1
|
Grillová L, Romeis E, Lieberman NAP, Tantalo LC, Xu LH, Molini B, Trejos AT, Lacey G, Goulding D, Thomson NR, Greninger AL, Giacani L. Bright New Resources for Syphilis Research: Genetically Encoded Fluorescent Tags for Treponema pallidum and Sf1Ep Cells. Mol Microbiol 2024; 122:455-464. [PMID: 39115038 PMCID: PMC11479824 DOI: 10.1111/mmi.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 10/17/2024]
Abstract
The recently discovered methodologies to cultivate and genetically manipulate Treponema pallidum subsp. pallidum (T. pallidum) have significantly helped syphilis research, allowing the in vitro evaluation of antibiotic efficacy, performance of controlled studies to assess differential treponemal gene expression, and generation of loss-of-function mutants to evaluate the contribution of specific genetic loci to T. pallidum virulence. Building on this progress, we engineered the T. pallidum SS14 strain to express a red-shifted green fluorescent protein (GFP) and Sf1Ep cells to express mCherry and blue fluorescent protein (BFP) for enhanced visualization. These new resources improve microscopy- and cell sorting-based applications for T. pallidum, better capturing the physical interaction between the host and pathogen, among other possibilities. Continued efforts to develop and share new tools and resources are required to help our overall knowledge of T. pallidum biology and syphilis pathogenesis reach that of other bacterial pathogens, including spirochetes.
Collapse
Affiliation(s)
- Linda Grillová
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Emily Romeis
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lauren C Tantalo
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Linda H Xu
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Barbara Molini
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Aldo T Trejos
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - George Lacey
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - David Goulding
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas R Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lorenzo Giacani
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Grillová L, Romeis E, Lieberman NAP, Tantalo LC, Xu LH, Molini B, Trejos AT, Lacey G, Goulding D, Thomson NR, Greninger AL, Giacani L. Bright New Resources for Syphilis Research: Genetically Encoded Fluorescent Tags for Treponema pallidum and Sf1Ep Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596454. [PMID: 38854070 PMCID: PMC11160695 DOI: 10.1101/2024.05.29.596454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The recently discovered methodologies to cultivate and genetically manipulate Treponema pallidum subsp. pallidum ( T. pallidum ) have significantly helped syphilis research, allowing the in vitro evaluation of antibiotic efficacy, performance of controlled studies to assess differential treponemal gene expression, and generation of loss-of-function mutants to evaluate the contribution of specific genetic loci to T. pallidum virulence. Building on this progress, we engineered the T. pallidum SS14 strain to express a red-shifted Green Fluorescent Protein (GFP) and Sf1Ep cells to express mCherry and blue fluorescent protein (BFP) for enhanced visualization. These new resources improve microscopy- and cell sorting-based applications for T. pallidum , better capturing the physical interaction between the host and pathogen, among other possibilities. Continued efforts to develop and share new tools and resources are required to help our overall knowledge of T. pallidum biology and syphilis pathogenesis reach that of other bacterial pathogens, including spirochetes. Graphical abstract By employing genetic engineering, T. pallidum was modified to express GFP, and Sf1Ep cells to express mCherry on the cytoplasmic membrane and BFP in the nucleus. These new resources for syphilis research will facilitate experimental designs to better define the complex interplay between T. pallidum and the host during infection.
Collapse
|
3
|
Tawfeeq C, Song J, Khaniya U, Madej T, Wang J, Youkharibache P, Abrol R. Towards a structural and functional analysis of the immunoglobulin-fold proteome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:135-178. [PMID: 38220423 DOI: 10.1016/bs.apcsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The immunoglobulin fold (Ig fold) domain is a super-secondary structural motif consisting of a sandwich with two layers of β-sheets that is present in many proteins with very diverse biological functions covering a wide range of physiological processes. This domain presents a modular architecture built with β strands connected by variable length loops that has a highly conserved structural core of four β-strands and quite variable β-sheet extensions in the two sandwich layers that enable both divergent and convergent evolutionary mechanisms in the known Ig fold proteome. The central role of this Ig fold's structural plasticity in the evolutionary success of antibodies in our immune system is well established. Nature has also utilized this Ig fold in all domains of life in many different physiological contexts that go way beyond the immune system. Here we will present a structural and functional overview of the utilization of the Ig fold in different biological processes and in different cellular contexts to highlight some of the innumerable ways that this structural motif can interact in multidomain proteins to enable their diversity of functions. This includes shareable specific protein structure visualizations behind those functions that serve as starting points for further explorations of the biomolecular interactions spanning the Ig fold proteome. This overview also highlights how this Ig fold is being utilized through natural adaptation, engineering, and even building from scratch for a range of biotechnological applications.
Collapse
Affiliation(s)
- Caesar Tawfeeq
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States
| | - James Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Umesh Khaniya
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Philippe Youkharibache
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States.
| |
Collapse
|
4
|
Wang M, Xie JW, Zheng YW, Wang XT, Yi DY, Lin Y, Tong ML, Lin LR. Tp47-Induced Monocyte-Derived Microvesicles Promote the Adherence of THP-1 Cells to Human Umbilical Vein Endothelial Cells via an ERK1/2-NF-κB Signaling Cascade. Microbiol Spectr 2023; 11:e0188823. [PMID: 37382544 PMCID: PMC10434049 DOI: 10.1128/spectrum.01888-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023] Open
Abstract
The Treponema pallidum membrane protein Tp47 induces immunocyte adherence to vascular cells and contributes to vascular inflammation. However, it is unclear whether microvesicles are functional inflammatory mediators between vascular cells and immunocytes. Microvesicles that were isolated from Tp47-treated THP-1 cells using differential centrifugation were subjected to adherence assays to determine the adhesion-promoting effect on human umbilical vein endothelial cells (HUVECs). Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) levels in Tp47-induced microvesicle (Tp47-microvesicle)-treated HUVECs were measured, and the related intracellular signaling pathways of Tp47-microvesicle-induced monocyte adhesion were investigated. Tp47-microvesicles promoted THP-1 cell adhesion to HUVECs (P < 0.01) and upregulated ICAM-1 and VCAM-1 expression in HUVECs (P < 0.001). The adhesion of THP-1 cells to HUVECs was inhibited by anti-ICAM-1 and anti-VCAM-1 neutralizing antibodies. Tp47-microvesicle treatment of HUVECs activated the extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-κB signaling pathways, whereas ERK1/2 and NF-κB inhibition suppressed the expression of ICAM-1 and VCAM-1 and significantly decreased the adhesion of THP-1 cells to HUVECs. IMPORTANCE Tp47-microvesicles promote the adhesion of THP-1 cells to HUVECs through the upregulation of ICAM-1 and VCAM-1 expression, which is mediated by the activation of the ERK1/2 and NF-κB pathways. These findings provide insight into the pathophysiology of syphilitic vascular inflammation.
Collapse
Affiliation(s)
- M. Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - J.-W. Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y.-W. Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - X.-T. Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - D.-Y. Yi
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y. Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - M.-L. Tong
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L.-R. Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| |
Collapse
|
5
|
Hayes KA, Dressler JM, Norris SJ, Edmondson DG, Jutras BL. A large screen identifies beta-lactam antibiotics which can be repurposed to target the syphilis agent. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:4. [PMID: 38686211 PMCID: PMC11057208 DOI: 10.1038/s44259-023-00006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/09/2023] [Indexed: 05/02/2024]
Abstract
Syphilis, caused by the spirochete Treponema pallidum subsp. pallidum (hereafter called T. pallidum), is re-emerging as a worldwide sexually transmitted infection. A single intramuscular dose of benzathine penicillin G is the preferred syphilis treatment option. Both supply shortage concerns and the potential for acquired antibiotic resistance further the need to broaden the repertoire of syphilis therapeutics. We reasoned that other β-lactams may be equally or more effective at targeting the disease-causing agent, Treponema pallidum, but have yet to be discovered due to a previous lack of a continuous in vitro culture system. Recent technical advances with respect to in vitro T. pallidum propagation allowed us to conduct a high-throughput screen of almost 100 β-lactams. Using several molecular and cellular approaches that we developed or adapted, we identified and confirmed the efficacy of several β-lactams that were similar to or outperformed the current standard, benzathine penicillin G. These options are either currently used to treat bacterial infections or are synthetic derivatives of naturally occurring compounds. Our studies not only identified additional potential therapeutics in the resolution of syphilis, but provide techniques to study the complex biology of T. pallidum-a spirochete that has plagued human health for centuries.
Collapse
Affiliation(s)
- Kathryn A. Hayes
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061 USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Jules M. Dressler
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Brandon L. Jutras
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061 USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
6
|
Mi HF, Shen X, Chen XQ, Zhang XL, Ke WJ, Xiao Y. Association between treatment failure in patients with early syphilis and penicillin resistance-related gene mutations of Treponema pallidum: Protocol for a multicentre nested case–control study. Front Med (Lausanne) 2023; 10:1131921. [PMID: 37081834 PMCID: PMC10110954 DOI: 10.3389/fmed.2023.1131921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundThe widespread occurrence of syphilis remains a global public health problem. Although penicillin has been recommended as the first-line therapy for syphilis for more than 70 years, treatment failure occurs in 10–20% of patients with early syphilis. Recent studies have reported varied single-nucleotide polymorphisms (SNPs) of Treponema pallidum related to penicillin resistance. The clinical relevance of these SNPs to treatment failure in patients with early syphilis is unresolved. In this work, a protocol is developed to evaluate the association between treatment failure in patients with early syphilis and penicillin resistance-related gene mutations of T. pallidum.MethodsA multicentre nested case–control study is designed, and patients who are diagnosed with early syphilis and treated with penicillin will be recruited for the study cohort. Before the first treatment, baseline information and biological specimens will be collected from the subjects, and serological tests for syphilis will be performed. Each participant will be followed up at 1, 3, 6, 9, and 12 months after the first treatment, and the clinical manifestations and serum non-treponemal test titres will be evaluated at each follow-up. Patients who will fail treatment are defined as cases, and those who will respond to treatment are defined as controls. Tests for SNPs related to penicillin-binding proteins and Tp47 will be performed in these cases and controls. Survival analysis is used performed to identify gene mutations of T. pallidum related to penicillin resistance and their combinations associated with treatment failure.DiscussionThis protocol provides a practical clinical study design that illustrates the role of gene mutations of T. pallidum related to penicillin resistance in the treatment outcome of patients with early syphilis.
Collapse
Affiliation(s)
- Hong-Fei Mi
- Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Xu Shen
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Qing Chen
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Luo Zhang
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Xiao-Luo Zhang,
| | - Wu-Jian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Wu-Jian Ke,
| | - Yao Xiao
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Yao Xiao,
| |
Collapse
|
7
|
De Lay BD, Cameron TA, De Lay NR, Norris SJ, Edmondson DG. Comparison of transcriptional profiles of Treponema pallidum during experimental infection of rabbits and in vitro culture: Highly similar, yet different. PLoS Pathog 2021; 17:e1009949. [PMID: 34570834 PMCID: PMC8525777 DOI: 10.1371/journal.ppat.1009949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Treponema pallidum ssp. pallidum, the causative agent of syphilis, can now be cultured continuously in vitro utilizing a tissue culture system, and the multiplication rates are similar to those obtained in experimental infection of rabbits. In this study, the RNA transcript profiles of the T. pallidum Nichols during in vitro culture and rabbit infection were compared to examine whether gene expression patterns differed in these two environments. To this end, RNA preparations were converted to cDNA and subjected to RNA-seq using high throughput Illumina sequencing; reverse transcriptase quantitative PCR was also performed on selected genes for validation of results. The transcript profiles in the in vivo and in vitro environments were remarkably similar, exhibiting a high degree of concordance overall. However, transcript levels of 94 genes (9%) out of the 1,063 predicted genes in the T. pallidum genome were significantly different during rabbit infection versus in vitro culture, varying by up to 8-fold in the two environments. Genes that exhibited significantly higher transcript levels during rabbit infection included those encoding multiple ribosomal proteins, several prominent membrane proteins, glycolysis-associated enzymes, replication initiator DnaA, rubredoxin, thioredoxin, two putative regulatory proteins, and proteins associated with solute transport. In vitro cultured T. pallidum had higher transcript levels of DNA repair proteins, cofactor synthesis enzymes, and several hypothetical proteins. The overall concordance of the transcript profiles may indicate that these environments are highly similar in terms of their effects on T. pallidum physiology and growth, and may also reflect a relatively low level of transcriptional regulation in this reduced genome organism.
Collapse
Affiliation(s)
- Bridget D. De Lay
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
8
|
Katunin GL, Plakhova XI, Abuduev NK, Vasiliev MM. Ceftriaxone treatment of syphilis. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The article presents literature data on the use of antibacterial drugs for the treatment of patients with syphilis, where the main focus is on ceftriaxone. Based on the materials of national and foreign studies, data on the effectiveness of ceftriaxone in the treatment of patients with various forms of syphilis have been analyzed, and information characterizing the pharmacological and pharmacokinetic features of ceftriaxone has been presented. Based on the scientific and clinical experience accumulated over previous years, both in Russia and abroad, some results of the use of ceftriaxone in the treatment of syphilis have been summed up. To search for the necessary literature, the PubMed, MedLine, Web of Science and RSCI databases were used.
Collapse
|
9
|
Deka RK, Liu WZ, Norgard MV, Brautigam CA. Biophysical and Biochemical Characterization of TP0037, a d-Lactate Dehydrogenase, Supports an Acetogenic Energy Conservation Pathway in Treponema pallidum. mBio 2020; 11:e02249-20. [PMID: 32963009 PMCID: PMC7512555 DOI: 10.1128/mbio.02249-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
A longstanding conundrum in Treponema pallidum biology concerns how the spirochete generates sufficient energy to fulfill its complex pathogenesis processes during human syphilitic infection. For decades, it has been assumed that the bacterium relies solely on glucose catabolism (via glycolysis) for generation of its ATP. However, the organism's robust motility, believed to be essential for human tissue invasion and dissemination, would require abundant ATP likely not provided by the parsimony of glycolysis. As such, additional ATP generation, either via a chemiosmotic gradient, substrate-level phosphorylation, or both, likely exists in T. pallidum Along these lines, we have hypothesized that T. pallidum exploits an acetogenic energy conservation pathway that relies on the redox chemistry of flavins. Central to this hypothesis is the apparent existence in T. pallidum of an acetogenic pathway for the conversion of d-lactate to acetate. Herein we have characterized the structural, biophysical, and biochemical properties of the first enzyme (d-lactate dehydrogenase [d-LDH]; TP0037) predicted in this pathway. Binding and enzymatic studies showed that recombinant TP0037 consumed d-lactate and NAD+ to produce pyruvate and NADH. The crystal structure of TP0037 revealed a fold similar to that of other d-acid dehydrogenases; residues in the cofactor-binding and active sites were homologous to those of other known d-LDHs. The crystal structure and solution biophysical experiments revealed the protein's propensity to dimerize, akin to other d-LDHs. This study is the first to elucidate the enzymatic properties of T. pallidum's d-LDH, thereby providing new compelling evidence for a flavin-dependent acetogenic energy conservation (ATP-generating) pathway in T. pallidumIMPORTANCE Because T. pallidum lacks a Krebs cycle and the capability for oxidative phosphorylation, historically it has been difficult to reconcile how the syphilis spirochete generates sufficient ATP to fulfill its energy needs, particularly for its robust motility, solely from glycolysis. We have postulated the existence in T. pallidum of a flavin-dependent acetogenic energy conservation pathway that would generate additional ATP for T. pallidum bioenergetics. In the proposed acetogenic pathway, first d-lactate would be converted to pyruvate. Pyruvate would then be metabolized to acetate in three additional steps, with ATP being generated via substrate-level phosphorylation. This study provides structural, biochemical, and biophysical evidence for the first T. pallidum enzyme in the pathway (TP0037; d-lactate dehydrogenase) requisite for the conversion of d-lactate to pyruvate. The findings represent the first experimental evidence to support a role for an acetogenic energy conservation pathway that would contribute to nonglycolytic ATP production in T. pallidum.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Wei Z Liu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael V Norgard
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chad A Brautigam
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Luthra A, Montezuma-Rusca JM, La Vake CJ, LeDoyt M, Delgado KN, Davenport TC, Fiel-Gan M, Caimano MJ, Radolf JD, Hawley KL. Evidence that immunization with TP0751, a bipartite Treponema pallidum lipoprotein with an intrinsically disordered region and lipocalin fold, fails to protect in the rabbit model of experimental syphilis. PLoS Pathog 2020; 16:e1008871. [PMID: 32936831 PMCID: PMC7521688 DOI: 10.1371/journal.ppat.1008871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Deconvolution of syphilis pathogenesis and selection of candidate syphilis vaccinogens requires detailed knowledge of the molecular architecture of the Treponema pallidum outer membrane (OM). The T. pallidum OM contains a low density of integral OM proteins, while the spirochete's many lipoprotein immunogens are periplasmic. TP0751, a lipoprotein with a lipocalin fold, is reportedly a surface-exposed protease/adhesin and protective antigen. The rapid expansion of calycin/lipocalin structures in the RCSB PDB database prompted a comprehensive reassessment of TP0751. Small angle X-ray scattering analysis of full-length protein revealed a bipartite topology consisting of an N-terminal, intrinsically disordered region (IDR) and the previously characterized C-terminal lipocalin domain. A DALI server query using the lipocalin domain yielded 97 hits, 52 belonging to the calycin superfamily, including 15 bacterial lipocalins, but no Gram-negative surface proteins. Surprisingly, Tpp17 (TP0435) was identified as a structural ortholog of TP0751. In silico docking predicted that TP0751 can bind diverse ligands along the rim of its eight-stranded β-barrel; high affinity binding of one predicted ligand, heme, to the lipocalin domain was demonstrated. qRT-PCR and immunoblotting revealed very low expression of TP0751 compared to other T. pallidum lipoproteins. Immunoblot analysis of immune rabbit serum failed to detect TP0751 antibodies, while only one of five patients with secondary syphilis mounted a discernible TP0751-specific antibody response. In opsonophagocytosis assays, neither TP0751 nor Tpp17 antibodies promoted uptake of T. pallidum by rabbit peritoneal macrophages. Rabbits immunized with intact, full-length TP0751 showed no protection against local or disseminated infection following intradermal challenge with T. pallidum. Our data argue that, like other lipoprotein lipocalins in dual-membrane bacteria, TP0751 is periplasmic and binds small molecules, and we propose that its IDR facilitates ligand binding by and offloading from the lipocalin domain. The inability of TP0751 to elicit opsonic or protective antibodies is consistent with a subsurface location.
Collapse
Affiliation(s)
- Amit Luthra
- Department of Medicine, UConn Health, Farmington, United States of America
| | - Jairo M. Montezuma-Rusca
- Department of Medicine, UConn Health, Farmington, United States of America
- Division of Infectious Diseases, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
| | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, United States of America
| | - Morgan LeDoyt
- Department of Medicine, UConn Health, Farmington, United States of America
| | | | | | - Mary Fiel-Gan
- Department of Pathology, Hartford Hospital, Hartford, United States of America
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, United States of America
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, United States of America
- Department of Genetics and Genome Sciences, UConn Health, Farmington, United States of America
- Department of Immunology, UConn Health, Farmington, United States of America
| | - Kelly L. Hawley
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, United States of America
| |
Collapse
|
11
|
Tp47 induces cell death involving autophagy and mTOR in human microglial HMO6 cells. Int Immunopharmacol 2019; 74:105566. [DOI: 10.1016/j.intimp.2019.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/31/2019] [Accepted: 04/04/2019] [Indexed: 01/24/2023]
|
12
|
Abstract
The outer membrane (OM) of Treponema pallidum, the uncultivatable agent of venereal syphilis, has long been the subject of misconceptions and controversy. Decades ago, researchers postulated that T. pallidum's poor surface antigenicity is the basis for its ability to cause persistent infection, but they mistakenly attributed this enigmatic property to the presence of a protective outer coat of serum proteins and mucopolysaccharides. Subsequent studies revealed that the OM is the barrier to antibody binding, that it contains a paucity of integral membrane proteins, and that the preponderance of the spirochete's immunogenic lipoproteins is periplasmic. Since the advent of recombinant DNA technology, the fragility of the OM, its low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative outer membrane proteins (OMPs) have complicated efforts to characterize molecules residing at the host-pathogen interface. We have overcome these hurdles using the genomic sequence in concert with computational tools to identify proteins predicted to form β-barrels, the hallmark conformation of OMPs in double-membrane organisms and evolutionarily related eukaryotic organelles. We also have employed diverse methodologies to confirm that some candidate OMPs do, in fact, form amphiphilic β-barrels and are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMP repertoire is more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genomic Sciences, and Immunology, UConn Health, Farmington, CT 06030-3715, USA.
| | - Sanjiv Kumar
- Department of Medicine, UConn Health, Farmington, CT 06030-3715, USA
| |
Collapse
|
13
|
Djokic V, Giacani L, Parveen N. Analysis of host cell binding specificity mediated by the Tp0136 adhesin of the syphilis agent Treponema pallidum subsp. pallidum. PLoS Negl Trop Dis 2019; 13:e0007401. [PMID: 31071095 PMCID: PMC6529012 DOI: 10.1371/journal.pntd.0007401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/21/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background Syphilis affects approximately 11 million people each year globally, and is the third most prevalent sexually transmitted bacterial infection in the United States. Inability to independently culture and genetically manipulate Treponema pallidum subsp. pallidum, the causative agent of this disease, has hindered our understanding of the molecular mechanisms of syphilis pathogenesis. Here, we used the non-infectious and poorly adherent B314 strain of the Lyme disease-causing spirochete, Borrelia burgdorferi, to express two variants of a known fibronectin-binding adhesin, Tp0136, from T. pallidum SS14 and Nichols strains. Using this surrogate system, we investigated the ability of Tp0136 in facilitating differential binding to mammalian cell lines offering insight into the possible role of this virulence factor in colonization of specific tissues by T. pallidum during infection. Principal findings Expression of Tp0136 could be detected on the surface of B. burgdorferi by indirect immunofluorescence assay using sera from a secondary syphilis patient that does not react with intact B314 spirochetes transformed with the empty vector. Increase in Tp0136-mediated adherence of B314 strain to human epithelial HEK293 cells was observed with comparable levels of binding exhibited by both Tp0136 alleles. Adherence of Tp0136-expressing B314 was highest to epithelial HEK293 and C6 glioma cells. Gain in binding of B314 strain expressing Tp0136 to purified fibronectin and poor binding of these spirochetes to the fibronectin-deficient cell line (HEp-2) indicated that Tp0136 interaction with this host receptor plays an important role in spirochetal attachment to mammalian cells. Furthermore, preincubation of these cell lines with fibronectin-binding peptide from Staphylococcus aureus FnbA-2 protein significantly inhibited binding of B314 expressing Tp0136. Conclusions Our results show that Tp0136 facilitates differential level of binding to cell lines representing various host tissues, which highlights the importance of this protein in colonization of human organs by T. pallidum and resulting syphilis pathogenesis. Syphilis is one of the most prevalent sexually transmitted infections that affect millions of people around the world. The causative bacterium, Treponema pallidum subsp. pallidum, can be transmitted from mother to fetus during maternal infection, resulting in adverse pregnancy outcomes. Although timely treatment of syphilis is highly effective, untreated infection causes late syphilis that affects virtually every organ and leads to serious clinical manifestations. Therefore, syphilis remains a serious healthcare problem. T. pallidum cannot be grown in laboratory using traditional methods, which has slowed the progress in understanding this pathogen biology and pathogenesis. We employed a novel approach of using a related bacterium, Borrelia burgdorferi, to express Tp0136 protein from two different T. pallidum isolates to study the function of this protein. This strategy enabled us to demonstrate the ability of this protein to bind to fibronectin and laminin receptors present on the surface of various host cells. We showed that Tp0136 facilitates binding to only those host cells that produce fibronectin. In addition, we found that Tp0136-mediated binding is not equivalent in all host cell types, suggesting that the protein could help in colonization of specific human organs and tissues during infection by T. pallidum.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gao ZX, Liu D, Liu LL, Lin LR, Tong ML, Niu JJ, Yang TC. Recombinant Treponema pallidum protein Tp47 promotes the migration and adherence of THP-1 cells to human dermal vascular smooth muscle cells by inducing MCP-1 and ICAM-1 expression. Exp Cell Res 2019; 381:150-162. [PMID: 31075255 DOI: 10.1016/j.yexcr.2019.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
Vascular inflammation is a complex and multifactorial pathophysiological process that plays a crucial role in all stages of syphilis and is responsible for tissue damage. Little is known about the interactions of infiltrating immunocytes with human dermal vascular smooth muscle cells (HDVSMCs) in arterioles during the immunopathogenesis of syphilis. The Treponema pallidum subsp. pallidum membrane protein Tp47 is considered a major inducer of inflammation initiation and development. In this study, we demonstrated that Tp47 promoted the migration and adhesion of THP-1 cells to HDVSMCs. Furthermore, Tp47 increased monocyte chemoattractant protein-1 (MCP-1) and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein expression levels in a dose- and time-dependent manner. The migration and adhesion of THP-1 cells to HDVSMCs were significantly suppressed by anti-MCP-1 and anti-ICAM-1 neutralizing antibodies, respectively. Further studies revealed that treatment of HDVSMCs with Tp47 activated the PI3K/Akt, p38 MAPK and NF-κB signalling pathways. Inhibition of PI3K/Akt, p38 MAPK and NF-κB suppressed the MCP-1 and ICAM-1 expression induced by Tp47. In addition, the migration and adhesion of THP-1 cells to Tp47-treated HDVSMCs were significantly decreased by pretreatment with PI3K/Akt, p38 MAPK and NF-κB inhibitors. These findings demonstrate that Tp47 promotes the migration and adherence of THP-1 cells to HDVSMCs by inducing MCP-1 and ICAM-1 expression, which is mediated by activation of the PI3K/Akt, p38 MAPK and NF-κB pathways. This study provides a novel potential therapeutic strategy for controlling the vascular inflammatory response in syphilis patients.
Collapse
Affiliation(s)
- Zheng-Xiang Gao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China.
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
15
|
Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC STRUCTURAL BIOLOGY 2018; 18:7. [PMID: 29769048 PMCID: PMC5956850 DOI: 10.1186/s12900-018-0086-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022]
Abstract
Background Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Results Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Conclusions Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome. Electronic supplementary material The online version of this article (10.1186/s12900-018-0086-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen Vivien Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Chris Richard Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
16
|
Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1436080. [PMID: 28523273 PMCID: PMC5421087 DOI: 10.1155/2017/1436080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 11/18/2022]
Abstract
The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.
Collapse
|
17
|
Christodoulides A, Boyadjian A, Kelesidis T. Spirochetal Lipoproteins and Immune Evasion. Front Immunol 2017; 8:364. [PMID: 28424696 PMCID: PMC5372817 DOI: 10.3389/fimmu.2017.00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment.
Collapse
Affiliation(s)
- Alexei Christodoulides
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ani Boyadjian
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
Osbak KK, Houston S, Lithgow KV, Meehan CJ, Strouhal M, Šmajs D, Cameron CE, Van Ostade X, Kenyon CR, Van Raemdonck GA. Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry. PLoS Negl Trop Dis 2016; 10:e0004988. [PMID: 27606673 PMCID: PMC5015957 DOI: 10.1371/journal.pntd.0004988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. METHODOLOGY/PRINCIPAL FINDINGS To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first account of 106 of these proteins at the protein level. Detected proteins were characterized according to their predicted biological function and localization; half were allocated into a wide range of functional categories. Proteins annotated as potential membrane proteins and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance. CONCLUSIONS This is the most comprehensive description of the global T. pallidum proteome to date. These data provide valuable insights into in vivo T. pallidum protein expression, paving the way for improved understanding of the pathogenicity of this enigmatic organism.
Collapse
Affiliation(s)
- Kara K Osbak
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen V Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Conor J Meehan
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Xaveer Van Ostade
- Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| | - Chris R Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Geert A Van Raemdonck
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
19
|
Brautigam CA, Deka RK, Liu WZ, Norgard MV. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology. PLoS One 2016; 11:e0161022. [PMID: 27536942 PMCID: PMC4990184 DOI: 10.1371/journal.pone.0161022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022] Open
Abstract
Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.
Collapse
Affiliation(s)
- Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Ranjit K. Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Wei Z. Liu
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael V. Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| |
Collapse
|
20
|
Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV. Molecular insights into the enzymatic diversity of flavin-trafficking protein (Ftp; formerly ApbE) in flavoprotein biogenesis in the bacterial periplasm. Microbiologyopen 2015; 5:21-38. [PMID: 26626129 PMCID: PMC4767422 DOI: 10.1002/mbo3.306] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 01/26/2023] Open
Abstract
We recently reported a flavin‐trafficking protein (Ftp) in the syphilis spirochete Treponema pallidum (Ftp_Tp) as the first bacterial metal‐dependent FAD pyrophosphatase that hydrolyzes FAD into AMP and FMN in the periplasm. Orthologs of Ftp_Tp in other bacteria (formerly ApbE) appear to lack this hydrolytic activity; rather, they flavinylate the redox subunit, NqrC, via their metal‐dependent FMN transferase activity. However, nothing has been known about the nature or mechanism of metal‐dependent Ftp catalysis in either Nqr‐ or Rnf‐redox‐containing bacteria. In the current study, we identified a bimetal center in the crystal structure of Escherichia coli Ftp (Ftp_Ec) and show via mutagenesis that a single amino acid substitution converts it from an FAD‐binding protein to a Mg2+‐dependent FAD pyrophosphatase (Ftp_Tp‐like). Furthermore, in the presence of protein substrates, both types of Ftps are capable of flavinylating periplasmic redox‐carrying proteins (e.g., RnfG_Ec) via the metal‐dependent covalent attachment of FMN. A high‐resolution structure of the Ftp‐mediated flavinylated protein of Shewanella oneidensis NqrC identified an essential lysine in phosphoester‐threonyl‐FMN bond formation in the posttranslationally modified flavoproteins. Together, these discoveries broaden our understanding of the physiological capabilities of the bacterial periplasm, and they also clarify a possible mechanism by which flavoproteins are generated.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Wei Z Liu
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Diana R Tomchick
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Michael V Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
21
|
Brautigam CA, Deka RK, Liu WZ, Norgard MV. Insights into the potential function and membrane organization of the TP0435 (Tp17) lipoprotein from Treponema pallidum derived from structural and biophysical analyses. Protein Sci 2014; 24:11-9. [PMID: 25287511 DOI: 10.1002/pro.2576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022]
Abstract
The sexually transmitted disease syphilis is caused by the bacterial spirochete Treponema pallidum. This microorganism is genetically intractable, accounting for the large number of putative and undercharacterized members of the pathogen's proteome. In an effort to ascribe a function(s) to the TP0435 (Tp17) lipoprotein, we engineered a soluble variant of the protein (rTP0435) and determined its crystal structure at a resolution of 2.42 Å. The structure is characterized by an eight-stranded β-barrel protein with a shallow "basin" at one end of the barrel and an α-helix stacked on the opposite end. Furthermore, there is a disulfide-linked dimer of the protein in the asymmetric unit of the crystals. Solution hydrodynamic experiments established that purified rTP0435 is monomeric, but specifically forms the disulfide-stabilized dimer observed in the crystal structure. The data herein, when considered with previous work on TP0435, imply plausible roles for the protein in either ligand binding, treponemal membrane architecture, and/or pathogenesis.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | | | | | | |
Collapse
|
22
|
Resistance to β-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS One 2014; 9:e97202. [PMID: 24810745 PMCID: PMC4014608 DOI: 10.1371/journal.pone.0097202] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/16/2014] [Indexed: 01/26/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.
Collapse
|
23
|
Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV. The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis. J Biol Chem 2013; 288:11106-21. [PMID: 23447540 DOI: 10.1074/jbc.m113.449975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Treponema pallidum, an obligate parasite of humans and the causative agent of syphilis, has evolved the capacity to exploit host-derived metabolites for its survival. Flavin-containing compounds are essential cofactors that are required for metabolic processes in all living organisms, and riboflavin is a direct precursor of the cofactors FMN and FAD. Unlike many pathogenic bacteria, Treponema pallidum cannot synthesize riboflavin; we recently described a flavin-uptake mechanism composed of an ABC-type transporter. However, there is a paucity of information about flavin utilization in bacterial periplasms. Using a discovery-driven approach, we have identified the TP0796 lipoprotein as a previously uncharacterized Mg(2+)-dependent FAD pyrophosphatase within the ApbE superfamily. TP0796 probably plays a central role in flavin turnover by hydrolyzing exogenously acquired FAD, yielding AMP and FMN. Biochemical and structural investigations revealed that the enzyme has a unique bimetal Mg(2+) catalytic center. Furthermore, the pyrophosphatase activity is product-inhibited by AMP, indicating a possible role for this molecule in modulating FMN and FAD levels in the treponemal periplasm. The ApbE superfamily was previously thought to be involved in thiamine biosynthesis, but our characterization of TP0796 prompts a renaming of this superfamily as a periplasmic flavin-trafficking protein (Ftp). TP0796 is the first structurally and biochemically characterized FAD pyrophosphate enzyme in bacteria. This new paradigm for a bacterial flavin utilization pathway may prove to be useful for future inhibitor design.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Bacterial transporter proteins are involved in the translocation of many essential nutrients and metabolites. However, many of these key bacterial transport systems remain to be identified, including those involved in the transport of riboflavin (vitamin B2). Pathogenic spirochetes lack riboflavin biosynthetic pathways, implying reliance on obtaining riboflavin from their hosts. Using structural and functional characterizations of possible ligand-binding components, we have identified an ABC-type riboflavin transport system within pathogenic spirochetes. The putative lipoprotein ligand-binding components of these systems from three different spirochetes were cloned, hyperexpressed in Escherichia coli, and purified to homogeneity. Solutions of all three of the purified recombinant proteins were bright yellow. UV-visible spectra demonstrated that these proteins were likely flavoproteins; electrospray ionization mass spectrometry and thin-layer chromatography confirmed that they contained riboflavin. A 1.3-Å crystal structure of the protein (TP0298) encoded by Treponema pallidum, the syphilis spirochete, demonstrated that the protein’s fold is similar to the ligand-binding components of ABC-type transporters. The structure also revealed other salient details of the riboflavin binding site. Comparative bioinformatics analyses of spirochetal genomes, coupled with experimental validation, facilitated the discovery of this new ABC-type riboflavin transport system(s). We denote the ligand-binding component as riboflavin uptake transporter A (RfuA). Taken together, it appears that pathogenic spirochetes have evolved an ABC-type transport system (RfuABCD) for survival in their host environments, particularly that of the human host. Syphilis remains a public health problem, but very little is known about the causative bacterium. This is because Treponema pallidum still cannot be cultured in the laboratory. Rather, T. pallidum must be cultivated in laboratory rabbits, a restriction that poses many insurmountable experimental obstacles. Approaches to learn more about the structure and function of T. pallidum’s cell envelope, which is both the physical and functional interface between T. pallidum and its human host, are severely limited. One approach for elucidating T. pallidum’s cell envelope has been to determine the three-dimensional structures of its membrane lipoproteins, molecules that serve many critical survival functions. Herein, we describe a previously unknown transport system that T. pallidum uses to import riboflavin, an essential nutrient for the organism’s survival. Moreover, we found that this transport system is present in other pathogenic spirochetes. This is the first description of this new type of bacterial riboflavin transport system.
Collapse
|
25
|
Biophysical and bioinformatic analyses implicate the Treponema pallidum Tp34 lipoprotein (Tp0971) in transition metal homeostasis. J Bacteriol 2012; 194:6771-81. [PMID: 23042995 DOI: 10.1128/jb.01494-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal ion homeostasis is a critical function of many integral and peripheral membrane proteins. The genome of the etiologic agent of syphilis, Treponema pallidum, is compact and devoid of many metabolic enzyme genes. Nevertheless, it harbors genes coding for homologs of several enzymes that typically require either iron or zinc. The product of the tp0971 gene of T. pallidum, designated Tp34, is a periplasmic lipoprotein that is thought to be tethered to the inner membrane of this organism. Previous work on a water-soluble (nonacylated) recombinant version of Tp34 established that this protein binds to Zn(2+), which, like other transition metal ions, stabilizes the dimeric form of the protein. In this study, we employed analytical ultracentrifugation to establish that four transition metal ions (Ni(2+), Co(2+), Cu(2+), and Zn(2+)) readily induce the dimerization of Tp34; Cu(2+) (50% effective concentration [EC(50)] = 1.7 μM) and Zn(2+) (EC(50) = 6.2 μM) were the most efficacious of these ions. Mutations of the crystallographically identified metal-binding residues hindered the ability of Tp34 to dimerize. X-ray crystallography performed on crystals of Tp34 that had been incubated with metal ions indicated that the binding site could accommodate the metals examined. The findings presented herein, coupled with bioinformatic analyses of related proteins, point to Tp34's likely role in metal ion homeostasis in T. pallidum.
Collapse
|
26
|
Brautigam CA, Deka RK, Schuck P, Tomchick DR, Norgard MV. Structural and thermodynamic characterization of the interaction between two periplasmic Treponema pallidum lipoproteins that are components of a TPR-protein-associated TRAP transporter (TPAT). J Mol Biol 2012; 420:70-86. [PMID: 22504226 DOI: 10.1016/j.jmb.2012.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/27/2023]
Abstract
Tripartite ATP-independent periplasmic transporters (TRAP-Ts) are bacterial transport systems that have been implicated in the import of small molecules into the cytoplasm. A newly discovered subfamily of TRAP-Ts [tetratricopeptide repeat-protein associated TRAP transporters (TPATs)] has four components. Three are common to both TRAP-Ts and TPATs: the P component, a ligand-binding protein, and a transmembrane symporter apparatus comprising the M and Q components (M and Q are sometimes fused to form a single polypeptide). TPATs are distinguished from TRAP-Ts by the presence of a unique protein called the "T component". In Treponema pallidum, this protein (TatT) is a water-soluble trimer whose protomers are each perforated by a pore. Its respective P component (TatP(T)) interacts with the TatT in vitro and in vivo. In this work, we further characterized this interaction. Co-crystal structures of two complexes between the two proteins confirm that up to three monomers of TatP(T) can bind to the TatT trimer. A putative ligand-binding cleft of TatP(T) aligns with the pore of TatT, strongly suggesting ligand transfer between T and P(T). We used a combination of site-directed mutagenesis and analytical ultracentrifugation to derive thermodynamic parameters for the interactions. These observations confirm that the observed crystallographic interface is recapitulated in solution. These results prompt a hypothesis of the molecular mechanism(s) of hydrophobic ligand transport by the TPATs.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
27
|
TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J Bacteriol 2012; 194:2321-33. [PMID: 22389487 DOI: 10.1128/jb.00101-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178-5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprC(Fl)) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprC(Fl) increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprC(N)), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprC(C)). Syphilitic rabbits generate antibodies exclusively against TprC(C), while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host.
Collapse
|
28
|
Deka RK, Brautigam CA, Goldberg M, Schuck P, Tomchick DR, Norgard MV. Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J Mol Biol 2012; 416:678-96. [PMID: 22306465 DOI: 10.1016/j.jmb.2012.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 01/22/2023]
Abstract
Treponema pallidum, the bacterial agent of syphilis, is predicted to encode one tripartite ATP-independent periplasmic transporter (TRAP-T). TRAP-Ts typically employ a periplasmic substrate-binding protein (SBP) to deliver the cognate ligand to the transmembrane symporter. Herein, we demonstrate that the genes encoding the putative TRAP-T components from T. pallidum, tp0957 (the SBP), and tp0958 (the symporter), are in an operon with an uncharacterized third gene, tp0956. We determined the crystal structure of recombinant Tp0956; the protein is trimeric and perforated by a pore. Part of Tp0956 forms an assembly similar to those of "tetratricopeptide repeat" (TPR) motifs. The crystal structure of recombinant Tp0957 was also determined; like the SBPs of other TRAP-Ts, there are two lobes separated by a cleft. In these other SBPs, the cleft binds a negatively charged ligand. However, the cleft of Tp0957 has a strikingly hydrophobic chemical composition, indicating that its ligand may be substantially different and likely hydrophobic. Analytical ultracentrifugation of the recombinant versions of Tp0956 and Tp0957 established that these proteins associate avidly. This unprecedented interaction was confirmed for the native molecules using in vivo cross-linking experiments. Finally, bioinformatic analyses suggested that this transporter exemplifies a new subfamily of TPATs (TPR-protein-associated TRAP-Ts) that require the action of a TPR-containing accessory protein for the periplasmic transport of a potentially hydrophobic ligand(s).
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
29
|
Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MAD, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 2011; 80:1496-515. [PMID: 21488980 PMCID: PMC3115443 DOI: 10.1111/j.1365-2958.2011.07662.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Definitive identification of Treponema pallidum rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in T. pallidum with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modelling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in T. pallidum larger than that of Escherichia coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. T. pallidum-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochaete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity.
Collapse
Affiliation(s)
- Daniel C. Desrosiers
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Amit Luthra
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Star M Dunham-Ems
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Morgan LeDoyt
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Michael A. D. Cummings
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Azad Eshghi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Adriana R. Cruz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Juan C. Salazar
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Department of Pediatrics, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, CT 06106
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030
- Department of Pediatrics, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, CT 06106
| |
Collapse
|
30
|
Pavelčík F, Václavík J. Performance of phased rotation, conformation and translation function: accurate protein model building with tripeptidic and tetrapeptidic fragments. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1012-23. [DOI: 10.1107/s0907444910030234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/29/2010] [Indexed: 11/10/2022]
Abstract
The automatic building of protein structures with tripeptidic and tetrapeptidic fragments was investigated. The oligopeptidic conformers were positioned in the electron-density map by a phased rotation, conformation and translation function and refined by a real-space refinement. The number of successfully located fragments lay within the interval 75–95% depending on the resolution and phase quality. The overlaps of partially located fragments were analyzed. The correctly positioned fragments were connected into chains. Chains formed in this way were extended directly into the electron density and a sequence was assigned. In the initial stage of the model building the number of located fragments was between 60% and 95%, but this number could be increased by several cycles of reciprocal-space refinement and automatic model rebuilding. A nearly complete structure can be obtained on the condition that the resolution is reasonable. Computer graphics will only be needed for a final check and small corrections.
Collapse
|
31
|
Abstract
Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease characterized by widespread tissue dissemination and chronic infection. In this study, we analyzed the proteome of T. pallidum by the isoelectric focusing (IEF) and nonequilibrating pH gel electrophoresis (NEPHGE) forms of two-dimensional gel electrophoresis (2DGE), coupled with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis. We determined the identity of 148 T. pallidum protein spots, representing 88 T. pallidum polypeptides; 63 of these polypeptides had not been identified previously at the protein level. To examine which of these proteins are important in the antibody response to syphilis, we performed immunoblot analysis using infected rabbit sera or human sera from patients at different stages of syphilis infection. Twenty-nine previously described antigens (predominantly lipoproteins) were detected, as were a number of previously unidentified antigens. The reactivity patterns obtained with sera from infected rabbits and humans were similar; these patterns included a subset of antigens reactive with all serum samples tested, including CfpA, MglB-2, TmpA, TmpB, flagellins, and the 47-kDa, 17-kDa, and 15-kDa lipoproteins. A unique group of antigens specifically reactive with infected human serum was also identified and included the previously described antigen TpF1 and the hypothetical proteins TP0584, TP0608, and TP0965. This combined proteomic and serologic analysis further delineates the antigens potentially useful as vaccine candidates or diagnostic markers and may provide insight into the host-pathogen interactions that occur during T. pallidum infection.
Collapse
|
32
|
Abstract
Syphilis is a multistage infectious disease that is usually transmitted through contact with active lesions of a sexual partner or from an infected pregnant woman to her fetus. Despite elimination efforts, syphilis remains endemic in many developing countries and has reemerged in several developed countries, including China, where a widespread epidemic recently occurred. In the absence of a vaccine, syphilis control is largely dependent upon identification of infected individuals and treatment of these individuals and their contacts with antibiotics. Although penicillin is still effective, clinically significant resistance to macrolides, a second-line alternative to penicillin, has emerged. Macrolide-resistant strains of Treponema pallidum are now prevalent in several developed countries. An understanding of the genetic basis of T. pallidum antibiotic resistance is essential to enable molecular surveillance. This review discusses the genetic basis of T. pallidum macrolide resistance and the potential of this spirochete to develop additional antibiotic resistance that could seriously compromise syphilis treatment and control.
Collapse
|
33
|
Zhang W, Fisher JF, Mobashery S. The bifunctional enzymes of antibiotic resistance. Curr Opin Microbiol 2009; 12:505-11. [PMID: 19615931 DOI: 10.1016/j.mib.2009.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 11/29/2022]
Abstract
The evolutionary union of two genes--each encoding proteins of complementary enzymatic activity--into a single gene so as to allow the coordinated expression of these activities as a fusion polypeptide, is an increasingly recognized biological occurrence. The result of this genetic union is the bifunctional enzyme. This fusion of separate catalytic activities into a single protein, whose gene is regulated by a single promoter, is seen especially where the coordinated expression of the separate activities is highly desirable. Increasingly, a circumstance driving the evolution of the bifunctional enzyme in bacteria is the resistance response of bacteria to antibiotic chemotherapy. We summarize the knowledge on bifunctional antibiotic-resistance enzymes, as possible harbingers of clinically significant resistance mechanisms of the future.
Collapse
Affiliation(s)
- Weilie Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
34
|
von Lackum K, Ollison KM, Bykowski T, Nowalk AJ, Hughes JL, Carroll JA, Zückert WR, Stevenson B. Regulated synthesis of the Borrelia burgdorferi inner-membrane lipoprotein IpLA7 (P22, P22-A) during the Lyme disease spirochaete's mammal-tick infectious cycle. MICROBIOLOGY-SGM 2007; 153:1361-1371. [PMID: 17464050 DOI: 10.1099/mic.0.2006/003350-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Results of previous immunological studies suggested that Borrelia burgdorferi regulates synthesis of the IpLA7 lipoprotein during mammalian infection. Through combined use of quantitative reverse transcription PCR, immunofluorescence analyses, ELISA and immunoblotting, it is now demonstrated that IpLA7 is actually expressed throughout mammalian infection, as well as during transmission both from feeding ticks to naïve mice and from infected mice to naïve, feeding ticks. However, proportions of IpLA7-expressing B. burgdorferi within tick midguts declined significantly with time following completion of blood feeding. Cultured bacteria differentially expressed IpLA7 in response to changes in temperature, pH and concentration of 4,5-dihydroxy-2,3-pentanedione, the precursor of autoinducer 2, indicative of mechanisms governing IpLA7 expression. Previous studies also reported mixed results as to the cellular localization of IpLA7. It is now demonstrated that IpLA7 localizes primarily to the borrelial inner membrane and is not surface-exposed, consistent with the ability of these bacteria to produce IpLA7 throughout mammalian infection despite being the target of a robust immune response.
Collapse
Affiliation(s)
- Kate von Lackum
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Kristina M Ollison
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomasz Bykowski
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Andrew J Nowalk
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jessica L Hughes
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James A Carroll
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Wolfram R Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
35
|
Machius M, Brautigam CA, Tomchick DR, Ward P, Otwinowski Z, Blevins JS, Deka RK, Norgard MV. Structural and biochemical basis for polyamine binding to the Tp0655 lipoprotein of Treponema pallidum: putative role for Tp0655 (TpPotD) as a polyamine receptor. J Mol Biol 2007; 373:681-94. [PMID: 17868688 PMCID: PMC2094014 DOI: 10.1016/j.jmb.2007.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/03/2007] [Accepted: 08/09/2007] [Indexed: 11/18/2022]
Abstract
Tp0655 of Treponema pallidum, the causative agent of syphilis, is predicted to be a 40 kDa membrane lipoprotein. Previous sequence analysis of Tp0655 noted its homology to polyamine-binding proteins of the bacterial PotD family, which serve as periplasmic ligand-binding proteins of ATP-binding-cassette (ABC) transport systems. Here, the 1.8 A crystal structure of Tp0655 demonstrated structural homology to Escherichia coli PotD and PotF. The latter two proteins preferentially bind spermidine and putrescine, respectively. All of these proteins contain two domains that sandwich the ligand between them. The ligand-binding site of Tp0655 can be occupied by 2-(N-morpholino)ethanesulfanoic acid, a component of the crystallization medium. To discern the polyamine binding preferences of Tp0655, the protein was subjected to isothermal titration calorimetric experiments. The titrations established that Tp0655 binds polyamines avidly, with a marked preference for putrescine (Kd=10 nM) over spermidine (Kd=430 nM), but the related compounds cadaverine and spermine did not bind. Structural comparisons and structure-based sequence analyses provide insights into how polyamine-binding proteins recognize their ligands. In particular, these comparisons allow the derivation of rules that may be used to predict the function of other members of the PotD family. The sequential, structural, and functional homology of Tp0655 to PotD and PotF prompt the conclusion that the former likely is the polyamine-binding component of an ABC-type polyamine transport system in T. pallidum. We thus rename Tp0655 as TpPotD. The ramifications of TpPotD as a polyamine-binding protein to the parasitic strategy of T. pallidum are discussed.
Collapse
Affiliation(s)
- Mischa Machius
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Buffet M, Grange PA, Gerhardt P, Carlotti A, Calvez V, Bianchi A, Dupin N. Diagnosing Treponema pallidum in Secondary Syphilis by PCR and Immunohistochemistry. J Invest Dermatol 2007; 127:2345-50. [PMID: 17554371 DOI: 10.1038/sj.jid.5700888] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological aspects of syphilis in Western countries have undergone a significant change with respect to the number of cases. Detection of Treponema pallidum is difficult, and the correct diagnosis of secondary syphilis can be critical. In this study, biopsy samples from skin lesions of 12 patients with secondary syphilis were used. Diagnosis of syphilis was based on clinical presentation, dark-field microscope analysis, and serological tests. Using a polyclonal antibody directed against T. pallidum, we show the presence of T. pallidum in 90% of the samples studied with the bacteria located in the epidermis and the upper dermis. The T. pallidum 47-kDa surface protein gene could be amplified by PCR in 75% of the skin lesions. When combining both techniques, T. pallidum was detected in 92% of the samples from patients with secondary syphilis but not in the control samples. Our work suggests that both immunohistochemistry and PCR could be useful for the diagnosis of secondary syphilis and may be helpful in some rare cases when serological assays failed to detect T. pallidum antibodies.
Collapse
Affiliation(s)
- Marc Buffet
- UPRES-EA1833 Laboratoire de Recherche en Dermatologie, Centre National de Référence Syphilis, Paris, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Deka RK, Brautigam CA, Tomson FL, Lumpkins SB, Tomchick DR, Machius M, Norgard MV. Crystal structure of the Tp34 (TP0971) lipoprotein of treponema pallidum: implications of its metal-bound state and affinity for human lactoferrin. J Biol Chem 2006; 282:5944-58. [PMID: 17192261 DOI: 10.1074/jbc.m610215200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tp34 (TP0971) membrane lipoprotein of Treponema pallidum, an obligate human pathogen and the agent of syphilis, was previously reported to have lactoferrin binding properties. Given the non-cultivatable nature of T. pallidum, a structure-to-function approach was pursued to clarify further potential relationships between the Tp34 structural and biochemical properties and its propensity to bind human lactoferrin. The crystal structure of a nonacylated, recombinant form of Tp34 (rTp34), solved to a resolution of 1.9A(,) revealed two metaloccupied binding sites within a dimer; the identity of the ion most likely was zinc. Residues from both of the monomers contributed to the interfacial metal-binding sites; a novel feature was that the delta-sulfur of methionine coordinated the zinc ion. Analytical ultracentrifugation showed that, in solution, rTp34 formed a metal-stabilized dimer and that rTp34 bound human lactoferrin with a stoichiometry of 2:1. Isothermal titration calorimetry further revealed that rTp34 bound human lactoferrin at high (submicromolar) affinity. Finally, membrane topology studies revealed that native Tp34 is not located on the outer surface (outer membrane) of T. pallidum but, rather, is periplasmic. How propensity of Tp34 to bind zinc and the iron-sequestering lactoferrin may relate overall to the biology of T. pallidum infection in humans is discussed.
Collapse
Affiliation(s)
- Ranjit K Deka
- Departments of Microbiology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Carter BT, Lin H, Goldberg SD, Althoff EA, Raushel J, Cornish VW. Investigation of the mechanism of resistance to third-generation cephalosporins by class C beta-lactamases by using chemical complementation. Chembiochem 2006; 6:2055-67. [PMID: 16250067 DOI: 10.1002/cbic.200500058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The widespread use of antibiotics to treat bacterial infections has led to the continuing challenge of antibiotic resistance. For beta-lactam antibiotics, the most common form of resistance is the expression of beta-lactamase enzymes, which inactivate the antibiotics by cleavage of the beta-lactam core. In this study, chemical complementation, which is a general method to link the formation or cleavage of a chemical bond to the transcription of a reporter gene in vivo, was employed in combination with combinatorial mutagenesis to study the mechanism by which the class C beta-lactamase P99 might evolve resistance to the commonly administered third-generation cephalosporin cefotaxime. The chemical complementation system was first shown to be able to distinguish between the wild-type (wt) class C beta-lactamase P99 and the clinically isolated extended-spectrum class C beta-lactamase GC1 in the presence of cefotaxime. The system was then employed to evaluate the activity of mutants of wt P99 towards cefotaxime. A number of single-point mutations at position 221 (Tyr in wt P99) were identified that conferred resistance towards inhibition by cefotaxime, with as much as a 2000-fold increase in k(cat) and a 100-fold increase in k(cat)/K(M) (k(cat)=the rate of catalysis; K(M)=the Michaelis constant), as compared to those of the wt enzyme. Finally, the chemical complementation system was employed in a high-throughput screen to identify a number of mutants of P99 that have multiple mutations around the substrate-binding pocket that increase resistance towards cefotaxime inhibition. The catalytic turnover of cefotaxime by the most active mutant identified was 5500 times higher than that of the wt P99. The resistant mutants suggest a mechanism by which a number of mutations can confer resistance by increasing the flexibility of the Omega loop and altering the positioning of residue 221. Thus, as illustrated in this study, chemical complementation has the potential to be used as a high-throughput screen to study a wide range of enzyme-drug interactions.
Collapse
Affiliation(s)
- Brian T Carter
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
40
|
Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 2005; 105:395-424. [PMID: 15700950 DOI: 10.1021/cr030102i] [Citation(s) in RCA: 692] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
41
|
Yakunin AF, Yee AA, Savchenko A, Edwards AM, Arrowsmith CH. Structural proteomics: a tool for genome annotation. Curr Opin Chem Biol 2004; 8:42-8. [PMID: 15036155 DOI: 10.1016/j.cbpa.2003.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In any newly sequenced genome, 30% to 50% of genes encode proteins with unknown molecular or cellular function. Fortunately, structural genomics is emerging as a powerful approach of functional annotation. Because of recent developments in high-throughput technologies, ongoing structural genomics projects are generating new structures at an unprecedented rate. In the past year, structural studies have identified many new structural motifs involved in enzymatic catalysis or in binding ligands or other macromolecules (DNA, RNA, protein). The efficiency by which function is deduced from structure can be further improved by the integration of structure with bioinformatics and other experimental approaches, such as screening for enzymatic activity or ligand binding.
Collapse
Affiliation(s)
- Alexander F Yakunin
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
42
|
Deka RK, Goldberg MS, Hagman KE, Norgard MV. The Tp38 (TpMglB-2) lipoprotein binds glucose in a manner consistent with receptor function in Treponema pallidum. J Bacteriol 2004; 186:2303-8. [PMID: 15060032 PMCID: PMC412163 DOI: 10.1128/jb.186.8.2303-2308.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 38-kDa lipoprotein of Treponema pallidum (Tp38) was predicted to be a periplasmic sugar-binding protein based on its sequence similarity to the glucose/galactose-binding (MglB) protein of Escherichia coli (P. S. Becker, D. R. Akins, J. D. Radolf, and M. V. Norgard, Infect. Immun. 62:1381-1391, 1994). Inasmuch as glucose is believed to be the principal, if not sole, carbon and energy source for T. pallidum and is readily available to the spirochete during its obligate infection of humans, we hypothesized that Tp38 may serve as the organism's requisite glucose receptor. For the present study, a nonacylated recombinant form of Tp38 was coexpressed with GroES and GroEL in E. coli to facilitate the isolation of soluble, properly folded Tp38. The highly sensitive method of intrinsic fluorescence spectroscopy, predicated on the manner in which tryptophan residues reside and move within protein microenvironments, was then used to assess sugar binding to Tp38. The intrinsic fluorescence of Tp38 was essentially unaltered when it was exposed to D-mannose, D-fucose, D-ribose, L-glucose, or L-galactose, but it changed markedly in the presence of D-glucose, and to a lesser extent, D-galactose, indicating binding. The K(d) values for D-glucose and D-galactose binding to Tp38 were 152.2 +/- 20.73 nM and 251.2 +/- 55.25 nM, respectively. Site-directed mutagenesis of Trp-145, a residue postulated to contribute to the sugar-binding pocket in a manner akin to the essential Trp-183 in E. coli MglB, abolished Tp38's conformational change in response to D-glucose. The combined data are consistent with Tp38 serving as a glucose receptor for T. pallidum. These findings potentially have important implications for syphilis pathogenesis, particularly as they may pertain to glucose-mediated chemotactic responses by T. pallidum.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
43
|
Cha JY, Ishiwata A, Mobashery S. A novel beta-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. J Biol Chem 2004; 279:14917-21. [PMID: 14747460 DOI: 10.1074/jbc.m400666200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treponema pallidum, the causative agent of syphilis, is sensitive to penicillins. Yet, an abundant membrane-bound protein of this organism, Tp47, turns over penicillins. It is shown herein that the turnover process is a hydrolytic reaction that results in the corresponding penicilloates, products that have their beta-lactam bonds hydrolyzed. This is the reaction of beta-lactamases, bona fide resistance enzymes to beta-lactam antibiotics. Remarkably, the x-ray structure of Tp47 bears no resemblance to any other beta-lactamases or the related penicillin-binding proteins. Furthermore, evidence is presented that the reaction of Tp47 takes place in the absence of the zinc ion and does not involve intermediary acyl enzyme species. Hence, the beta-lactamase activity of Tp47 is the fifth known mechanism for turnover of beta-lactam antibiotics. Tp47 also exhibits a penicillin binding reaction, in the process of which the enzyme is covalently modified in the active site. The two reactions take place in two different active sites, and the events of the beta-lactamase activity are over 2,000-fold more rapid than the penicillin binding reaction. The level of beta-lactamase activity is high and is held back only by a strong product-inhibition component to the catalytic process. If natural selection would result in a mutant variant of Tp47 that overcomes product inhibition for the beta-lactamase activity, a novel bona fide resistance to penicillins will emerge in Treponema, which will be a disconcerting clinical development. The physiological functions of Tp47 are not known, but it is likely that this is at least a bifunctional enzyme involved in the processing of the Treponema peptidoglycan as a substrate.
Collapse
Affiliation(s)
- Joo Young Cha
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | |
Collapse
|
44
|
Hazlett KRO, Rusnak F, Kehres DG, Bearden SW, La Vake CJ, La Vake ME, Maguire ME, Perry RD, Radolf JD. The Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-dependent transcriptional repressor, and a semi-autonomously expressed phosphoglycerate mutase. J Biol Chem 2003; 278:20687-94. [PMID: 12668673 DOI: 10.1074/jbc.m300781200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Treponema pallidum tro operon encodes an ABC transporter (TroABCD), a transcriptional repressor (TroR), and the essential glycolytic enzyme phosphoglycerate mutase (Gpm). The apparently discordant observations that the solute binding protein (TroA) binds Zn2+, whereas DNA binding by TroR in vitro is Mn2+-dependent, have generated uncertainty regarding the identities of the ligand(s) and co-repressor(s) of the permease. Moreover, this operonic structure suggests that Gpm expression, and hence glycolysis, the sole source of ATP for the bacterium, would be suspended during TroR-mediated repression. To resolve these discrepancies, we devised an experimental strategy permitting a more direct assessment of Tro operon function and regulation. We report that (i) apo-TroA has identical affinities for Zn2+ and Mn2+; (ii) the Tro transporter expressed in Escherichia coli imports Zn2+, Mn2+, and possibly iron; (iii) TroR represses transporter expression in E. coli at significantly lower concentrations of Zn2+ than of Mn2+; and (iv) TroR-mediated repression causes a disproportionately greater down-regulation of the transporter genes than of gpm. The much higher concentrations of Zn2+ than of Mn2+ in human body fluids suggests that Zn2+ is both the primary substrate and co-repressor of the permease in vivo. Our data also indicate that Gpm expression and, therefore, glycolysis would not be abrogated when T. pallidum encounters high Zn2+ levels.
Collapse
Affiliation(s)
- Karsten R O Hazlett
- Center for Microbial Pathogenesis, University of Connecticut Health Center, Farmington, Connecticut 06030-3710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|