1
|
Wang C, Wagner A, Fessler J, DeTomaso D, Zaghouani S, Zhou Y, Pierce K, Sobel RA, Clish C, Yosef N, Kuchroo VK. The glycolytic reaction PGAM restrains Th17 pathogenicity and Th17-dependent autoimmunity. Cell Rep 2025; 44:115799. [PMID: 40482033 DOI: 10.1016/j.celrep.2025.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/19/2025] [Accepted: 05/16/2025] [Indexed: 06/11/2025] Open
Abstract
Glucose metabolism is a critical regulator of T cell function, largely thought to support their activation and effector differentiation. Here, we investigate how individual glycolytic reactions determine the pathogenicity of T helper 17 (Th17) cells using Compass, an algorithm we previously developed for inferring metabolic states from single-cell RNA sequencing. Surprisingly, Compass predicted that the metabolic shunt between 3-phosphoglycerate (3PG) and 2-phosphoglycerate (2PG) is inversely correlated with pathogenicity in Th17 cells. Indeed, perturbation of phosphoglycerate mutase (PGAM), the enzyme catalyzing 3PG to 2PG conversion, induces a pathogenic gene expression program by suppressing a gene module associated with the least pathogenic state of Th17 cells. Finally, PGAM inhibition in Th17 cells exacerbates neuroinflammation in the adoptive transfer model of experimental autoimmune encephalomyelitis, consistently with PGAM promoting the non-pathogenic phenotype of Th17 cells. Overall, our study identifies PGAM, contrary to other glycolytic enzymes, as a negative regulator of pathogenic Th17 cell differentiation.
Collapse
Affiliation(s)
- Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Allon Wagner
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Johannes Fessler
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - David DeTomaso
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Zaghouani
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yulin Zhou
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Raymond A Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Vijay K Kuchroo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Cui X, Liu W, Jiang H, Zhao Q, Hu Y, Tang X, Liu X, Dai H, Rui H, Liu B. IL-12 family cytokines and autoimmune diseases: A potential therapeutic target? J Transl Autoimmun 2025; 10:100263. [PMID: 39759268 PMCID: PMC11697604 DOI: 10.1016/j.jtauto.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
In recent years, the discovery of IL-12 family cytokines, which includes IL-12, IL-23, IL-27, IL-35, and IL-39, whose biological functions directly or indirectly affect various autoimmune diseases. In autoimmune diseases, IL-12 family cytokines are aberrantly expressed to varying degrees. These cytokines utilize shared subunits to influence T-cell activation and differentiation, thereby regulating the balance of T-cell subsets, which profoundly impacts the onset and progression of autoimmune diseases. In such conditions, IL-12 family members are aberrantly expressed to varying degrees. By exploring their immunomodulatory functions, researchers have identified varying therapeutic potentials for each member. This review examines the physiological functions of the major IL-12 family members and their interactions, discusses their roles in several autoimmune diseases, and summarizes the progress of clinical studies involving monoclonal antibodies targeting IL-12 and IL-23 subunits currently available for treatment.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xianli Liu
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Haoran Dai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
3
|
Nardone OM, Vuyyuru SK, Yuan Y, Hanzel J, Jairath V. Differentiating IL-23 Inhibitors in Crohn's Disease. Drugs 2025; 85:725-740. [PMID: 40323342 DOI: 10.1007/s40265-025-02183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 05/24/2025]
Abstract
Interleukin-23 (IL-23), a member of the IL-12 family of cytokines, plays a critical role in intestinal homeostasis and inflammation and is strongly implicated in the pathogenesis of inflammatory bowel disease (IBD). Therapies targeting the p19 subunit of IL-23 have recently expanded the therapeutic options for IBD demonstrating efficacy and safety for the treatment of moderate to severe Crohn's disease (CD). Thus, in this review, we provide an overview of agents targeting the IL-23 pathway in CD, highlighting similarities and differences of specific IL-23 inhibitors. Furthermore, we summarize key phase 3 trials and head-to-head trials, focusing on design features and interpretation. Finally, we discuss the positioning of selective IL-23 agents for CD treatment along with areas of unmet clinical needs. However, real-world data will offer additional comparative effectiveness information, data for disease subtypes, and insights into the long-term outcomes of IL-23 inhibition. Looking ahead, ongoing phase 3 studies testing p19-specific selective IL-23 inhibitors are expected to expand the therapeutic options for patients with complex phenotypes, including those with extraintestinal manifestations (EIMs), fistulas, and strictures. Advances in molecular and cellular characterization, including the development of predictive molecular biomarkers, may help guide clinical decision-making, enabling more personalized treatment approaches. Precision medicine studies may further enhance our understanding of the molecular biology of IL-23, shedding light on how these agents work in complex CD and clarify their potential complementary or synergistic effects with other therapies.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Department of Public Health, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Sudheer K Vuyyuru
- Department of Medicine, Division of Gastroenterology, Western University, London, ON, Canada
| | - Yuhong Yuan
- Department of Medicine, Division of Gastroenterology, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Science Centre, London, ON, Canada
| | - Jurij Hanzel
- Department of Gastroenterology, University Medical Centre Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Vipul Jairath
- Department of Medicine, Division of Gastroenterology, Western University, London, ON, Canada.
- Lawson Health Research Institute, London Health Science Centre, London, ON, Canada.
- Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON, Canada.
- Departments of Medicine, Epidemiology and Biostatistics, Division of Gastroenterology, University of Western Ontario, London, ON, N6A 5B6, Canada.
| |
Collapse
|
4
|
Feng W, Liu H, Liang CL, Huang H, Chen Y, Dai Z. Immunoregulatory effects of traditional Chinese medicine and its ingredients on psoriasis. Int Immunopharmacol 2025; 159:114896. [PMID: 40409104 DOI: 10.1016/j.intimp.2025.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/24/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Psoriasis is an immune-mediated inflammatory skin disease involving the activation and regulation of various immune cells. A proportion of psoriasis patients remain unresponsive to conventional therapies or targeted drugs, highlighting the urgent need for novel therapeutic strategies. In addition, although many conventional immunosuppressants are effective in the treatment of psoriasis, they may cause various side effects. Traditional Chinese Medicine (TCM) represents a potential drug candidate, with a rich history of traditional use and a vast array of pharmacological options. In particular, TCM may serve as an alternative or complementary therapy of psoriasis with potentially less side effects. In this review, we focus on immune cells, including dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, Th17, regulatory T (Treg) cells, and γδ T cells. We provide an overview of the roles for these immune cells in the pathogenesis of psoriasis and regulatory effects of TCM and its ingredients on them. Additionally, we briefly summarize the clinical research involving treatment of psoriasis with TCM and discuss the existing challenges and limitations in this field.
Collapse
Affiliation(s)
- Wei Feng
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huazhen Liu
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Ling Liang
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiding Huang
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuchao Chen
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhenhua Dai
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Lin X, Li X, Zhai Z, Zhang M. JAK-STAT pathway, type I/II cytokines, and new potential therapeutic strategy for autoimmune bullous diseases: update on pemphigus vulgaris and bullous pemphigoid. Front Immunol 2025; 16:1563286. [PMID: 40264772 PMCID: PMC12011800 DOI: 10.3389/fimmu.2025.1563286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Autoimmune Bullous Diseases (AIBDs), characterized by the formation of blisters due to autoantibodies targeting structural proteins, pose significant therapeutic challenges. Current treatments, often involving glucocorticoids or traditional immunosuppressants, are limited by their non-specificity and side effects. Cytokines play a pivotal role in AIBDs pathogenesis by driving inflammation and immune responses. The JAK-STAT pathway is central to the biological effects of various type I and II cytokines, making it an attractive therapeutic target. Preliminary reports suggest that JAK inhibitors may be a promising approach in PV and BP, but further clinical validation is required. In AIBDs, particularly bullous pemphigoid (BP) and pemphigus vulgaris (PV), JAK inhibitors have shown promise in modulating pathogenic cytokine signaling. However, the safety and selectivity of JAK inhibitors remain critical considerations, with the potential for adverse effects and the need for tailored treatment strategies. This review explores the role of cytokines and the JAK-STAT pathway in BP and PV, evaluating the therapeutic potential and challenges associated with JAK inhibitors in managing these complex disorders.
Collapse
Affiliation(s)
| | | | - Zhifang Zhai
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Mingwang Zhang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Camard L, Stephen T, Yahia-Cherbal H, Guillemot V, Mella S, Baillet V, Lopez-Maestre H, Capocefalo D, Cantini L, Leloup C, Marsande J, Garro K, Sienes Bailo J, Dangien A, Pietrosemoli N, Hasan M, Wang H, Eckle SB, Fourie AM, Greving C, Joyce-Shaikh B, Parker R, Cua DJ, Bianchi E, Rogge L. IL-23 tunes inflammatory functions of human mucosal-associated invariant T cells. iScience 2025; 28:111898. [PMID: 40008359 PMCID: PMC11850163 DOI: 10.1016/j.isci.2025.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
IL-23 signaling plays a key role in the pathogenesis of chronic inflammatory and infectious diseases, yet the cellular targets and signaling pathways affected by this cytokine remain poorly understood. We show that IL-23 receptors are expressed on the large majority of human mucosal-associated invariant T (MAIT), but not of conventional T cells. Protein and transcriptional profiling at the population and single cell level demonstrates that stimulation with IL-23 or the structurally related cytokine IL-12 drives distinct functional profiles, revealing a high level of plasticity of MAIT cells. IL-23, in particular, affects key molecules and pathways related to autoimmunity and cytotoxic functions. Integrated analysis of transcriptomes and chromatin accessibility, supported by CRISPR-Cas9 mediated deletion, shows that AP-1 transcription factors constitute a key regulatory node of the IL-23 pathway in MAIT cells. In conclusion, our findings indicate that MAIT cells are key mediators of IL-23 functions in immunity to infections and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laetitia Camard
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Tharshana Stephen
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- scBiomarkers, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hanane Yahia-Cherbal
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Vincent Guillemot
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Sébastien Mella
- scBiomarkers, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Victoire Baillet
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hélène Lopez-Maestre
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Daniele Capocefalo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, 75015 Paris, France
| | - Laura Cantini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, 75015 Paris, France
| | - Claire Leloup
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Julie Marsande
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Katherine Garro
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Juan Sienes Bailo
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Ambre Dangien
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Department of Dermatology, Hôpital Cochin, AP-HP, AP-HP Centre-Université de Paris, 75014 Paris, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Milena Hasan
- scBiomarkers, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anne M. Fourie
- Janssen Research & Development, LLC, San Diego, CA 92121, USA
| | - Carrie Greving
- Janssen Research & Development, LLC, San Diego, CA 92121, USA
| | | | - Raphaelle Parker
- Janssen Research & Development, Janssen-Cilag, 92130 Issy les Moulineaux, France
| | - Daniel J. Cua
- Janssen Research & Development, LLC, Spring House, PA 19002, USA
| | - Elisabetta Bianchi
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Lars Rogge
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
7
|
Li K, Feng J, Li M, Han L, Wu Y. Systematic Review of Interleukin-35 in Endothelial Dysfunction: A New Target for Therapeutic Intervention. Mediators Inflamm 2025; 2025:2003124. [PMID: 39974277 PMCID: PMC11839265 DOI: 10.1155/mi/2003124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Endothelial dysfunction is a significant factor in the pathogenesis of various diseases. In pathological states, endothelial cells (ECs) undergo activation, resulting in dysfunction characterized by the stimulation of inflammatory responses, oxidative stress, cell proliferation, blood coagulation, and vascular adhesions. Interleukin-35 (IL-35), a novel member of the IL-12 family, is primarily secreted by regulatory T cells (Tregs) and regulatory B cells (Bregs). The role of IL-35 in immunomodulation, antioxidative stress, resistance to apoptosis, control of EC activation, adhesion, and angiogenesis in ECs remains incompletely understood, as the specific mechanisms of IL-35 action and its regulation have yet to be fully elucidated. Therefore, this systematic review aims to comprehensively investigate the impact of IL-35 on ECs and their physiological roles in a range of conditions, including cardiovascular diseases, tumors, sepsis, and rheumatoid arthritis (RA), with the objective of elucidating the potential of IL-35 as a therapeutic target for these ailments.
Collapse
Affiliation(s)
- Kai Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Jie Feng
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Leilei Han
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| |
Collapse
|
8
|
Abdelhamed HG, Hassan AA, Sakraan AA, Al-Deeb RT, Mousa DM, Aboul Ezz HS, Noor NA, Khadrawy YA, Radwan NM. Brain interleukins and Alzheimer's disease. Metab Brain Dis 2025; 40:116. [PMID: 39891777 PMCID: PMC11787210 DOI: 10.1007/s11011-025-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
The central nervous system (CNS) is immune-privileged by several immuno-modulators as interleukins (ILs). ILs are cytokines secreted by immune cells for cell-cell signaling communications and affect the functions of the CNS. ILs were reported to orchestrate different molecular and cellular mechanisms of both physiological and pathological events, through overproduction or over-expression of their receptors. They interact with numerous receptors mediating pro-inflammatory and/or anti-inflammatory actions. Interleukins have been implicated to participate in neurodegenerative diseases. They play a critical role in Alzheimer's disease (AD) pathology which is characterized by the over-production of pro-inflammatory ILs. These may aggravate neurodegeneration, in addition to their contribution to detrimental mechanisms as oxidative stress, and excitotoxicity. However, recent research on the relation between ILs and AD revealed major discrepancies. Most of the major ILs were shown to play both pro- and anti-inflammatory roles in different experimental settings and models. The interactions between different ILs through shared pathways also add to the difficulty of drawing solid conclusions. In addition, targeting the different ILs has not yielded consistent results. The repeated failures of therapeutic drugs in treating AD necessitate the search for novel agents targeting multiple mechanisms of the disease pathology. In this context, the understanding of interleukins and their roles throughout the disease progression and interaction with other systems in the brain may provide promising therapeutic targets for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Heba G Abdelhamed
- Department of Zoology and Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Arwa A Hassan
- Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, Sinai, Egypt
| | - Alaa A Sakraan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Dalia M Mousa
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba S Aboul Ezz
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Neveen A Noor
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
| | - Nasr M Radwan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
10
|
Audia S, Brescia C, Dattilo V, Torchia N, Trapasso F, Amato R. The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development. Cancers (Basel) 2024; 17:55. [PMID: 39796684 PMCID: PMC11718844 DOI: 10.3390/cancers17010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
IL-23R (interleukin-23 receptor), found on the surface of several immune cells, plays a key role in the immune system. Indeed, this process is not limited to the inflammatory response but also plays a role in the adaptive immune response. The binding between IL-23R and its specific ligand, the interleukin 23, initiates a number of specific signals by modulating both properties and behavior of immune cells. In particular, it is critical for the regulation of T helper 17 cells (Th17). Th17s are a subset of T cells involved in autoimmune and inflammatory diseases, as well as in cancer. The clinical relevance of IL-23R is underscored by its association with an elevated susceptibility or diminished vulnerability to a spectrum of diseases, including psoriasis, ankylosing spondylitis, and inflammatory bowel disease (IBD). Evidence has emerged that suggests it may also serve to predict both tumor progression and therapeutic responsiveness. It is noteworthy that the IL-23/IL-23R pathway is emerging as a promising therapeutic target. A number of biologic drugs, such as monoclonal antibodies, are currently developing with the aim of blocking this interaction, thus reducing inflammation. This represents a significant advancement in the field of medicine, offering new hope for pursuing more effective and personalized treatments. Recent studies have also investigated the role of such a pathway in autoimmune diseases, and its potential impact on infections as well as in carcinogenesis. The aim of this review is to focus on the role of IL-23R in immune genetics and its potential for modulating the natural history of neoplastic disease.
Collapse
Affiliation(s)
- Salvatore Audia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Carolina Brescia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Vincenzo Dattilo
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Naomi Torchia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Rosario Amato
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| |
Collapse
|
11
|
Stajer M, Horacek JM, Kupsa T, Zak P. The role of chemokines and interleukins in acute lymphoblastic leukemia: a systematic review. J Appl Biomed 2024; 22:165-184. [PMID: 40033805 DOI: 10.32725/jab.2024.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/15/2024] [Indexed: 03/05/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood hematological malignancy, but it also affects adult patients with worse prognosis and outcomes. Leukemic cells benefit from protective mechanisms, which are mediated by intercellular signaling molecules - cytokines. Through these signals, cytokines modulate the biology of leukemic cells and their surroundings, enhancing the proliferation, survival, and chemoresistance of the disease. This ultimately leads to disease progression, refractoriness, and relapse, decreasing the chances of curability and overall survival of the patients. Targeting and modulating these pathological processes without affecting the healthy physiology is desirable, offering more possibilities for the treatment of ALL patients, which still remains unsatisfactory in certain cases. In this review, we comprehensively analyze the existing literature and ongoing trials regarding the role of chemokines and interleukins in the biology of ALL. Focusing on the functional pathways, genetic background, and critical checkpoints, we constructed a summary of molecules that are promising for prognostic stratification and mainly therapeutic use. Targeted therapy, including chemokine and interleukin pathways, is a new and promising approach to the treatment of cancer. With the expansion of our knowledge, we are able to uncover a spectrum of new potential checkpoints in order to modulate the disease biology. Several cytokine-related targets are advancing toward clinical application, offering the hope of higher disease response rates to treatment.
Collapse
Affiliation(s)
- Martin Stajer
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Jan M Horacek
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Tomas Kupsa
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Pavel Zak
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Jairath V, Acosta Felquer ML, Cho RJ. IL-23 inhibition for chronic inflammatory disease. Lancet 2024; 404:1679-1692. [PMID: 39461795 DOI: 10.1016/s0140-6736(24)01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024]
Abstract
Biological monoclonal antibody drugs inhibit overactive cytokine signalling that drives chronic inflammatory disease in different organ systems. In the last 10 years, interleukin (IL)-23 inhibitors have attained an important position in the treatment of psoriatic skin and joint disease as well as inflammatory bowel diseases. Addressing an upstream pathological mechanism shared between these disorders, this drug class has high efficacy rates and a durable response that extends dosing intervals up to 3 months. Pooled clinical trial data show objective disease improvement for more than 70% of patients with psoriasis and up to 50% of patients with inflammatory bowel disease. The first antibody inhibitor for IL-23A targeted a p40 subunit shared with IL-12. Subsequently, even greater improvement was established for inhibitors of the p19 protein unique to IL-23A. IL-23 p19 inhibitors elicit clinical response in both bio-naive and bio-exposed patients and show superiority to tumour necrosis factor α inhibitors in plaque psoriasis. Reported differences in efficacy between p19 inhibitors suggest that individual drug action might be modulated by antibody affinity. Although long-term safety data are accumulating, rates of serious adverse events and infections for interleukin (IL)-23 inhibitors are similar to the rates for placebo across approved indications.
Collapse
Affiliation(s)
- Vipul Jairath
- Departments of Medicine, Division of Gastroenterology, Western University, Ontario, ON, Canada
| | - Maria Laura Acosta Felquer
- Rheumatology Unit, Internal Medicine Service, Hospital Italiano de Buenos Aires and Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Raymond Jaihyun Cho
- Department of Dermatology, University of California, San Francisco, CA, USA.
| |
Collapse
|
13
|
Dos Santos Dias L, Lionakis MS. IL-17: A Critical Cytokine for Defense against Oral Candidiasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1049-1051. [PMID: 39374468 DOI: 10.4049/jimmunol.2400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
This Pillars of Immunology article is a commentary on "Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis," a pivotal article written by H. R. Conti, F. Shen, N. Nayyar, E. Stocum, J. N. Sun, M. J. Lindemann, A. W. Ho, J. H. Hai, J. J . Yu, J. W. Jung, S. G. Filler, P. Masso-Welch, M. Edgerton, and S. L. Gaffen, and published in The Journal of Experimental Medicine in 2009. https://doi.org/10.1084/jem.20081463.
Collapse
Affiliation(s)
- Lucas Dos Santos Dias
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
El-kady AM, Altwaim SA, Wakid MH, Banjar AS, Mohammed K, Alfaifi MS, Elshazly H, Al-Megrin WAI, Alshehri EA, Sayed E, Elshabrawy HA. Prior Trichinella spiralis infection protects against Schistosoma mansoni induced hepatic fibrosis. Front Vet Sci 2024; 11:1443267. [PMID: 39439825 PMCID: PMC11494294 DOI: 10.3389/fvets.2024.1443267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background Schistosomiasis affects approximately 250 million people worldwide, with 200,000 deaths annually. It has been documented that the granulomatous response to Schistosoma mansoni (S. mansoni) oviposition is the root cause of progressive liver fibrosis in chronic infection, in 20% of the patients, and can lead to liver cirrhosis and/or liver cancer. The influence of helminths coinfection on schistosomiasis-induced liver pathological alterations remains poorly understood. Therefore, in this study, we investigated the effect of Trichinella spiralis (T. spiralis) infection on S. mansoni-induced hepatic fibrosis. Materials and methods Thirty adult male Balb-c mice were divided into three groups. Group 1 was left uninfected; group 2 was infected with S. mansoni cercariae and group 3 was orally infected with T. spiralis larvae, then 28 days later, this group was infected with S. mansoni cercariae. All groups were sacrificed at the end of the 8th week post infection with S. mansoni to evaluate the effect of pre-infection with T. spiralis on S. mansoni induced liver fibrosis was evaluated parasitologically (worm burden and egg count in tissues), biochemically (levels of alanine aminotransferase and aspartate aminotransferase), histopathologically (H&E and MT staining, and immunohistochemical staining for the expression of α-SMA, IL-6, IL-1β, IL-17, IL-23, TNF-α, and TGF-β). Results The results in the present study demonstrated marked protective effect of T. spiralis against S. mansoni induced liver pathology. We demonstrated that pre-infection with T. spirais caused marked reduction in the number of S. mansoni adult worms (3.17 ± 0.98 vs. 18 ± 2.16, P = 0.114) and egg count in both the intestine (207.2 ± 64.3 vs. 8,619.43 ± 727.52, P = 0.009) and liver tissues (279 ± 87.2 vs. 7,916.86 ± 771.34; P = 0.014). Consistently, we found significant reductions in both number (3.4 ± 1.1 vs. 11.8.3 ± 1.22; P = 0.007) and size (84 ± 11 vs. 294.3 ± 16.22; P = 0.001) of the hepatic granulomas in mice pre-infected with T. spiralis larvae compared to those infected with only S. mansoni. Furthermore, pre- infection with T. spiralis markedly reduced S. mansoni- induced hepatic fibrosis, as evidenced by decreased collagen deposition, low expression of α-SMA, and significantly reduced levels of IL-17, IL-1B, IL-6, TGF-B, IL-23, and TNF-α compared to mice infected with S. mansoni only. Conclusions Our data show that pre-infection with T. spiralis effectively protected mice from severe schistosomiasis and liver fibrosis. We believe that our findings support the potential utility of helminths for the preventing and ameliorating severe pathological alterations induced by schistosomiasis.
Collapse
Affiliation(s)
- Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Sarah A. Altwaim
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Majed H. Wakid
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa S. Banjar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalil Mohammed
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mashael S. Alfaifi
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Buraidah, Qassim, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Eman Sayed
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, United States
| |
Collapse
|
15
|
García-Patiño MG, Marcial-Medina MC, Ruiz-Medina BE, Licona-Limón P. IL-17 in skin infections and homeostasis. Clin Immunol 2024; 267:110352. [PMID: 39218195 DOI: 10.1016/j.clim.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Interleukin (IL) 17 is a proinflammatory cytokine belonging to a structurally related group of cytokines known as the IL-17 family. It has been profoundly studied for its contribution to the pathology of autoimmune diseases. However, it also plays an important role in homeostasis and the defense against extracellular bacteria and fungi. IL-17 is important for epithelial barriers, including the skin, where some of its cellular targets reside. Most of the research work on IL-17 has focused on its effects in the skin within the context of autoimmune diseases or sterile inflammation, despite also having impact on other skin conditions. In recent years, studies on the role of IL-17 in the defense against skin pathogens and in the maintenance of skin homeostasis mediated by the microbiota have grown in importance. Here we review and discuss the cumulative evidence regarding the main contribution of IL-17 in the maintenance of skin integrity as well as its protective or pathogenic effects during some skin infections.
Collapse
Affiliation(s)
- M G García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M C Marcial-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - B E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - P Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
16
|
Kamel NM, El-Sayed SS, El-Said YAM, El-Kersh DM, Hashem MM, Mohamed SS. Unlocking milk thistle's anti-psoriatic potential in mice: Targeting PI3K/AKT/mTOR and KEAP1/NRF2/NF-κB pathways to modulate inflammation and oxidative stress. Int Immunopharmacol 2024; 139:112781. [PMID: 39059101 DOI: 10.1016/j.intimp.2024.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Silybum marianum, known as milk thistle (MT), is traditionally used to manage liver diseases. This study aimed to investigate the role of MT extract topical application as a potential treatment for imiquimod (IMQ)-induced psoriatic lesions in mice with particular emphasis on phosphoinositol-3 Kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and Kelch-like ECH-associated protein 1 (KEAP1)/ nuclear factor erythroid-2-related factor (NRF2)/ nuclear factor-kappa B (NF-κB) molecular cascades involvement. To address this aim, forty male Swiss albino mice were subdivided into four groups (n = 10 mice/group): control, IMQ model, standard group where mice were treated topically with IMQ, then the anti-psoriatic mometasone cream, and MT extract-treated group where mice were treated topically with IMQ followed by MT extract. In most measured parameters, MT extract, rich in silymarin, exhibited potent anti-psoriatic activity comparable to the standard cortisone treatment. MT extract mitigated dorsal skin erythema, scaling, and epidermal thickening, reflected by lowering the Psoriasis Area Severity Index (PASI) score. Moreover, it alleviated IMQ-induced splenomegaly. Mechanistically, the PI3K/AKT/mTOR pathway was the main functional pathway behind such improvements, where it was significantly inhibited by MT extract application. This led to NRF2 activation via KEAP1 downregulation with subsequent anti-inflammatory effect proven by reducing NF-κB, interleukin (IL)-23, and IL-17A and antioxidant ability proven by boosting the antioxidant glutathione and heme oxygenase-1. Such improvements were confirmed by alleviating the histopathological alteration. Thus, MT extract could be a promising therapeutic agent for psoriasis treatment by inhibiting PI3K/AKT/mTOR cascade, along with NRF2 signaling activation.
Collapse
Affiliation(s)
- Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Sarah S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Yasmin A M El-Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Dina M El-Kersh
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo, 11873, Egypt.
| | - Mona M Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Sarah S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
17
|
Ivanova M, Zimba O, Dimitrov I, Angelov AK, Georgiev T. Axial Spondyloarthritis: an overview of the disease. Rheumatol Int 2024; 44:1607-1619. [PMID: 38689098 DOI: 10.1007/s00296-024-05601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Axial Spondyloarthritis (axSpA) is a chronic, inflammatory, immune-mediated rheumatic disease that comprises two subsets, non-radiographic and radiographic axSpA, and belongs to a heterogeneous group of spondyloarthritides (SpA). Over the years, the concept of SpA has evolved significantly, as reflected in the existing classification criteria. Considerable progress has been made in understanding the genetic and immunological basis of axSpA, in studying the processes of chronic inflammation and pathological new bone formation, which are pathognomonic for the disease. As a result, new medication therapies were developed, which bring more effective ways for disease control. This review presents a brief overview of the literature related to these aspects of disease after summarising the available information on the topic that we considered relevant. Specifically, it delves into recent research illuminating the primary pathological processes of enthesitis and associated osteitis in the context of inflammation in axSpA. The exploration extends to discussion of inflammatory pathways, with a particular focus on Th1/Th17-mediated immunity and molecular signaling pathways of syndesmophyte formation. Additionally, the review sheds light on the pivotal role of cytokine dysregulation, highlighting the significance of the IL-23/17 axis and TNF-α in this intricate network of immune responses which is decisive for therapeutic approaches in the disease.
Collapse
Affiliation(s)
- Mariana Ivanova
- Medical Faculty, Medical University-Sofia, Sofia, Bulgaria.
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", 13, Urvich St., Sofia, 1612, Bulgaria.
| | - Olena Zimba
- Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Krakow, Kraków, Poland
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Ivan Dimitrov
- Clinic of Orthopedics and Traumatology, University Hospital "Prof. Dr. St. Kirkovich", Stara Zagora, Bulgaria
- Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | | | - Tsvetoslav Georgiev
- First Department of Internal Medicine, Faculty of Medicine, Medical University-Varna, Varna, Bulgaria
- Rheumatology Clinic, St. Marina University Hospital-Varna, Varna, Bulgaria
| |
Collapse
|
18
|
Wang C, Wagner A, Fessler J, DeTomaso D, Zaghouani S, Zhou Y, Pierce K, Sobel RA, Clish C, Yosef N, Kuchroo VK. The glycolytic reaction PGAM unexpectedly restrains Th17 pathogenicity and Th17-dependent autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.607992. [PMID: 39229227 PMCID: PMC11370342 DOI: 10.1101/2024.08.18.607992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Glucose metabolism is a critical regulator of T cell function, largely thought to support their activation and effector differentiation. Here, we investigate the relevance of individual glycolytic reactions in determining the pathogenicity of T helper 17 (Th17) cells using single-cell RNA-seq and Compass, an algorithm we previously developed for estimating metabolic flux from single-cell transcriptomes. Surprisingly, Compass predicted that the metabolic shunt between 3-phosphoglycerate (3PG) and 2-phosphoglycerate (2PG) is inversely correlated with pathogenicity in these cells, whereas both its upstream and downstream reactions were positively correlated. Perturbation of phosphoglycerate mutase (PGAM), an enzyme required for 3PG to 2PG conversion, resulted in an increase in protein expression of IL2, IL17, and TNFa, as well as induction of a pathogenic gene expression program. Consistent with PGAM playing a pro-regulatory role, inhibiting PGAM in Th17 cells resulted in exacerbated autoimmune responses in the adoptive transfer model of experimental autoimmune encephalomyelitis (EAE). Finally, we further investigated the effects of modulating glucose concentration on Th17 cells in culture. Th17 cells differentiated under high- and low-glucose conditions substantially differed in their metabolic and effector transcriptomic programs, both central to Th17 function. Importantly, the PGAM-dependent gene module marks the least pathogenic state of Th17 cells irrespective of glucose concentration. Overall, our study identifies PGAM, contrary to other glycolytic enzymes, as a negative regulator of Th17 pathogenicity.
Collapse
|
19
|
Lee KMC, Lupancu T, Chang L, Manthey CL, Zeeman M, Fourie AM, Hamilton JA. The mode of action of IL-23 in experimental inflammatory arthritic pain and disease. Arthritis Res Ther 2024; 26:148. [PMID: 39107827 PMCID: PMC11302168 DOI: 10.1186/s13075-024-03380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES We have previously reported using gene-deficient mice that the interleukin (IL)-23p19 subunit is required for the development of innate immune-driven arthritic pain and disease. We aimed to explore here, using a number of in vivo approaches, how the IL-23p19 subunit can mechanistically control arthritic pain and disease in a T- and B- lymphocyte-independent manner. METHODS We used the zymosan-induced arthritis (ZIA) model in wild-type and Il23p19-/- mice, by a radiation chimera approach, and by single cell RNAseq and qPCR analyses, to identify the IL23p19-expressing and IL-23-responding cell type(s) in the inflamed joints. This model was also utilized to investigate the efficacy of IL-23p19 subunit blockade with a neutralizing monoclonal antibody (mAb). A novel IL-23-driven arthritis model was established, allowing the identification of putative downstream mediators of IL-23 in the control of pain and disease. Pain and arthritis were assessed by relative static weight distribution and histology, respectively. RESULTS We present evidence that (i) IL-23p19+ non-bone marrow-derived macrophages are required for the development of ZIA pain and disease, (ii) prophylactic and therapeutic blockade of the IL-23p19 subunit ameliorate ZIA pain and disease and (iii) systemically administered IL-23 can induce arthritic pain and disease in a manner dependent on TNF, GM-CSF, CCL17 and cyclooxygenase activity, but independently of lymphocytes, CGRP, NGF and substance P. CONCLUSIONS The data presented should aid IL-23 targeting both in the choice of inflammatory disease to be treated and the design of clinical trials.
Collapse
Affiliation(s)
- Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia.
| | - Tanya Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Leon Chang
- Janssen Research & Development, San Diego, CA, USA
| | | | - Martha Zeeman
- Janssen Research & Development, Spring House, PA, USA
| | | | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
20
|
Tomonaga T, Higashi H, Izumi H, Nishida C, Kawai N, Sato K, Morimoto T, Higashi Y, Yatera K, Morimoto Y. Investigation of pulmonary inflammatory responses following intratracheal instillation of and inhalation exposure to polypropylene microplastics. Part Fibre Toxicol 2024; 21:29. [PMID: 39107780 PMCID: PMC11301944 DOI: 10.1186/s12989-024-00592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Microplastics have been detected in the atmosphere as well as in the ocean, and there is concern about their biological effects in the lungs. We conducted a short-term inhalation exposure and intratracheal instillation using rats to evaluate lung disorders related to microplastics. We conducted an inhalation exposure of polypropylene fine powder at a low concentration of 2 mg/m3 and a high concentration of 10 mg/m3 on 8-week-old male Fischer 344 rats for 6 h a day, 5 days a week for 4 weeks. We also conducted an intratracheal instillation of polypropylene at a low dose of 0.2 mg/rat and a high dose of 1.0 mg/rat on 12-week-old male Fischer 344 rats. Rats were dissected from 3 days to 6 months after both exposures, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected to analyze lung inflammation and lung injury. RESULTS Both exposures to polypropylene induced a persistent influx of inflammatory cells and expression of CINC-1, CINC-2, and MPO in BALF from 1 month after exposure. Genetic analysis showed a significant increase in inflammation-related factors for up to 6 months. The low concentration in the inhalation exposure of polypropylene also induced mild lung inflammation. CONCLUSION These findings suggest that inhaled polypropylene, which is a microplastic, induces persistent lung inflammation and has the potential for lung disorder. Exposure to 2 mg/m3 induced inflammatory changes and was thought to be the Lowest Observed Adverse Effect Level (LOAEL) for acute effects of polypropylene. However, considering the concentration of microplastics in a real general environment, the risk of environmental hazards to humans may be low.
Collapse
Affiliation(s)
- Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazuma Sato
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
21
|
Rusiñol L, Puig L. A Narrative Review of the IL-18 and IL-37 Implications in the Pathogenesis of Atopic Dermatitis and Psoriasis: Prospective Treatment Targets. Int J Mol Sci 2024; 25:8437. [PMID: 39126010 PMCID: PMC11312859 DOI: 10.3390/ijms25158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Atopic dermatitis and psoriasis are prevalent inflammatory skin conditions that significantly impact the quality of life of patients, with diverse treatment options available. Despite advances in understanding their underlying mechanisms, recent research highlights the significance of interleukins IL-18 and IL-37, in Th1, Th2, and Th17 inflammatory responses, closely associated with the pathogenesis of psoriasis and atopic dermatitis. Hence, IL-18 and IL-37 could potentially become therapeutic targets. This narrative review synthesizes knowledge on these interleukins, their roles in atopic dermatitis and psoriasis, and emerging treatment strategies. Findings of a literature search up to 30 May 2024, underscore a research gap in IL-37-targeted therapies. Conversely, IL-18-focused treatments have demonstrated promise in adult-onset Still's Disease, warranting further exploration for their potential efficacy in psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluís Puig
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Lim JH, Neuwirth A, Chung KJ, Grossklaus S, Soehnlein O, Hajishengallis G, Chavakis T. Formyl peptide receptor 2 regulates dendritic cell metabolism and Th17 cell differentiation during neuroinflammation. Front Immunol 2024; 15:1354074. [PMID: 39148732 PMCID: PMC11324504 DOI: 10.3389/fimmu.2024.1354074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Formyl peptide receptor 2 (FPR2) is a receptor for formylated peptides and specific pro-resolving mediators, and is involved in various inflammatory processes. Here, we aimed to elucidate the role of FPR2 in dendritic cell (DC) function and autoimmunity-related central nervous system (CNS) inflammation by using the experimental autoimmune encephalomyelitis (EAE) model. EAE induction was accompanied by increased Fpr2 mRNA expression in the spinal cord. FPR2-deficient (Fpr2 KO) mice displayed delayed onset of EAE compared to wild-type (WT) mice, associated with reduced frequencies of Th17 cells in the inflamed spinal cord at the early stage of the disease. However, FPR2 deficiency did not affect EAE severity after the disease reached its peak. FPR2 deficiency in mature DCs resulted in decreased expression of Th17 polarizing cytokines IL6, IL23p19, IL1β, and thereby diminished the DC-mediated activation of Th17 cell differentiation. LPS-activated FPR2-deficient DCs showed upregulated Nos2 expression and nitric oxide (NO) production, as well as reduced oxygen consumption rate and impaired mitochondrial function, including decreased mitochondrial superoxide levels, lower mitochondrial membrane potential and diminished expression of genes related to the tricarboxylic acid cycle and genes related to the electron transport chain, as compared to WT DCs. Treatment with a NO inhibitor reversed the reduced Th17 cell differentiation in the presence of FPR2-deficient DCs. Together, by regulating DC metabolism, FPR2 enhances the production of DC-derived Th17-polarizing cytokines and hence Th17 cell differentiation in the context of neuroinflammation.
Collapse
Affiliation(s)
- Jong-Hyung Lim
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Grossklaus
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Kuramoto K, Morishima Y, Yoshida K, Ano S, Kawashima K, Yabuuchi Y, Sakai C, Matsumura S, Nishino K, Yazaki K, Matsuyama M, Kiwamoto T, Ishii Y, Hizawa N. Nrf2 Deficiency Accelerates IL-17-Dependent Neutrophilic Airway Inflammation in Asthmatic Mice. Antioxidants (Basel) 2024; 13:818. [PMID: 39061887 PMCID: PMC11274244 DOI: 10.3390/antiox13070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is a heterogeneous disease that can be broadly classified into type 2, which is primarily steroid-sensitive and eosinophilic, and non-type 2, which is primarily steroid-resistant and neutrophilic. While the mechanisms leading to the development of molecular-targeted therapies for type 2 asthma are being elucidated, much remains to be learned about non-type 2 asthma. To investigate the role of oxidative stress in refractory allergic airway inflammation, we compared asthma models generated by immunizing wild-type and nuclear factor erythroid-2-related factor 2 (Nrf2)-deficient mice with the house dust mite antigen. Both asthma models had similar levels of airway inflammation and hyperresponsiveness, but the Nrf2-deficient mice had increased oxidative stress and exacerbated neutrophilic airway inflammation compared with the wild-type mice. Type 2 cytokines and the expression of GATA3, a transcription factor that is important for Th2 cell differentiation, had decreased in Nrf2-deficient mice compared with the wild-type mice, whereas helper T (Th) 17 cytokines and the expression of RORγt, which is important for Th17 cell differentiation, had increased. Furthermore, the neutrophilic airway inflammation caused by Nrf2 deficiency was ameliorated by interleukin (IL)-17 neutralization. We have concluded that the disruption of the Nrf2-mediated antioxidant defense system contributed to the induction of Th17 differentiation and exacerbated allergic neutrophilic airway inflammation.
Collapse
Affiliation(s)
| | - Yuko Morishima
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan (C.S.); (K.N.); (Y.I.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Elahi R, Nazari M, Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. IL-17 in type II diabetes mellitus (T2DM) immunopathogenesis and complications; molecular approaches. Mol Immunol 2024; 171:66-76. [PMID: 38795686 DOI: 10.1016/j.molimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Chronic inflammation has long been considered the characteristic feature of type II diabetes mellitus (T2DM) Immunopathogenesis. Pro-inflammatory cytokines are considered the central drivers of the inflammatory cascade leading to β-cell dysfunction and insulin resistance (IR), two major pathologic events contributing to T2DM. Analyzing the cytokine profile of T2DM patients has also introduced interleukin-17 (IL-17) as an upstream regulator of inflammation, regarding its role in inducing the nuclear factor-kappa B (NF-κB) pathway. In diabetic tissues, IL-17 induces the expression of inflammatory cytokines and chemokines. Hence, IL-17 can deteriorate insulin signaling and β-cell function by activating the JNK pathway and inducing infiltration of neutrophils into pancreatic islets, respectively. Additionally, higher levels of IL-17 expression in patients with diabetic complications compared to non-complicated individuals have also proposed a role for IL-17 in T2DM complications. Here, we highlight the role of IL-17 in the Immunopathogenesis of T2DM and corresponding pathways, recent advances in preclinical and clinical studies targeting IL-17 in T2DM, and corresponding challenges and possible solutions.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
25
|
Kirkpatrick C, Lu YCW. Deciphering CD4 + T cell-mediated responses against cancer. Mol Carcinog 2024; 63:1209-1220. [PMID: 38725218 PMCID: PMC11166516 DOI: 10.1002/mc.23730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 05/15/2024]
Abstract
It's been long thought that CD8+ cytotoxic T cells play a major role in T cell-mediated antitumor responses, whereas CD4+ T cells merely provide some assistance to CD8+ T cells as the "helpers." In recent years, numerous studies support the notion that CD4+ T cells play an indispensable role in antitumor responses. Here, we summarize and discuss the current knowledge regarding the roles of CD4+ T cells in antitumor responses and immunotherapy, with a focus on the molecular and cellular mechanisms behind these observations. These new insights on CD4+ T cells may pave the way to further optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Catherine Kirkpatrick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yong-Chen William Lu
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
26
|
Zhu Y, Cai G, Lin L, Fu H, Zhang C, Zeng L, Tu C, Yang Z. Age-associated declined function of endothelial progenitor cells and its correlation with plasma IL-18 or IL-23 concentrations in patients with ST-segment elevation myocardial infarction. Front Cardiovasc Med 2024; 11:1351567. [PMID: 38854655 PMCID: PMC11157231 DOI: 10.3389/fcvm.2024.1351567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND ST-segment elevation myocardial infarction (STEMI) persists to be prevalent in the elderly with a dismal prognosis. The capacity of endothelial progenitor cells (EPCs) is reduced with aging. Nevertheless, the influence of aging on the functionality of EPCs in STEMI is not fully understood. METHOD This study enrolled 20 younger STEMI patients and 21 older STEMI patients. We assessed the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events Risk (GRACE) scores in two groups. Then, we detected EPC migration, proliferation, adhesion, and plasma interleukin (IL)-18 and IL-23 concentrations in two groups. In addition, we analyzed the interconnection between age, EPC function, plasma IL-18 and IL-23 concentrations, and GRACE or TIMI scores in STEMI patients. RESULT GRACE and TIMI scores in older STEMI patients were higher than in younger STEMI patients, whereas EPC function declined. GRACE and TIMI scores were found to have an inverse relationship with the EPC function. In older STEMI patients, plasma concentrations of IL-18 and IL-23 increased. Plasma IL-18 and IL-23 concentrations were adversely connected to EPC capacity and positively related to GRACE and TIMI scores. Moreover, age was positively correlated with plasma IL-18 or IL-23 concentrations, as well as GRACE or TIMI scores. However, age was adversely correlated with EPC function. CONCLUSION In patients with STEMI, aging results in declined EPC function, which may be associated with inflammatory cytokines. The current investigation may offer new perception about mechanism and therapeutic targets of aging STEMI.
Collapse
Affiliation(s)
- Yuanting Zhu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Guoyi Cai
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Luyang Lin
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Hongna Fu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Cong Zhang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Gastroenterology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijin Zeng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Chang Tu
- Department of Cardiology, SSL Central Hospital of Dongguan City, Dongguan, China
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
28
|
Zhang M, Qiu J, Wang R. Mendelian randomization study on the causal effect of herpes simplex virus infection on idiopathic pulmonary fibrosis. Expert Rev Respir Med 2024; 18:341-347. [PMID: 38878268 DOI: 10.1080/17476348.2024.2369253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/13/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Previous observational studies have shown that past infection of herpes simplex virus (HSV) is associated with idiopathic pulmonary fibrosis (IPF). The present study aims to identify the causal link between HSV infection (exposure factor) and IPF (outcome factor). RESEARCH DESIGN AND METHODS To date, the largest publicly available genome-wide association study (GWAS) for HSV infection (1,595 cases and 211,856 controls from Finnish ancestry) and for IPF (1,028 cases and 196,986 controls from Finnish ancestry) were used to perform this two-sample Mendelian randomization (MR) study. RESULTS We found no significant pleiotropy or heterogeneity of all selected nine HSV infection-associated genetic instrumental variants (IVs) in IPF GWAS dataset. Interestingly, we found that as HSV infection genetically increased, IPF risk increased based on an inverse-variance weighted (IVW) analysis (odds ratio [OR] = 1.280, 95% confidence interval [CI]: 1.048-1.563; p = 0.015) and weighted median (OR = 1.321, 95% CI: 1.032-1.692; p = 0.027). CONCLUSIONS Our analysis suggests a causal effect of genetically increased HSV infection on IPF risk. Thus, HSV infection may be a potential risk factor for IPF.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jinming Qiu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Potestio L, Martora F, Lauletta G, Vallone Y, Battista T, Megna M. The Role of Interleukin 23/17 Axis in Psoriasis Management: A Comprehensive Review of Clinical Trials. Clin Cosmet Investig Dermatol 2024; 17:829-842. [PMID: 38616886 PMCID: PMC11016251 DOI: 10.2147/ccid.s462797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Psoriasis pathogenesis is influenced by genetic factors and characterized by a complex interplay between genetic predisposition and various environmental triggers. These triggers set off metabolic processes involving inflammation, cell signaling, immune response dysregulation, and antigen presentation. Several types of innate and adaptive immune cells are involved in psoriasis. Among the cytokine cascade which leads to psoriasis development, the interleukin (IL)-23/Th17 axis, especially IL-17 production, emerges as crucial. Recognizing the pivotal role of this axis has facilitated the development of selective and effective biological drugs, such as anti-IL17 and anti-IL23 monoclonal antibodies. These drugs aim to achieve the complete or near-complete disappearance of psoriatic lesions, as indicated by PASI100 and PASI90 responses, respectively. In this context, the aim of our review was to delve into the functioning of the IL-23/Th17 axis, its dysregulation in psoriasis pathogenesis, and the therapeutic potential of its inhibition. Currently, 4 anti-IL17 (secukinumab, ixekizumab, bimekizumab and brodalumab) and 3 anti-IL23 (guselkumab, risankizumab and tildrakizumab) have been approved. All these drugs showed high levels of effectiveness in both clinical trials and real-life experiences, with an excellent profile in terms of safety. Certainly, furthers studies will allow for better characterization of biologics' profile, in order to administer the right drug for the right patients at the right moment.
Collapse
Affiliation(s)
- Luca Potestio
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Fabrizio Martora
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Giuseppe Lauletta
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Ylenia Vallone
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Teresa Battista
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Matteo Megna
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
30
|
Carroll SL, Pasare C, Barton GM. Control of adaptive immunity by pattern recognition receptors. Immunity 2024; 57:632-648. [PMID: 38599163 PMCID: PMC11037560 DOI: 10.1016/j.immuni.2024.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.
Collapse
Affiliation(s)
- Shaina L Carroll
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Gregory M Barton
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720 USA.
| |
Collapse
|
31
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
32
|
Cheng A, Kashyap A, Salvator H, Rosen LB, Colby D, Ardeshir-Larijani F, Loehrer PJ, Ding L, Lugo Reyes SO, Riminton S, Ballman M, Rocco JM, Marciano BE, Freeman AF, Browne SK, Hsu AP, Zelazny A, Rajan A, Sereti I, Zerbe CS, Lionakis MS, Holland SM. Anti-Interleukin-23 Autoantibodies in Adult-Onset Immunodeficiency. N Engl J Med 2024; 390:1105-1117. [PMID: 38507753 DOI: 10.1056/nejmoa2210665] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Autoantibodies against interleukin-12 (anti-interleukin-12) are often identified in patients with thymoma, but opportunistic infections develop in only some of these patients. Interleukin-12 (with subunits p40 and p35) shares a common subunit with interleukin-23 (subunits p40 and p19). In a patient with disseminated Burkholderia gladioli infection, the identification of both anti-interleukin-23 and anti-interleukin-12 prompted further investigation. METHODS Among the patients (most of whom had thymoma) who were known to have anti-interleukin-12, we screened for autoantibodies against interleukin-23 (anti-interleukin-23). To validate the potential role of anti-interleukin-23 with respect to opportunistic infection, we tested a second cohort of patients with thymoma as well as patients without either thymoma or known anti-interleukin-12 who had unusual infections. RESULTS Among 30 patients with anti-interleukin-12 who had severe mycobacterial, bacterial, or fungal infections, 15 (50%) also had autoantibodies that neutralized interleukin-23. The potency of such neutralization was correlated with the severity of these infections. The neutralizing activity of anti-interleukin-12 alone was not associated with infection. In the validation cohort of 91 patients with thymoma, the presence of anti-interleukin-23 was associated with infection status in 74 patients (81%). Overall, neutralizing anti-interleukin-23 was detected in 30 of 116 patients (26%) with thymoma and in 30 of 36 patients (83%) with disseminated, cerebral, or pulmonary infections. Anti-interleukin-23 was present in 6 of 32 patients (19%) with severe intracellular infections and in 2 of 16 patients (12%) with unusual intracranial infections, including Cladophialophora bantiana and Mycobacterium avium complex. CONCLUSIONS Among patients with a variety of mycobacterial, bacterial, or fungal infections, the presence of neutralizing anti-interleukin-23 was associated with severe, persistent opportunistic infections. (Funded by the National Institute of Allergy and Infectious Diseases and others.).
Collapse
Affiliation(s)
- Aristine Cheng
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Anuj Kashyap
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Helene Salvator
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Lindsey B Rosen
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Devon Colby
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Fatemeh Ardeshir-Larijani
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Patrick J Loehrer
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Li Ding
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Saul O Lugo Reyes
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Sean Riminton
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Madison Ballman
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Joseph M Rocco
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Beatriz E Marciano
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Alexandra F Freeman
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Sarah K Browne
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Amy P Hsu
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Adrian Zelazny
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Arun Rajan
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Irini Sereti
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Christa S Zerbe
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Michail S Lionakis
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| | - Steven M Holland
- From the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (A.C., A.K., H.S., L.B.R., D.C., L.D., J.M.R., B.E.M., A.F.F., S.K.B., A.P.H., A.Z., I.S., C.S.Z., M.S.L., S.M.H.), and the Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (M.B., A.R.), National Institutes of Health, Bethesda, MD; the Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (A.C.); the Department of Respiratory Medicine, Hôpital Foch, Unité Mixte de Recherche 0892, Virology and Molecular Immunology Laboratory, Suresnes Paris-Saclay University, Suresnes, France (H.S.); Indiana University Melvin and Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis (F.A.-L., P.J.L.); Immune Deficiencies Laboratory, National Institute of Pediatrics, Mexico City (S.O.L.R.); and the Department of Immunology, Repatriation General Hospital Concord, University of Sydney, Concord, NSW, Australia (S.R.)
| |
Collapse
|
33
|
Moutusy SI, Ohsako S. Gut Microbiome-Related Anti-Inflammatory Effects of Aryl Hydrocarbon Receptor Activation on Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:3372. [PMID: 38542367 PMCID: PMC10970487 DOI: 10.3390/ijms25063372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 01/05/2025] Open
Abstract
Inflammatory bowel disease (IBD) is one of the most prevalent chronic inflammations of the gastrointestinal tract (GIT). The gut microbial population, the cytokine milieu, the aryl hydrocarbon receptor (AHR) expressed by immune and nonimmune cells and the intrinsic pathway of Th-cell differentiation are implicated in the immunopathology of IBD. AHR activation requires a delicate balance between regulatory and effector T-cells; loss of this balance can cause local gut microbial dysbiosis and intestinal inflammation. Thus, the study of the gut microbiome in association with AHR provides critical insights into IBD pathogenesis and interventions. This review will focus on the recent advancements to form conceptional frameworks on the benefits of AHR activation by commensal gut bacteria in IBD.
Collapse
Affiliation(s)
- Salvinaz Islam Moutusy
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA 94305, USA
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| |
Collapse
|
34
|
Mocci G, Tursi A, Onidi FM, Usai-Satta P, Pes GM, Dore MP. Ustekinumab in the Treatment of Inflammatory Bowel Diseases: Evolving Paradigms. J Clin Med 2024; 13:1519. [PMID: 38592377 PMCID: PMC10933994 DOI: 10.3390/jcm13051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024] Open
Abstract
Inflammatory bowel diseases, comprising Crohn's disease (CD) and ulcerative colitis (UC), are chronic, relapsing, and remitting immune-mediated inflammatory diseases affecting the gastrointestinal tract. Ustekinumab (UST) is a monoclonal antibody that blocks the p40 subunit of the anti-interleukin (IL) 12/23. Pivotal trials (CERTIFI and UNITI-IM for CD, UNIFI for UC) established the efficacy of UST for the induction and maintenance of remission in both CD and UC, with the most favorable results in naïve patients to biologics. In recent years, a wealth of 'real-world' data has emerged supporting positive clinical, endoscopic, and histological outcomes in patients treated with UST, as well as reassuring safety data. More recently, the results of the first head-to-head trials of UST and tumor necrosis factor (TNF) antagonists were reported. Moreover, a number of studies exploring the role of UST in specific clinical settings, such as perianal CD, postoperative complications and recurrence, extraintestinal manifestations, chronic antibiotic-refractory pouchitis, and pregnancy, were reported. This review explores the results reported to date on UST, including those from pivotal trials, real-world data, and emerging studies regarding therapeutic drug monitoring and immunogenicity. The safety profile of UST was also reviewed.
Collapse
Affiliation(s)
- Giammarco Mocci
- Division of Gastroenterology, “Brotzu” Hospital, 09124 Cagliari, Italy; (G.M.); (F.M.O.); (P.U.-S.)
| | - Antonio Tursi
- Territorial Gastroenterology Service, ASL BAT, 76123 Andria, Italy;
- Department of Medical and Surgical Sciences, School of Medicine, Catholic University, 00168 Rome, Italy
| | - Francesca Maria Onidi
- Division of Gastroenterology, “Brotzu” Hospital, 09124 Cagliari, Italy; (G.M.); (F.M.O.); (P.U.-S.)
| | - Paolo Usai-Satta
- Division of Gastroenterology, “Brotzu” Hospital, 09124 Cagliari, Italy; (G.M.); (F.M.O.); (P.U.-S.)
| | - Giovanni Mario Pes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Maria Pina Dore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
- Baylor College of Medicine, One Baylor Plaza Blvd., Houston, TX 77030, USA
| |
Collapse
|
35
|
Cuenca-Escalona J, Flórez-Grau G, van den Dries K, Cambi A, de Vries IJM. PGE2-EP4 signaling steers cDC2 maturation toward the induction of suppressive T-cell responses. Eur J Immunol 2024; 54:e2350770. [PMID: 38088451 DOI: 10.1002/eji.202350770] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Dendritic cells (DCs) shape adaptive immunity in response to environmental cues such as cytokines or lipid mediators, including prostaglandin E2 (PGE2). In cancer, tumors are known to establish an enriched PGE2 microenvironment. Tumor-derived PGE2 primes regulatory features across immune cells, including DCs, facilitating tumor progression. PGE2 shapes DC function by providing signaling via its two so-called E-prostanoid receptors (EPs) EP2 and EP4. Although studies with monocyte-derived DCs have shown the importance of PGE2 signaling, the role of PGE2-EP2/EP4 on conventional DCs type 2 (cDC2s), is still poorly defined. In this study, we investigated the function of EP2 and EP4 using specific EP antagonists on human cDC2s. Our results show that EP2 and EP4 exhibit different functions in cDC2s, with EP4 modulating the upregulation of activation markers (CD80, CD86, CD83, MHC class II) and the production of IL-10 and IL-23. Furthermore, PGE2-EP4 boosts CCR type 7-based migration as well as a higher T-cell expansion capacity, characterized by the enrichment of suppressive rather than pro-inflammatory T-cell populations. Our findings are relevant to further understanding the role of EP receptors in cDC2s, underscoring the benefit of targeting the PGE2-EP2/4 axis for therapeutic purposes in diseases such as cancer.
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| |
Collapse
|
36
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Zhu X, Dou Y, Lin Y, Chu G, Wang J, Ma L. HMGB1 regulates Th17 cell differentiation and function in patients with psoriasis. Immun Inflamm Dis 2024; 12:e1205. [PMID: 38414294 PMCID: PMC10899799 DOI: 10.1002/iid3.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/13/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease, in which T helper 17 (Th17) cells and its effective cytokine interleukin (IL)-17A play a pivotal pathogenic role. High mobility group box 1 (HMGB1) is an important proinflammatory cytokine, which has been confirmed to be highly expressed in the peripheral circulation and epidermis tissues of psoriasis patients. The regulatory effect of HMGB1 on IL-17A expression and function has been reported in some inflammatory and autoimmune diseases by the HMGB1-Toll-like receptor 4 (TLR4)-interleukin (IL)-23-IL-17A pathway. While, in the pathological environment of psoriasis, whether HMGB1 can exert the regulatory effect on IL-17A is not clear. OBJECTIVE We aimed to evaluate the role of HMGB1-TLR4-IL-23-IL-17A pathway in the pathogenesis of psoriasis and explore the possible regulatory mechanism of HMGB1 on Th17 cell differentiation. METHODS Serum levels of HMGB1, TLR4, IL-23, and IL-17A were quantified in 50 patients with moderate-to-severe plaque psoriasis and 30 healthy controls. Peripheral blood mononuclear cells were acquired from 10 severe psoriasis patients and administrated by different concentrations of recombinant-HMGB1 (rHMGB1) to detect the Th17 cell percentage, mRNA and protein levels of TLR4, IL-23, IL-17A and retinoid-related orphan receptor γt (RORγt). RESULTS The serum levels of HMGB1, TLR4, IL-23, and IL-17A in psoriasis patients were significantly higher than healthy controls, especially in severe patients, and positively correlated with the severity index. There were also positive correlations between every two detected indicators of HMGB1, TLR4, IL-23, and IL-17A. In vitro study, rHMGB1 can promote the elevated expression of Th17 cell percentage as well as TLR4, IL-23, IL-17A, and RORγt in a dose-dependent manner. CONCLUSION HMGB1 can contribute to the pathogenesis of psoriasis by regulating Th17 cell differentiation through HMGB1-TLR4-IL-23-RORγt pathway, then promotes IL-17A production and aggravates inflammation process. Targeting HMGB1 may be a possible potential candidate for the immunotherapy of psoriasis.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Yue Dou
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Yawen Lin
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Gaoping Chu
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Jing Wang
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Lei Ma
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| |
Collapse
|
38
|
Broos JY, van der Burgt RTM, Konings J, Rijnsburger M, Werz O, de Vries HE, Giera M, Kooij G. Arachidonic acid-derived lipid mediators in multiple sclerosis pathogenesis: fueling or dampening disease progression? J Neuroinflammation 2024; 21:21. [PMID: 38233951 PMCID: PMC10792915 DOI: 10.1186/s12974-023-02981-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by neuroinflammation, demyelination, and neurodegeneration. Considering the increasing prevalence among young adults worldwide and the disabling phenotype of the disease, a deeper understanding of the complexity of the disease pathogenesis is needed to ultimately improve diagnosis and personalize treatment opportunities. Recent findings suggest that bioactive lipid mediators (LM) derived from ω-3/-6 polyunsaturated fatty acids (PUFA), also termed eicosanoids, may contribute to MS pathogenesis. For example, disturbances in LM profiles and especially those derived from the ω-6 PUFA arachidonic acid (AA) have been reported in people with MS (PwMS), where they may contribute to the chronicity of neuroinflammatory processes. Moreover, we have previously shown that certain AA-derived LMs also associated with neurodegenerative processes in PwMS, suggesting that AA-derived LMs are involved in more pathological events than solely neuroinflammation. Yet, to date, a comprehensive overview of the contribution of these LMs to MS-associated pathological processes remains elusive. MAIN BODY This review summarizes and critically evaluates the current body of literature on the eicosanoid biosynthetic pathway and its contribution to key pathological hallmarks of MS during different disease stages. Various parts of the eicosanoid pathway are highlighted, namely, the prostanoid, leukotriene, and hydroxyeicosatetraenoic acids (HETEs) biochemical routes that include specific enzymes of the cyclooxygenases (COXs) and lipoxygenases (LOX) families. In addition, cellular sources of LMs and their potential target cells based on receptor expression profiles will be discussed in the context of MS. Finally, we propose novel therapeutic approaches based on eicosanoid pathway and/or receptor modulation to ultimately target chronic neuroinflammation, demyelination and neurodegeneration in MS. SHORT CONCLUSION The eicosanoid pathway is intrinsically linked to specific aspects of MS pathogenesis. Therefore, we propose that novel intervention strategies, with the aim of accurately modulating the eicosanoid pathway towards the biosynthesis of beneficial LMs, can potentially contribute to more patient- and MS subtype-specific treatment opportunities to combat MS.
Collapse
Affiliation(s)
- Jelle Y Broos
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rianne T M van der Burgt
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
| | - Julia Konings
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Rusiñol L, Puig L. Multi-Omics Approach to Improved Diagnosis and Treatment of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1042. [PMID: 38256115 PMCID: PMC10815999 DOI: 10.3390/ijms25021042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis and atopic dermatitis fall within the category of cutaneous immune-mediated inflammatory diseases (IMIDs). The prevalence of IMIDs is increasing in industrialized societies, influenced by both environmental changes and a genetic predisposition. However, the exact immune factors driving these chronic, progressive diseases are not fully understood. By using multi-omics techniques in cutaneous IMIDs, it is expected to advance the understanding of skin biology, uncover the underlying mechanisms of skin conditions, and potentially devise precise and personalized approaches to diagnosis and treatment. We provide a narrative review of the current knowledge in genomics, epigenomics, and proteomics of atopic dermatitis and psoriasis. A literature search was performed for articles published until 30 November 2023. Although there is still much to uncover, recent evidence has already provided valuable insights, such as proteomic profiles that permit differentiating psoriasis from mycosis fungoides and β-defensin 2 correlation to PASI and its drop due to secukinumab first injection, among others.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| |
Collapse
|
40
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Interleukin 23 receptor: Expression and regulation in immune cells. Eur J Immunol 2024; 54:e2250348. [PMID: 37837262 DOI: 10.1002/eji.202250348] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The importance of IL-23 and its specific receptor, IL-23R, in the pathogenesis of several chronic inflammatory diseases has been established, but the underlying pathological mechanisms are not fully understood. This review focuses on IL-23R expression and regulation in immune cells.
Collapse
Affiliation(s)
| | | | - Lars Rogge
- Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
41
|
Kamata M, Tada Y. Crosstalk: keratinocytes and immune cells in psoriasis. Front Immunol 2023; 14:1286344. [PMID: 38022549 PMCID: PMC10665858 DOI: 10.3389/fimmu.2023.1286344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In the past, psoriasis was considered a skin disease caused only by keratinocyte disorders. However, the efficacy of immunosuppressive drugs and biologics used to treat psoriasis proves that psoriasis is an immune-mediated disease. Indeed, a variety of immune cells are involved in the pathogenesis of psoriasis, including dendritic cells, Th17 cells, and resident memory T cells. Furthermore, keratinocytes play a role in the development of psoriasis as immune cells by secreting antibacterial peptides, chemokines, tumor necrosis factor-α, interleukin (IL)-36, and IL-23. These immune cells and skin cells interact and drive the aberrant differentiation and proliferation of keratinocytes. This crosstalk between keratinocytes and immune cells critical in the pathogenesis of psoriasis forms an inflammatory loop, resulting in the persistence or exacerbation of psoriasis plaques.
Collapse
Affiliation(s)
| | - Yayoi Tada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
43
|
Steere B, Beidler C, Martin A, Bright S, Kikly K, Benschop RJ. Generation and Characterization of Mirikizumab, a Humanized Monoclonal Antibody Targeting the p19 Subunit of IL-23. J Pharmacol Exp Ther 2023; 387:180-187. [PMID: 37714687 DOI: 10.1124/jpet.122.001512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023] Open
Abstract
Interleukin (IL)-23 exists as a heterodimer consisting of p19 and p40 and is a key cytokine for promoting inflammatory responses in a variety of target organs. IL-23 plays a key role in the differentiation and maintenance of T helper 17 cells, and deregulation of IL-23 can result in autoimmune pathologies of the skin, lungs, and gut. This study describes the generation and characterization of mirikizumab (miri), a humanized IgG4 monoclonal antibody directed against the p19 subunit of IL-23. Miri binds human and cynomolgus monkey IL-23 with high affinity and binds rabbit IL-23 weakly but does not bind to rodent IL-23 or the other IL-23 family members IL-12, IL-27, or IL-35. Miri effectively inhibits the interaction of IL-23 with its receptor, and potently blocks IL-23-induced IL-17 production in cell-based assays while preserving the function of IL-12. In both local and systemic in vivo mouse models, miri blocked IL-23-induced keratin mRNA or IL-17 production, respectively. These data provide a comprehensive preclinical characterization of miri, for which efficacy and safety have been demonstrated in human clinical trials for psoriasis, ulcerative colitis, and Crohn's disease. SIGNIFICANCE STATEMENT: This article describes the generation and characterization of mirikizumab, a high affinity, neutralizing IgG4 variant monoclonal antibody that is under development for the treatment of ulcerative colitis and Crohn's disease. Neutralization of interleukin (IL)-23 is achieved by preventing the binding of IL-23 p19 subunit to the IL-23 receptor and does not affect the IL-12 pathway.
Collapse
Affiliation(s)
- Boyd Steere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Catherine Beidler
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Andrea Martin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Stu Bright
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Kristy Kikly
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Robert J Benschop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
44
|
Ko SF, Li YC, Shao PL, Chiang JY, Sung PH, Chen YL, Yip HK. Interplay Between Inflammatory-immune and Interleukin-17 Signalings Plays a Cardinal Role on Liver Ischemia-reperfusion Injury-Synergic Effect of IL-17Ab, Tacrolimus and ADMSCs on Rescuing the Liver Damage. Stem Cell Rev Rep 2023; 19:2852-2868. [PMID: 37632641 DOI: 10.1007/s12015-023-10611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND This study tested the hypothesis that inflammatory and interleukin (IL)-17 signalings were essential for acute liver ischemia (1 h)-reperfusion (72 h) injury (IRI) that was effectively ameliorated by adipose-derived mesenchymal stem cells (ADMSCs) and tacrolimus. METHODS Adult-male SD rats (n = 50) were equally categorized into groups 1 (sham-operated-control), 2 (IRI), 3 [IRI + IL-17-monoclonic antibody (Ab)], 4 (IRI + tacrolimus), 5 (IRI + ADMSCs) and 6 (IRI + tacrolimus-ADMSCs) and liver was harvested at 72 h. RESULTS The main findings included: (1) circulatory levels: inflammatory cells, immune cells, and proinflammatory cytokines as well as liver-damage enzyme at the time point of 72 h were highest in group 2, lowest in group 1 and significantly lower in group 6 than in groups 3 to 5 (all p < 0.0001), but they did not differ among these three latter groups; (2) histopathology: the liver injury score, fibrosis, inflammatory and immune cell infiltration in liver immunity displayed an identical pattern of inflammatory cells among the groups (all p < 0.0001); and (3) protein levels: upstream and downstream inflammatory signalings, oxidative-stress, apoptotic and mitochondrial-damaged biomarkers exhibited an identical pattern of inflammatory cells among the groups (all p < 0.0001). CONCLUSION Our results obtained from circulatory, pathology and molecular-cellular levels delineated that acute IRI was an intricate syndrome that elicited complex upstream and downstream inflammatory and immune signalings to damage liver parenchyma that greatly suppressed by combined tacrolimus and ADMSCs therapy.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- , Taoyuan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
45
|
Hernández-Barrientos D, Pelayo R, Mayani H. The hematopoietic microenvironment: a network of niches for the development of all blood cell lineages. J Leukoc Biol 2023; 114:404-420. [PMID: 37386890 DOI: 10.1093/jleuko/qiad075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Blood cell formation (hematopoiesis) takes place mainly in the bone marrow, within the hematopoietic microenvironment, composed of a number of different cell types and their molecular products that together shape spatially organized and highly specialized microstructures called hematopoietic niches. From the earliest developmental stages and throughout the myeloid and lymphoid lineage differentiation pathways, hematopoietic niches play a crucial role in the preservation of cellular integrity and the regulation of proliferation and differentiation rates. Current evidence suggests that each blood cell lineage develops under specific, discrete niches that support committed progenitor and precursor cells and potentially cooperate with transcriptional programs determining the gradual lineage commitment and specification. This review aims to discuss recent advances on the cellular identity and structural organization of lymphoid, granulocytic, monocytic, megakaryocytic, and erythroid niches throughout the hematopoietic microenvironment and the mechanisms by which they interconnect and regulate viability, maintenance, maturation, and function of the developing blood cells.
Collapse
Affiliation(s)
- Daniel Hernández-Barrientos
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| | - Rosana Pelayo
- Onco-Immunology Laboratory, Eastern Biomedical Research Center, IMSS, Km 4.5 Atlixco-Metepec, 74360, Puebla, Mexico
| | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| |
Collapse
|
46
|
Abstract
Numerous animal models of colitis have provided important insights into the pathogenesis of inflammatory bowel disease (IBD), contributing to a better understanding of the underlying mechanisms for IBD. As aberrant CD4+ T cell responses play a critical role in the pathogenesis and development of IBD, T cell adoptive transfer models of colitis have become a valuable tool in investigating the immunopathogenesis of intestinal inflammation. While the adoptive transfer of CD4+ CD45RBhi T cells into immunedeficient recipient mice was the first discovered and is currently the most widely used model, several variations of the T cell transfer model have also been developed with distinct features. Here, we describe the history, principle, and characteristics of adoptive transfer colitis models and discuss their strengths, limitations, and applications.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
47
|
Kim SH, Lee SH. Updates on ankylosing spondylitis: pathogenesis and therapeutic agents. JOURNAL OF RHEUMATIC DISEASES 2023; 30:220-233. [PMID: 37736590 PMCID: PMC10509639 DOI: 10.4078/jrd.2023.0041] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023]
Abstract
Ankylosing spondylitis (AS) is an autoinflammatory disease that manifests with the unique feature of enthesitis. Gut microbiota, HLA-B*27, and biomechanical stress mutually influence and interact resulting in setting off a flame of inflammation. In the HLA-B*27 positive group, dysbiosis in the gut environment disrupts the barrier to exogenous bacteria or viruses. Additionally, biomechanical stress induces inflammation through enthesial resident or gut-origin immune cells. On this basis, innate and adaptive immunity can propagate inflammation and lead to chronic disease. Finally, bone homeostasis is regulated by cytokines, by which the inflamed region is substituted into new bone. Agents that block cytokines are constantly being developed to provide diverse therapeutic options for preventing the progression of inflammation. In addition, some antibodies have been shown to distinguish disease selectively, which support the involvement of autoimmune immunity in AS. In this review, we critically analyze the complexity and uniqueness of the pathogenesis with updates on the findings of immunity and provide new information about biologics and biomarkers.
Collapse
Affiliation(s)
- Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
48
|
Hou Q, Sun Z, Zhao L, Liu Y, Zhang J, Huang J, Luo Y, Xiao Y, Hu Z, Shen A. Role of serum cytokines in the prediction of heart failure in patients with coronary artery disease. ESC Heart Fail 2023; 10:3102-3113. [PMID: 37608687 PMCID: PMC10567644 DOI: 10.1002/ehf2.14491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 08/24/2023] Open
Abstract
AIMS Coronary artery disease (CAD) is the most common cause of heart failure (HF). This study aimed to identify cytokine biomarkers for predicting HF in patients with CAD. METHODS AND RESULTS Twelve patients with CAD without HF (CAD-non HF), 12 patients with CAD complicated with HF (CAD-HF), and 12 healthy controls were enrolled for Human Cytokine Antibody Array, which were used as the training dataset. Then, differentially expressed cytokines among the different groups were identified, and crucial characteristic proteins related to CAD-HF were screened using a combination of the least absolute shrinkage and selection operator, recursive feature elimination, and random forest methods. A support vector machine (SVM) diagnostic model was constructed based on crucial characteristic proteins, followed by receiver operating characteristic curve analysis. Finally, two validation datasets, GSE20681 and GSE59867, were downloaded to verify the diagnostic performance of the SVM model and expression of crucial proteins, as well as enzyme-linked immunosorbent assay was also used to verify the levels of crucial proteins in blood samples. In total, 12 differentially expressed proteins were overlapped in the three comparison groups, and then four optimal characteristic proteins were identified, including VEGFR2, FLRG, IL-23, and FGF-21. After that, the area under the receiver operating characteristic curve of the constructed SVM classification model for the training dataset was 0.944. The accuracy of the SVM classification model was validated using the GSE20681 and GSE59867 datasets, with area under the receiver operating characteristic curve values of 0.773 and 0.745, respectively. The expression trends of the four crucial proteins in the training dataset were consistent with those in the validation dataset and those determined by enzyme-linked immunosorbent assay. CONCLUSIONS The combination of VEGFR2, FLRG, IL-23, and FGF-21 can be used as a candidate biomarker for the prediction and prevention of HF in patients with CAD.
Collapse
Affiliation(s)
- Qingzhen Hou
- Department of Health Management Center, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhuhua Sun
- Department of Health Management Center, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Liqin Zhao
- Department of Health Management Center, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Ye Liu
- Department of Health Management Center, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Junfang Zhang
- Department of Health Management Center, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Jing Huang
- Department of Laboratory Medicine, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Yifeng Luo
- Department of Health Management Center, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Yan Xiao
- Department of Health Management Center, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhaoting Hu
- Department of Health Management Center, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Anna Shen
- Department of Cardiology, The Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
49
|
Chua L, Friedrich S, Zhang XC. Mirikizumab Pharmacokinetics in Patients with Moderately to Severely Active Ulcerative Colitis: Results from Phase III LUCENT Studies. Clin Pharmacokinet 2023; 62:1479-1491. [PMID: 37610533 PMCID: PMC10520102 DOI: 10.1007/s40262-023-01281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Mirikizumab is a humanized anti-interleukin-23-p19 monoclonal antibody being developed for ulcerative colitis and Crohn's disease. This analysis characterized mirikizumab pharmacokinetics using phase II and III trial data from patients with moderately to severely active ulcerative colitis. METHODS Serum pharmacokinetic data in patients receiving mirikizumab 50-1000 mg intravenously every 4 weeks as induction treatment and mirikizumab 200 mg subcutaneously every 4 or 12 weeks as maintenance treatment across three trials (N = 1362) were analyzed using non-linear mixed-effects modeling. Covariate effects on mirikizumab exposure were evaluated using simulation-based estimations. RESULTS Mirikizumab pharmacokinetics was best described by a linear two-compartment model with first-order absorption. Clearance, volume of distribution for central and peripheral compartments, and half-life were estimated at approximately 0.022 L/h (linear), 3.11 L and 1.69 L, and 9.5 days, respectively. Statistically significant effects of body weight and serum albumin levels on clearance, body weight on central and peripheral volumes of distribution, and body mass index on bioavailability were observed but effects were small relative to random inter-individual variability (% coefficient of variation: 18-64%). The subcutaneous bioavailability of mirikizumab was 48%. CONCLUSIONS Mirikizumab displayed pharmacokinetic characteristics typical of a monoclonal antibody where clearance increased with body weight and decreased with the albumin level, and bioavailability decreased with body mass index. These effects were small relative to random variability, indicating that a dose adjustment for patient factors is not required. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT02589665 (28 October, 2015), NCT03518086 (8 May, 2018), NCT03524092 (14 May, 2018).
Collapse
Affiliation(s)
- Laiyi Chua
- Global PK/PD and Pharmacometrics, Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN, 46225, USA
| | - Stuart Friedrich
- Global PK/PD and Pharmacometrics, Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN, 46225, USA
| | - Xin Cindy Zhang
- Global PK/PD and Pharmacometrics, Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN, 46225, USA.
| |
Collapse
|
50
|
Sisto M, Lisi S. Interleukin-23 Involved in Fibrotic Autoimmune Diseases: New Discoveries. J Clin Med 2023; 12:5699. [PMID: 37685766 PMCID: PMC10489062 DOI: 10.3390/jcm12175699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Interleukin (IL)-23 is a central pro-inflammatory cytokine with a broad range of effects on immune responses. IL-23 is pathologically linked to the induction of the production of the pro-inflammatory cytokines IL-17 and IL-22, which stimulate the differentiation and proliferation of T helper type 17 (Th17) cells. Recent discoveries suggest a potential pro-fibrotic role for IL-23 in the development of chronic inflammatory autoimmune diseases characterized by intense fibrosis. In this review, we summarized the biological features of IL-23 and gathered recent research on the role of IL-23 in fibrotic autoimmune conditions, which could provide a theoretical basis for clinical targeting and drug development.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70123 Bari, Italy;
| | | |
Collapse
|