1
|
Arnaud T, Rodrigues-Lima F, Viguier M, Deshayes F. Interplay between EGFR, E-cadherin, and PTP1B in epidermal homeostasis. Tissue Barriers 2022:2104085. [PMID: 35875939 PMCID: PMC10364651 DOI: 10.1080/21688370.2022.2104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Maintaining epithelial homeostasis is crucial to allow embryo development but also the protective barrier which is ensured by the epidermis. This homeostasis is regulated through the expression of several molecules among which EGFR and E-cadherin which are of major importance. Indeed, defects in the regulation of these proteins lead to abnormalities in cell adhesion, proliferation, differentiation, and migration. Hence, regulation of these two proteins is of the utmost importance as they are involved in numerous skin pathologies and cancers. In the last decades it has been described several pathways of regulation of these two proteins and notably several mechanisms of cross-regulation between these partners. In this review, we aimed to describe the current understanding of the regulation of EGFR and interactions between EGFR and E-cadherin and, in particular, the implication of these cross-regulations in epithelium homeostasis. We pay particular attention to PTP1B, a phosphatase involved in the regulation of EGFR.
Collapse
Affiliation(s)
- Tessa Arnaud
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | | | | | | |
Collapse
|
2
|
Sachs M, Wetzel S, Reichelt J, Sachs W, Schebsdat L, Zielinski S, Seipold L, Heintz L, Müller SA, Kretz O, Lindenmeyer M, Wiech T, Huber TB, Lüllmann-Rauch R, Lichtenthaler SF, Saftig P, Meyer-Schwesinger C. ADAM10-Mediated Ectodomain Shedding Is an Essential Driver of Podocyte Damage. J Am Soc Nephrol 2021; 32:1389-1408. [PMID: 33785583 PMCID: PMC8259650 DOI: 10.1681/asn.2020081213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocytes embrace the glomerular capillaries with foot processes, which are interconnected by a specialized adherens junction to ultimately form the filtration barrier. Altered adhesion and loss are common features of podocyte injury, which could be mediated by shedding of cell-adhesion molecules through the regulated activity of cell surface-expressed proteases. A Disintegrin and Metalloproteinase 10 (ADAM10) is such a protease known to mediate ectodomain shedding of adhesion molecules, among others. Here we evaluate the involvement of ADAM10 in the process of antibody-induced podocyte injury. METHODS Membrane proteomics, immunoblotting, high-resolution microscopy, and immunogold electron microscopy were used to analyze human and murine podocyte ADAM10 expression in health and kidney injury. The functionality of ADAM10 ectodomain shedding for podocyte development and injury was analyzed, in vitro and in vivo, in the anti-podocyte nephritis (APN) model in podocyte-specific, ADAM10-deficient mice. RESULTS ADAM10 is selectively localized at foot processes of murine podocytes and its expression is dispensable for podocyte development. Podocyte ADAM10 expression is induced in the setting of antibody-mediated injury in humans and mice. Podocyte ADAM10 deficiency attenuates the clinical course of APN and preserves the morphologic integrity of podocytes, despite subepithelial immune-deposit formation. Functionally, ADAM10-related ectodomain shedding results in cleavage of the cell-adhesion proteins N- and P-cadherin, thus decreasing their injury-related surface levels. This favors podocyte loss and the activation of downstream signaling events through the Wnt signaling pathway in an ADAM10-dependent manner. CONCLUSIONS ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.
Collapse
Affiliation(s)
- Marlies Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Julia Reichelt
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Schebsdat
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Seipold
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Lukas Heintz
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan A. Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
4
|
Luo K, Tang Y, Gao X, Tan J, Yu B, Xu J, Luo F. Inhibition of protein-tyrosine phosphatase 1B phosphorylation enhances early adhesion of mesenchymal stem cells to facilitate fabrication of tissue-engineered bone. J Tissue Eng Regen Med 2020; 14:575-587. [PMID: 32061178 DOI: 10.1002/term.3021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
Enhancement of cell-matrix adhesion is preferable and crucial in various fields of tissue engineering. Integrins are important receptors that facilitate cell-matrix adhesion, mediated by intracellular molecules and crosstalk with the cadherin adhesion pathway, which mainly facilitates cell-cell adhesion. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a pivot in the crosstalk between the cadherin adhesion pathway and the integrin adhesion pathway. The phosphorylation state of PTP1B tyrosine-152 (Y152) plays a central role in balancing the two different cell adhesion forms. In this study, a PTP1B Y152 region mimicking (152RM) peptide was designed to decrease the phosphorylation of PTP1B Y152 via competitive inhibition. As a result, the dissociation of cadherin complexes and the release of PTP1B from cadherin had sharply increased, and Src, an important intracellular component of integrin, was activated, indicating that the cadherin adhesion pathway was inhibited, whereas the integrin adhesion pathway was enhanced. Moreover, upon treatment with the 152RM peptide, we observed that the early adhesion of human bone marrow-derived mesenchymal stem cells (MSCs) was accelerated and the anchoring of MSCs on the surface of integrin ligands was enhanced by an enhanced matrix adhesion ability of MSCs themselves. Importantly, the 152RM peptide significantly promoted the adhesion efficiency of MSCs in the selective cell retention technology, which fabricates instant bone implants in clinical settings, to stimulate osteogenesis in vivo.
Collapse
Affiliation(s)
- Keyu Luo
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Yong Tang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Xiaoliang Gao
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jiulin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Bo Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| |
Collapse
|
5
|
Campbell H, Heidema C, Pilarczyk DG, DeMali KA. SHP-2 is activated in response to force on E-cadherin and dephosphorylates vinculin Y822. J Cell Sci 2018; 131:jcs.216648. [PMID: 30478196 DOI: 10.1242/jcs.216648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022] Open
Abstract
The response of cells to mechanical inputs is a key determinant of cell behavior. In response to external forces, E-cadherin initiates signal transduction cascades that allow the cell to modulate its contractility to withstand the force. Much attention has focused on identifying the E-cadherin signaling pathways that promote contractility, but the negative regulators remain undefined. In this study, we identify SHP-2 as a force-activated phosphatase that negatively regulates E-cadherin force transmission by dephosphorylating vinculin Y822. To specifically probe a role for SHP-2 in E-cadherin mechanotransduction, we mutated vinculin so that it retains its phosphorylation but cannot be dephosphorylated. Cells expressing the mutant vinculin have increased contractility. This work provides a mechanism for inactivating E-cadherin mechanotransduction and provides a new method for specifically targeting the action of phosphatases in cells.
Collapse
Affiliation(s)
- Hannah Campbell
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christy Heidema
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daisy G Pilarczyk
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Kathuria H, Millien G, McNally L, Gower AC, Tagne JB, Cao Y, Ramirez MI. NKX2-1-AS1 negatively regulates CD274/PD-L1, cell-cell interaction genes, and limits human lung carcinoma cell migration. Sci Rep 2018; 8:14418. [PMID: 30258080 PMCID: PMC6158174 DOI: 10.1038/s41598-018-32793-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022] Open
Abstract
The function of most long noncoding RNAs (lncRNAs) is unknown. However, recent studies reveal important roles of lncRNAs in regulating cancer-related pathways. Human antisense lncRNA-NKX2-1-AS1 partially overlaps the NKX2-1/TTF1 gene within chromosomal region 14q13.3. Amplification of this region and/or differential expression of genes therein are associated with cancer progression. Herein we show higher levels of NKX2-AS1 and NKX2-1 in lung adenocarcinomas relative to non-tumor controls but no correlation between NKX2-1-AS1 and NKX2-1 levels across specimens, or with amplification of the 14q13.3 region, suggesting that NKX2-1-AS1 and NKX2-1 are independently regulated. Loss-and-gain of function experiments showed that NKX2-1-AS1 does not regulate NKX2-1 expression, or nearby genes, but controls genes in trans. Genes up-regulated by NKX2-1-AS1-knockdown belong to cell adhesion and PD-L1/PD-1 checkpoint pathways. NKX2-1-AS1 negatively regulates endogenous CD274/PD-L1, a known target of NKX2-1, and the transcriptional activity of -1kb-CD274 promoter-reporter construct. Furthermore, NKX2-1-AS1 interferes with NKX2-1 protein binding to the CD274-promoter, likely by NKX2-1 protein-NKX2-1-AS1 interactions. Finally, NKX2-1-AS1 negatively regulates cell migration and wound healing, but not proliferation or apoptosis. These findings support potential roles of NKX2-1-AS1 in limiting motility and immune system evasion of lung carcinoma cells, highlighting a novel mechanism that may influence tumorigenic capabilities of lung epithelial cells.
Collapse
Affiliation(s)
- Hasmeena Kathuria
- The Pulmonary Center, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Guetchyn Millien
- The Pulmonary Center, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Liam McNally
- The Pulmonary Center, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Jean-Bosco Tagne
- The Pulmonary Center, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Yuxia Cao
- The Pulmonary Center, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Maria I Ramirez
- The Pulmonary Center, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA.
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
7
|
Carmichael JC, Yokota H, Craven RC, Schmitt A, Wills JW. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B. PLoS Pathog 2018; 14:e1007054. [PMID: 29742155 PMCID: PMC5962101 DOI: 10.1371/journal.ppat.1007054] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/21/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease. It is estimated that 67% of the global population is infected with herpes simplex virus type 1 (HSV-1). This virus resides in sensory neurons in a quiescent state but periodically reactivates, producing virus particles that travel down the axon to infect epithelial cells of the skin, where it can be transmitted to additional people. To avoid neutralizing antibodies, herpesviruses have evolved mechanisms for moving directly from one cell to another through their sites of intimate contact; however, the mechanism of cell-to-cell spread is poorly understood. Studies of HSV-1 mutants have implicated numerous viral proteins, but the necessary cellular factors are unknown except for the one that the virus uses to enter cells. Our experiments have identified a cellular enzyme (PTP1B, a tyrosine phosphatase) that is dispensable for the production of infectious virions but is critically important for the cell-to-cell spreading mechanism. Promising drugs targeting PTP1B have already been tested in early clinical trials for possible treatment of obesity and type-2 diabetes, and thus, our study may have immediate utility for attenuating HSV-1 reactivation disease in immunocompromised patients.
Collapse
Affiliation(s)
- Jillian C. Carmichael
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Rebecca C. Craven
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States of America
| | - Anthony Schmitt
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - John W. Wills
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
α-catenin is a scaffolding molecule that can bind F-actin and other cytoskeletal proteins. It is best known for its contribution to cell-cell adhesion. In this issue of Developmental Cell, Vassilev et al. (2017) identify an extrajunctional pool of α-catenin that regulates RhoA signaling and controls directional migration of single cells.
Collapse
Affiliation(s)
- Srikanth Budnar
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Bertocchi C, Wang Y, Ravasio A, Hara Y, Wu Y, Sailov T, Baird MA, Davidson MW, Zaidel-Bar R, Toyama Y, Ladoux B, Mege RM, Kanchanawong P. Nanoscale architecture of cadherin-based cell adhesions. Nat Cell Biol 2017; 19:28-37. [PMID: 27992406 PMCID: PMC5421576 DOI: 10.1038/ncb3456] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
Multicellularity in animals requires dynamic maintenance of cell-cell contacts. Intercellularly ligated cadherins recruit numerous proteins to form supramolecular complexes that connect with the actin cytoskeleton and support force transmission. However, the molecular organization within such structures remains unknown. Here we mapped protein organization in cadherin-based adhesions by super-resolution microscopy, revealing a multi-compartment nanoscale architecture, with the plasma-membrane-proximal cadherin-catenin compartment segregated from the actin cytoskeletal compartment, bridged by an interface zone containing vinculin. Vinculin position is determined by α-catenin, and following activation, vinculin can extend ∼30 nm to bridge the cadherin-catenin and actin compartments, while modulating the nanoscale positions of the actin regulators zyxin and VASP. Vinculin conformational activation requires tension and tyrosine phosphorylation, regulated by Abl kinase and PTP1B phosphatase. Such modular architecture provides a structural framework for mechanical and biochemical signal integration by vinculin, which may differentially engage cadherin-catenin complexes with the actomyosin machinery to regulate cell adhesions.
Collapse
Affiliation(s)
| | - Yilin Wang
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Andrea Ravasio
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Yusuke Hara
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Yao Wu
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Talgat Sailov
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Michelle A. Baird
- National High Magnetic Field Laboratory, The Florida State University, Tallahassee, FL, USA, 32310
| | - Michael W. Davidson
- National High Magnetic Field Laboratory, The Florida State University, Tallahassee, FL, USA, 32310
- Department of Biological Science, The Florida State University, Tallahassee, FL, USA, 32306
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
- Department of Biomedical Engineering, National University of Singapore, Republic of Singapore, 117583
| | - Yusuke Toyama
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore, 117543
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore, 117604
| | - Benoit Ladoux
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
- Institut Jacques Monod, Université Paris Diderot and CNRS UMR 7592, Paris, France
| | - Rene-Marc Mege
- Institut Jacques Monod, Université Paris Diderot and CNRS UMR 7592, Paris, France
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
- Department of Biomedical Engineering, National University of Singapore, Republic of Singapore, 117583
| |
Collapse
|
10
|
Benham-Pyle BW, Sim JY, Hart KC, Pruitt BL, Nelson WJ. Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis. eLife 2016; 5. [PMID: 27782880 PMCID: PMC5104517 DOI: 10.7554/elife.19799] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 11/13/2022] Open
Abstract
Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated transcription in mammalian MDCK epithelial cells. Under these conditions, cells accumulated in S/G2 (independent of DNA damage) but did not divide. Activating β-catenin through Casein Kinase I inhibition or Wnt3A addition increased β-catenin-mediated transcription and strain-induced accumulation of cells in S/G2. Significantly, only the combination of mechanical strain and Wnt/β-catenin activation triggered cells in S/G2 to divide. These results indicate that strain-induced Src phosphorylation of β-catenin and Wnt-dependent β-catenin stabilization synergize to increase β-catenin-mediated transcription to levels required for mitosis. Thus, local Wnt signaling may fine-tune the effects of global mechanical strain to restrict cell divisions during tissue development and homeostasis. DOI:http://dx.doi.org/10.7554/eLife.19799.001 Tissues and organs can both produce and respond to physical forces. For example, the lungs expand and contract; the heart pumps blood; and bones and muscles grow or shrink depending on how much they are used. These responses are possible because cells contain proteins that can respond to physical forces. One of the best studied of these is a protein called β-catenin, which increases the activity of genes that trigger cells to divide to promote the expansion of tissues. β-catenin is over-active in many types of cancer cells where it contributes to tumor growth. In addition to being switched on by mechanical force, β-catenin is also activated when cells detect a signal molecule called Wnt. Cells cycle through a series of stages known as the cell cycle to ensure that they only divide when they are fully prepared to do so. Benham-Pyle et al. investigated if physical force and Wnt activate β-catenin in the same way or if they have different effects on cell division. The experiments were conducted on dog kidney cells that had left the cell cycle and had therefore temporarily stopped dividing. Physical forces, such as stretching, resulted in β-catenin being modified by an enzyme called SRC kinase, which allowed the cells to re-enter the cell cycle. On the other hand, Wnt stabilized β-catenin and temporarily increased the number of cell divisions. When mechanical stretch and Wnt signaling were combined, the cells were more likely to re-enter the cell cycle and divide compared to either stimulus alone. These data suggest that physical force and Wnt signaling affect β-catenin differently and that they can therefore have a greater effect on cell or tissue growth when they act together than on their own. The findings of Benham-Pyle et al. show that β-catenin is not simply switched on or off, but can have different levels of activity depending on the input the cells are receiving. Future experiments will test whether these mechanisms also exist in three-dimensional tissues, which will help us understand how organs develop. DOI:http://dx.doi.org/10.7554/eLife.19799.002
Collapse
Affiliation(s)
| | - Joo Yong Sim
- Department of Mechanical Engineering, Stanford University, Stanford, United States
| | - Kevin C Hart
- Department of Biology, Stanford University, Stanford, United States
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - William James Nelson
- Program in Cancer Biology, Stanford University, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| |
Collapse
|
11
|
Martinez-Garay I, Gil-Sanz C, Franco SJ, Espinosa A, Molnár Z, Mueller U. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex. Development 2016; 143:2121-34. [PMID: 27151949 PMCID: PMC4920171 DOI: 10.1242/dev.132456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/26/2016] [Indexed: 11/20/2022]
Abstract
Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. Highlighted article: In radially migrating mouse cortical neurons, cadherin-mediated signaling to the cytoskeleton regulates the forward movement of the nucleus.
Collapse
Affiliation(s)
- Isabel Martinez-Garay
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Gil-Sanz
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Santos J Franco
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA Program of Pediatric Stem Cell Biology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Ana Espinosa
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Ulrich Mueller
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
13
|
Jiao ZY, Wu J, Liu C, Wen B, Zhao WZ, Du XL. Type 3 muscarinic acetylcholine receptor stimulation is a determinant of endothelial barrier function and adherens junctions integrity: role of protein-tyrosine phosphatase 1B. BMB Rep 2015; 47:552-7. [PMID: 24393526 PMCID: PMC4261512 DOI: 10.5483/bmbrep.2014.47.10.216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Indexed: 12/12/2022] Open
Abstract
The main purpose of this study was to investigate whether type 3 muscarinic acetylcholine receptor (M3R) dysfunction induced vascular hyperpermeability. Transwell system analysis showed that M3R inhibition by selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and small interfering RNA both increased endothelial permeability. Using coimmunoprecipitation and Western blot assay, we found that M3R inhibition increased VE-cadherin and β-catenin tyrosine phosphorylation without affecting their expression. Using PTP1B siRNA, we found that PTP1B was required for maintaining VE-cadherin and β-catenin protein dephosphorylation. In addition, 4-DAMP suppressed PTP1B activity by reducing cyclic adenosine monophosphate (cAMP), but not protein kinase Cα (PKCα). These data indicate that M3R preserves the endothelial barrier function through a mechanism potentially maintaining PTP1B activity, keeping the adherens junction proteins (AJPs) dephosphorylation. [BMB Reports 2014; 47(10): 552-557]
Collapse
Affiliation(s)
- Zhou-Yang Jiao
- Department of Cardiovascular Surgery, Xiehe Hospital, Huazhong University of Science and Technology, Wuhan 430022; Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing Wu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Liu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bing Wen
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Zeng Zhao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin-Ling Du
- Department of Cardiovascular Surgery, Xiehe Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Ortiz A, Lee YC, Yu G, Liu HC, Lin SC, Bilen MA, Cho H, Yu-Lee LY, Lin SH. Angiomotin is a novel component of cadherin-11/β-catenin/p120 complex and is critical for cadherin-11-mediated cell migration. FASEB J 2014; 29:1080-91. [PMID: 25466890 DOI: 10.1096/fj.14-261594] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loss of E-cadherin and up-regulation of mesenchymal cadherins, a hallmark of the epithelial-mesenchymal transition, contributes to migration and dissemination of cancer cells. Expression of human cadherin-11 (Cad11), also known as osteoblast cadherin, in prostate cancer increases the migration of prostate cancer cells. How Cad11 mediates cell migration is unknown. Using the human Cad11 cytoplasmic domain in pulldown assays, we identified human angiomotin (Amot), known to be involved in cell polarity, migration, and Hippo pathway, as a component of the Cad11 protein complex. Deletion analysis showed that the last C-terminal 10 amino acids in Cad11 cytoplasmic domain are required for Amot binding. Further, Cad11 preferentially interacts with Amot-p80 than Amot-p130 isoform and binds directly to the middle domain of Amot-p80. Cad11-Amot interaction affects Cad11-mediated cell migration, but not homophilic adhesion, as deletion of Amot binding motif of Cad11 (Cad11-ΔAmot) did not abolish Cad11-mediated cell-cell adhesion of mouse L cells, but significantly reduced Cad11-mediated cell migration of human C4-2B4 and PC3-mm2 prostate cancer cells and human HEK293T cells. Together, our studies identified Amot-p80 as a novel component of the Cad11 complex and demonstrated that Amot-p80 is critical for Cad11-mediated cell migration.
Collapse
Affiliation(s)
- Angelica Ortiz
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yu-Chen Lee
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Guoyu Yu
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hsuan-Chen Liu
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Song-Chang Lin
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Melmet Asim Bilen
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hyojin Cho
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Li-Yuan Yu-Lee
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sue-Hwa Lin
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Lysophosphatidic acid modulates the association of PTP1B with N-cadherin/catenin complex in SKOV3 ovarian cancer cells. Cell Biol Int 2014; 36:833-41. [PMID: 22582758 DOI: 10.1042/cbi20110687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
LPA (lysophosphatidic acid) is a natural phospholipid that plays important roles in promoting cancer cell proliferation, invasion and metastases. We previously reported that LPA induces ovarian cancer cell dispersal and disruption of AJ (adherens junction) through the activation of SFK (Src family kinases). In this study, we have investigated the regulatory mechanisms during the early phase of LPA-induced cell dispersal. An in vitro model of the ovarian cancer cell line SKOV3 for cell dispersal was used. LPA induces rapid AJ disruption by increasing the internalization of N-cadherin-β-catenin. By using immunoprecipitations, LPA was shown to induce increased tyrosine phosphorylation of β-catenin and alter the balance of β-catenin-bound SFK and PTP1B (phosphotyrosine phosphatase 1B). The altered balance of tyrosine kinase/phosphatase correlated with a concomitant disintegration of the β-catenin-α-catenin, but not the β-catenin-N-cadherin complex. This disintegration of β-catenin from α-catenin and the cell dispersal caused by LPA can be rescued by blocking SFK activity with the chemical inhibitor, PP2. More importantly, PP2 also restores the level of PTP1B bound to β-catenin. We propose that LPA signalling alters AJ stability by changing the dynamics of tyrosine kinase/phosphatase bound to AJ proteins. This work provides further understanding of the early signalling events regulating ovarian cancer cell dispersal and AJ disruption induced by LPA.
Collapse
|
16
|
Similarities and differences in the regulation of leukocyte extravasation and vascular permeability. Semin Immunopathol 2014; 36:177-92. [PMID: 24638889 DOI: 10.1007/s00281-014-0419-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Leukocyte extravasation is regulated and mediated by a multitude of adhesion and signaling molecules. Many of them enable the capturing and docking of leukocytes to the vessel wall. Others allow leukocytes to crawl on the apical surface of endothelial cells to appropriate sites of exit. While these steps are well understood and the adhesion molecules mediating these interactions are largely identified, a still growing number of adhesion receptors mediate the diapedesis process, the actual migration of leukocytes through the endothelial cell layer, and the underlying basement membrane. In most cases, it is not known which molecular processes they actually mediate, whether they enable the migration of leukocytes through the endothelial cell layer or whether they are involved in the destabilization of endothelial junctions. In addition, leukocytes are able to circumvent junctions and transcytose directly through the body of endothelial cells. While this latter route indeed exists, recent work has highlighted in vivo the junctional pathway as the prevalent way of leukocyte exit in various inflamed tissues. Recent work elucidating molecular mechanisms that regulate endothelial junctions and thereby leukocyte extravasation and vascular permeability will be discussed.
Collapse
|
17
|
Borrell-Pagès M, Romero JC, Badimon L. LRP5 negatively regulates differentiation of monocytes through abrogation of Wnt signalling. J Cell Mol Med 2013; 18:314-25. [PMID: 24266894 PMCID: PMC3930418 DOI: 10.1111/jcmm.12190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/17/2013] [Indexed: 01/22/2023] Open
Abstract
Molecular changes involved in cell differentiation are only partially known. Circulating inflammatory cells need to differentiate to perform specialized functions in target tissues. Here, we hypothesized that low-density lipoprotein receptor–related protein 5 (LRP5) is involved, through its participation in the canonical Wnt/β-catenin signalling, in the differentiation process of monocytic cells. To this aim, we characterized differentiation mechanisms of HL60 cells and primary human monocytes. We show that silencing the LRP5 gene increased differentiation of HL60 cells and human monocytes, suggesting that LRP5 signalling abrogates differentiation. We demonstrate that the mechanisms behind this blockade include sequestration of β-catenin at the cellular membrane, inhibition of the Wnt signalling and increase of apoptosis. We further demonstrate the involvement of LRP5 and the Wnt/β-catenin signalling in the process because cellular differentiation can be rescued by the addition of downstream Wnt target genes to the monocytic cells.
Collapse
Affiliation(s)
- Maria Borrell-Pagès
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | | | | |
Collapse
|
18
|
Song DD, Chen Y, Li ZY, Guan YF, Zou DJ, Miao CY. Protein tyrosine phosphatase 1B inhibits adipocyte differentiation and mediates TNFα action in obesity. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1368-76. [PMID: 23711960 DOI: 10.1016/j.bbalip.2013.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/29/2013] [Accepted: 05/16/2013] [Indexed: 01/06/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of systemic glucose and insulin homeostasis; however, its exact role in adipocytes is poorly understood. This study was to elucidate the role of PTP1B in adipocyte differentiation and its implication in obesity. During differentiation of 3T3-L1 white preadipocytes, PTP1B decreased progressively with adipocyte maturation. Lentivirus-mediated PTP1B overexpression in preadipocytes delayed adipocyte differentiation, shown as lack of mature adipocytes, low level of lipid accumulation, and down-regulation of main markers (PPARγ2, SREBP-1c, FAS and LPL). In contrast, lentivirus-mediated PTP1B knockdown accelerated adipocyte differentiation, demonstrated as full of mature adipocytes, high level of lipid accumulation, and up-regulation of main markers. Dominant-negative inhibition on endogenous PTP1B by lentivirus-mediated overexpression of PTP1B double mutant in Tyr-46 and Asp-181 residues (LV-D/A-Y/F) also stimulated adipogenesis, more efficient than PTP1B knockdown. Diet-induced obesity mice exhibited an up-regulation of PTP1B and TNFα accompanied by a down-regulation of PPARγ2 in white adipose tissue. TNFα recombinant protein impeded PTP1B reduction and inhibited adipocyte differentiation in vitro; this inhibitory effect was prevented by LV-D/A-Y/F. Moreover, PTP1B inhibitor treatment improved adipogenesis and suppressed TNFα in adipose tissue of obese mice. All together, PTP1B negatively regulates adipocyte development and may mediate TNFα action to impair adipocyte differentiation in obesity. Our study provides novel evidence for the importance of PTP1B in obesity and for the potential application of PTP1B inhibitors.
Collapse
Affiliation(s)
- Dan-Dan Song
- Department of Endocrinology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
19
|
Samino S, Revuelta-Cervantes J, Vinaixa M, Rodríguez MÁ, Valverde AM, Correig X. A (1)H NMR metabolic profiling to the assessment of protein tyrosine phosphatase 1B role in liver regeneration after partial hepatectomy. Biochimie 2012; 95:808-16. [PMID: 23246914 DOI: 10.1016/j.biochi.2012.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/28/2012] [Indexed: 11/24/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the tyrosine kinase growth factor signaling pathway, which is involved in major physiological mechanisms such as liver regeneration. We investigate early hepatic metabolic events produced by partial hepatectomy (PHx) for PTP1B deficient (PTP1B KO) and wild type (WT) mice using proton nuclear magnetic resonance spectroscopy. Metabolic response of the two genotypes produced 24 h upon PHx is compared using magic angle spinning high-resolution nuclear magnetic resonance ((1)H-HR-MAS-NMR) on intact liver tissues. In addition, genotype-associated metabolic profile changes were monitored during the first 48 h after PHx using high-resolution nuclear magnetic resonance ((1)H-HR-NMR) on liver extracts. A marked increase of lipid-related signals in regenerating livers was observed after 24 h PHx in either intact tissues or liver extracts studies. In spite of this common initial metabolic response, results obtained 48 h after PHx on liver extracts indicate a genotype-differential metabolic pattern. This metabolic pattern resulted in line with well known regenerative features such as more sustained cell proliferation, a better management of lipids as energy fuel and lessened liver injury for PTP1B KO mice as compared to WT. Taken together, these findings suggest the metabolic basis to the pivotal role of PTP1B in liver regeneration.
Collapse
Affiliation(s)
- Sara Samino
- Metabolomics Platform, IISPV, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Fuentes F, Zimmer D, Atienza M, Schottenfeld J, Penkala I, Bale T, Bence KK, Arregui CO. Protein tyrosine phosphatase PTP1B is involved in hippocampal synapse formation and learning. PLoS One 2012; 7:e41536. [PMID: 22844492 PMCID: PMC3402386 DOI: 10.1371/journal.pone.0041536] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/22/2012] [Indexed: 01/01/2023] Open
Abstract
ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B−/− (KO) mice compared to wild type (WT) mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1Bfl/fl–Emx1-Cre). PTP1Bfl/fl–Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole), utilized a more efficient strategy (cued), and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.
Collapse
Affiliation(s)
- Federico Fuentes
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín/CONICET, San Martín, Buenos Aires, Argentina
| | - Derek Zimmer
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marybless Atienza
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jamie Schottenfeld
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian Penkala
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tracy Bale
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kendra K. Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (COA); (KKB)
| | - Carlos O. Arregui
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín/CONICET, San Martín, Buenos Aires, Argentina
- * E-mail: (COA); (KKB)
| |
Collapse
|
21
|
Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood 2012; 120:303-13. [PMID: 22596259 DOI: 10.1182/blood-2011-09-377853] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cell (HSC) regulation is highly dependent on interactions with the marrow microenvironment. Controversy exists on N-cadherin's role in support of HSCs. Specifically, it is unknown whether microenvironmental N-cadherin is required for normal marrow microarchitecture and for hematopoiesis. To determine whether osteoblastic N-cadherin is required for HSC regulation, we used a genetic murine model in which deletion of Cdh2, the gene encoding N-cadherin, has been targeted to cells of the osteoblastic lineage. Targeted deletion of N-cadherin resulted in an age-dependent bone phenotype, ultimately characterized by decreased mineralized bone, but no difference in steady-state HSC numbers or function at any time tested, and normal recovery from myeloablative injury. Intermittent parathyroid hormone (PTH) treatment is well established as anabolic to bone and to increase marrow HSCs through microenvironmental interactions. Lack of osteoblastic N-cadherin did not block the bone anabolic or the HSC effects of PTH treatment. This report demonstrates that osteoblastic N-cadherin is not required for regulation of steady-state hematopoiesis, HSC response to myeloablation, or for rapid expansion of HSCs through intermittent treatment with PTH.
Collapse
|
22
|
Zheng LY, Zhou DX, Lu J, Zhang WJ, Zou DJ. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma. Biochem Biophys Res Commun 2012; 420:680-4. [DOI: 10.1016/j.bbrc.2012.03.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 12/27/2022]
|
23
|
Yip SC, Cotteret S, Chernoff J. Sumoylated protein tyrosine phosphatase 1B localizes to the inner nuclear membrane and regulates the tyrosine phosphorylation of emerin. J Cell Sci 2012; 125:310-6. [PMID: 22266903 DOI: 10.1242/jcs.086256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Protein tyrosine phosphatase (PTP)1B is an abundant non-transmembrane enzyme that plays a major role in regulating insulin and leptin signaling. Recently, we reported that PTP1B is inhibited by sumoylation, and that sumoylated PTP1B accumulates in a perinuclear distribution, consistent with its known localization in the endoplasmic reticulum (ER) and the contiguous outer nuclear membrane. Here, we report that, in addition to its localization at the ER, PTP1B also is found at the inner nuclear membrane, where it is heavily sumoylated. We also find that PTP1B interacts with emerin, an inner nuclear membrane protein that is known to be tyrosine phosphorylated, and that PTP1B expression levels are inversely correlated with tyrosine phosphorylation levels of emerin. PTP1B sumoylation greatly increases as cells approach mitosis, corresponding to the stage where tyrosine phosphorylation of emerin is maximal. In addition, expression of a non-sumoylatable mutant of PTP1B greatly reduced levels of emerin tyrosine phosphorylation. These results suggest that PTP1B regulates the tyrosine phosphorylation of a key inner nuclear membrane protein in a sumoylation- and cell-cycle-dependent manner.
Collapse
Affiliation(s)
- Shu-Chin Yip
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
24
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
25
|
Matsuo K, Bettaieb A, Nagata N, Matsuo I, Keilhack H, Haj FG. Regulation of brown fat adipogenesis by protein tyrosine phosphatase 1B. PLoS One 2011; 6:e16446. [PMID: 21305007 PMCID: PMC3031545 DOI: 10.1371/journal.pone.0016446] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/20/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation. METHODOLOGY/PRINCIPAL FINDINGS To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO) mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A) and sumoylation-resistant (K/R) PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR) and insulin receptor substrate 1 (IRS1) tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells. CONCLUSIONS These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B.
Collapse
Affiliation(s)
- Kosuke Matsuo
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Ahmed Bettaieb
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Naoto Nagata
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Izumi Matsuo
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Heike Keilhack
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fawaz G. Haj
- Nutrition Department, University of California Davis, Davis, California, United States of America
| |
Collapse
|
26
|
Behr B, Longaker MT, Quarto N. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev Biol 2010; 344:922-40. [PMID: 20547147 DOI: 10.1016/j.ydbio.2010.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/21/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
Premature closure of cranial sutures, which serve as growth centers for the skull vault, result in craniosynostosis. In the mouse posterior frontal (PF) suture closes by endochondral ossification, whereas sagittal (SAG) remain patent life time, although both are neural crest tissue derived. We therefore, investigated why cranial sutures of same tissue origin adopt a different fate. We demonstrated that closure of the PF suture is tightly regulated by canonical Wnt signaling, whereas patency of the SAG suture is achieved by constantly activated canonical Wnt signaling. Importantly, the fate of PF and SAG sutures can be reversed by manipulating Wnt signaling. Continuous activation of canonical Wnt signaling in the PF suture inhibits endochondral ossification and therefore, suture closure, In contrast, inhibition of canonical Wnt signaling in the SAG suture, upon treatment with Wnt antagonists results in endochondral ossification and suture closure. Thus, inhibition of canonical Wnt signaling in the SAG suture phenocopies craniosynostosis. Moreover, mice haploinsufficient for Twist1, a target gene of canonical Wnt signaling which inhibits chondrogenesis, have sagittal craniosynostosis. We propose that regulation of canonical Wnt signaling is of crucial importance during the physiological patterning of PF and SAG sutures. Importantly, dysregulation of this pathway may lead to craniosynostosis.
Collapse
Affiliation(s)
- Björn Behr
- Children's Surgical Research Program, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
27
|
Hernández MV, Wehrendt DP, Arregui CO. The protein tyrosine phosphatase PTP1B is required for efficient delivery of N-cadherin to the cell surface. Mol Biol Cell 2010; 21:1387-97. [PMID: 20181825 PMCID: PMC2854096 DOI: 10.1091/mbc.e09-10-0880] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This work shows a novel role of PTP1B in the regulation of N-cadherin trafficking. PTP1B is required for the association of p120 to the N-cadherin precursor and this event is crucial for trafficking of the complex through the early stages of the secretory pathway. PTP1B bound to mature N-cadherin promotes the association of β-catenin into the complex, the stable expression of the complex at cell surface, and cadherin-mediated adhesion. Here we show that PTP1B is also required for N-cadherin precursor trafficking through early stages of the secretory pathway. This function does not require association of PTP1B with the precursor. In PTP1B null cells, the N-cadherin precursor showed higher sensitivity to endoglycosidase H than in cells reconstituted with the wild-type enzyme. It also showed slower kinetics of ER-to-Golgi translocation and processing. Trafficking of the viral stomatitis vesicular glycoprotein, VSV-G, however, revealed no differences between PTP1B null and reconstituted cells. N-cadherin precursor complexes contained similar levels of α- and β-catenin regardless of PTP1B expression. In contrast, the associated p120 catenin (p120) was significantly reduced in absence of PTP1B expression. An N-cadherin precursor construct defective in p120 binding, and expressed in PTP1B reconstituted cells, showed higher sensitivity to endoglycosidase H and slower kinetics of processing than the wild-type precursor. Our results suggest that PTP1B promotes the association of p120 to the N-cadherin precursor, facilitating the trafficking of the complex from the ER to the Golgi complex.
Collapse
Affiliation(s)
- Mariana V Hernández
- Instituto de Investigaciones Biotecnológicas (IIB-INTECH), Universidad de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | | | | |
Collapse
|
28
|
Sahar DE, Behr B, Fong KD, Longaker MT, Quarto N. Unique modulation of cadherin expression pattern during posterior frontal cranial suture development and closure. Cells Tissues Organs 2009; 191:401-13. [PMID: 20051668 DOI: 10.1159/000272318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2009] [Indexed: 12/31/2022] Open
Abstract
Cranial suture development involves coordinated expression of multiple genes and tissue contribution from neural crest cells and paraxial mesoderm for timely sutural morphogenesis. Transcription factors, growth factors, and neural crest determinant genes play critical roles in calvarial growth ensuring normal development of the underlying brain. In vitro studies have implicated cell-cell adhesion molecules as a driving force behind suture closure. We performed cDNA microarray to study differential expression of adhesion molecules during the timing of suture closure in a mouse model where only the posterior frontal (PF) suture closes. Our results indicate increased expression of E-cadherin during the period of PF suture closure. Quantitative RT-PCR analysis of E- and N-cadherin in PF closing suture revealed a biphasic expression of N-cadherin, the first phase coinciding with cellular condensation preceding chondrogenesis followed by a second phase coinciding with E-cadherin co-expression and suture closure. Furthermore, expression analysis of the N-cadherin and E-cadherin transcriptional repressors Wnt7a and Snail indicate a specific temporal regulation of these genes, suggesting their potential role as regulators of both E- and N-cadherin during the PF suture development and closure. Finally, given the in vitro evidence of fibroblast growth factor (FGF)-2 as a potential regulator of E- and N-cadherin we investigated the expression of E-cadherin during PF suture closure in Fgf-2 deficient mice. In contrast to in vitrodata previously reported, E-cadherin expression is normal in these animals, and PF suture closure occurs properly, probably due to potential redundancy of FGF ligands ensuring normal temporal expression of E-cadherin and PF suture closure.
Collapse
Affiliation(s)
- David E Sahar
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, School of Medicine, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The metastatic process, i.e. the dissemination of cancer cells throughout the body to seed secondary tumors at distant sites, requires cancer cells to leave the primary tumor and to acquire migratory and invasive capabilities. In a process of epithelial-mesenchymal transition (EMT), besides changing their adhesive repertoire, cancer cells employ developmental processes to gain migratory and invasive properties that involve a dramatic reorganization of the actin cytoskeleton and the concomitant formation of membrane protrusions required for invasive growth. The molecular processes underlying such cellular changes are still only poorly understood, and the various migratory organelles, including lamellipodia, filopodia, invadopodia and podosomes, still require a better functional and molecular characterization. Notably, direct experimental evidence linking the formation of migratory membrane protrusions and the process of EMT and tumor metastasis is still lacking. In this review, we have summarized recent novel insights into the molecular processes and players underlying EMT on one side and the formation of invasive membrane protrusions on the other side.
Collapse
Affiliation(s)
- Mahmut Yilmaz
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
30
|
Ge S, Zeng R, Luo Y, Liu L, Wei H, Zhang J, Zhou H, Xu G. Role of protein kinase C in advanced glycation end products-induced epithelial-mesenchymal transition in renal proximal tubular epithelial cells. ACTA ACUST UNITED AC 2009; 29:281-5. [DOI: 10.1007/s11596-009-0303-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Indexed: 11/29/2022]
|
31
|
|
32
|
Koch P, Stenzinger A, Viard M, Märker D, Mayser P, Nilles M, Schreiner D, Steger K, Wimmer M. The novel protein PTPIP51 is expressed in human keratinocyte carcinomas and their surrounding stroma. J Cell Mol Med 2009; 12:2083-95. [PMID: 19012732 PMCID: PMC4506173 DOI: 10.1111/j.1582-4934.2008.00198.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: The novel protein PTPIP51 (SwissProt accession code Q96SD6) is known to interact with two non-transmembrane protein-tyrosine phosphatases, PTP1B and TCPTP in vitro. Overexpression of the full-length protein induces apoptosis in HeLa and HEK293T cells (Lv et al. 2006). PTPIP51 shows a tissue-specific expression pattern and is associated with cellular differentiation and apoptosis in some mammalian tissues, especially in human follicular and interfollicular epidermis. PTPIP51 protein is expressed in all suprabasal layers of normal epidermis, whereas the basal layer contains PTPIP51 mRNA only but lacks the protein. Objectives: The expression of PTPIP51 was investigated in keratinocyte carcinomas, that is human basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) as well as Bowen's disease (BD) and keratoacanthomas (KAs) on a transcriptional (mRNA) and translational (immunohistochemical) level. Methods: Formalin-fixed, paraffin-embedded sections of BCCs, SCCs, KAs and BD, respectively, were analysed by RT-PCR, as well as immunohistochemistry and subsequent fluorescence microscopy. PTPIP51-positive cells of the tumour and the surrounding stroma were identified on the basis of specific morphological features by means of H & E staining. To obtain further information about a putative function of PTPIP51, a possible association of PTPIP51 with apoptotic cells, as well as an assumed negative correlation with proliferating cells was investigated by means of an in-situ TUNEL assay and Ki67/MIB-1 antigen staining, respectively. Co-immunostainings with PTPIP51 were performed for the following antigens: TCPTP, PTP1B and β-catenin. Results: PTPIP51-expression was detected in BCCs and SCCs of the skin, as well as in KAs and BD. Both types of keratinocyte carcinoma revealed a specific localization pattern of PTPIP51 in malignant keratinocytes. Whereas PTPIP51 -positive cells of BCC were found to form two cluster types with a different subcellular localization of the protein, i.e. cytoplasmic and nuclear or predominantly membranous, investigation of SCC revealed a meshwork-like appearance of PTPIP51-positive malignant keratinocytes, created by a mainly membranous localization. BD and KA resembled the findings of PTPIP51-expression in SCC. Furthermore, we observed a partial co-localization of PTP1B and PTPIP51 in BCC. SCC and BCC showed a co-expression and partial co-localization of PTPIP51 with β-catenin. Some PTPIP51-positive cells were found to undergo apoptosis. PTPIP51 was also expressed in cells comprising the surrounding stromal microenvironment. This was particularly noticed for endothelial cells lining peritumoural vessels as well as for infiltrating cells of both, the innate and the adaptive immune system. Conclusions: The results showed a distinct mainly membranous expression pattern of PTPIP51 in BCCs and SCCs. Since PTPIP51 was also detected in the peritumoural tissue, the protein may play a crucial role in keratinocyte tumour development.
Collapse
Affiliation(s)
- P Koch
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fuentes F, Arregui CO. Microtubule and cell contact dependency of ER-bound PTP1B localization in growth cones. Mol Biol Cell 2009; 20:1878-89. [PMID: 19158394 DOI: 10.1091/mbc.e08-07-0675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PTP1B is an ER-bound protein tyrosine phosphatase implied in the regulation of cell adhesion. Here we investigated mechanisms involved in the positioning and dynamics of PTP1B in axonal growth cones and evaluated the role of this enzyme in axons. In growth cones, PTP1B consistently localizes in the central domain, and occasionally at the peripheral region and filopodia. Live imaging of GFP-PTP1B reveals dynamic excursions of fingerlike processes within the peripheral region and filopodia. PTP1B and GFP-PTP1B colocalize with ER markers and coalign with microtubules at the peripheral region and redistribute to the base of the growth cone after treatment with nocodazole, a condition that is reversible. Growth cone contact with cellular targets is accompanied by invasion of PTP1B and stable microtubules in the peripheral region aligned with the contact axis. Functional impairment of PTP1B causes retardation of axon elongation, as well as reduction of growth cone filopodia lifetime and Src activity. Our results highlight the role of microtubules and cell contacts in the positioning of ER-bound PTP1B to the peripheral region of growth cones, which may be required for the positive role of PTP1B in axon elongation, filopodia stabilization, and Src activity.
Collapse
Affiliation(s)
- Federico Fuentes
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | | |
Collapse
|
34
|
Protein kinase C-Fyn kinase cascade mediates the oleic acid-induced disassembly of neonatal rat cardiomyocyte adherens junctions. Int J Biochem Cell Biol 2009; 41:1536-46. [PMID: 19166962 DOI: 10.1016/j.biocel.2008.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/19/2008] [Accepted: 12/30/2008] [Indexed: 12/24/2022]
Abstract
Oleic acid (OA) affects assembly of gap junctions in neonatal cardiomyocytes. Adherens junction (AJ) regulates the stability of gap junction integrity; however, the effect of OA on AJ remains largely unexplored. The distribution of N-cadherin and catenins at cell-cell junction was decreased by OA. OA induced activation of protein kinase C(PKC)-alpha and -epsilon and Src family kinase, and all three kinases were involved in the oleic acid-induced disassembly of the adherens junction, since it was blocked by pretreatment with Gö6976 (a PKCalpha inhibitor), epsilonV1-2 (a PKCepsilon inhibitor), or PP2 (a Src family kinase inhibitor). Src family kinase appeared to be the downstream of PKC-alpha and -epsilon, as blockade of either PKC-alpha or -epsilon activity prevented the OA-induced activation of Src family kinase. Immunoprecipitation analyses showed that OA activated Fyn and Fer. OA promoted the association of p120 catenin/beta-catenin with Fyn and Fer and caused increased tyrosine phosphorylation of p120 catenin and beta-catenin, resulting in decreased binding of the former to N-cadherin and of the latter to alpha-catenin. Pretreatment with PP2 abrogated this OA-induced tyrosine phosphorylation of p120 catenin and beta-catenin and restored the association of N-cadherin with p120 catenin and that of beta-catenin with alpha-catenin. In conclusion, these results show that OA activates the PKC-Fyn signaling pathway, leading to the disassembly of the AJ. Therefore, inhibitors of PKC-alpha/-epsilon and Src family kinase are potential candidates as cardioprotection agents against OA-induced heart injury during ischemia-reperfusion.
Collapse
|
35
|
Stenzinger A, Schreiner D, Koch P, Hofer HW, Wimmer M. Cell and molecular biology of the novel protein tyrosine-phosphatase-interacting protein 51. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 275:183-246. [PMID: 19491056 DOI: 10.1016/s1937-6448(09)75006-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter examines the current state of knowledge about the expression profile, as well as biochemical properties and biological functions of the evolutionarily conserved protein PTPIP51. PTPIP51 is apparently expressed in splice variants and shows a particularly high expression in epithelia, skeletal muscle, placenta, and germ cells, as well as during mammalian development and in cancer. PTPIP51 is an in vitro substrate of Src- and protein kinase A, the PTP1B/TCPTP protein tyrosine phosphatases and interacts with 14-3-3 proteins, the Nuf2 kinetochore protein, the ninein-interacting CGI-99 protein, diacylglycerol kinase alpha, and also with itself forming dimers and trimers. Although the precise cellular function remains to be elucidated, the current data implicate PTPIP51 in signaling cascades mediating proliferation, differentiation, apoptosis, and motility.
Collapse
Affiliation(s)
- Albrecht Stenzinger
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | |
Collapse
|
36
|
N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation. Mol Cell Biol 2008; 29:953-64. [PMID: 19075000 DOI: 10.1128/mcb.00349-08] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt signaling plays an important role in the regulation of bone formation and bone mass. The mechanisms that regulate canonical Wnt signaling in osteoblasts are not fully understood. We show here a novel mechanism by which the adhesion molecule N-cadherin interacts with the Wnt coreceptor LRP5 and regulates canonical Wnt/beta-catenin signaling in osteoblasts. We demonstrate that N-cadherin, besides associating with beta-catenin at the membrane, forms a molecular complex with axin and LRP5 involving the LRP5 cytoplasmic tail domain. N-cadherin overexpression in osteoblasts increases N-cadherin-LRP5 interaction, causing increased beta-catenin degradation and altered TCF/LEF transcription in response to Wnt3a. This mechanism results in decreased osteoblast gene expression and osteogenesis in basal conditions and in response to Wnt3a. Consistent with a functional mechanism, silencing N-cadherin expression in control cells increases TCF/LEF transcription and enhances the response to Wnt3a. Using N-cadherin transgenic mice, we show that increased N-cadherin-LRP5 interaction resulting from targeted overexpression of N-cadherin in osteoblasts causes increased beta-catenin ubiquitination and results in cell-autonomous defective osteoblast function, reduced bone formation, and delayed bone mass acquisition. These data indicate that a previously unrecognized N-cadherin-axin-LRP5 interaction negatively regulates Wnt/beta-catenin signaling and is critical in the regulation of osteoblast function, bone formation, and bone mass.
Collapse
|
37
|
Rodriguez-Zas SL, Schellander K, Lewin HA. Biological interpretations of transcriptomic profiles in mammalian oocytes and embryos. Reproduction 2008; 135:129-39. [PMID: 18239044 DOI: 10.1530/rep-07-0426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characterization of gene-expression profiles in oocytes and embryos is critical to understand the influence of genetic and environmental factors on preimplantation and fetal development. Numerous gene-expression microarray studies using different platforms and species are offering insights into the biological processes extensively represented among the genes exhibiting differential expression. Major advances on understanding the direct relationship between gene expression and developmental competence are being reported. Integration of information across studies using meta-analysis techniques can increase the precision and accuracy to identify expression profiles associated with embryo development. Gene network and pathway analyses are offering insights into gene interactions and expression profiles of embryos. All these advances are cementing the way toward a comparative and systems approach to understanding the complex processes underlying vertebrate development.
Collapse
Affiliation(s)
- S L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
38
|
David MD, Yeramian A, Duñach M, Llovera M, Cantí C, de Herreros AG, Comella JX, Herreros J. Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential beta-catenin phosphorylation. J Cell Sci 2008; 121:2718-30. [PMID: 18664491 DOI: 10.1242/jcs.029660] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tyrosine phosphorylation of beta-catenin, a component of adhesion complexes and of the Wnt pathway, affects cell adhesion, migration and gene transcription. By reducing beta-catenin availability using shRNA-mediated gene silencing or expression of intracellular N-cadherin, we show that beta-catenin is required for axon growth downstream of brain-derived neurotrophic factor (BDNF) signalling and hepatocyte growth factor (HGF) signalling. We demonstrate that the receptor tyrosine kinases (RTKs) Trk and Met interact with and phosphorylate beta-catenin. Stimulation of Trk receptors by neurotrophins (NTs) results in phosphorylation of beta-catenin at residue Y654, and increased axon growth and branching. Conversely, pharmacological inhibition of Trk or expression of a Y654F mutant blocks these effects. beta-catenin phosphorylated at Y654 colocalizes with the cytoskeleton at growth cones. However, HGF, which also increases axon growth and branching, induces beta-catenin phosphorylation at Y142 and a nuclear localization. Interestingly, dominant-negative DeltaN-TCF4 abolishes the effects of HGF in axon growth and branching, but not that of NTs. We conclude that NT- and HGF-signalling differentially phosphorylate beta-catenin, targeting this protein to distinct compartments to regulate axon morphogenesis by TCF4-transcription-dependent and -independent mechanisms. These results place beta-catenin downstream of growth-factor-RTK signalling in axon differentiation.
Collapse
Affiliation(s)
- Monica D David
- Laboratori d'Investigació, Hospital Universitari Arnau de Vilanova, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Proper embryonic development is guaranteed under conditions of regulated cell-cell and cell-matrix adhesion. The cells of an embryo have to be able to distinguish their neighbours as being alike or different. Cadherins, single-pass transmembrane, Ca(2+)-dependent adhesion molecules that mainly interact in a homophilic manner, are major contributors to cell-cell adhesion. Cadherins play pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining tissue integrity and homeostasis. Changes in cadherin expression throughout development enable differentiation and the formation of various organs. In addition to these functions, cadherins have strong implications in tumourigenesis, since frequently tumour cells show deregulated cadherin expression and inappropriate switching among family members. In this review, I focus on E- and N-cadherin, giving an overview of their structure, cellular function, importance during development, role in cancer, and of the complexity of Ecadherin gene regulation.
Collapse
Affiliation(s)
- Marc P Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| |
Collapse
|
40
|
Stuible M, Doody KM, Tremblay ML. PTP1B and TC-PTP: regulators of transformation and tumorigenesis. Cancer Metastasis Rev 2008; 27:215-30. [DOI: 10.1007/s10555-008-9115-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Li Q, Wu M, Wang H, Xu G, Zhu T, Zhang Y, Liu P, Song A, Gang C, Han Z, Zhou J, Meng L, Lu Y, Wang S, Ma D. Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells. Cancer Lett 2007; 261:55-63. [PMID: 18155831 DOI: 10.1016/j.canlet.2007.11.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 01/06/2023]
Abstract
Ezrin primarily acts as a linker between the plasma membrane and the cytoskeleton and is a key component in tumor metastasis. In the present study, RNA interference (RNAi) using ezrin small hairpin RNAs (ezrin shRNAs) was used to define the roles of ezrin in the regulation of malignant behaviors of human breast cancer. The highly metastatic human breast cancer cell MDA-MB-231, in which ezrin mRNA and protein levels are the highest, was selected as a cell model in vitro. In addition, we also found that ezrin expression was up-regulated and its immuno-staining trans-located from cell membrane to cytoplasm, whereas E-cadherin expression decreased and showed the same cell distribution as ezrin in lymphatic metastases of human breast carcinomas. After repression of ezrin by more than 85% of G3PDH and 75% of beta-actin in mRNA and protein levels was maintained in the stable expressing ezrin shRNAs MDA-MB-231 cell clones, the abilities of cell motility and invasiveness were obviously inhibited with a 4-fold and 2-fold, respectively, and the altered cell polarity was observed. Western blot analyses further revealed that the silencing of ezrin induced an increased E-cadherin expression and a decreased phosphorylation of beta-catenin by inhibiting phosphorylation levels of c-src. These data indicate that ezrin overexpression positively correlated with metastatic potentials of human breast cancer cells, especially lymphatic system metastasis. Decreased ezrin expression by shRNA reversed metastatic behaviors of human breast cancer cells by inducing c-src-mediated E-cadherin expression, suggesting that ezrin may have potential values in assessing lymphatic metastasis of human breast cancers.
Collapse
Affiliation(s)
- Qiong Li
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Expression of PTPIP51 during mouse eye development. Histochem Cell Biol 2007; 129:345-56. [DOI: 10.1007/s00418-007-0361-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2007] [Indexed: 12/14/2022]
|
43
|
Rhee J, Buchan T, Zukerberg L, Lilien J, Balsamo J. Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat Cell Biol 2007; 9:883-92. [PMID: 17618275 DOI: 10.1038/ncb1614] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/30/2007] [Indexed: 11/08/2022]
Abstract
Binding of the secreted axon guidance cue Slit to its Robo receptor results in inactivation of the neural, calcium-dependent cell-cell adhesion molecule N-cadherin, providing a rapid epigenetic mechanism for integrating guidance and adhesion information. This requires the formation of a multimolecular complex containing Robo, Abl tyrosine kinase and N-cadherin. Here we show that on binding of Slit to Robo, the adaptor protein Cables is recruited to Robo-associated Abl and forms a multimeric complex by binding directly to N-cadherin-associated beta-catenin. Complex formation results in Abl-mediated phosphorylation of beta-catenin on tyrosine 489, leading to a decrease in its affinity for N-cadherin, loss of N-cadherin function, and targeting of phospho-Y489-beta-catenin to the nucleus. Nuclear beta-catenin combines with the transcription factor Tcf/Lef and activates transcription. Thus, Slit-induced formation of the Robo-N-cadherin complex results in a rapid loss of cadherin-mediated adhesion and has more lasting effects on gene transcription.
Collapse
Affiliation(s)
- Jinseol Rhee
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242-1324, USA
| | | | | | | | | |
Collapse
|
44
|
Ezaki T, Guo RJ, Li H, Reynolds AB, Lynch JP. The homeodomain transcription factors Cdx1 and Cdx2 induce E-cadherin adhesion activity by reducing beta- and p120-catenin tyrosine phosphorylation. Am J Physiol Gastrointest Liver Physiol 2007; 293:G54-65. [PMID: 17463179 DOI: 10.1152/ajpgi.00533.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The homeodomain transcription factors Cdx1 and Cdx2 are regulators of intestine-specific gene expression. They also regulate intestinal cell differentiation and proliferation; however, these effects are poorly understood. Previously, we have shown that expression of Cdx1 or Cdx2 in human Colo 205 cells induces a mature colonocyte morphology characterized by the induction of a polarized, columnar shape with apical microvilli and strong cell-cell adhesion. To elucidate the mechanism underlying this phenomenon, we investigated the adherens junction complex. Cdx1 or Cdx2 expression reduced Colo 205 cell migration and invasion in vitro, suggesting a physiologically significant change in cadherin function. However, Cdx expression did not significantly effect E-cadherin, alpha-, beta-, or gamma-catenin, or p120-catenin protein levels. Additionally, no alteration in their intracellular distribution was observed. Cdx expression did not alter the coprecipitation of beta-catenin with E-cadherin; however, it did reduce p120-catenin-E-cadherin coprecipitation. Tyrosine phosphorylation of beta- and p120-catenin is known to disrupt E-cadherin-mediated cell adhesion and is associated with robust p120-catenin/E-cadherin interactions. We specifically investigated beta- and p120-catenin for tyrosine phosphorylation and found that it was significantly diminished by Cdx1 or Cdx2 expression. We restored beta- and p120-catenin tyrosine phosphorylation in Cdx2-expressing cells by knocking down the expression of protein tyrosine phosphatase 1B and noted a significant decline in cell-cell adhesion. We conclude that Cdx expression in Colo 205 cells induces E-cadherin-dependent cell-cell adhesion by reducing beta- and p120-catenin tyrosine phosphorylation. Ascertaining the mechanism for this novel Cdx effect may improve our understanding of the regulation of cell-cell adhesion in the colonic epithelium.
Collapse
Affiliation(s)
- Toshihiko Ezaki
- Division of Gastroenterology/650 CRB, Department of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
45
|
Mariotti A, Perotti A, Sessa C, Rüegg C. N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 2007; 16:451-65. [PMID: 17371194 DOI: 10.1517/13543784.16.4.451] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During tumor progression, cancer cells undergo dramatic changes in the expression profile of adhesion molecules resulting in detachment from original tissue and acquisition of a highly motile and invasive phenotype. A hallmark of this change, also referred to as the epithelial-mesenchymal transition, is the loss of E- (epithelial) cadherin and the de novo expression of N- (neural) cadherin adhesion molecules. N-cadherin promotes tumor cell survival, migration and invasion, and a high level of its expression is often associated with poor prognosis. N-cadherin is also expressed in endothelial cells and plays an essential role in the maturation and stabilization of normal vessels and tumor-associated angiogenic vessels. Increasing experimental evidence suggests that N-cadherin is a potential therapeutic target in cancer. A peptidic N-cadherin antagonist (ADH-1) has been developed and has entered clinical testing. In this review, the authors discuss the biochemical and functional features of N-cadherin, its potential role in cancer and angiogenesis, and summarize the preclinical and clinical results achieved with ADH-1.
Collapse
Affiliation(s)
- Agnese Mariotti
- Centre Pluridisciplinaire d'Oncologie, Division of Experimental Oncology, Lausanne Cancer Center, and Swiss Institute for Experimental Cancer Research (ISREC), NCCR Molecular Oncology, Epalinges, Switzerland.
| | | | | | | |
Collapse
|
46
|
Sheth P, Seth A, Atkinson K, Gheyi T, Kale G, Giorgianni F, Desiderio D, Li C, Naren A, Rao R. Acetaldehyde dissociates the PTP1B-E-cadherin-beta-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism. Biochem J 2007; 402:291-300. [PMID: 17087658 PMCID: PMC1798442 DOI: 10.1042/bj20060665] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interactions between E-cadherin, beta-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell-cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, beta-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and beta-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and beta-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and beta-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of beta-catenin on tyrosine residues, and abolished the interaction of beta-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of beta-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and beta-catenin was reduced by tyrosine phosphorylation of beta-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)-PTP1B. The pairwise binding study showed that GST-E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of beta-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, beta-catenin and PTP1B by a phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Parimal Sheth
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Ankur Seth
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Katherine J. Atkinson
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Tarun Gheyi
- †Department of Chemistry, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Gautam Kale
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Francesco Giorgianni
- ‡Department of Neurology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- §Charles B. Stout Neuroscience Mass Spectrometry Laboratory, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Dominic M. Desiderio
- ‡Department of Neurology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- §Charles B. Stout Neuroscience Mass Spectrometry Laboratory, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- ∥Department of Molecular Sciences, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Chunying Li
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Anjaparavanda Naren
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Radhakrishna Rao
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- †Department of Chemistry, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
El Sayegh TY, Kapus A, McCulloch CA. Beyond the epithelium: Cadherin function in fibrous connective tissues. FEBS Lett 2007; 581:167-74. [PMID: 17217950 DOI: 10.1016/j.febslet.2006.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/04/2006] [Accepted: 12/12/2006] [Indexed: 11/18/2022]
Abstract
In fibrous connective tissues, fibroblasts are organized into syncytia, cellular networks that enable matrix remodeling and that are interconnected by intercellular adherens junctions (AJs). The AJs of fibroblasts are mediated by N-cadherin, a broadly expressed classical cadherin that is critically involved in developmental processes, wound healing and several diseases of mesenchymal tissues. In contrast to E-cadherin-dependent junctions of epithelia, the formation of AJs in fibrous connective tissues is relatively uncharacterized. Work over the last several years has documented an expanding list of molecules which function to regulate N-cadherin mediated junctions such as: Fer, PTP1B, cortactin, calcium, gelsolin, PIP5KIgamma, PIP2, and the Rho family of GTPases. We present an overview on the regulation of N-cadherin-mediated junction formation that highlights recent molecular advances in the field and rationalizes the roles of N-cadherin in connective tissue function.
Collapse
Affiliation(s)
- T Y El Sayegh
- CIHR Group in Matrix Dynamics, University of Toronto, Room 243, Fitzgerald Building, 150 College Street, Toronto, Ont., Canada M5S 3E2.
| | | | | |
Collapse
|
48
|
Gao Q, Huang X, Tang D, Cao Y, Chen G, Lu Y, Zhuang L, Wang S, Xu G, Zhou J, Ma D. Influence of chk1 and plk1 silencing on radiation- or cisplatin-induced cytotoxicity in human malignant cells. Apoptosis 2006; 11:1789-800. [PMID: 16927022 DOI: 10.1007/s10495-006-9421-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The G2/M checkpoint is an attractive pathway for targeting and sensitizing tumor cells to cancer treatment. Abrogation of the G2/M checkpoint by targeting molecules, such as checkpoint kinase 1 (chk1), increases DNA breakage and sensitizes tumor cells to anti-tumoral agents. However, most of the previously described G2/M abrogators are actually targeting the G2-M border checkpoints rather than mitotic checkpoints. This prompted us to test the effects of combined targeting of chk1 and a critical regulator of mitosis, polo-like kinase 1 (plk1). Chk1 and plk1 were found to be co-expressed in 70% of primary neoplastic tissues we examined. Asynchronized tumor cells were treated with different DNA damaging-agents to activate G1/S, S or G2/M checkpoints. Either chk1 or plk1-specific antisense oligodeoxynucleotides (ASODN) enhanced DNA damaging agent-induced apoptosis. When used in combination, however, chk1- plus plk1-specific ASODN failed to produce synergistic effects. Moreover, selective targeting of plk1 or chk1 in tumor xenografts of mice by oncolytic adenovirus mutants demonstrated potent anti-tumoral efficacy in the presence of low dose cisplatin. Again, combined targeting of chk1 and plk1 did not further enhance anti-tumoral efficacy. We concluded that combined targeting of chk1 and plk1 was not superior to either targeting chk1 or plk1 alone, which suggested that chk1 and plk1 silencing might overlap in their mechanism of action. Whether combined targeting of chk1 with other, more specific mitotic regulators would synergistically sensitize tumor to anti-neoplastic therapeutics needs to be further clarified.
Collapse
Affiliation(s)
- Qinglei Gao
- Cancer Biology Research Center, TongJi Hospital, TongJi Medical College, Huazhong University of Science & Technology, 1095 Jie-Fang Avenue, WuHan, HuBei 430030, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Anderie I, Schulz I, Schmid A. Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets. Cell Signal 2006; 19:582-92. [PMID: 17092689 DOI: 10.1016/j.cellsig.2006.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/13/2006] [Indexed: 11/19/2022]
Abstract
The ubiquitously expressed protein tyrosine phosphatase PTP1B is involved in the regulation of numerous cellular signaling pathways. PTP1B is anchored to the ER membrane while many of its substrates are localized to the plasma membrane. This spatial separation raises the question how PTP1B can interact with its targets. In our study we demonstrate direct interaction of PTP1B with the Ser/Thr kinase PKCdelta, the non-receptor tyrosine kinase Src and the insulin receptor which all are key enzymes in cellular signaling cascades. Protein complex formation was visualized in vivo using Bimolecular Fluorescence Complementation (BiFC). We demonstrate that complex formation of PTP1B with plasma membrane-anchored proteins is possible without detachment of PTP1B from the ER. Our data indicate that the dynamic ER membrane network is in constant contact to the plasma membrane. Local attachments of the two membrane systems enable a direct communication of ER- and plasma membrane-anchored proteins. The reported formation of membrane junctions is an important step towards the understanding of signal transmissions between the ER and the plasma membrane.
Collapse
Affiliation(s)
- Ines Anderie
- Department of Physiology, University of the Saarland, D-66421, Homburg/Saar, Germany
| | | | | |
Collapse
|
50
|
Choe KM, Prakash S, Bright A, Clandinin TR. Liprin-alpha is required for photoreceptor target selection in Drosophila. Proc Natl Acad Sci U S A 2006; 103:11601-6. [PMID: 16864799 PMCID: PMC1544216 DOI: 10.1073/pnas.0601185103] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Classical cadherin-mediated interactions between axons and dendrites are critical to target selection and synapse assembly. However, the molecular mechanisms by which these interactions are controlled are incompletely understood. In the Drosophila visual system, N-cadherin is required in both photoreceptor (R cell) axons and their targets to mediate stabilizing interactions required for R cell target selection. Here we identify the scaffolding protein Liprin-alpha as a critical component in this process. We isolated mutations in Liprin-alpha in a genetic screen for mutations affecting the pattern of synaptic connections made by R1-R6 photoreceptors. Using eye-specific mosaics, we demonstrate a previously undescribed, axonal function for Liprin-alpha in target selection: Liprin-alpha is required to be cell-autonomous in all subtypes of R1-R6 cells for their axons to reach their targets. Because Liprin-alpha, the receptor tyrosine phosphatase LAR, and N-cadherin share qualitatively similar mutant phenotypes in R1-R6 cells and are coexpressed in R cells and their synaptic targets, we infer that these three genes act at the same step in the targeting process. However, unlike N-cadherin, neither Liprin-alpha nor LAR is required postsynaptically for R cells to project to their correct targets. Thus, these two proteins, unlike N-cadherin, are functionally asymmetric between axons and dendrites. We propose that the adhesive mechanisms that link pre- and postsynaptic cells before synapse formation may be differentially regulated in these two compartments.
Collapse
Affiliation(s)
- Kwang-Min Choe
- *Department of Neurobiology, 299 West Campus Drive, Stanford University, Stanford, CA 94305; and
- Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Saurabh Prakash
- *Department of Neurobiology, 299 West Campus Drive, Stanford University, Stanford, CA 94305; and
| | - Ali Bright
- *Department of Neurobiology, 299 West Campus Drive, Stanford University, Stanford, CA 94305; and
| | - Thomas R. Clandinin
- *Department of Neurobiology, 299 West Campus Drive, Stanford University, Stanford, CA 94305; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|