1
|
Khaova EA, Kashevarova NM, Tkachenko AG. Ribosome Hibernation: Molecular Strategy of Bacterial Survival (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Sakamoto A, Sahara J, Kawai G, Yamamoto K, Ishihama A, Uemura T, Igarashi K, Kashiwagi K, Terui Y. Cytotoxic Mechanism of Excess Polyamines Functions through Translational Repression of Specific Proteins Encoded by Polyamine Modulon. Int J Mol Sci 2020; 21:ijms21072406. [PMID: 32244348 PMCID: PMC7177335 DOI: 10.3390/ijms21072406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 01/08/2023] Open
Abstract
Excessive accumulation of polyamines causes cytotoxicity, including inhibition of cell growth and a decrease in viability. We investigated the mechanism of cytotoxicity caused by spermidine accumulation under various conditions using an Escherichia coli strain deficient in spermidine acetyltransferase (SAT), a key catabolic enzyme in controlling polyamine levels. Due to the excessive accumulation of polyamines by the addition of exogenous spermidine to the growth medium, cell growth and viability were markedly decreased through translational repression of specific proteins [RMF (ribosome modulation factor) and Fis (rRNA transcription factor) etc.] encoded by members of polyamine modulon, which are essential for cell growth and viability. In particular, synthesis of proteins that have unusual locations of the Shine–Dalgarno (SD) sequence in their mRNAs was inhibited. In order to elucidate the molecular mechanism of cytotoxicity by the excessive accumulation of spermidine, the spermidine-dependent structural change of the bulged-out region in the mRNA at the initiation site of the rmf mRNA was examined using NMR analysis. It was suggested that the structure of the mRNA bulged-out region is affected by excess spermidine, so the SD sequence of the rmf mRNA cannot approach initiation codon AUG.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Junpei Sahara
- Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba 275-0016, Japan
| | - Gota Kawai
- Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba 275-0016, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, Japan
- Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-0856, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, Japan
- Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-0856, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| |
Collapse
|
3
|
Igarashi K, Kashiwagi K. Effects of polyamines on protein synthesis and growth of Escherichia coli. J Biol Chem 2018; 293:18702-18709. [PMID: 30108177 DOI: 10.1074/jbc.tm118.003465] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polyamines (PA) putrescine, spermidine, and spermine have numerous roles in the growth of both prokaryotic and eukaryotic cells. For example, it is well known that putrescine and spermidine are strongly involved in proliferation and viability of Escherichia coli cells. Studies of polyamine functions and distributions in E. coli cells have revealed that polyamines mainly exist as an RNA-polyamine complex. Polyamines stimulate the assembly of 30S ribosomal subunits and thereby increase general protein synthesis 1.5- to 2.0-fold. Moreover, these studies have shown that polyamines stimulate synthesis of 20 different proteins at the level of translation, which are strongly involved in cell growth and viability. The genes encoding these 20 different proteins were termed as the "polyamine modulon." We here review the mechanism of activation of 30S ribosomal subunits and stimulation of specific proteins. Other functions of polyamines in E. coli are also described.
Collapse
Affiliation(s)
- Kazuei Igarashi
- From the Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15, Chuo-ku, Chiba, Chiba 260-0856 and
| | - Keiko Kashiwagi
- the Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 280-0025, Japan
| |
Collapse
|
4
|
Chikungunya Virus Overcomes Polyamine Depletion by Mutation of nsP1 and the Opal Stop Codon To Confer Enhanced Replication and Fitness. J Virol 2017; 91:JVI.00344-17. [PMID: 28539441 PMCID: PMC5512238 DOI: 10.1128/jvi.00344-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/10/2017] [Indexed: 11/23/2022] Open
Abstract
Polyamines, which are small positively charge molecules present in all cells, play important roles in the replication of DNA and RNA viruses. Chikungunya virus (CHIKV) relies on polyamines for translation of the viral genome upon viral entry, and pharmacological depletion of polyamines limits viral replication. However, the potential development of antiviral resistance necessitates a better understanding of how polyamines function and can be targeted via compounds that alter polyamine levels. We have isolated CHIKV that is resistant to polyamine depletion and contains two mutations in the nonstructural protein 1 (nsP1)-coding region in combination with a mutation to the opal stop codon preceding nsP4. These mutations, in addition to promoting viral replication in polyamine-depleted cells, confer enhanced viral replication in vitro and in vivo. The nsP1 mutations enhance membrane binding and methyltransferase activities, while the stop codon mutation allows increased downstream translation. These mutations, when combined, enhance viral fitness, but individual mutants are attenuated in mosquitoes. Together, our results suggest that CHIKV can evolve resistance to polyamine depletion and that pharmaceuticals targeting the polyamine biosynthetic pathway may be best used in combination with other established antivirals to mitigate the development of resistance. IMPORTANCE Chikungunya virus is a mosquito-borne virus that has infected millions worldwide. Its expansion into the Americas and rapid adaptation to new mosquito hosts present a serious threat to human health, which we can combat with the development of antiviral therapies as well as understanding how these viruses will mutate when exposed to antiviral therapies. Targeting polyamines, small positively charged molecules in the cell, may be a potential strategy against RNA viruses, including chikungunya virus. Here, we have described a virus that is resistant to polyamine depletion and has increased fitness in cells and in full organisms. Mutations in viral genome capping machinery, membrane binding activity, and a stop codon arise, and their altered activities enhance replication in the absence of polyamines. These results highlight strategies by which chikungunya virus can overcome polyamine depletion and emphasize continued research on developing improved antiviral therapies.
Collapse
|
5
|
Spermine and Spermidine Alter Gene Expression and Antigenic Profile of Borrelia burgdorferi. Infect Immun 2017; 85:IAI.00684-16. [PMID: 28052993 DOI: 10.1128/iai.00684-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, responds to numerous host-derived signals to alter adaptive capabilities during its enzootic cycle in an arthropod vector and mammalian host. Molecular mechanisms that enable B. burgdorferi to detect, channel, and respond to these signals have become an intense area of study for developing strategies to limit transmission/infection. Bioinformatic analysis of the borrelial genome revealed the presence of polyamine transport components (PotA, PotB, PotC, and PotD), while homologs for polyamine biosynthesis were conspicuously absent. Although potABCD is cotranscribed, the level of PotA was elevated under in vitro growth conditions mimicking unfed ticks compared to the level in fed ticks, while the levels of PotD were similar under the aforementioned conditions in B. burgdorferi Among several polyamines and polyamine precursors, supplementation of spermine or spermidine in the borrelial growth medium induced synthesis of major regulators of gene expression in B. burgdorferi, such as RpoS and BosR, with a concomitant increase in proteins that contribute to colonization and survival of B. burgdorferi in the mammalian host. Short transcripts of rpoS were elevated in response to spermidine, which was correlated with increased protein levels of RpoS. Transcriptional analysis of rpoZ and B. burgdorferirel (relBbu ; bb0198) in the presence of spermidine revealed the interplay of multiple regulatory factors in B. burgdorferi gene expression. The effect of spermidine on the levels of select borrelial proteins was also influenced by serum factors. These studies suggest that multiple host-derived signals/nutrients and their transport systems contribute to B. burgdorferi adaptation during the vector and vertebrate host phases of infection.
Collapse
|
6
|
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol 2015; 427:3389-406. [DOI: 10.1016/j.jmb.2015.06.020] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
7
|
Chattopadhyay MK, Keembiyehetty CN, Chen W, Tabor H. Polyamines Stimulate the Level of the σ38 Subunit (RpoS) of Escherichia coli RNA Polymerase, Resulting in the Induction of the Glutamate Decarboxylase-dependent Acid Response System via the gadE Regulon. J Biol Chem 2015; 290:17809-17821. [PMID: 26025365 DOI: 10.1074/jbc.m115.655688] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 02/02/2023] Open
Abstract
To study the physiological roles of polyamines, we carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study, further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS(+)/gadE(+) cells with genes induced by polyamine addition to polyamine-free ΔrpoS/gadE(+) and rpoS(+)/ΔgadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that gadE is the main regulator of GDAR and other acid fitness island genes. Both polyamines and rpoS are necessary for the expression of gadE gene from the three promoters of gadE (P1, P2, and P3). The most important effect of polyamine addition is the very rapid increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli.
Collapse
Affiliation(s)
- Manas K Chattopadhyay
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | | | - Weiping Chen
- Genomic Core Facility, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Herbert Tabor
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Sakamoto A, Terui Y, Yoshida T, Yamamoto T, Suzuki H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K. Three members of polyamine modulon under oxidative stress conditions: two transcription factors (SoxR and EmrR) and a glutathione synthetic enzyme (GshA). PLoS One 2015; 10:e0124883. [PMID: 25898225 PMCID: PMC4405209 DOI: 10.1371/journal.pone.0124883] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/18/2015] [Indexed: 02/05/2023] Open
Abstract
Members of polyamine modulon whose synthesis is enhanced at the level of translation were looked for under oxidative stress conditions caused by 0.6 μM K2TeO3. When an Escherichia coli polyamine-requiring mutant MA261 was cultured in the presence of K2TeO3, the degree of polyamine stimulation of cell growth was greater than in cells cultured in the absence of K2TeO3. Under these conditions, synthesis of SoxR, a transcriptional factor for expression of the superoxide response regulon, EmrR, a negative transcriptional factor for expression of the genes for drug excretion proteins, EmrA and EmrB, and of GshA, γ-glutamylcysteine synthetase necessary for glutathione (GSH) synthesis, were stimulated by polyamines at the level of translation. Polyamine stimulation of SoxR and EmrR synthesis was dependent on the existence of an unusually located Shine-Dalgarno (SD) sequence in soxR and emrR mRNAs. Polyamine stimulation of GshA synthesis was due to the existence of the inefficient initiation codon UUG instead of AUG. Polyamine stimulation of the synthesis of EmrR was mainly observed at the logarithmic phase of growth, while that of the synthesis of SoxR and GshA was at the stationary phase. These results strongly suggest that polyamines are involved in easing of oxidative stress through stimulation of synthesis of SoxR, EmrR and GshA together with RpoS, previously found as a member of polyamine modulon at the stationary phase.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Taketo Yoshida
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Taku Yamamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Hideyuki Suzuki
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Kyoto, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Chiba, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
- * E-mail:
| |
Collapse
|
9
|
Different sensitivity levels to norspermidine on biofilm formation in clinical and commensal Staphylococcus epidermidis strains. Microb Pathog 2015; 79:8-16. [DOI: 10.1016/j.micpath.2014.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 01/23/2023]
|
10
|
Tkachenko AG, Kashevarova NM, Karavaeva EA, Shumkov MS. Putrescine controls the formation of Escherichia coli persister cells tolerant to aminoglycoside netilmicin. FEMS Microbiol Lett 2015; 361:25-33. [PMID: 25283595 DOI: 10.1111/1574-6968.12613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022] Open
Abstract
Persisters are suggested to be the products of a phenotypic variability that are quasi-dormant forms of regular bacterial cells highly tolerant to antibiotics. Our previous investigations revealed that a decrease in antibiotic tolerance of Escherichia coli cells could be reached through the inhibition of key enzymes of polyamine synthesis (putrescine, spermidine). We therefore assumed that polyamines could be involved in persister cell formation. Data obtained in our experiments with the polyamine-deficient E. coli strain demonstrate that the formation of persisters tolerant to netilmicin is highly upregulated by putrescine in a concentration-dependent manner when cells enter the stationary phase. This period is also accompanied by dissociation of initially homogenous subpopulation of persister cells to some fractions differing in their levels of tolerance to netilmicin. With three independent experimental approaches, we demonstrate that putrescine-dependent upregulation of persister cell formation is mediated by stimulation of rpoS expression. Complementary activity of putrescine and RpoS results in ~ 1000-fold positive effect on persister cell formation.
Collapse
Affiliation(s)
- Alexander G Tkachenko
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm, Russia
| | - Natalya M Kashevarova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm, Russia
| | - Elena A Karavaeva
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm, Russia
| | - Mikhail S Shumkov
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm, Russia.,Laboratory of Biochemistry of Stresses in Microorganisms, A.N. Bach Institute of Biochemistry RAS, Moscow, Russia
| |
Collapse
|
11
|
Nguyen AQD, Schneider J, Wendisch VF. Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 2014; 201:75-85. [PMID: 25449016 DOI: 10.1016/j.jbiotec.2014.10.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022]
Abstract
Corynebacterium glutamicum has been engineered for production of the polyamide monomer putrescine or 1,4-diaminobutane. Here, N-acetylputrescine was shown to be a significant by-product of putrescine production by recombinant putrescine producing C. glutamicum strains. A systematic gene deletion approach of 18 (putative) N-acetyltransferase genes revealed that the cg1722 gene product was responsible for putrescine acetylation. The encoded enzyme was purified and characterized as polyamine N-acetyltransferase. The enzyme accepted acetyl-CoA and propionyl-CoA as donors for acetylation of putrescine and other diamines as acceptors, but showed highest catalytic efficiency with the triamine spermidine and the tetraamine spermine and, hence, was named SnaA. Upon deletion of snaA in the putrescine producing strain PUT21, no acteylputrescine accumulated, but about 41% more putrescine as compared to the parent strain. Moreover, a transcriptome approach identified increased expression of the cgmAR operon encoding a putative permease and a transcriptional TetR-family repressor upon induction of putrescine production in C. glutamicum PUT21. CgmR is known to bind to cgmO upstream of cgmAR and gel mobility shift experiments with purified CgmR revealed that putrescine and other diamines perturbed CgmR-cgmO complex formation, but not migration of free cgmO DNA. Deletion of the repressor gene cgmR resulted in expression changes of a number of genes and increased putrescine production of C. glutamicum PUT21 by 19% as compared to the parent strain. Overexpression of the putative transport gene cgmA increased putrescine production by 24% as compared to the control strain. However, cgmA overexpression in PUT21ΔsnaA did not further improve putrescine production, hence, the beneficial effects of both targets were not synergistic at the highest described yield of 0.21 g g(-1).
Collapse
Affiliation(s)
- Anh Q D Nguyen
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Jens Schneider
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
12
|
The effect of the rpoSam allele on gene expression and stress resistance in Escherichia coli. Arch Microbiol 2014; 196:589-600. [PMID: 24862098 DOI: 10.1007/s00203-014-0994-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/17/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
The RNA polymerase associated with RpoS transcribes many genes related to stationary phase and stress survival in Escherichia coli. The DNA sequence of rpoS exhibits a high degree of polymorphism. A C to T transition at position 99 of the rpoS ORF, which results in a premature amber stop codon often found in E. coli strains. The rpoSam mutant expresses a truncated and partially functional RpoS protein. Here, we present new evidence regarding rpoS polymorphism in common laboratory E. coli strains. One out of the six tested strains carries the rpoSam allele, but expressed a full-length RpoS protein owing to the presence of an amber supressor mutation. The rpoSam allele was transferred to a non-suppressor background and tested for RpoS level, stress resistance and for the expression of RpoS and sigma70-dependent genes. Overall, the rpoSam strain displayed an intermediate phenotype regarding stress resistance and the expression of σ(S)-dependent genes when compared to the wild-type rpoS(+) strain and to the rpoS null mutant. Surprisingly, overexpression of rpoSam had a differential effect on the expression of the σ(70)-dependent genes phoA and lacZ that, respectively, encode the enzymes alkaline phosphatase and β-galactosidase. The former was enhanced while the latter was inhibited by high levels of RpoSam.
Collapse
|
13
|
Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, Deng L, Dong J, Shimizu K, Soga T, Tomita M, Palsson BO, Robert M. Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat Commun 2014; 5:3233. [DOI: 10.1038/ncomms4233] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/10/2014] [Indexed: 01/21/2023] Open
|
14
|
Chattopadhyay MK, Tabor H. Polyamines are critical for the induction of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli. J Biol Chem 2013; 288:33559-33570. [PMID: 24097985 DOI: 10.1074/jbc.m113.510552] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As part of our studies on the biological functions of polyamines, we have used a mutant of Escherichia coli that lacks all the genes for polyamine biosynthesis for a global transcriptional analysis on the effect of added polyamines. The most striking early response to the polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR) that is important for the survival of the bacteria when passing through the acid environment of the stomach. Not only were the two genes for glutamate decarboxylases (gadA and gadB) and the gene for glutamate-γ-aminobutyrate antiporter (gadC) induced by the polyamine addition, but the various genes involved in the regulation of this system were also induced. We confirmed the importance of polyamines for the induction of the GDAR system by direct measurement of glutamate decarboxylase activity and acid survival. The effect of deletions of the regulatory genes on the GDAR system and the effects of overproduction of two of these genes were also studied. Strikingly, overproduction of the alternative σ factor rpoS and of the regulatory gene gadE resulted in very high levels of glutamate decarboxylase and almost complete protection against acid stress even in the absence of any polyamines. Thus, these data show that a major function of polyamines in E. coli is protection against acid stress by increasing the synthesis of glutamate decarboxylase, presumably by increasing the levels of the rpoS and gadE regulators.
Collapse
Affiliation(s)
- Manas K Chattopadhyay
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | - Herbert Tabor
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
15
|
Sakamoto A, Terui Y, Yamamoto T, Kasahara T, Nakamura M, Tomitori H, Yamamoto K, Ishihama A, Michael AJ, Igarashi K, Kashiwagi K. Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int J Biochem Cell Biol 2012; 44:1877-86. [PMID: 22814172 DOI: 10.1016/j.biocel.2012.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 01/26/2023]
Abstract
We have reported that polyamines increase cell viability at the stationary phase of cell growth through translational stimulation of ribosome modulation factor, and SpoT and RpoZ proteins involved in the synthesis and function of ppGpp in Escherichia coli. Since biofilm formation is also involved in cell viability, we looked for proteins involved in biofilm formation and cell viability whose synthesis is stimulated by polyamines at the level of translation. It was found that the synthesis of response regulators UvrY and CpxR in the two-component signal transducing systems and ribosome recycling factor (RRF) was increased by polyamines at the level of translation. Polyamine stimulation of the synthesis of UvrY and RRF was dependent on the existence of the inefficient initiation codons UUG and GUG in uvrY and frr mRNA, respectively; and polyamine stimulation of CpxR synthesis was dependent on the existence of an unusual location of a Shine-Dalgarno (SD) sequence in cpxR mRNA. Biofilm formation and cell viability in the absence of polyamines was increased by transformation of modified uvrY and cpxR genes, and cell viability by modified frr gene whose translation occurs effectively without polyamines. The results indicate that polyamines are necessary for both biofilm formation and cell viability.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Terui Y, Akiyama M, Sakamoto A, Tomitori H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K. Increase in cell viability by polyamines through stimulation of the synthesis of ppGpp regulatory protein and ω protein of RNA polymerase in Escherichia coli. Int J Biochem Cell Biol 2011; 44:412-22. [PMID: 22138225 DOI: 10.1016/j.biocel.2011.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
It is known that polyamines increase cell growth through stimulation of the synthesis of several kinds of proteins encoded by the so-called "polyamine modulon". We recently reported that polyamines also increase cell viability at the stationary phase of cell growth through stimulation of the synthesis of ribosome modulation factor, a component of the polyamine modulon. Accordingly, we looked for other proteins involved in cell viability whose synthesis is stimulated by polyamines. It was found that the synthesis of ppGpp regulatory protein (SpoT) and ω protein of RNA polymerase (RpoZ) was stimulated by polyamines at the level of translation. Stimulation of the synthesis of SpoT and RpoZ by polyamines was due to an inefficient initiation codon UUG in spoT mRNA and an unusual location of a Shine-Dalgarno (SD) sequence in rpoZ mRNA. Accordingly, the spoT and rpoZ genes are components of the polyamine modulon involved in cell viability. Reduced cell viability caused by polyamine deficiency was prevented by modified spoT and rpoZ genes whose synthesis was not influenced by polyamines. Under these conditions, the level of ppGpp increased in parallel with increase of SpoT protein. The results indicate that polyamine stimulation of synthesis of SpoT and RpoZ plays important roles for cell viability through stimulation of ppGpp synthesis by SpoT and modulation of RNA synthesis by ppGpp-RpoZ complex.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rato C, Amirova SR, Bates DG, Stansfield I, Wallace HM. Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res 2011; 39:4587-97. [PMID: 21303766 PMCID: PMC3113565 DOI: 10.1093/nar/gkq1349] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The antizyme protein, Oaz1, regulates synthesis of the polyamines putrescine, spermidine and spermine by controlling stability of the polyamine biosynthetic enzyme, ornithine decarboxylase. Antizyme mRNA translation depends upon a polyamine-stimulated +1 ribosomal frameshift, forming a complex negative feedback system in which the translational frameshifting event may be viewed in engineering terms as a feedback controller for intracellular polyamine concentrations. In this article, we present the first systems level study of the characteristics of this feedback controller, using an integrated experimental and modeling approach. Quantitative analysis of mutant yeast strains in which polyamine synthesis and interconversion were blocked revealed marked variations in frameshift responses to the different polyamines. Putrescine and spermine, but not spermidine, showed evidence of co-operative stimulation of frameshifting and the existence of multiple ribosome binding sites. Combinatorial polyamine treatments showed polyamines compete for binding to common ribosome sites. Using concepts from enzyme kinetics and control engineering, a mathematical model of the translational controller was developed to describe these complex ribosomal responses to combinatorial polyamine effects. Each one of a range of model predictions was successfully validated against experimental frameshift frequencies measured in S-adenosylmethionine-decarboxylase and antizyme mutants, as well as in the wild-type genetic background.
Collapse
Affiliation(s)
- Claudia Rato
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|
18
|
Abstract
Polyamines are essential for normal cell growth and exist mainly as RNA-polyamine complexes in cells. Thus, effects of polyamines on protein synthesis have been studied. It was found that several kinds of protein synthesis, which are important for cell growth, were enhanced by polyamines at the level of translation. We proposed that a group of genes whose expression is enhanced by polyamines at the level of translation be referred to as a "polyamine modulon." In Escherichia coli, most members of the polyamine modulon thus far identified were transcription factors. These transcription factors enhanced the synthesis of several kinds of mRNA and tRNA, and also rRNA. In this way, polyamines enhanced growth of E. coli. We also succeeded in identifying three kinds of "polyamine modulon" in mammalian cells. One of the mechanisms of polyamine stimulation at the molecular level was due to the stabilization of the bulged-out region of double-stranded RNA in mRNA. The procedures used to identify components of the polyamine modulon are described in this chapter.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | | |
Collapse
|
19
|
Functional and phylogenetic analysis of ureD in Shiga toxin-producing Escherichia coli. J Bacteriol 2010; 193:875-86. [PMID: 21148732 DOI: 10.1128/jb.00922-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that can cause severe health complications and utilizes a much lower infectious dose than other E. coli pathotypes. Despite having an intact ure locus, ureDABCEFG, the majority of EHEC strains are phenotypically urease negative under tested conditions. Urease activity potentially assists with survival fitness by enhancing acid tolerance during passage through the stomach or by aiding with colonization in either human or animal reservoirs. Previously, in the EHEC O157:H7 Sakai strain, a point mutation in ureD, encoding a urease chaperone protein, was identified, resulting in a substitution of an amber stop codon for glutamine. This single nucleotide polymorphism (SNP) is observed in the majority of EHEC O157:H7 isolates and correlates with a negative urease phenotype in vitro. We demonstrate that the lack of urease activity in vitro is not solely due to the amber codon in ureD. Our analysis has identified two additional SNPs in ureD affecting amino acid positions 38 and 205, in both cases determining whether the encoded amino acid is leucine or proline. Phylogenetic analysis based on Ure protein sequences from a variety of urease-encoding bacteria demonstrates that the proline at position 38 is highly conserved among Gram-negative bacteria. Experiments reveal that the L38P substitution enhances urease enzyme activity; however, the L205P substitution does not. Multilocus sequence typing analysis for a variety of Shiga toxin-producing E. coli isolates combined with the ureD sequence reveals that except for a subset of the O157:H7 strains, neither the in vitro urease-positive phenotype nor the ureD sequence is phylogenetically restricted.
Collapse
|
20
|
Terui Y, Tabei Y, Akiyama M, Higashi K, Tomitori H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K. Ribosome modulation factor, an important protein for cell viability encoded by the polyamine modulon. J Biol Chem 2010; 285:28698-707. [PMID: 20628056 DOI: 10.1074/jbc.m110.111195] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We searched for proteins whose synthesis is enhanced by polyamines at the stationary phase of cell growth using an Escherichia coli polyamine-requiring mutant in which cell viability is greatly decreased by polyamine deficiency. The synthesis of ribosome modulation factor (RMF) was strongly enhanced by polyamines at the level of translation at the stationary phase of cell growth. In rmf mRNA, a Shine-Dalgarno (SD) sequence is located 11 nucleotides upstream of the initiation codon AUG. When the SD sequence was moved to the more common position 8 nucleotides upstream of the initiation codon, the degree of polyamine stimulation was reduced, although the level of RMF synthesis was markedly increased. Polyamine stimulation of RMF synthesis was found to be caused by a selective structural change of the bulged-out region of the initiation site of rmf mRNA. The decrease in cell viability caused by polyamine deficiency was prevented by the addition of a modified rmf gene whose synthesis is not influenced by polyamines. The results indicate that polyamines enhance cell viability of E. coli at least in part by enhancing RMF synthesis.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Uemura T, Higashi K, Takigawa M, Toida T, Kashiwagi K, Igarashi K. Polyamine modulon in yeast—Stimulation of COX4 synthesis by spermidine at the level of translation. Int J Biochem Cell Biol 2009; 41:2538-45. [DOI: 10.1016/j.biocel.2009.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/11/2009] [Indexed: 11/27/2022]
|
22
|
Enhancement of the synthesis of RpoE and StpA by polyamines at the level of translation in escherichia coli under heat shock conditions. J Bacteriol 2009; 191:5348-57. [PMID: 19542278 DOI: 10.1128/jb.00387-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteins whose synthesis is enhanced by polyamines at the level of translation were identified with a polyamine-requiring mutant cultured in the presence of 0.1% glucose and 0.02% glutamate at 42 degrees C. Polyamines had a greater effect on cell growth at 42 degrees C than at 37 degrees C. At 42 degrees C, the synthesis of RpoE (sigma(24)) and StpA, which are involved in the transcription of a number of heat shock response genes, was stimulated by polyamines at the level of translation. In the rpoE and stpA mRNAs, a Shine-Dalgarno (SD) sequence is located at 13 and 12 nucleotides, respectively, upstream of the initiation codon AUG. When the SD sequences were moved to the more common position 7 nucleotides upstream of the initiation codon AUG, the degree of polyamine stimulation was reduced, although the level of RpoE and StpA synthesis was markedly increased. The mechanism underlying polyamine stimulation of RpoE synthesis was then studied. Polyamine stimulation of RpoE synthesis was reduced by changing the bulged-out structure in the initiation site of rpoE mRNA, although the level of RpoE synthesis increased. A selective structural change of this bulged-out region induced by spermidine at 42 degrees C was observed by circular dichroism. Polyamine stimulation of fMet-tRNA binding to ribosomes at 42 degrees C also disappeared by changing the bulged-out structure in the initiation site of rpoE mRNA. The results suggest that polyamines enhance the synthesis of RpoE by changing the bulged-out structure in the initiation site of rpoE mRNA.
Collapse
|
23
|
Petty AP, Dick CL, Lindsey JS. Translation of an atypical human cDNA requires fidelity of apurine-pyrimidine repeat region and recoding. Gene 2008; 414:49-59. [PMID: 18378409 DOI: 10.1016/j.gene.2008.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/11/2008] [Indexed: 12/18/2022]
Abstract
Gain or loss of Migration inducting gene-7 (Mig-7) protein expression functional studies suggest it causes aggressive tumor cell invasion and tumor cell vessel-like structure formation. In addition, Mig-7 expression is apparently carcinoma and trophoblast cell-specific. Mig-7 is an example of an atypical gene that is unique in its induction, translation and apparent carcinoma-specific expression. However, studies of this predominantly integral membrane protein are hampered because of the cloning and expression techniques required for detection of Mig-7 protein. Because the encoding region possesses stop codons, repeat sequences and secondary structure, we hypothesized that genetically engineered E. coli are required to maintain the number of purine-pyrimidine repeats and reading frame when producing expression plasmids containing the Mig-7 sequence. Cloning Mig-7 sequence using E. coli genetically engineered to lack recombination and rearrangement capabilities prevented extension of the repeat region. Because of multiple stop codons in the sequence, three different constructs starting from three different reading frame ATG sites were tested for protein production in a human carcinoma cell line. Mig-7 protein of ~23 kD is produced from Mig-7 cDNA that contains multiple stop codons downstream from the ATG in a Kozak consensus sequence. In silico analyses imply that multiple Mig-7 mRNA secondary structures may cause frameshifting, read-through, and/or recoding of the multiple stop codons. Experimental results support that one or more of these translational events take place. In this report, we detail requirements for cloning and expression of this novel, atypical, human gene. These techniques can be used to express this unique protein for further studies.
Collapse
Affiliation(s)
- Aaron P Petty
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | | | |
Collapse
|
24
|
Terui Y, Higashi K, Taniguchi S, Shigemasa A, Nishimura K, Yamamoto K, Kashiwagi K, Ishihama A, Igarashi K. Enhancement of the synthesis of RpoN, Cra, and H-NS by polyamines at the level of translation in Escherichia coli cultured with glucose and glutamate. J Bacteriol 2007; 189:2359-68. [PMID: 17220219 PMCID: PMC1899374 DOI: 10.1128/jb.01562-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 01/05/2007] [Indexed: 12/14/2022] Open
Abstract
Proteins whose synthesis is enhanced by polyamines at the level of translation were identified in a polyamine-requiring mutant cultured in the presence of 0.1% glucose and 0.02% glutamate instead of 0.4% glucose as an energy source. Under these conditions, enhancement of cell growth by polyamines was almost the same as that in the presence of 0.4% glucose. It was found that synthesis of RpoN, Cra, and H-NS was enhanced by polyamines at the level of translation at the early logarithmic phase of growth (A(540) of 0.15). The effects of polyamines on synthesis of RpoN, H-NS, and Cra were due to the existence of unusual Shine-Dalgarno sequences (RpoN and H-NS) and an inefficient GUG initiation codon (Cra) in their mRNAs. Thus, rpoN, cra, and hns genes were identified as new members of the polyamine modulon. Because most of the polyamine modulon genes thus far identified encode transcription factors (RpoS [sigma(38)], Cya, FecI [sigma(18)], Fis, RpoN [sigma(54)], Cra, and H-NS), DNA microarray analysis of mRNA expressed in cells was performed. At the early logarithmic phase of growth, a total of 97 species of mRNAs that were up-regulated by polyamines more than twofold were under the control of seven polyamine modulon genes mentioned above.
Collapse
Affiliation(s)
- Yusuke Terui
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nicolás MF, Barcellos FG, Nehab Hess P, Hungria M. ABC transporters in Mycoplasma hyopneumoniae and Mycoplasma synoviae: insights into evolution and pathogenicity. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Igarashi K. [Physiological functions of polyamines and regulation of polyamine content in cells]. YAKUGAKU ZASSHI 2006; 126:455-71. [PMID: 16819267 DOI: 10.1248/yakushi.126.455] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyamines (putrescine, spermidine, and spermine) are essential for normal cell growth. The polyamine level in cells is regulated by biosynthesis, degradation, and transport. The role of antizyme on polyamine biosynthesis and transport in mammalian cells and characteristics of polyamine transport in Escherichia coli and yeast are described briefly in this review. In addition, the effects of polyamines on protein synthesis and the NMDA receptor are outlined. Finally, the correlation between acrolein produced from polyamines by polyamine oxidase and chronic renal failure and brain stroke is summarized. Increased levels of polyamine oxidase and acrolein are good markers of chronic renal failure and brain stroke.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana, Japan.
| |
Collapse
|
27
|
Higashi K, Kashiwagi K, Taniguchi S, Terui Y, Yamamoto K, Ishihama A, Igarashi K. Enhancement of +1 Frameshift by Polyamines during Translation of Polypeptide Release Factor 2 in Escherichia coli. J Biol Chem 2006; 281:9527-37. [PMID: 16476727 DOI: 10.1074/jbc.m513752200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polypeptide release factor 2 (RF2) in Escherichia coli is known to be synthesized by a +1 frameshift at the 26th UGA codon of RF2 mRNA. Polyamines were found to stimulate the +1 frameshift of RF2 synthesis, an effect that was reduced by excess RF2. Polyamine stimulation of +1 frameshift of RF2 synthesis was observed at the early logarithmic phase, which is the important phase in determination of the overall rate of cell growth. A Shine-Dalgarno-like sequence was necessary for an efficient +1 frameshift of RF2 synthesis, but not for polyamine stimulation. Spectinomycin, tetracycline, streptomycin, and neomycin reduced polyamine stimulation of the +1 frameshift of RF2 synthesis. The results suggest that a structural change of the A site on 30 S ribosomal subunits is important for polyamine stimulation of the +1 frameshift. The level of mRNAs of ribosomal proteins and elongation factors having UAA as termination codon was enhanced by polyamines, and OppA synthesis from OppA mRNA having UAA as termination codon was more enhanced by polyamines than that from OppA mRNA having a UGA termination codon. Furthermore, synthesis of ribosomal protein L20 and elongation factor G from the mRNAs having a UAA termination codon was enhanced by polyamines at the level of translation and transcription. The results suggest that some protein synthesis from mRNAs having a UAA termination codon is enhanced at the level of translation through polyamine stimulation of +1 frameshift of RF2 synthesis. It is concluded that prfB encoding RF2 is a new member of the polyamine modulon.
Collapse
Affiliation(s)
- Kyohei Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Miyake M, Minami T, Hirota M, Toguchi H, Odomi M, Ogawara KI, Higaki K, Kimura T. Novel oral formulation safely improving intestinal absorption of poorly absorbable drugs: Utilization of polyamines and bile acids. J Control Release 2006; 111:27-34. [PMID: 16410031 DOI: 10.1016/j.jconrel.2005.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 11/09/2005] [Accepted: 11/18/2005] [Indexed: 12/12/2022]
Abstract
In order to develop a novel oral formulation that can safely improve the intestinal absorption of poorly absorbable drugs, polyamines such as spermine (SPM) and spermidine (SPD) was examined as an absorption enhancing adjuvant in rats. The absorption of rebamipide, classified into BCS Class IV, from colon was significantly improved by SPM or SPD, and the enhancing ability of SPM was larger than that of SPD. As a possible mixing and/or interaction of polyamines with bile acids were expected, the combinatorial use of sodium taurocholate (STC) with polyamines was also examined. The absorption of rebamipide was drastically improved by the combinatorial use of SPM or SPD with STC. As STC itself did not enhance the absorption of rebamipide so much, it was considered that polyamines and STC had a synergistic enhancing effect. In-vivo oral absorption study was also performed to investigate the effectiveness and safety of polyamines and their combinatorial use with STC in rats. Although the enhancing effect slightly attenuated comparing with the in-situ loop study, the absorption of rebamipide was significantly improved and the combinatorial use of 10 mM SPM with 25 mM STC showed the largest enhancing effect. Histopathological studies clearly showed that any significant change in stomach and duodenum was not caused by SPM (10 mM), SPD (10 mM) or their combinatorial use with STC (25 mM) at 1.5 or 8.0 h after oral administration. Taken all together, polyamines, especially SPM, and its combinatorial use with STC could improve the absorption of poorly absorbable drugs without any significant changes in gastrointestinal tract after oral administration in rats.
Collapse
Affiliation(s)
- Masateru Miyake
- BA Project, Formulation Research Institute, Otsuka Pharmaceutical Co., Ltd., 224-18 Ebino, Hiraishi, Kawauchi-cho, Tokushima 771-0182, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Igarashi K, Kashiwagi K. Polyamine Modulon in Escherichia coli: Genes Involved in the Stimulation of Cell Growth by Polyamines. ACTA ACUST UNITED AC 2006; 139:11-6. [PMID: 16428314 DOI: 10.1093/jb/mvj020] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have recently proposed an idea to explain how polyamines enhance cell growth in Escherichia coli. Since most polyamines exist as polyamine-RNA complexes, our idea is that polyamines stimulate several kinds of protein synthesis which are important for cell growth at the level of translation. We found that synthesis of oligopeptide binding protein (OppA), which is important for nutrient supply, adenylate cyclase (Cya), RNA polymerase sigma(38) subunit (RpoS), transcription factor of iron transport operon (FecI), and transcription factor of growth-related genes including rRNA and some kinds of tRNA synthesis (Fis) was enhanced by polyamines at the level of translation. We proposed that a group of genes whose expression is enhanced by polyamines at the level of translation be referred to as a "polyamine modulon." By DNA microarray, we found that 309 of 2,742 mRNA species were up-regulated by polyamines. Among the 309 up-regulated genes, transcriptional enhancement of at least 58 genes might be attributable to increased levels of the transcription factors Cya, RpoS, FecI, and Fis. This unifying molecular mechanism is proposed to underlie the physiological role of polyamines in controlling the growth of Escherichia coli.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chiba 260-8675.
| | | |
Collapse
|
30
|
Karatan E, Duncan TR, Watnick PI. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 2005; 187:7434-43. [PMID: 16237027 PMCID: PMC1273002 DOI: 10.1128/jb.187.21.7434-7443.2005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is both an environmental bacterium and a human intestinal pathogen. The attachment of bacteria to surfaces in biofilms is thought to be an important feature of the survival of this bacterium both in the environment and within the human host. Biofilm formation occurs when cell-surface and cell-cell contacts are formed to make a three-dimensional structure characterized by pillars of bacteria interspersed with water channels. In monosaccharide-rich conditions, the formation of the V. cholerae biofilm requires synthesis of the VPS exopolysaccharide. MbaA (locus VC0703), an integral membrane protein containing a periplasmic domain as well as cytoplasmic GGDEF and EAL domains, has been previously identified as a repressor of V. cholerae biofilm formation. In this work, we have studied the role of the protein NspS (locus VC0704) in V. cholerae biofilm development. This protein is homologous to PotD, a periplasmic spermidine-binding protein of Escherichia coli. We show that the deletion of nspS decreases biofilm development and transcription of exopolysaccharide synthesis genes. Furthermore, we demonstrate that the polyamine norspermidine activates V. cholerae biofilm formation in an MbaA- and NspS-dependent manner. Based on these results, we propose that the interaction of the norspermidine-NspS complex with the periplasmic portion of MbaA diminishes the ability of MbaA to inhibit V. cholerae biofilm formation. Norspermidine has been detected in bacteria, archaea, plants, and bivalves. We suggest that norspermidine serves as an intercellular signaling molecule that mediates the attachment of V. cholerae to the biotic surfaces presented by one or more of these organisms.
Collapse
Affiliation(s)
- Ece Karatan
- Tufts-New England Medical Center, Department of Geographic Medicine and Infectious Diseases, 750 Washington St., Box 041, Boston, MA 02111, USA
| | | | | |
Collapse
|
31
|
Loikkanen I, Lin Y, Railo A, Pajunen A, Vainio S. Polyamines are involved in murine kidney development controlling expression of c-ret, E-cadherin, and Pax2/8 genes. Differentiation 2005; 73:303-12. [PMID: 16138831 DOI: 10.1111/j.1432-0436.2005.00036.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Polyamines play an important role in cell growth and differentiation. We studied changes in morphogenesis and the expression of the developmental control genes in the embryonic mouse kidney in response to polyamine depletion, using a kidney organ culture approach and reducing the polyamine pools with alpha-difluoromethylornithine (DFMO), an irreversible suicide inhibitor of ornithine decarboxylase (ODC). We found that inhibition of ODC results in a systematic kidney organogenesis phenotype, in that the DFMO-treated kidney specimens were of smaller size, had less epithelial ureteric bud branches, and their mesenchymal-derived tubule formation was retarded. These dysmorphologies were shown to be associated with changes in cell proliferation. Whole-mount in situ experiments revealed that inhibition of ODC causes increases in epithelial c-ret and E-cadherin and a decrease in mesenchymal Pax-8 expression, whereas levels of epithelial Wnt-11, mesenchymal GDNF, FoxD1, and Pax-2 transcripts remain unchanged. We studied regulation of the Pax-2 gene by analyzing a mouse line in which lacZ was driven by an 8.5 kb Pax-2 enhancer in the epithelial ureteric bud, and found that Pax-2 expression, as indicated by lacZ expression, increased after DFMO treatment. Transient transfection experiments in HEK 293 cells with the minimal Pax-2 promoter showed enhanced transcription upon reduction of the polyamine pools. We propose that ODC and polyamines have an important role in kidney organogenesis, being involved in the regulation of the expression of genes implicated in epithelial-mesenchymal tissue interactions.
Collapse
Affiliation(s)
- Ildikó Loikkanen
- Department of Biochemistry, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
32
|
Petros LM, Howard MT, Gesteland RF, Atkins JF. Polyamine sensing during antizyme mRNA programmed frameshifting. Biochem Biophys Res Commun 2005; 338:1478-89. [PMID: 16269132 DOI: 10.1016/j.bbrc.2005.10.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 10/20/2005] [Indexed: 11/24/2022]
Abstract
A key regulator of cellular polyamine levels from yeasts to mammals is the protein antizyme. The antizyme gene consists of two overlapping reading frames with ORF2 in the +1 frame relative to ORF1. A programmed +1 ribosomal frameshift occurs at the last codon of ORF1 and results in the production of full-length antizyme protein. The efficiency of frameshifting is proportional to the concentration of polyamines, thus creating an autoregulatory circuit for controlling polyamine levels. The mRNA recoding signals for frameshifting include an element 5' and a pseudoknot 3' of the shift site. The present work illustrates that the ORF1 stop codon and the 5' element are critical for polyamine sensing, whereas the 3' pseudoknot acts to stimulate frameshifting in a polyamine independent manner. We also demonstrate that polyamines are required to stimulate stop codon readthrough at the MuLV redefinition site required for normal expression of the GagPol precursor protein.
Collapse
Affiliation(s)
- Lorin M Petros
- Department of Human Genetics, University of Utah, 15 N. 2030 E, Rm 7410, Salt Lake City, UT 84112-5330, USA
| | | | | | | |
Collapse
|
33
|
Yohannes E, Thurber AE, Wilks JC, Tate DP, Slonczewski JL. Polyamine stress at high pH in Escherichia coli K-12. BMC Microbiol 2005; 5:59. [PMID: 16223443 PMCID: PMC1274320 DOI: 10.1186/1471-2180-5-59] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 10/13/2005] [Indexed: 12/04/2022] Open
Abstract
Background Polyamines such as spermine and spermidine are required for growth of Escherichia coli; they interact with nucleic acids, and they bind to ribosomes. Polyamines block porins and decrease membrane permeability, activities that may protect cells in acid. At high concentrations, however, polyamines impair growth. They impair growth more severely at high pH, probably due to their increased uptake as membrane-permeant weak bases. The role of pH is critical in understanding polyamine stress. Results The effect of polyamines was tested on survival of Escherichia coli K-12 W3110 in extreme acid or base (pH conditions outside the growth range). At pH 2, 10 mM spermine increased survival by 2-fold, and putrescine increased survival by 30%. At pH 9.8, however, E. coli survival was decreased 100-fold by 10 mM spermine, putrescine, cadaverine, or spermidine. At pH 8.5, spermine decreased the growth rate substantially, whereas little effect was seen at pH 5.5. Spermidine required ten-fold higher concentrations to impair growth. On proteomic 2-D gels, spermine and spermidine caused differential expression of 31 different proteins. During log-phase growth at pH 7.0, 1 mM spermine induced eight proteins, including PykF, GlpK, SerS, DeaD, OmpC and OmpF. Proteins repressed included acetate-inducible enzymes (YfiD, Pta, Lpd) as well as RapA (HepA), and FabB. At pH 8.5, spermine induced additional proteins: TnaA, OmpA, YrdA and NanA (YhcJ) and also repressed 17 proteins. Four of the proteins that spermine induced (GlpK, OmpA, OmpF, TnaA) and five that were repressed (Lpd, Pta, SucB, TpiA, YfiD) show similar induction or repression, respectively, in base compared to acid. Most of these base stress proteins were also regulated by spermidine, but only at ten-fold higher concentration (10 mM) at high pH (pH 8.5). Conclusion Polyamines increase survival in extreme acid, but decrease E. coli survival in extreme base. Growth inhibition by spermine and spermidine requires neutral or higher pH. At or above pH 7, spermine and spermidine regulate specific proteins, many of which are known to be regulated by base stress. High pH amplifies polyamine stress; and naturally occurring polyamines may play an important role in base stress.
Collapse
Affiliation(s)
| | - Amy E Thurber
- Department of Biology, Kenyon College, Gambier, OH 43022
| | | | - Daniel P Tate
- Department of Biology, Kenyon College, Gambier, OH 43022
| | | |
Collapse
|
34
|
Nishimura K, Murozumi K, Shirahata A, Park M, Kashiwagi K, Igarashi K. Independent roles of eIF5A and polyamines in cell proliferation. Biochem J 2005; 385:779-85. [PMID: 15377278 PMCID: PMC1134754 DOI: 10.1042/bj20041477] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 09/16/2004] [Accepted: 09/17/2004] [Indexed: 11/17/2022]
Abstract
To examine the roles of active hypusinated eIF5A (eukaryotic translation initiation factor 5A) and polyamines in cell proliferation, mouse mammary carcinoma FM3A cells were treated with an inhibitor of deoxyhypusine synthase, GC7 (N1-guanyl-1, 7-diaminoheptane), or with an inhibitor of ornithine decarboxylase, DFMO (a-difluoromethylornithine), or with DFMO plus an inhibitor of spermine synthase, APCHA [N1-(3-aminopropyl)-cyclohexylamine]. Treatment with GC7 decreased the level of active eIF5A on day 1 without affecting cellular polyamine content, and inhibition of cell growth occurred from day 2. This delay reflects the fact that eIF5A was present in excess and was very stable in these cells. Treatment with DFMO or with DFMO plus APCHA inhibited cell growth on day 1. DFMO considerably decreased the levels of putrescine and spermidine, and the formation of active eIF5A began to decrease when the level of spermidine fell below 8 nmol/mg of protein after 12 h of incubation with DFMO. The combination of DFMO and APCHA markedly decreased the levels of putrescine and spermine and significantly decreased the level of spermidine, but did not affect the level of active eIF5A until day 3 when spermidine level decreased to 7 nmol/mg of protein. The results show that a decrease in either active eIF5A or polyamines inhibits cell growth, indicating that eIF5A and polyamines are independently involved in cell growth
Collapse
Affiliation(s)
- Kazuhiro Nishimura
- *Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kaori Murozumi
- *Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akira Shirahata
- †Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0248, Japan
| | - Myung Hee Park
- ‡Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, U.S.A
| | - Keiko Kashiwagi
- *Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazuei Igarashi
- *Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
35
|
Yoshida M, Kashiwagi K, Shigemasa A, Taniguchi S, Yamamoto K, Makinoshima H, Ishihama A, Igarashi K. A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem 2004; 279:46008-13. [PMID: 15326188 DOI: 10.1074/jbc.m404393200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that the synthesis of specific proteins such as OppA, Cya, and RpoS (sigma(38)), which are important for cell growth and viability, is stimulated by polyamines at the level of translation. In this study we found that the synthesis of FecI and Fis was also stimulated by polyamines at the level of translation. The FecI and Fis proteins enhance the expression of mRNAs that are involved in iron uptake and energy metabolism and the expression of rRNA and some tRNAs. The Shine-Dalgarno (SD) sequence of their mRNAs was not obvious or was not located at the usual position. When the SD sequences were created at the normal position on these mRNAs, protein synthesis was no longer influenced by polyamines. Thus, the common characteristic of these mRNAs was to have a weak or ineffective SD sequence. We propose that a group of genes whose expression is enhanced by polyamines at the level of translation be referred to as a "polyamine modulon." By DNA microarray, we found that 309 of 2,742 mRNA species were upregulated by polyamines. Among the 309 up-regulated genes, transcriptional enhancement of at least 58 genes might be attributable to increased levels of the transcription factors Cya, RpoS, FecI, and Fis, which are all organized in the polyamine modulon. This unifying molecular mechanism is proposed to underlie the physiological role of polyamines in controlling the growth of Escherichia coli.
Collapse
Affiliation(s)
- Madoka Yoshida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 2004; 51:1401-12. [PMID: 14982633 DOI: 10.1046/j.1365-2958.2003.03913.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functions of the putative cadaverine transport protein CadB were studied in Escherichia coli. CadB had both cadaverine uptake activity, dependent on proton motive force, and cadaverine excretion activity, acting as a cadaverine-lysine antiporter. The Km values for uptake and excretion of cadaverine were 20.8 and 303 microM respectively. Both cadaverine uptake and cadaverine-lysine antiporter activities of CadB were functional in cells. Cell growth of a polyamine-requiring mutant was stimulated slightly at neutral pH by the cadaverine uptake activity and greatly at acidic pH by the cadaverine-lysine antiporter activity. At acidic pH, the operon containing cadB and cadA, encoding lysine decarboxylase, was induced in the presence of lysine. This caused neutralization of the extracellular medium and made possible the production of CO(2) and cadaverine and aminopropylcadaverine instead of putrescine and spermidine. The induction of the cadBA operon also generated a proton motive force. When the cadBA operon was not induced, the expression of the speF-potE operon, encoding inducible ornithine decarboxylase and a putrescine-ornithine antiporter, was increased. The results indicate that the cadBA operon plays important roles in cellular regulation at acidic pH.
Collapse
Affiliation(s)
- Waraporn Soksawatmaekhin
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
37
|
Makinoshima H, Aizawa SI, Hayashi H, Miki T, Nishimura A, Ishihama A. Growth phase-coupled alterations in cell structure and function of Escherichia coli. J Bacteriol 2003; 185:1338-45. [PMID: 12562804 PMCID: PMC142870 DOI: 10.1128/jb.185.4.1338-1345.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cultures can be fractionated into more than 20 cell populations, each having a different bouyant density and apparently representing a specific stage of cell differentiation from exponential growth to stationary phase (H. Makinoshima, A. Nishimura, and A. Ishihama, Mol. Microbiol. 43:269-279, 2002). The density increase was found to be impaired at an early step for a mutant E. coli with the disrupted rpoS gene, which encodes the RNA polymerase RpoS (sigma-S) for stationary-phase gene transcription. This finding suggests that RpoS is need for the entire process of cell density increase. In the absence of RpoF sigma factor, the flagella are not formed as observed by electron microscopy, but the growth phase-coupled density increase takes place as in wild-type E. coli, confirming that the alteration in cell density is not directly correlated with the presence or absence of flagella. In the stationary-phase cells, accumulation of electron-dense areas was observed by electron microscopic observation of bacterial thin sections. By chemical determination, the increase in glycogen (or polysaccharides) was suggested to be one component, which contributes to the increase in weight-to-volume ratio of stationary-phase E. coli cells.
Collapse
Affiliation(s)
- Hideki Makinoshima
- Division of Molecular Biology, Nippon Institute for Biological Science, Ome, Tokyo 198-0024, Japan
| | | | | | | | | | | |
Collapse
|