF upstream of FLIP(s) in preventing HPAEC death. These studies demonstrate that MIF is an endogenous pro-survival factor in HPAECs and identify a novel mechanism for its role in apoptosis resistance through the regulation of FLIP(s). These results show that MIF can protect vascular endothelial cells from inflammation-associated cell damage.
Collapse
Affiliation(s)
- Rachel L Damico
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang HL, Akinci IO, Baker CM, Urich D, Bellmeyer A, Jain M, Chandel NS, Mutlu GM, Budinger GRS. The intrinsic apoptotic pathway is required for lipopolysaccharide-induced lung endothelial cell death. THE JOURNAL OF IMMUNOLOGY 2007; 179:1834-41. [PMID: 17641050 DOI: 10.4049/jimmunol.179.3.1834] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
LPS has been implicated in the pathogenesis of endothelial cell death associated with Gram-negative bacterial sepsis. The binding of LPS to the TLR-4 on the surface of endothelial cells initiates the formation of a death-inducing signaling complex at the cell surface. The subsequent signaling pathways that result in apoptotic cell death remain unclear and may differ among endothelial cells in different organs. We sought to determine whether LPS and cycloheximide-induced cell death in human lung microvascular endothelial cells (HmVECs) was dependent upon activation of the intrinsic apoptotic pathway and the generation of reactive oxygen species. We found that cells overexpressing the anti-apoptotic protein Bcl-X(L) were resistant to LPS and cycloheximide-induced death and that the proapoptotic Bcl-2 protein Bid was cleaved following treatment with LPS. The importance of Bid was confirmed by protection of Bid-deficient (bid(-/-)) mice from LPS-induced lung injury. Neither HmVECs treated with the combined superoxide dismutase/catalase mimetic EUK-134 nor HmVECs depleted of mitochondrial DNA (rho(0) cells) were protected against LPS and cycloheximide-induced death. We conclude that LPS and cycloheximide-induced death in HmVECs requires the intrinsic cell death pathway, but not the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Helena L Wang
- Division of Pulmonary and Critical Care Medicine, Loyola University, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Imao M, Nagaki M, Moriwaki H. Dual effects of heat stress on tumor necrosis factor-alpha-induced hepatocyte apoptosis in mice. J Transl Med 2006; 86:959-67. [PMID: 16832353 DOI: 10.1038/labinvest.3700451] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The major heat shock protein, HSP70, plays a critical role in cell survival in response to stress, possibly by inhibiting a number of antisurvival pathways. However, heat stress (HS) and HSPs also sensitize cells to certain apoptotic stimuli, such as TNF-alpha. To clarify the relations between HS and apoptosis, we examined the differential effects of the intensity of HS on liver injury and apoptosis induced by TNF-alpha in mice. TNF-alpha was injected into D-galactosamine (GalN)-sensitized mice that were pretreated with or without HS. Liver injury was assessed biochemically and histologically. In GalN-sensitized mice, application of HS for 7 days led to significant enhancement of TNF-alpha-induced hepatotoxicity, despite upregulation of HSP70 in the liver. In contrast, application of HS for 1 day led to attenuation of TNF-alpha-induced liver injury. Repeated HS decreased the levels of the FLICE inhibitory protein short (FLIP(S)) and activated caspase-8 in the liver. The caspase-8 inhibitor Z-IETD-FMK effectively protected both the nontreated and HS-pretreated mice from the hepatotoxicity induced by GalN/TNF-alpha. HS shows dual effects on TNF-alpha-induced hepatocyte apoptosis. Exposure to repeated HS, but not to single HS, leads to enhancement of TNF-alpha-induced hepatocyte apoptosis via the interaction of FLIP and caspase-8.
Collapse
Affiliation(s)
- Motohiro Imao
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | |
Collapse
|
20
|
Szperka ME, Connor EE, Paape MJ, Williams JL, Bannerman DD. Characterization of bovine FAS-associated death domain gene. Anim Genet 2005; 36:63-6. [PMID: 15670133 DOI: 10.1111/j.1365-2052.2004.01207.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The FAS-associated death domain (FADD) protein is an adapter/signaling molecule that has been shown to function in human cells to promote apoptosis and to inhibit NF-kappaB activation. Because of the critical role that apoptosis and NF-kappaB play in a variety of disease states, we mapped the bovine FADD gene, sequenced bovine FADD cDNA, and characterized its expression in endothelial cells (EC). Sequencing of bovine FADD revealed approximately 65 and 58% amino acid sequence identity to its human and murine homologues, respectively. Bovine FADD was mapped to chromosome 29 by radiation hybrid mapping. In addition, the functionality of bovine FADD was studied. Expression of a bovine FADD dominant-negative construct blocked bacterial lipopolysaccharide (LPS)- and TNF-alpha-induced apoptosis in bovine EC consistent with previous studies of human FADD. In contrast to human FADD, elevated expression of bovine FADD had no effect on LPS- or TNF-alpha-induced upregulation of NF-kappaB-dependent gene products as assayed by E-selectin expression. Thus, while the role of FADD in mediating apoptosis is conserved across species, its role in regulating NF-kappaB-dependent gene expression is not.
Collapse
Affiliation(s)
- M E Szperka
- Bovine Functional Genomics Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, USA
| | | | | | | | | |
Collapse
|
21
|
Nakayama K, Pergolizzi RG, Crystal RG. Gene Transfer–Mediated Pre-mRNA Segmental Trans-splicing As a Strategy to Deliver Intracellular Toxins for Cancer Therapy. Cancer Res 2005. [DOI: 10.1158/0008-5472.254.65.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Virus-mediated transfer of genes coding for intracellular toxins holds promise for cancer therapy, but the inherent toxicity of such vectors make them a risk to normal tissues and a challenge to produce due to the intrinsic dilemma that expression of toxin molecules kills producer cells. We employed pre-mRNA segmental trans-splicing (STS), in which two engineered DNA fragments coding for 5′ “donor” and 3′ “acceptor” segments of a toxin gene, respectively, are expressed by viral vectors. When co-delivered to target cells, the two vectors generate two toxin pre-mRNA fragments which are spliced by the target cell machinery to produce functional mRNA and toxin. To test this approach, we used an enzymatic fragment of Shigatoxin1A1 (STX1A1) known to provoke apoptotic cell death. Two adenovirus vectors, Shigatoxin1A1 donor (AdStx1A1Do) and Shigatoxin1A1 acceptor (AdStx1A1Ac), respectively, were used to deliver the Stx1A1 gene fragments. HeLa, HEp2, and A549 cells transfected with AdStx1A1Do and AdStx1A1Ac had a dose-dependent reduction in viability and inhibition of protein synthesis. Intratumoral injection of AdStx1A1Do and AdStx1A1Ac into preexisting HeLa, Hep2, and A549 tumors in immunodeficient mice revealed significant inhibition of tumor growth. There was no evidence of liver damage, suggesting that there was no leakage of vector or toxin from the site of injection following intratumoral injection of AdStx1A1Do and AdStx1A1Ac. These results suggest that the obstacles preventing gene transfer of intracellular toxins for local cancer therapy could be overcome by pre-mRNA segmental trans-splicing.
Collapse
Affiliation(s)
- Katsutoshi Nakayama
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York
| | - Robert G. Pergolizzi
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
22
|
Bannerman DD, Eiting KT, Winn RK, Harlan JM. FLICE-like inhibitory protein (FLIP) protects against apoptosis and suppresses NF-kappaB activation induced by bacterial lipopolysaccharide. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1423-31. [PMID: 15466406 PMCID: PMC1618633 DOI: 10.1016/s0002-9440(10)63400-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial lipopolysaccharide (LPS) via its activation of Toll-like receptor-4 contributes to much of the vascular injury/dysfunction associated with gram-negative sepsis. Inhibition of de novo gene expression has been shown to sensitize endothelial cells (EC) to LPS-induced apoptosis, the onset of which correlates with decreased expression of FLICE-like inhibitory protein (FLIP). We now have data that conclusively establish a role for FLIP in protecting EC against LPS-induced apoptosis. Overexpression of FLIP protected against LPS-induced apoptosis, whereas down-regulation of FLIP using antisense oligonucleotides sensitized EC to direct LPS killing. Interestingly, FLIP overexpression suppressed NF-kappaB activation induced by LPS, but not by phorbol ester, suggesting a specific role for FLIP in mediating LPS activation. Conversely, mouse embryo fibroblasts (MEF) obtained from FLIP -/- mice showed enhanced LPS-induced NF-kappaB activation relative to those obtained from wild-type mice. Reconstitution of FLIP-/- MEF with full-length FLIP reversed the enhanced NF-kappaB activity elicited by LPS in the FLIP -/- cells. Changes in the expression of FLIP had no demonstrable effect on other known LPS/Tlr-4-activated signaling pathways including the p38, Akt, and Jnk pathways. Together, these data support a dual role for FLIP in mediating LPS-induced apoptosis and NF-kappaB activation.
Collapse
Affiliation(s)
- Douglas D Bannerman
- Bovine Functional Genomics Laboratory, USDA Agricultural Research Service/Animal and Natural Resources Institute, Beltsville Agricultural Research Center-East, Bldg. 1040, Room 2, Beltsville, MD 20705-2350, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
The enteric pathogens Shigella dysenteriae serotype 1 and Shiga toxin-producing Escherichia coli (STEC) cause bloody diarrheal diseases that may progress to life-threatening extraintestinal complications. Although the S. dysenteriae and STEC differ in the expression of a number of virulence determinants, they share the capacity to produce one or more potent cytotoxins, called Shiga toxins (Stxs). Following the ingestion of the organisms, the expression of Stxs is critical for the development of vascular lesions in the colon, kidneys and central nervous system. It has been known for some time that following the intracellular routing of Stxs to the endoplasmic reticulum and nuclear membrane, the toxins translocate into the cytoplasm and target ribosomes for damage. However, numerous recent studies have shown that Stxs trigger programmed cell death signaling cascades in intoxicated cells. The mechanisms of apoptosis induction by these toxins are newly emerging, and the data published to date suggest that the toxins may signal apoptosis in different cells types via different mechanisms. Here we review the Stxs and the known mechanistic aspects of Stx-induced apoptosis, and present a model of apoptosis induction.
Collapse
Affiliation(s)
- Rama P Cherla
- Department of Medical Microbiology and Immunology, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
24
|
Erwert RD, Eiting KT, Tupper JC, Winn RK, Harlan JM, Bannerman DD. Shiga toxin induces decreased expression of the anti-apoptotic protein Mcl-1 concomitant with the onset of endothelial apoptosis. Microb Pathog 2003; 35:87-93. [PMID: 12901848 DOI: 10.1016/s0882-4010(03)00100-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Shiga toxin (Stx) has been implicated in the pathogenesis of several human and animal disease states. A key host target of Stx is the endothelial cell. Stx induces endothelial cell apoptosis through a mechanism that remains unknown. In the present report, we demonstrate that Stx-1 and Stx-2 inhibit endothelial cell expression of the anti-apoptotic Bcl-2 family member, Mcl-1. Decreased expression of Mcl-1 preceded the onset of Stx-induced apoptosis. Further, Stx-1-induced decrements in Mcl-1 expression correlated in a dose-dependent manner with sensitization to Stx-1-induced apoptosis. Finally, inhibition of Mcl-1 degradation with the proteasome inhibitor, lactacystin, protected against Stx-1-induced apoptosis. These combined data suggest a role for Mcl-1 in protecting endothelial cells against Stx-1-induced apoptosis.
Collapse
Affiliation(s)
- Ryan D Erwert
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
25
|
Bannerman DD, Goldblum SE. Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis. Am J Physiol Lung Cell Mol Physiol 2003; 284:L899-914. [PMID: 12736186 DOI: 10.1152/ajplung.00338.2002] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gram-negative bacterial sepsis remains a common, life-threatening event. The prognosis for patients who develop sepsis-related complications, including the development of acute respiratory distress syndrome (ARDS), remains poor. A common finding among patients and experimental animals with sepsis and ARDS is endothelial injury and/or dysfunction. A component of the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS) or endotoxin, has been implicated in the pathogenesis of much of the endothelial cell injury and/or dysfunction associated with these disease states. LPS is a highly proinflammatory molecule that elicits a wide array of endothelial responses, including the upregulation of cytokines, adhesion molecules, and tissue factor. In addition to activation, LPS induces endothelial cell death that is apoptotic in nature. This review summarizes the evidence for LPS-induced vascular endothelial injury and examines the molecular signaling pathways that activate and inhibit LPS-induced endothelial apoptosis. Furthermore, the role of apoptotic signaling molecules in mediating LPS-induced activation of endothelial cells will be considered.
Collapse
Affiliation(s)
- Douglas D Bannerman
- Immunology and Disease Resistance Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville Maryland 20705, USA.
| | | |
Collapse
|