1
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
2
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
4
|
Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B. New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice. Clin Rev Allergy Immunol 2021; 60:271-292. [PMID: 33405100 PMCID: PMC7985118 DOI: 10.1007/s12016-020-08824-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Calcium is the most abundant mineral in the human body and is central to many physiological processes, including immune system activation and maintenance. Studies continue to reveal the intricacies of calcium signalling within the immune system. Perhaps the most well-understood mechanism of calcium influx into cells is store-operated calcium entry (SOCE), which occurs via calcium release-activated channels (CRACs). SOCE is central to the activation of immune system cells; however, more recent studies have demonstrated the crucial role of other calcium channels, including transient receptor potential (TRP) channels. In this review, we describe the expression and function of TRP channels within the immune system and outline associations with murine models of disease and human conditions. Therefore, highlighting the importance of TRP channels in disease and reviewing potential. The TRP channel family is significant, and its members have a continually growing number of cellular processes. Within the immune system, TRP channels are involved in a diverse range of functions including T and B cell receptor signalling and activation, antigen presentation by dendritic cells, neutrophil and macrophage bactericidal activity, and mast cell degranulation. Not surprisingly, these channels have been linked to many pathological conditions such as inflammatory bowel disease, chronic fatigue syndrome and myalgic encephalomyelitis, atherosclerosis, hypertension and atopy.
Collapse
Affiliation(s)
- Saied Froghi
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK. .,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK. .,HCA Senior Clinical Fellow (HPB & Liver Transplant), Wellington Hospital, St Johns Wood, London, UK.
| | - Charlotte R Grant
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Radhika Tandon
- Sheffield Medical School, Beech Hill Road, Sheffield, UK, S10 2RX
| | - Alberto Quaglia
- Department of Pathology, Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Brian Davidson
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK.,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Barry Fuller
- Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| |
Collapse
|
5
|
Wang WA, Demaurex N. Proteins Interacting with STIM1 and Store-Operated Ca 2+ Entry. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:51-97. [PMID: 34050862 DOI: 10.1007/978-3-030-67696-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) interacts with ORAI Ca2+ channels at the plasma membrane to regulate immune and muscle cell function. The conformational changes underlying STIM1 activation, translocation, and ORAI1 trapping and gating, are stringently regulated by post-translational modifications and accessory proteins. Here, we review the recent progress in the identification and characterization of ER and cytosolic proteins interacting with STIM1 to control its activation and deactivation during store-operated Ca2+ entry (SOCE).
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
TRPC Channels in the SOCE Scenario. Cells 2020; 9:cells9010126. [PMID: 31948094 PMCID: PMC7016597 DOI: 10.3390/cells9010126] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
Transient receptor potential (TRP) proteins form non-selective Ca2+ permeable channels that contribute to the modulation of a number of physiological functions in a variety of cell types. Since the identification of TRP proteins in Drosophila, it is well known that these channels are activated by stimuli that induce PIP2 hydrolysis. The canonical TRP (TRPC) channels have long been suggested to be constituents of the store-operated Ca2+ (SOC) channels; however, none of the TRPC channels generate Ca2+ currents that resemble ICRAC. STIM1 and Orai1 have been identified as the components of the Ca2+ release-activated Ca2+ (CRAC) channels and there is a body of evidence supporting that STIM1 is able to gate Orai1 and TRPC1 in order to mediate non-selective cation currents named ISOC. STIM1 has been found to interact to and activate Orai1 and TRPC1 by different mechanisms and the involvement of TRPC1 in store-operated Ca2+ entry requires both STIM1 and Orai1. In addition to the participation of TRPC1 in the ISOC currents, TRPC1 and other TRPC proteins might play a relevant role modulating Orai1 channel function. This review summarizes the functional role of TRPC channels in the STIM1–Orai1 scenario.
Collapse
|
7
|
Lopez JJ, Jardin I, Albarrán L, Sanchez-Collado J, Cantonero C, Salido GM, Smani T, Rosado JA. Molecular Basis and Regulation of Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:445-469. [PMID: 31646520 DOI: 10.1007/978-3-030-12457-1_17] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism for Ca2+ influx in mammalian cells with important physiological implications. Since the discovery of SOCE more than three decades ago, the mechanism that communicates the information about the amount of Ca2+ accumulated in the intracellular Ca2+ stores to the plasma membrane channels and the nature of these channels have been matters of intense investigation and debate. The stromal interaction molecule-1 (STIM1) has been identified as the Ca2+ sensor of the intracellular Ca2+ compartments that activates the store-operated channels. STIM1 regulates two types of store-dependent channels: the Ca2+ release-activated Ca2+ (CRAC) channels, formed by Orai1 subunits, that conduct the highly Ca2+ selective current I CRAC and the cation permeable store-operated Ca2+ (SOC) channels, which consist of Orai1 and TRPC1 proteins and conduct the non-selective current I SOC. While the crystal structure of Drosophila CRAC channel has already been solved, the architecture of the SOC channels still remains unclear. The dynamic interaction of STIM1 with the store-operated channels is modulated by a number of proteins that either support the formation of the functional STIM1-channel complex or protect the cell against Ca2+ overload.
Collapse
Affiliation(s)
- Jose J Lopez
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Isaac Jardin
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| | - Letizia Albarrán
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Carlos Cantonero
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Gines M Salido
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics and Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Sevilla, Sevilla, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| |
Collapse
|
8
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
9
|
Ambudkar IS, de Souza LB, Ong HL. TRPC1, Orai1, and STIM1 in SOCE: Friends in tight spaces. Cell Calcium 2017; 63:33-39. [PMID: 28089266 PMCID: PMC5466534 DOI: 10.1016/j.ceca.2016.12.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 01/07/2023]
Abstract
Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of ER-Ca2+ stores and critically controls the regulation of physiological functions in miscellaneous cell types. The transient receptor potential canonical 1 (TRPC1) is the first member of the TRPC channel subfamily to be identified as a molecular component of SOCE. While TRPC1 has been shown to contribute to SOCE and regulate various functions in many cells, none of the reported TRPC1-mediated currents resembled ICRAC, the highly Ca2+-selective store-dependent current first identified in lymphocytes and mast cells. Almost a decade after the cloning of TRPC1 two proteins were identified as the primary components of the CRAC channel. The first, STIM1, is an ER-Ca2+ sensor protein involved in activating SOCE. The second, Orai1 is the pore-forming component of the CRAC channel. Co-expression of STIM1 and Orai1 generated robust ICRAC. Importantly, STIM1 was shown to also activate TRPC1 via its C-terminal polybasic domain, which is distinct from its Orai1-activating domain, SOAR. In addition, TRPC1 function critically depends on Orai1-mediated Ca2+ entry which triggers recruitment of TRPC1 into the plasma membrane where it is then activated by STIM1. TRPC1 and Orai1 form discrete STIM1-gated channels that generate distinct Ca2+ signals and regulate specific cellular functions. Surface expression of TRPC1 can be modulated by trafficking of the channel to and from the plasma membrane, resulting in changes to the phenotype of TRPC1-mediated current and [Ca2+]i signals. Thus, TRPC1 is activated downstream of Orai1 and modifies the initial [Ca2+]i signal generated by Orai1 following store depletion. This review will summarize the important findings that underlie the current concepts for activation and regulation of TRPC1, as well as its impact on cell function.
Collapse
Affiliation(s)
- Indu S Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lorena Brito de Souza
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Subedi KP, Ong HL, Ambudkar IS. Assembly of ER-PM Junctions: A Critical Determinant in the Regulation of SOCE and TRPC1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:253-276. [PMID: 29594865 DOI: 10.1007/978-3-319-55858-5_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Store-operated calcium entry (SOCE), a unique plasma membrane Ca2+ entry mechanism, is activated when ER-[Ca2+] is decreased. SOCE is mediated via the primary channel, Orai1, as well as others such as TRPC1. STIM1 and STIM2 are ER-Ca2+ sensor proteins that regulate Orai1 and TRPC1. SOCE requires assembly of STIM proteins with the plasma membrane channels which occurs within distinct regions in the cell that have been termed as endoplasmic reticulum (ER)-plasma membrane (PM) junctions. The PM and ER are in close proximity to each other within this region, which allows STIM1 in the ER to interact with and activate either Orai1 or TRPC1 in the plasma membrane. Activation and regulation of SOCE involves dynamic assembly of various components that are involved in mediating Ca2+ entry as well as those that determine the formation and stabilization of the junctions. These components include proteins in the cytosol, ER and PM, as well as lipids in the PM. Recent studies have also suggested that SOCE and its components are compartmentalized within ER-PM junctions and that this process might require remodeling of the plasma membrane lipids and reorganization of structural and scaffolding proteins. Such compartmentalization leads to the generation of spatially- and temporally-controlled Ca2+signals that are critical for regulating many downstream cellular functions.
Collapse
Affiliation(s)
- Krishna P Subedi
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Indu S Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA.
| |
Collapse
|
11
|
STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca 2+ Entry: Impact on Ca 2+ Signaling and Cell Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:159-188. [PMID: 28900914 DOI: 10.1007/978-3-319-57732-6_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of ER-Ca2+ stores and critically controls the regulation of physiological functions in a wide variety of cell types. The transient receptor potential canonical (TRPC) channels (TRPCs 1-7), which are activated by stimuli leading to PIP2 hydrolysis, were first identified as molecular components of SOCE channels. While TRPC1 was associated with SOCE and regulation of function in several cell types, none of the TRPC members displayed I CRAC, the store-operated current identified in lymphocytes and mast cells. Intensive search finally led to the identification of Orai1 and STIM1 as the primary components of the CRAC channel. Orai1 was established as the pore-forming channel protein and STIM1 as the ER-Ca2+ sensor protein involved in activation of Orai1. STIM1 also activates TRPC1 via a distinct domain in its C-terminus. However, TRPC1 function depends on Orai1-mediated Ca2+ entry, which triggers recruitment of TRPC1 into the plasma membrane where it is activated by STIM1. TRPC1 and Orai1 form distinct store-operated Ca2+ channels that regulate specific cellular functions. It is now clearly established that regulation of TRPC1 trafficking can change plasma membrane levels of the channel, the phenotype of the store-operated Ca2+ current, as well as pattern of SOCE-mediated [Ca2+]i signals. Thus, TRPC1 is activated downstream of Orai1 and modifies the initial [Ca2+]i signal generated by Orai1. This review will highlight current concepts of the activation and regulation of TRPC1 channels and its impact on cell function.
Collapse
|
12
|
Putney JW, Steinckwich-Besançon N, Numaga-Tomita T, Davis FM, Desai PN, D'Agostin DM, Wu S, Bird GS. The functions of store-operated calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:900-906. [PMID: 27913208 DOI: 10.1016/j.bbamcr.2016.11.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Store-operated calcium channels provide calcium signals to the cytoplasm of a wide variety of cell types. The basic components of this signaling mechanism include a mechanism for discharging Ca2+ stores (commonly but not exclusively phospholipase C and inositol 1,4,5-trisphosphate), a sensor in the endoplasmic reticulum that also serves as an activator of the plasma membrane channel (STIM1 and STIM2), and the store-operated channel (Orai1, 2 or 3). The advent of mice genetically altered to reduce store-operated calcium entry globally or in specific cell types has provided important tools to understand the functions of these widely encountered channels in specific and clinically important physiological systems. This review briefly discusses the history and cellular properties of store-operated calcium channels, and summarizes selected studies of their physiological functions in specific physiological or pathological contexts. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- James W Putney
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Natacha Steinckwich-Besançon
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Takuro Numaga-Tomita
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Felicity M Davis
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Pooja N Desai
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Diane M D'Agostin
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Shilan Wu
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Gary S Bird
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Lopez JJ, Albarran L, Gómez LJ, Smani T, Salido GM, Rosado JA. Molecular modulators of store-operated calcium entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2037-43. [PMID: 27130253 DOI: 10.1016/j.bbamcr.2016.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/13/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022]
Abstract
Three decades ago, store-operated Ca(2+) entry (SOCE) was identified as a unique mechanism for Ca(2+) entry through plasma membrane (PM) Ca(2+)-permeable channels modulated by the intracellular Ca(2+) stores, mainly the endoplasmic reticulum (ER). Extensive analysis of the communication between the ER and the PM leads to the identification of the protein STIM1 as the ER-Ca(2+) sensor that gates the Ca(2+) channels in the PM. Further analysis on the biophysical, electrophysiological and biochemical properties of STIM1-dependent Ca(2+) channels has revealed the presence of a highly Ca(2+)-selective channel termed Ca(2+) release-activated Ca(2+) channel (CRAC), consisting of Orai1 subunits, and non-selective cation channels named store-operated channels (SOC), including both Orai1 and TRPC channel subunits. Since the identification of the key elements of CRAC and SOC channels a number of intracellular modulators have been reported to play essential roles in the stabilization of STIM-Orai interactions, collaboration with STIM1 conformational changes or mediating slow Ca(2+)-dependent inactivation. Here, we review our current understanding of some of the key modulators of STIM1-Orai1 interaction, including the proteins CRACR2A, STIMATE, SARAF, septins, golli and ORMDL3.
Collapse
Affiliation(s)
- Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Luis J Gómez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, Sevilla, Spain
| | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
14
|
The Calcium Entry-Calcium Refilling Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:333-52. [DOI: 10.1007/978-3-319-26974-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Ong HL, de Souza LB, Ambudkar IS. Role of TRPC Channels in Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:87-109. [DOI: 10.1007/978-3-319-26974-0_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Albarran L, Lopez JJ, Salido GM, Rosado JA. Historical Overview of Store-Operated Ca(2+) Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:3-24. [PMID: 27161222 DOI: 10.1007/978-3-319-26974-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium influx is an essential mechanism for the activation of cellular functions both in excitable and non-excitable cells. In non-excitable cells, activation of phospholipase C by occupation of G protein-coupled receptors leads to the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which, in turn, initiate two Ca(2+) entry pathways: Ca(2+) release from intracellular Ca(2+) stores, signaled by IP3, leads to the activation of store-operated Ca(2+) entry (SOCE); on the other hand, DAG activates a distinct second messenger-operated pathway. SOCE is regulated by the filling state of the intracellular calcium stores. The search for the molecular components of SOCE has identified the stromal interaction molecule 1 (STIM1) as the Ca(2+) sensor in the endoplasmic reticulum and Orai1 as a store-operated channel (SOC) subunit. Furthermore, a number of reports have revealed that several members of the TRPC family of channels also take part of the SOC macromolecular complex. This introductory chapter summarizes the early pieces of evidence that led to the concept of SOCE and the components of the store-operated signaling pathway.
Collapse
Affiliation(s)
- Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Ginés M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
17
|
Berna-Erro A, Jardín I, Smani T, Rosado JA. Regulation of Platelet Function by Orai, STIM and TRP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:157-81. [PMID: 27161229 DOI: 10.1007/978-3-319-26974-0_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Agonist-induced changes in cytosolic Ca(2+) concentration ([Ca(2+)]c) are central events in platelet physiology. A major mechanism supporting agonist-induced Ca(2+) signals is store-operated Ca(2+) entry (SOCE), where the Ca(2+) sensor STIM1 and the channels of the Orai family, as well as TRPC members are the key elements. STIM1-dependent SOCE plays a major role in collagen-stimulated Ca(2+) signaling, phosphatidylserine exposure and thrombin generation. Furthermore, studies involving Orai1 gain-of-function mutants and platelets from Orai1-deficient mice have revealed the importance of this channel in thrombosis and hemostasis to those found in STIM1-deficient mice indicating that SOCE might play a prominent role in thrombus formation. Moreover, increase in TRPC6 expression might lead to thrombosis in humans. The role of STIM1, Orai1 and TRPCs, and thus SOCE, in thrombus formation, suggests that therapies directed against SOCE and targeting these molecules during cardiovascular and cerebrovascular events could significantly improve traditional anti-thrombotic treatments.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Isaac Jardín
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, 10003, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
18
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
19
|
Mallick RL, Kumari S, Singh N, Sonkar VK, Dash D. Prion protein fragment (106-126) induces prothrombotic state by raising platelet intracellular calcium and microparticle release. Cell Calcium 2015; 57:300-11. [PMID: 25749016 DOI: 10.1016/j.ceca.2015.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/19/2015] [Accepted: 02/08/2015] [Indexed: 11/28/2022]
Abstract
Prion diseases are neurodegenerative disorders where infectious prion proteins (PrP) accumulate in brain leading to aggregation of amyloid fibrils and neuronal cell death. The amino acid sequence 106-126 from prion proteins, PrP(106-126), is highly amyloidogenic and implicated in prion-induced pathologies. As PrP is known to be expressed in blood following leakage from brain tissue, we sought to investigate its biological effects on human platelets, which have been widely employed as 'peripheral' model for neurons. Our findings suggested that, PrP(106-126) (20μM) induced dramatic 30-fold rise in intracellular calcium (from 105±30 to 3425±525nM) in platelets, which was attributable to influx from extracellular fluid with comparatively less contribution from intracellular stores. Calcium mobilization was associated with 8-10-fold stimulation in the activity of thiol protease calpain that led to partial cleavage of cytoskeleton-associated protein talin and extensive shedding of microparticles from platelets, thus transforming platelets to 'activated' phenotype. Both proteolysis of talin and microparticle release were precluded by calpeptin, a specific inhibitor of calpain. As microparticles are endowed with phosphatidylserine-enriched surface and hence are pro-coagulant in nature, exposure to prion favored a thrombogenic state in the organism.
Collapse
Affiliation(s)
- Ram L Mallick
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sharda Kumari
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vijay K Sonkar
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
20
|
Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator? Cells 2014; 3:939-62. [PMID: 25268281 PMCID: PMC4276908 DOI: 10.3390/cells3040939] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/07/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022] Open
Abstract
In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model.
Collapse
|
21
|
Abstract
The TRPC1 ion channel was the first mammalian TRP channel to be cloned. In humans, it is encoded by the TRPC1 gene located in chromosome 3. The protein is predicted to consist of six transmembrane segments with the N- and C-termini located in the cytoplasm. The extracellular loop connecting transmembrane segments 5 and 6 participates in the formation of the ionic pore region. Inside the cell, TRPC1 is present in the endoplasmic reticulum, plasma membrane, intracellular vesicles, and primary cilium, an antenna-like sensory organelle functioning as a signaling platform. In human and rodent tissues, it shows an almost ubiquitous expression. TRPC1 interacts with a diverse group of proteins including ion channel subunits, receptors, and cytosolic proteins to mediate its effect on Ca(2+) signaling. It primarily functions as a cation nonselective channel within pathways controlling Ca(2+) entry in response to cell surface receptor activation. Through these pathways, it affects basic cell functions, such as proliferation and survival, differentiation, secretion, and cell migration, as well as cell type-specific functions such as chemotropic turning of neuronal growth cones and myoblast fusion. The biological role of TRPC1 has been studied in genetically engineered mice where the Trpc1 gene has been experimentally ablated. Although these mice live to adulthood, they show defects in several organs and tissues, such as the cardiovascular, central nervous, skeletal and muscular, and immune systems. Genetic and functional studies have implicated TRPC1 in diabetic nephropathy, Parkinson's disease, Huntington's disease, Duchenne muscular dystrophy, cancer, seizures, and Darier-White skin disease.
Collapse
Affiliation(s)
- Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | | |
Collapse
|
22
|
Jardin I, López JJ, Berna-Erro A, Salido GM, Rosado JA. Homer Proteins in Ca2+Entry. IUBMB Life 2013; 65:497-504. [DOI: 10.1002/iub.1162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/07/2013] [Indexed: 11/08/2022]
|
23
|
Jardin I, Dionisio N, Frischauf I, Berna-Erro A, Woodard GE, López JJ, Salido GM, Rosado JA. The polybasic lysine-rich domain of plasma membrane-resident STIM1 is essential for the modulation of store-operated divalent cation entry by extracellular calcium. Cell Signal 2013; 25:1328-37. [PMID: 23395841 DOI: 10.1016/j.cellsig.2013.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/09/2013] [Accepted: 01/23/2013] [Indexed: 01/16/2023]
Abstract
STIM1 acts as an endoplasmic reticulum Ca(2+) sensor that communicates the filling state of the intracellular stores to the store-operated channels. In addition, STIM1 is expressed in the plasma membrane, with the Ca(2+) binding EF-hand motif facing the extracellular medium; however, its role sensing extracellular Ca(2+) concentrations in store-operated Ca(2+) entry (SOCE), as well as the underlying mechanism remains unclear. Here we report that divalent cation entry stimulated by thapsigargin (TG) is attenuated by extracellular Ca(2+) in a concentration-dependent manner. Expression of the Ca(2+)-binding defective STIM1(D76A) mutant did not alter the surface expression of STIM1 but abolishes the regulation of divalent cation entry by extracellular Ca(2+). Orai1 and TRPC1 have been shown to play a major role in SOCE. Expression of the STIM1(D76A) mutant did not alter Orai1 phosphoserine content. TRPC1 silencing significantly attenuated TG-induced Mn(2+) entry. Expression of the STIM1(K684,685E) mutant impaired the association of plasma membrane STIM1 with TRPC1, as well as the regulation of TG-induced divalent cation entry by extracellular Ca(2+), which suggests that TRPC1 might be involved in the regulation of divalent cation entry by extracellular Ca(2+) mediated by plasma membrane-resident STIM1. Expression of the STIM1(D76A) or STIM1(K684,685E) mutants reduced store-operated divalent cation entry and resulted in loss of dependence on the extracellular Ca(2+) concentration, providing evidence for a functional role of plasma membrane-resident STIM1 in the regulation of store-operated divalent cation entry, which at least involves the EF-hand motif and the C-terminal polybasic lysine-rich domain.
Collapse
Affiliation(s)
- Isaac Jardin
- Institute of Biophysics, University of Linz, A-4040 Linz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The combination of technological advances, genomic sequences and market success is catalyzing rapid development of antibody-based therapeutics. Cell surface receptors and ion channel proteins are well known drug targets, but the latter has seen less success. The availability of crystal structures, better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases.
Collapse
|
25
|
Naylor J, Beech DJ. Generation of antibodies that are externally acting isoform-specific inhibitors of ion channels. Methods Mol Biol 2013; 998:245-256. [PMID: 23529435 DOI: 10.1007/978-1-62703-351-0_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is demand for isoform-specific ion channel inhibitors as tools to investigate the biology of -endogenous ion channels and validate them as targets in drug discovery programs. There is also hope that such inhibitors may be new therapeutic agents or provide the foundation for such agents. However, in practice, it is commonly experienced that inhibitors lack sufficient specificity, fail to distinguish between members of a class of ion channel, or have other (non-ion channel) off-target effects. Due to their extraordinary specificity, antibodies offer a potentially attractive strategy for overcoming these problems. Inhibitory antibodies acting at the extracellular face of ion channels are particularly attractive because there is enhanced possibility for specificity and intracellular delivery methods are not required. Here we describe experience with such an antibody approach and methodology for generating agents based on anti-peptide polyclonal antibodies.
Collapse
|
26
|
López E, Berna-Erro A, Salido GM, Rosado JA, Redondo PC. FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:652-62. [PMID: 23228564 DOI: 10.1016/j.bbamcr.2012.11.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/17/2012] [Accepted: 11/30/2012] [Indexed: 12/17/2022]
Abstract
Immunophilins are FK506-binding proteins that have been involved in the regulation of calcium homeostasis, either by modulating Ca(2+) channels located in the plasma membrane or in the rough endoplasmic reticulum (RE). We have investigated whether immunophilins would participate in the regulation of stored-operated Ca(2+) entry (SOCE) in human platelets and MEG 01. Both cell types were loaded with fura-2 for determining cytosolic calcium concentration changes ([Ca(2+)](c)), or stimulated and fixed to evaluate the protein interaction profile by performing immunoprecipitation and western blotting. We have found that incubation of platelets with FK506 increases Ca(2+) mobilization. Thapsigargin (TG)-evoked, Thr-evoked SOCE and TG-evoked Mn(2+) entry resulted in significant reduction by treatment of platelets with immunophilin antagonists. We confirmed by immunoprecipitation that immunophilins interact with transient receptor potential channel 1 (TRPC1) and Orai1 in human platelets. FK506 and rapamycin reduced the association between TRPC1 and Orai1 with FK506 binding protein (52) (FKBP52) in human platelets, and between TRPC1 and the type II IP(3)R, which association is known to be crucial for the maintenance of SOCE in human platelets. FKBP52 role in SOCE activation was confirmed by silencing FKBP52 using SiRNA FKBP52 in MEG 01 as demonstrated by single cell configuration imaging technique. TRPC1 silencing and depletion of cell of TRPC1 and FKBP52 simultaneously, impair activation of SOCE evoked by TG in MEG 01. Finally, in MEG 01 incubated with FK506 we observed a reduction in TRPC1/FKBP52 coupling, and similarly, FKBP52 silencing reduced the association between IP3R type II and TRPC1 during SOCE. All together, these results demonstrate that immunophilins participate in the regulation of SOCE in human platelets.
Collapse
Affiliation(s)
- Esther López
- Department of Physiology Cellular Physiology Research Group, University of Extremadura, 10003 Cáceres, Spain
| | | | | | | | | |
Collapse
|
27
|
Ferroni P, Vazzana N, Riondino S, Cuccurullo C, Guadagni F, Davì G. Platelet function in health and disease: from molecular mechanisms, redox considerations to novel therapeutic opportunities. Antioxid Redox Signal 2012; 17:1447-85. [PMID: 22458931 DOI: 10.1089/ars.2011.4324] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increased oxidative stress appears to be of fundamental importance in the pathogenesis and development of several disease processes. Indeed, it is well known that reactive oxygen species (ROS) exert critical regulatory functions within the vascular wall, and it is, therefore, plausible that platelets represent a relevant target for their action. Platelet activation cascade (including receptor-mediated tethering to the endothelium, rolling, firm adhesion, aggregation, and thrombus formation) is tightly regulated. In addition to already well-defined platelet regulatory factors, ROS may participate in the regulation of platelet activation. It is already established that enhanced ROS release from the vascular wall can indirectly affect platelet activity by scavenging nitric oxide (NO), thereby decreasing the antiplatelet properties of endothelium. On the other hand, recent data suggest that platelets themselves generate ROS, which may evoke pro-thrombotic responses, triggering many biological processes participating in atherosclerosis initiation, progression, and complication. That oxidative stress may alter platelet function is conceivable when considering that antioxidants play a role in the prevention of cardiovascular disease, although the precise mechanism accounting for changes attributable to antioxidants in atherosclerosis remains unknown. It is possible that the effects of antioxidants may be a consequence of their enhancing or promoting the antiplatelet effects of NO derived from both endothelial cells and platelets. This review focuses on current knowledge regarding ROS-dependent regulation of platelet function in health and disease, and summarizes in vitro and in vivo evidence for their physiological and potential therapeutic relevance.
Collapse
Affiliation(s)
- Patrizia Ferroni
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Thrombin-stimulated discharge of calcium stores in human platelets: analysis of experimental data. Arch Biochem Biophys 2012; 526:78-83. [PMID: 22846427 DOI: 10.1016/j.abb.2012.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/21/2022]
Abstract
The purpose of this research was to analyze experimental data concerning thrombin-stimulated discharge of calcium stores in human platelets contained in calcium-free medium in view of better understanding the mechanisms involved in calcium fluxes. The model curves are reasonably close to experimental data; the parameters of the models are related to the properties of the entities responsible for control or maintenance of cytosolic calcium concentration. It has been shown that: (a) time-course of calcium concentration in cytosol of human platelets can be acceptably modeled on the basis of reasonable assumptions concerning agonist stimulated calcium redistribution in cellular compartments; (b) those assumptions are of fundamental importance for the model (c) some parameters of the model (taken arbitrarily) cannot be estimated independently of others from fitting the model to experimental data available; (d) special experiments are necessary to determine the unknown parameters; (e) agonist-stimulated change of the permeability of endomembrane of calcium stores can be regarded as a pulse of the permeability; it can be modeled as a sequence of transitions of the system from inactive to active and to inactive state again.
Collapse
|
29
|
López JJ, Dionisio N, Berna-Erro A, Galán C, Salido GM, Rosado JA. Two-pore channel 2 (TPC2) modulates store-operated Ca2+ entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1976-83. [DOI: 10.1016/j.bbamcr.2012.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Schindl R, Fritsch R, Jardin I, Frischauf I, Kahr H, Muik M, Riedl MC, Groschner K, Romanin C. Canonical transient receptor potential (TRPC) 1 acts as a negative regulator for vanilloid TRPV6-mediated Ca2+ influx. J Biol Chem 2012; 287:35612-35620. [PMID: 22932896 PMCID: PMC3471760 DOI: 10.1074/jbc.m112.400952] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells.
Collapse
Affiliation(s)
- Rainer Schindl
- Institute for Biophysics, University of Linz, A-4020 Linz, Austria.
| | - Reinhard Fritsch
- Institute for Biophysics, University of Linz, A-4020 Linz, Austria
| | - Isaac Jardin
- Department of Physiology, University of Extremadura, 10003 Caceres, Spain
| | - Irene Frischauf
- Institute for Biophysics, University of Linz, A-4020 Linz, Austria
| | - Heike Kahr
- School of Engineering/Enviromental/Sciences, University of Applied Sciences Upper Austria, A-4600 Wels, Austria
| | - Martin Muik
- Institute for Biophysics, University of Linz, A-4020 Linz, Austria
| | | | - Klaus Groschner
- Institute of Pharmacology and Toxicology, University of Graz, A-8010 Graz, Austria
| | | |
Collapse
|
31
|
Berna-Erro A, Galan C, Dionisio N, Gomez LJ, Salido GM, Rosado JA. Capacitative and non-capacitative signaling complexes in human platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1242-51. [DOI: 10.1016/j.bbamcr.2012.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/25/2022]
|
32
|
Homers regulate calcium entry and aggregation in human platelets: a role for Homers in the association between STIM1 and Orai1. Biochem J 2012; 445:29-38. [DOI: 10.1042/bj20120471] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Homer is a family of cytoplasmic adaptor proteins that play different roles in cell function, including the regulation of G-protein-coupled receptors. These proteins contain an Ena (Enabled)/VASP (vasodilator-stimulated phosphoprotein) homology 1 domain that binds to the PPXXF sequence motif, which is present in different Ca2+-handling proteins such as IP3 (inositol 1,4,5-trisphosphate) receptors and TRPC (transient receptor potential canonical) channels. In the present study we show evidence for a role of Homer proteins in the STIM1 (stromal interaction molecule 1)–Orai1 association, as well as in the TRPC1–IP3RII (type II IP3 receptor) interaction, which might be of relevance in platelet function. Treatment of human platelets with thapsigargin or thrombin results in a Ca2+-independent association of Homer1 with TRPC1 and IP3RII. In addition, thapsigargin and thrombin enhanced the association of Homer1 with STIM1 and Orai1 in a Ca2+-dependent manner. Interference with Homer function by introduction of the synthetic PPKKFR peptide into cells, which emulates the proline-rich sequences of the PPXXF motif, reduced STIM1–Orai1 and TRPC1– IP3RII associations, as compared with the introduction of the inactive PPKKRR peptide. The PPKKFR peptide attenuates thrombin-evoked Ca2+ entry and the maintenance of thapsigargin-induced store-operated Ca2+ entry. Finally, the PPKKFR peptide attenuated thrombin-induced platelet aggregation. The findings of the present study support an important role for Homer proteins in thrombin-stimulated platelet function, which is likely to be mediated by the support of agonist-induced Ca2+ entry.
Collapse
|
33
|
|
34
|
Jardín I, López JJ, Zbidi H, Bartegi A, Salido GM, Rosado JA. Attenuated store-operated divalent cation entry and association between STIM1, Orai1, hTRPC1 and hTRPC6 in platelets from type 2 diabetic patients. Blood Cells Mol Dis 2011; 46:252-60. [PMID: 21303733 DOI: 10.1016/j.bcmd.2010.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/08/2010] [Accepted: 12/20/2010] [Indexed: 12/11/2022]
Abstract
Agonist-evoked Ca(2+) entry has been reported to be enhanced in platelets from type 2 diabetic patients, which results in altered platelet responsiveness and cardiovascular complications. The present study is aimed to investigate whether store-operated divalent cation entry, a major Ca(2+) entry pathway, is altered in platelets from diabetic patients. Store-operated divalent cation entry was estimated by determination of Mn(2+) entry. Association between STIM1, Orai1, hTRPC1 and hTRPC6 was detected by co-immunoprecipitation and Western blotting. In the presence of specific purinergic and serotoninergic receptor antagonists Mn(2+) entry, induced by thapsigargin (TG), was reduced in platelets from diabetic donors as compared to healthy controls. Treatment with TG or the agonist thrombin enhanced co-immunoprecipitation of STIM1 with Orai1, hTRPC1 and hTRPC6 in platelets from healthy donors, a response that was significantly reduced in platelets from diabetic patients. Our results indicate that store-operated divalent cation entry is reduced in platelets from type 2 diabetic subjects, which is likely mediated by impairment of the association of STIM1 with the channel subunits Orai1, hTRPC1 and hTRPC6 and might be involved in the pathogenesis of the altered platelet responsiveness observed in diabetic patients.
Collapse
Affiliation(s)
- Isaac Jardín
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, Cáceres. Spain
| | | | | | | | | | | |
Collapse
|
35
|
Juška A. Calcium fluxes into and out of cytosol in human platelets: analysis of experimental data. Biochem Biophys Res Commun 2011; 412:537-42. [PMID: 21798249 DOI: 10.1016/j.bbrc.2011.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
Abstract
The purpose of this research was to analyse experimental data concerning cytosolic calcium concentration in view of the mechanisms involved in calcium fluxes in human platelets. The parameters of model curves are related to the properties of the entities responsible for control or maintenance of cytosolic calcium concentration. It has been shown that: (a) biphasicity of increase in cytosolic calcium concentration caused by inhibition of SERCAs either by TBHQ and TG or by TG alone is related to fast and slow discharge of acidic calcium stores and DTS; (b) biphasicity of decline in cytosolic calcium concentration after its rise caused by stimulation of platelets by the agonists is related to non-synchronous extrusion of calcium by PMCA and NCX; (c) NCX is active only in calcium containing medium: calcium ion(s) are necessary to be bound to the site(s) located on the medium-facing side of the (macro)molecule; (d) PMCA is likely to be activated either by binding calcium ion(s) to the site(s) located on its cytosol-facing side or by unbinding identical ion(s) from the site(s) on its medium-facing side.
Collapse
Affiliation(s)
- Alfonsas Juška
- Vilniaus Gedimino technikos universitetas, Vilnius, Lithuania.
| |
Collapse
|
36
|
Abstract
Store-operated Ca(2+) entry is a process whereby the depletion of intracellular Ca(2+) stores signals the opening of plasma membrane Ca(2+) channels. It has long been thought that the main function of store-operated Ca(2+) entry was the replenishment of intracellular Ca(2+) stores following their discharge during intracellular Ca(2+) signaling. Recent results, however, suggest that the primary function of these channels may be to provide direct Ca(2+) signals to recipients localized to spatially restricted areas close to the sites of Ca(2+) entry in order to initiate specific signaling pathways.
Collapse
Affiliation(s)
- James W Putney
- National Institute of Environmental Health Sciences-NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
37
|
Galán C, Dionisio N, Smani T, Salido GM, Rosado JA. The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochem Pharmacol 2011; 82:400-10. [PMID: 21640715 DOI: 10.1016/j.bcp.2011.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/15/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is a major pathway for Ca(2+) influx in non-excitable cells. Recent studies favour a conformational coupling mechanism between the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and Ca(2+) permeable channels in the plasma membrane to explain SOCE. Previous studies have reported a role for the cytoskeleton modulating the activation of SOCE; therefore, here we have investigated whether the interaction between STIM1 and the Ca(2+) permeable channels is modulated by the actin or microtubular network. In HEK-293 cells, treatment with the microtubular disrupter colchicine enhanced both the activation of SOCE and the association between STIM1 and Orai1 or TRPC1 induced by thapsigargin (TG). Conversely, stabilization of the microtubules by paclitaxel attenuated TG-evoked activation of SOCE and the interaction between STIM1 and the Ca(2+) channels Orai1 and TRPC1, altogether suggesting that the microtubules act as a negative regulator of SOCE. Stabilization of the cortical actin filament layer results in inhibition of TG-evoked both association between STIM1, Orai1 and TRPC1 and SOCE. Interestingly, disruption of the actin filament network by cytochalasin D did not significantly modify TG-evoked association between STIM1 and Orai1 or TRPC1 but enhanced TG-stimulated SOCE. Finally, inhibition of calmodulin by calmidazolium enhances TG-evoked SOCE and disruption of the actin cytoskeleton results in inhibition of TG-evoked association of calmodulin with Orai1 and TRPC1. Thus, we demonstrate that the cytoskeleton plays an essential role in the regulation of SOCE through the modulation of the interaction between their main molecular components.
Collapse
Affiliation(s)
- Carmen Galán
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | |
Collapse
|
38
|
Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna-Erro A, Salido GM, Rosado JA. STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 2011; 286:12257-70. [PMID: 21321120 PMCID: PMC3069429 DOI: 10.1074/jbc.m110.190694] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/11/2011] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells accumulate Ca2+ into agonist-sensitive acidic organelles, vesicles that possess a vacuolar proton-ATPase. Acidic Ca2+ stores include secretory granules and lysosome-related organelles. Current evidence clearly indicates that acidic Ca2+ stores participate in cell signaling and function, including the activation of store-operated Ca2+ entry in human platelets upon depletion of the acidic stores, although the mechanism underlying the activation of store-operated Ca2+ entry controlled by the acidic stores remains unclear. STIM1 has been presented as the endoplasmic reticulum Ca2+ sensor, but its role sensing intraluminal Ca2+ concentration in the acidic stores has not been investigated. Here we report that STIM1 and STIM2 are expressed in the lysosome-related organelles and dense granules in human platelets isolated by immunomagnetic sorting. Depletion of the acidic Ca2+ stores using the specific vacuolar proton-ATPase inhibitor, bafilomycin A1, enhanced the association between STIM1 and STIM2 as well as between these proteins and the plasma membrane channel Orai1. Depletion of the acidic Ca2+ stores also induces time-dependent co-immunoprecipitation of STIM1 with the TRPC proteins hTRPC1 and hTRPC6, as well as between Orai1 and both TRPC proteins. In addition, bafilomycin A1 enhanced the association between STIM2 and SERCA3. These findings demonstrate the location of STIM1 and STIM2 in the acidic Ca2+ stores and their association with Ca2+ channels and ATPases upon acidic stores discharge.
Collapse
Affiliation(s)
- Hanene Zbidi
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | - Isaac Jardin
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | | | - Jose J. Lopez
- Hémostase et Dynamique Cellulaire Vasculaire U770, INSERM, 94276 Le Kremlin-Bicêtre, France
| | - Alejandro Berna-Erro
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | - Ginés M. Salido
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | - Juan A. Rosado
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
39
|
Kojima A, Kitagawa H, Omatsu-Kanbe M, Matsuura H, Nosaka S. Ca2+ paradox injury mediated through TRPC channels in mouse ventricular myocytes. Br J Pharmacol 2011; 161:1734-50. [PMID: 20718730 DOI: 10.1111/j.1476-5381.2010.00986.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The Ca(2+) paradox is an important phenomenon associated with Ca(2+) overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca(2+) paradox. EXPERIMENTAL APPROACH Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope. KEY RESULTS The Ca(2+) paradox was readily evoked by restoration of the extracellular Ca(2+) following 10-20 min of nominally Ca(2+)-free superfusion. The Ca(2+) paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd(3+), La(3+)) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca(2+) content, assessed by caffeine application, gradually declined during Ca(2+)-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca(2+) leak by tetracaine prevented Ca(2+) paradox. The Na(+) /Ca(2+) exchange (NCX) blocker KB-R7943 significantly inhibited Ca(2+) paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca(2+) restoration. The SR Ca(2+) content was better preserved during Ca(2+) depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes. CONCLUSIONS AND IMPLICATIONS These results provide evidence that (i) the Ca(2+) paradox is primarily mediated by Ca(2+) entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca(2+) depletion; and (ii) reverse mode NCX contributes little to the Ca(2+) paradox, whereas inhibition of NCX during Ca(2+) depletion improves SR Ca(2+) loading, and is associated with reduced incidence of Ca(2+) paradox in mouse ventricular myocytes.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | |
Collapse
|
40
|
Salido GM, Jardín I, Rosado JA. The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:413-33. [PMID: 21290309 DOI: 10.1007/978-94-007-0265-3_23] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transient receptor potential (TRP) proteins are involved in a large number of non-selective cation channels that are permeable to both monovalent and divalent cations. Two general classes of receptor-mediated Ca(2+) entry has been proposed: one of then is conduced by receptor-operated Ca(2+) channels (ROC), the second is mediated by channels activated by the emptying of intracellular Ca(2+) stores (store-operated channels or SOC). TRP channels have been presented as subunits of both ROC and SOC, although the precise mechanism that regulates the participation of TRP proteins in these Ca(2+) entry mechanisms remains unclear. Recently, TRPC proteins have been shown to associate with Orai1 and STIM1 in a dynamic ternary complex regulated by the occupation of membrane receptors in several cell models, which might play an important role in the function of TRPC proteins. The present review summarizes the current knowledge concerning the association of TRP proteins with Orai and STIM proteins and how this affects the participation of TRP proteins in store-operated or receptor-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Gines M Salido
- Cell Physiology Group, Department of Physiology, University of Extremadura, Cáceres, Spain.
| | | | | |
Collapse
|
41
|
Abstract
Astrocytes constitute a major group of glial cells which were long regarded as passive elements, fulfilling nutritive and structural functions for neurons. Calcium rise in astrocytes propagating to neurons was the first demonstration of direct interaction between the two cell types. Since then, calcium has been widely used, not only as an indicator of astrocytic activity but also as a stimulator switch to control astrocyte physiology. As a result, astrocytes have been elevated from auxiliaries to neurons, to cells involved in processing synaptic information. Curiously, while there is evidence that astrocytes play an important role in synaptic plasticity, the data relating to calcium's pivotal role are inconsistent. In this review, we will detail the various mechanisms of calcium flux in astrocytes, then briefly present the calcium-dependent mechanisms of gliotransmitter release. Finally, we will discuss the role of calcium in plasticity and present alternative explanations that could reconcile the conflicting results published recently.
Collapse
|
42
|
Harper MT, Molkentin JD, Poole AW. Protein kinase C alpha enhances sodium-calcium exchange during store-operated calcium entry in mouse platelets. Cell Calcium 2010; 48:333-40. [PMID: 21094527 DOI: 10.1016/j.ceca.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 11/20/2022]
Abstract
A rise in intracellular calcium concentration ([Ca(2+)](i)) is necessary for platelet activation. A major component of the [Ca(2+)](i) elevation occurs through store-operated Ca(2+) entry (SOCE). The aim of this study was to understand the contribution of the classical PKC isoform, PKCα to platelet SOCE, using platelets from PKCα-deficient mice. SOCE was reduced by approximately 50% in PKCα(-/-) platelets, or following treatment with bisindolylmaleimide I, a PKC inhibitor. However, TG-induced Mn(2+) entry was unaffected, which suggests that divalent cation entry through store-operated channels is not directly regulated. Blocking the autocrine action of secreted ADP or 5-HT on its receptors did not reproduce the effect of PKCα deficiency. In contrast, SN-6, a Na(+)/Ca(2+) exchanger inhibitor, did reduce SOCE to the same extent as loss of PKCα, as did replacing extracellular Na(+) with NMDG(+). These treatments had no further effect in PKCα(-/-) platelets. These data suggest that PKCα enhances the extent of SOCE in mouse platelets by regulating Ca(2+) entry through the Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- Matthew T Harper
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
43
|
Rey O, Young SH, Jacamo R, Moyer MP, Rozengurt E. Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition. J Cell Physiol 2010; 225:73-83. [PMID: 20648625 DOI: 10.1002/jcp.22198] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The extracellular Ca(2+)-sensing receptor (CaR) is increasingly implicated in the regulation of multiple cellular functions in the gastrointestinal tract, including secretion, proliferation and differentiation of intestinal epithelial cells. However, the signaling mechanisms involved remain poorly defined. Here we examined signaling pathways activated by the CaR, including Ca(2+) oscillations, in individual human colon epithelial cells. Single cell imaging of colon-derived cells expressing the CaR, including SW-480, HT-29, and NCM-460 cells, shows that stimulation of this receptor by addition of aromatic amino acids or by an elevation of the extracellular Ca(2+) concentration promoted striking intracellular Ca(2+) oscillations. The intracellular calcium oscillations in response to extracellular Ca(2+) were of sinusoidal pattern and mediated by the phospholipase C/diacylglycerol/inositol 1,4,5-trisphosphate pathway as revealed by a biosensor that detects the accumulation of diacylglycerol in the plasma membrane. The intracellular calcium oscillations in response to aromatic amino acids were of transient type, that is, Ca(2+) spikes that returned to baseline levels, and required an intact actin cytoskeleton, a functional Rho, Filamin A and the ion channel TRPC1. Further analysis showed that re-expression and stimulation of the CaR in human epithelial cells derived from normal colon and from colorectal adenocarcinoma inhibits their proliferation. This inhibition was associated with the activation of the signaling pathway that mediates the generation of sinusoidal, but not transient, intracellular Ca(2+) oscillations. Thus, these results indicate that the CaR can function in two signaling modes in human colonic epithelial cells offering a potential link between gastrointestinal responses and food/nutrients uptake and metabolism.
Collapse
Affiliation(s)
- Osvaldo Rey
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, CURE, Digestive Diseases Research Center, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, California 90095-1786, USA.
| | | | | | | | | |
Collapse
|
44
|
Gilio K, van Kruchten R, Braun A, Berna-Erro A, Feijge MAH, Stegner D, van der Meijden PEJ, Kuijpers MJE, Varga-Szabo D, Heemskerk JWM, Nieswandt B. Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation. J Biol Chem 2010; 285:23629-38. [PMID: 20519511 DOI: 10.1074/jbc.m110.108696] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca(2+) entry (SOCE) with Orai1 as principal Ca(2+) entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca(2+) entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1(-/-) and Orai1(-/-) platelets had greatly impaired glycoprotein (GP) VI-dependent Ca(2+) signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2(-/-) platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca(2+) signals of Stim1(-/-) and Orai1(-/-) platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1(-/-) and Orai1(-/-) platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca(2+) entry, inhibited Ca(2+) and procoagulant responses even in Stim1(-/-) and Orai1(-/-) platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca(2+) entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca(2+) entry and PS exposure, only one relying on STIM1-Orai1 interaction.
Collapse
Affiliation(s)
- Karen Gilio
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Drugs inhibiting voltage-gated sodium channels have long been used as analgesics, beginning with the use of local anaesthetics for sensory blockade and then with the discovery that Nav-blocking anticonvulsants also have benefit for pain therapy. These drugs were discovered without knowledge of their molecular target, using traditional pharmacological methods, and their clinical utility is limited by relatively narrow therapeutic windows. Until recently, attempts to develop improved inhibitors using modern molecular-targeted screening approaches have met with limited success. However, in the last few years there has been renewed activity following the discovery of human Nav1.7 mutations that cause striking insensitivity to pain. Together with recent advances in the technologies required to prosecute ion channels as drug targets, this has led to significant progress being made. This article reviews these developments and summarises current findings with these emerging new Nav inhibitors, highlighting some of the unanswered questions and the challenges that remain before they can be developed for clinical use.
Collapse
Affiliation(s)
- Jeffrey J Clare
- Cell-Based Assays Group, Millipore Corporation, St Charles, Missouri 63304, USA.
| |
Collapse
|
46
|
Galán C, Zbidi H, Bartegi A, Salido GM, Rosado JA. STIM1, Orai1 and hTRPC1 are important for thrombin- and ADP-induced aggregation in human platelets. Arch Biochem Biophys 2009; 490:137-44. [PMID: 19695217 DOI: 10.1016/j.abb.2009.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/06/2009] [Accepted: 08/12/2009] [Indexed: 12/19/2022]
Abstract
Ca(2+) entry, particularly store-operated Ca(2+) entry (SOCE), has been reported to be crucial for a variety of cellular functions. SOCE is a mechanism regulated by the Ca(2+) content of the stores, where the intraluminal Ca(2+) sensor STromal Interaction Molecule 1 (STIM1) has been reported to communicate the filling state of the intracellular Ca(2+) stores to the store-operated Ca(2+)-permeable channels in the plasma membrane, likely involving Orai1 and TRPC proteins, such as TRPC1. Here we have investigated the role of Orai1, STIM1 and TRPC1 in platelet aggregation, an event that occurs during the process of thrombosis and hemostasis. Electrotransjection of cells with anti-STIM1 (25-139) antibody, directed towards the Ca(2+)-binding motif, significantly reduced thrombin-induced aggregation and prevented ADP-evoked response. Extracellular application of the anti-STIM1 antibody, in order to block the function of plasma membrane-located STIM1, reduced thrombin- and ADP-stimulated platelet aggregation to a lesser extent. Introduction of an anti-Orai1 (288-301) antibody, which binds the STIM1-binding site located in the Orai1 C-terminus, or extracellular application of anti-hTRPC1 (557-571) antibody to impair hTRPC1 channel function, significantly reduced thrombin- and ADP-induced platelet aggregation. These findings suggest a role of STIM1, Orai1 and hTRPC1 in thrombin- and ADP-induced platelet aggregation probably through the regulation of Ca(2+) entry, which might become targets for the development of therapeutic strategies to treat platelet hyperactivity and thrombosis disorders.
Collapse
Affiliation(s)
- C Galán
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, Cáceres 10071, Spain
| | | | | | | | | |
Collapse
|
47
|
Wakabayashi I, Marumo M, Graziani A, Poteser M, Groschner K. TRPC4 expression determines sensitivity of the platelet-type capacitative Ca2+entry channel to intracellular alkalosis. Platelets 2009; 17:454-61. [PMID: 17074721 DOI: 10.1080/09537100600757489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present study was designed to analyze the molecular basis of the intracellular pH-dependent capacitative Ca2+ entry (CCE) of human platelets and megakaryocytic cells, specifically to test the hypothesis that members of the classical transient receptor potential (TRPC) protein family are involved in the CCE pathway that is promoted by intracellular alkalosis. Human platelets as well as the tested megakaryocytic cell lines (CMK cells, MEG-01 cells) and HEK293 cells displayed thapsigargin-induced CCE and responded to monensin with comparable elevation in intracellular pH. Promotion of CCE by monensin-induced intracellular alkalosis, however, was profound in mature platelets, moderate in CMK cells and lacking in MEG-01 cells as well as in HEK293 cells. Analysis of the TRPC expression pattern by immunoblotting revealed that mature platelets and CMK cells express TRPC4 along with TRPC1 and TRPC3, while TRPC4 is lacking in MEG-01 cells. HEK293 cells displayed CCE characteristics as well as lack of TRPC4 expression similar to MEG-01 cells. Over-expression of TRPC4 in HEK293 cells was found to result in a gain of pH-sensitivity of CCE with clearly detectable promotion of CCE in response to monensin. These results suggest that platelet CCE channel complexes contain TRPC4 as a molecular component that determines sensitivity of CCE to intracellular alkalosis.
Collapse
Affiliation(s)
- Ichiro Wakabayashi
- Department of Hygiene and Preventive Medicine, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| | | | | | | | | |
Collapse
|
48
|
Harper MT, Sage SO. Actin polymerisation regulates thrombin-evoked Ca2+signalling after activation of PAR-4 but not PAR-1 in human platelets. Platelets 2009; 17:134-42. [PMID: 16702038 DOI: 10.1080/09537100500441218] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The role of actin polymerisation in regulating thrombin-evoked Ca(2+) signalling was investigated in human platelets. We have previously reported that cytochalasin D (Cyt D) inhibits thapsigargin-evoked store-operated Ca(2+) entry (SOCE), which is believed to contribute a major component of thrombin-evoked Ca(2+) entry in platelets. In contrast, Cyt D increased thrombin-evoked Ca(2+) entry to 147.5 +/- 9.2% and Sr(2+) entry to 134.2 +/- 6.4% of control. Similar results were obtained with latrunculin A. This potentiation was not affected if protein kinase C was inhibited using Ro-31-8220, suggesting that it did not involve PKC-dependent non-capacitative Ca(2+) entry. Ca(2+) entry evoked by the PAR-4 agonist, AYPGKF, was increased to 133.7 +/- 12.8% of control by Cyt D, whereas Ca(2+) signalling evoked by the PAR-1 agonist, SFLLRN, was unaffected. The PAR-4 antagonist, tcY-NH(2), abolished the effect of Cyt D on thrombin-evoked Ca(2+) entry. Biotinylation of cell-surface proteins showed that PAR-4 was internalised after stimulation by thrombin. Cyt D reduced this internalisation. These data suggest that Cyt D prevents the internalisation of PAR-4, which may lead to prolonged signalling from this receptor. This may mask a direct effect of Cyt D on the activation of SOCE after the activation of PAR-4.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Physiology, University of Cambridge, Downing Street, Cambridge, UK.
| | | |
Collapse
|
49
|
Abstract
Agonist-induced elevation in cytosolic Ca2+ concentrations is essential for platelet activation in hemostasis and thrombosis. It occurs through Ca2+ release from intracellular stores and Ca2+ entry through the plasma membrane (PM). Ca2+ store release is a well-established process involving phospholipase (PL)C-mediated production of inositol-1,4,5-trisphosphate (IP3), which in turn releases Ca2+ from the intracellular stores through IP3 receptor channels. In contrast, the mechanisms controlling Ca2+ entry and the significance of this process for platelet activation have been elucidated only very recently. In platelets, as in other non-excitable cells, the major way of Ca2+ entry involves the agonist-induced release of cytosolic sequestered Ca2+ followed by Ca2+ influx through the PM, a process referred to as store-operated calcium entry (SOCE). It is now clear that stromal interaction molecule 1 (STIM1), a Ca2+ sensor molecule in intracellular stores, and the four transmembrane channel protein Orai1 are the key players in platelet SOCE. The other major Ca2+ entry mechanism is mediated by the direct receptor-operated calcium (ROC) channel, P2X1. Besides these, canonical transient receptor potential channel (TRPC) 6 mediates Ca2+ entry through the PM. This review summarizes the current knowledge of platelet Ca2+ homeostasis with a focus on the newly identified Ca2+ entry mechanisms.
Collapse
Affiliation(s)
- D Varga-Szabo
- Chair of Vascular Medicine and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
50
|
Dynamic interaction of hTRPC6 with the Orai1-STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca(2+) entry pathways. Biochem J 2009; 420:267-76. [PMID: 19260825 DOI: 10.1042/bj20082179] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRPC (canonical transient receptor potential) channel subunits have been shown to assemble into homo- or hetero-meric channel complexes, including different Ca2+-handling proteins, required for the activation of CCE (capacitative Ca2+ entry) or NCCE (non-CCE) pathways. In the present study we found evidence for the dynamic interaction between endogenously expressed hTRPC6 (human TRPC6) with either both Orai1 and STIM1 (stromal interaction molecule 1) or hTRPC3 to participate in CCE or NCCE. Electrotransjection of cells with an anti-hTRPC6 antibody, directed towards the C-terminal region, reduces CCE induced by TPEN [N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine], which reduces the intraluminal free Ca2+ concentration. Cell stimulation with thrombin or extensive Ca2+-store depletion by TG (thapsigargin)+ionomycin enhanced the interaction between hTRPC6 and the CCE proteins Orai1 and STIM1. In contrast, stimulation with the diacylglycerol analogue OAG (1-oleoyl-2-acetyl-sn-glycerol) displaces hTRPC6 from Orai1 and STIM1 and enhances the association between hTRPC6 and hTRPC3. The interaction between hTRPC6 and hTRPC3 was abolished by dimethyl-BAPTA [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid] loading, which indicates that this phenomenon is Ca2+-dependent. These findings support the hypothesis that hTRPC6 participates both in CCE and NCCE through its interaction with the Orai1-STIM1 complex or hTRPC3 respectively.
Collapse
|