1
|
Liu H, Chen W, Wu G, Zhou J, Liu C, Tang Z, Huang X, Gao J, Xiao Y, Kong N, Joshi N, Cao Y, Abdi R, Tao W. Glutathione-Scavenging Nanoparticle-Mediated PROTACs Delivery for Targeted Protein Degradation and Amplified Antitumor Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207439. [PMID: 37066758 PMCID: PMC10238184 DOI: 10.1002/advs.202207439] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Indexed: 06/04/2023]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are an emerging class of promising therapeutic modalities that selectively degrade intracellular proteins of interest by hijacking the ubiquitin-proteasome system. However, the lack of techniques to efficiently transport these degraders to targeted cells and consequently the potential toxicity of PROTACs limit their clinical applications. Here, a strategy of nanoengineered PROTACs, that is, Nano-PROTACs, is reported, which improves the bioavailability of PROTACs and maximizes their capacity to therapeutically degrade intracellular oncogenic proteins for tumor therapy. The Nano-PROTACs are developed by encapsulating PROTACs in glutathione (GSH)-responsive poly(disulfide amide) polymeric (PDSA) nanoparticles and show that ARV@PDSA Nano-PROTAC, nanoengineered BRD4 degrader ARV-771, improves BRD4 protein degradation and decreases the downstream oncogene c-Myc expression. Benefiting from the GSH-scavenging ability to amply the c-Myc-related ferroptosis and cell cycle arrest, this ARV@PDSA Nano-PROTACs strategy shows superior anti-tumor efficacy with a low dose administration and good biocompatibility in vivo. The findings reveal the potential of the Nano-PROTACs strategy to treat a broad range of diseases by dismantling associated pathogenic proteins.
Collapse
Affiliation(s)
- Hai‐Jun Liu
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- Transplantation Research CenterRenal DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Wei Chen
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Gongwei Wu
- Department of Medical OncologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
| | - Jun Zhou
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Chuang Liu
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Zhongmin Tang
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xiangang Huang
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jingjing Gao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yufen Xiao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Na Kong
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Nitin Joshi
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yihai Cao
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstituteStockholm171 77Sweden
| | - Reza Abdi
- Transplantation Research CenterRenal DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
2
|
Selective Targeting of Cancer-Related G-Quadruplex Structures by the Natural Compound Dicentrine. Int J Mol Sci 2023; 24:ijms24044070. [PMID: 36835480 PMCID: PMC9959918 DOI: 10.3390/ijms24044070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Aiming to identify highly effective and selective G-quadruplex ligands as anticancer candidates, five natural compounds were investigated here, i.e., the alkaloids Canadine, D-Glaucine and Dicentrine, as well as the flavonoids Deguelin and Millettone, selected as analogs of compounds previously identified as promising G-quadruplex-targeting ligands. A preliminary screening with the G-quadruplex on the Controlled Pore Glass assay proved that, among the investigated compounds, Dicentrine is the most effective ligand of telomeric and oncogenic G-quadruplexes, also showing good G-quadruplex vs. duplex selectivity. In-depth studies in solution demonstrated the ability of Dicentrine to thermally stabilize telomeric and oncogenic G-quadruplexes without affecting the control duplex. Interestingly, it showed higher affinity for the investigated G-quadruplex structures over the control duplex (Kb~106 vs. 105 M-1), with some preference for the telomeric over the oncogenic G-quadruplex model. Molecular dynamics simulations indicated that Dicentrine preferentially binds the G-quadruplex groove or the outer G-tetrad for the telomeric and oncogenic G-quadruplexes, respectively. Finally, biological assays proved that Dicentrine is highly effective in promoting potent and selective anticancer activity by inducing cell cycle arrest through apoptosis, preferentially targeting G-quadruplex structures localized at telomeres. Taken together, these data validate Dicentrine as a putative anticancer candidate drug selectively targeting cancer-related G-quadruplex structures.
Collapse
|
3
|
Dinami R, Pompili L, Petti E, Porru M, D'Angelo C, Di Vito S, Rizzo A, Campani V, De Rosa G, Bruna A, Serra V, Mano M, Giacca M, Leonetti C, Ciliberto G, Tarsounas M, Stoppacciaro A, Schoeftner S, Biroccio A. MiR-182-3p targets TRF2 and impairs tumor growth of triple-negative breast cancer. EMBO Mol Med 2022; 15:e16033. [PMID: 36426578 PMCID: PMC9832842 DOI: 10.15252/emmm.202216033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 11/27/2022] Open
Abstract
The telomeric repeat-binding factor 2 (TRF2) is a telomere-capping protein that plays a key role in the maintenance of telomere structure and function. It is highly expressed in different cancer types, and it contributes to cancer progression. To date, anti-cancer strategies to target TRF2 remain a challenge. Here, we developed a miRNA-based approach to reduce TRF2 expression. By performing a high-throughput luciferase screening of 54 candidate miRNAs, we identified miR-182-3p as a specific and efficient post-transcriptional regulator of TRF2. Ectopic expression of miR-182-3p drastically reduced TRF2 protein levels in a panel of telomerase- or alternative lengthening of telomeres (ALT)-positive cancer cell lines. Moreover, miR-182-3p induced DNA damage at telomeric and pericentromeric sites, eventually leading to strong apoptosis activation. We also observed that treatment with lipid nanoparticles (LNPs) containing miR-182-3p impaired tumor growth in triple-negative breast cancer (TNBC) models, including patient-derived tumor xenografts (PDTXs), without affecting mouse survival or tissue function. Finally, LNPs-miR-182-3p were able to cross the blood-brain barrier and reduce intracranial tumors representing a possible therapeutic option for metastatic brain lesions.
Collapse
Affiliation(s)
- Roberto Dinami
- Translational Oncology Research UnitIRCCS—Regina Elena National Cancer InstituteRomeItaly
| | - Luca Pompili
- Translational Oncology Research UnitIRCCS—Regina Elena National Cancer InstituteRomeItaly
| | - Eleonora Petti
- Translational Oncology Research UnitIRCCS—Regina Elena National Cancer InstituteRomeItaly
| | - Manuela Porru
- Translational Oncology Research UnitIRCCS—Regina Elena National Cancer InstituteRomeItaly
| | - Carmen D'Angelo
- Translational Oncology Research UnitIRCCS—Regina Elena National Cancer InstituteRomeItaly
| | - Serena Di Vito
- Translational Oncology Research UnitIRCCS—Regina Elena National Cancer InstituteRomeItaly,Department of Ecological and Biological Sciences (DEB)University of TusciaViterboItaly
| | - Angela Rizzo
- Translational Oncology Research UnitIRCCS—Regina Elena National Cancer InstituteRomeItaly
| | - Virginia Campani
- Department of PharmacyUniversity Federico II of NaplesNaplesItaly
| | - Giuseppe De Rosa
- Department of PharmacyUniversity Federico II of NaplesNaplesItaly
| | | | | | - Miguel Mano
- Functional Genomics and RNA‐based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal,Department of Life SciencesUniversity of CoimbraCoimbraPortugal,King's College London, British Heart Foundation Centre of Research ExcellenceSchool of Cardiovascular Medicine & SciencesLondonUK
| | - Mauro Giacca
- King's College London, British Heart Foundation Centre of Research ExcellenceSchool of Cardiovascular Medicine & SciencesLondonUK
| | - Carlo Leonetti
- Translational Oncology Research UnitIRCCS—Regina Elena National Cancer InstituteRomeItaly
| | - Gennaro Ciliberto
- Scientific DirectionIRCCS‐Regina Elena National Cancer InstituteRomeItaly
| | - Madalena Tarsounas
- Department of Oncology, Genome Stability and Tumourigenesis Group, MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, St. Andrea HospitalSapienza University of RomeRomeItaly
| | | | - Annamaria Biroccio
- Translational Oncology Research UnitIRCCS—Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
4
|
Wu TY, Huang Q, Huang ZS, Hu MH, Tan JH. A drug-like imidazole-benzothiazole conjugate inhibits malignant melanoma by stabilizing the c-MYC G-quadruplex. Bioorg Chem 2020; 99:103866. [PMID: 32330737 DOI: 10.1016/j.bioorg.2020.103866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Aberrant expression of c-MYC oncogene is significantly associated with the occurrence and development of malignant melanoma. Suppression of the c-MYC transcriptional activity accordingly provides a new idea for treating melanoma. Notably, stabilizing the G-quadruplex (G4) structure in the promoter is proved to be effective in downregulating c-MYC transcription. In this work, we developed a drug-like imidazole-benzothiazole conjugate called IZTZ-1, which was confirmed to preferentially stabilize the promoter G4 and thus lower c-MYC expression. Intracellular assays revealed that IZTZ-1 induced cell cycle arrest, apoptosis, thereby inhibiting cell proliferation. Furthermore, IZTZ-1 was demonstrated to effectively inhibit tumor growth in a melanoma mouse model. Consequently, IZTZ-1 showed good potential in the treatment of melanoma. This study provides an alternative strategy to treat melanoma by targeting the c-MYC G4.
Collapse
Affiliation(s)
- Tian-Ying Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Huang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming-Hao Hu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Zizza P, Dinami R, Porru M, Cingolani C, Salvati E, Rizzo A, D'Angelo C, Petti E, Amoreo CA, Mottolese M, Sperduti I, Chambery A, Russo R, Ostano P, Chiorino G, Blandino G, Sacconi A, Cherfils-Vicini J, Leonetti C, Gilson E, Biroccio A. TRF2 positively regulates SULF2 expression increasing VEGF-A release and activity in tumor microenvironment. Nucleic Acids Res 2019; 47:3365-3382. [PMID: 30698737 PMCID: PMC6468246 DOI: 10.1093/nar/gkz041] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 12/04/2022] Open
Abstract
The telomeric protein TRF2 is overexpressed in several human malignancies and contributes to tumorigenesis even though the molecular mechanism is not completely understood. By using a high-throughput approach based on the multiplexed Luminex X-MAP technology, we demonstrated that TRF2 dramatically affects VEGF-A level in the secretome of cancer cells, promoting endothelial cell-differentiation and angiogenesis. The pro-angiogenic effect of TRF2 is independent from its role in telomere capping. Instead, TRF2 binding to a distal regulatory element promotes the expression of SULF2, an endoglucosamine-6-sulfatase that impairs the VEGF-A association to the plasma membrane by inducing post-synthetic modification of heparan sulfate proteoglycans (HSPGs). Finally, we addressed the clinical relevance of our findings showing that TRF2/SULF2 expression is a worse prognostic biomarker in colorectal cancer (CRC) patients.
Collapse
Affiliation(s)
- Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Manuela Porru
- SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Chiara Cingolani
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Erica Salvati
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Eleonora Petti
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carla Azzurra Amoreo
- Pathology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Marcella Mottolese
- Pathology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Isabella Sperduti
- Department of Biostatistics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, via Vivaldi 43, 80100 Caserta
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, via Vivaldi 43, 80100 Caserta
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Julien Cherfils-Vicini
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France
| | - Carlo Leonetti
- SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Eric Gilson
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France.,Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| |
Collapse
|
6
|
Zhang C, D'Alessandro A, Wellendorf AM, Mohmoud F, Serrano-Lopez J, Perentesis JP, Komurov K, Alexe G, Stegmaier K, Whitsett JA, Grimes HL, Cancelas JA. KLF5 controls glutathione metabolism to suppress p190-BCR-ABL+ B-cell lymphoblastic leukemia. Oncotarget 2018; 9:29665-29679. [PMID: 30038712 PMCID: PMC6049869 DOI: 10.18632/oncotarget.25667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
High-risk B-cell acute lymphoblastic leukemia (B-ALL) remains a therapeutic challenge despite advances in the use of tyrosine kinase inhibitors and chimeric-antigen-receptor engineered T cells. Lymphoblastic-leukemia precursors are highly sensitive to oxidative stress. KLF5 is a member of the Krüppel-like family of transcription factors. KLF5 expression is repressed in B-ALL, including BCR-ABL1+ B-ALL. Here, we demonstrate that forced expression of KLF5 in B-ALL cells bypasses the imatinib resistance which is not associated with mutations of BCR-ABL. Expression of Klf5 impaired leukemogenic activity of BCR-ABL1+ B-cell precursors in vitro and in vivo. The complete genetic loss of Klf5 reduced oxidative stress, increased regeneration of reduced glutathione and decreased apoptosis of leukemic precursors. Klf5 regulation of glutathione levels was mediated by its regulation of glutathione-S-transferase Mu 1 (Gstm1), an important regulator of glutathione-mediated detoxification and protein glutathionylation. Expression of Klf5 or the direct Klf5 target gene Gstm1 inhibited clonogenic activity of Klf5∆/∆ leukemic B-cell precursors and unveiled a Klf5-dependent regulatory loop in glutamine-dependent glutathione metabolism. In summary, we describe a novel mechanism of Klf5 B-ALL suppressor activity through its direct role on the metabolism of antioxidant glutathione levels, a crucial positive regulator of leukemic precursor survival.
Collapse
Affiliation(s)
- Cuiping Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz, Aurora, CO, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fatima Mohmoud
- Hoxworth Blood Center, University of Cincinnati, Cincinnati, OH, USA
| | - Juana Serrano-Lopez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John P Perentesis
- Department of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, Boston, MA, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, Boston, MA, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey A Whitsett
- Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Leighton Grimes
- Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Hoxworth Blood Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
7
|
Kalal BS, Upadhya D, Pai VR. Chemotherapy Resistance Mechanisms in Advanced Skin Cancer. Oncol Rev 2017; 11:326. [PMID: 28382191 PMCID: PMC5379221 DOI: 10.4081/oncol.2017.326] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is a most dangerous and deadly type of skin cancer, and considered intrinsically resistant to both radiotherapy and chemotherapy. It has become a major public health concern as the incidence of melanoma has been rising steadily over recent decades with a 5-year survival remaining less than 5%. Detection of the disease in early stage may be curable, but late stage metastatic disease that has spread to other organs has an extremely poor prognosis with a median survival of less than 10 months. Since metastatic melanoma is unresponsive to therapy that is currently available, research is now focused on different treatment strategies such as combinations of surgery, chemotherapy and radiotherapy. The molecular basis of resistance to chemotherapy seen in melanoma is multifactorial; defective drug transport system, altered apoptotic pathway, deregulation of apoptosis and/or changes in enzymatic systems that mediate cellular metabolic machinery. Understanding of alterations in molecular processes involved in drug resistance may help in developing new therapeutic approaches to treatment of malignant melanoma.
Collapse
Affiliation(s)
- Bhuvanesh Sukhlal Kalal
- Department of Biochemistry, Yenepoya Medical College, Mangaluru, India; Yenepoya Research Centre, Yenepoya University, Mangaluru, India
| | - Dinesh Upadhya
- Yenepoya Research Centre, Yenepoya University , Mangaluru, India
| | | |
Collapse
|
8
|
Micheli E, Altieri A, Cianni L, Cingolani C, Iachettini S, Bianco A, Leonetti C, Cacchione S, Biroccio A, Franceschin M, Rizzo A. Perylene and coronene derivatives binding to G-rich promoter oncogene sequences efficiently reduce their expression in cancer cells. Biochimie 2016; 125:223-31. [DOI: 10.1016/j.biochi.2016.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 11/28/2022]
|
9
|
Zizza P, Cingolani C, Artuso S, Salvati E, Rizzo A, D'Angelo C, Porru M, Pagano B, Amato J, Randazzo A, Novellino E, Stoppacciaro A, Gilson E, Stassi G, Leonetti C, Biroccio A. Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance. Nucleic Acids Res 2015; 44:1579-90. [PMID: 26511095 PMCID: PMC4770210 DOI: 10.1093/nar/gkv1122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/14/2015] [Indexed: 11/14/2022] Open
Abstract
Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression.In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk.
Collapse
Affiliation(s)
- Pasquale Zizza
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Chiara Cingolani
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Simona Artuso
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Erica Salvati
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Angela Rizzo
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Carmen D'Angelo
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Manuela Porru
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonella Stoppacciaro
- Dipartimento di Medicina Clinica e Molecolare, Università 'La Sapienza', piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Eric Gilson
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, University of Nice, 06107 Nice, France
| | - Giorgio Stassi
- Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, 06202 Nice cedex 3, France
| | - Carlo Leonetti
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Annamaria Biroccio
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
10
|
Chen ZF, Qin QP, Qin JL, Liu YC, Huang KB, Li YL, Meng T, Zhang GH, Peng Y, Luo XJ, Liang H. Stabilization of G-quadruplex DNA, inhibition of telomerase activity, and tumor cell apoptosis by organoplatinum(II) complexes with oxoisoaporphine. J Med Chem 2015; 58:2159-79. [PMID: 25650792 DOI: 10.1021/jm5012484] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two G-quadruplex ligands [Pt(L(a))(DMSO)Cl] (Pt1) and [Pt(L(b))(DMSO)Cl] (Pt2) have been synthesized and fully characterized. The two complexes are more selective for SK-OV-3/DDP tumor cells versus normal cells (HL-7702). It was found that both Pt1 and Pt2 could be a telomerase inhibitor targeting G-quadruplex DNA. This is the first report demonstrating that telomeric, c-myc, and bcl-2 G-quadruplexes and caspase-3/9 preferred to bind with Pt2 rather than Pt1, which also can induce senescence and apoptosis. The different biological behavior of Pt1 and Pt2 may correlate with the presence of a 6-hydroxyl group in L(b). Importantly, Pt1 and Pt2 exhibited higher safety in vivo and more effective inhibitory effects on tumor growth in the HCT-8 and NCI-H460 xenograft mouse model, compared with cisplatin. Taken together, these mechanistic insights indicate that both Pt1 and Pt2 display low toxicity and could be novel anticancer drug candidates.
Collapse
Affiliation(s)
- Zhen-Feng Chen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University , Yucai Road 15, Guilin 541004, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Salvati E, Rizzo A, Iachettini S, Zizza P, Cingolani C, D'Angelo C, Porru M, Mondello C, Aiello A, Farsetti A, Gilson E, Leonetti C, Biroccio A. A basal level of DNA damage and telomere deprotection increases the sensitivity of cancer cells to G-quadruplex interactive compounds. Nucleic Acids Res 2015; 43:1759-69. [PMID: 25618850 PMCID: PMC4330372 DOI: 10.1093/nar/gkv006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here, with the aim of obtaining insight into the intriguing selectivity of G-quadruplex (G4) ligands toward cancer compared to normal cells, a genetically controlled system of progressive transformation in human BJ fibroblasts was analyzed. Among the different comparative evaluations, we found a progressive increase of DNA damage response (DDR) markers throughout the genome from normal toward immortalized and transformed cells. More interestingly, sensitivity to G4 ligands strongly correlated with the presence of a basal level of DNA damage, including at the telomeres, where the chromosome ends were exposed to the DDR without concurrent induction of DNA repair activity, as revealed by the lack of 53BP1 recruitment and telomere aberrations. The link between telomere uncapping and the response to G4 stabilization was directly assessed by showing that a partial TRF2 depletion, causing a basal level of telomere localized DDR, rendered telomerized fibroblasts prone to G4-induced telomere damage and anti-proliferative defects. Taken together these data strongly indicate that the presence of a basal level of telomere-associated DDR is a determinant of susceptibility to G4 stabilization.
Collapse
Affiliation(s)
- Erica Salvati
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Angela Rizzo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Iachettini
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Pasquale Zizza
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Cingolani
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D'Angelo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Manuela Porru
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Mondello
- Istituto di Genetica Molecolare, National Research Council (CNR), Pavia, Italy
| | - Aurora Aiello
- Institute of Cell Biology and Neurobiology (IBCN), CNR Rome, Italy Department of Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonella Farsetti
- Institute of Cell Biology and Neurobiology (IBCN), CNR Rome, Italy Department of Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Eric Gilson
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, University of Nice, Nice, France Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, Nice, France
| | - Carlo Leonetti
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
12
|
Qin QP, Chen ZF, Shen WY, Jiang YH, Cao D, Li YL, Xu QM, Liu YC, Huang KB, Liang H. Synthesis of a platinum(II) complex with 2-(4-methoxy-phenyl) imidazo [4,5-f]-[1,10] phenanthrolin and study of its antitumor activity. Eur J Med Chem 2014; 89:77-87. [PMID: 25462228 DOI: 10.1016/j.ejmech.2014.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/23/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022]
Abstract
A new platinum(II) complex of [Pt(II)(L) (pn)]Cl·2H2O (1) (pn = 1,3-propanediamine) with 2-(4-methoxy-phenyl)imidazo [4,5-f]-[1,10]phenanthrolin (H-L) was synthesized and characterized. In complex 1, the platinum adopts a four-coordinated square planar geometry. Complex 1 exhibited selective cytotoxicity against NCI-H460, BEL-7402, SK-OV-3, SK-OV-3/DDP and HeLa cell lines with IC50 values in the micromolar range (9.7-35.8 μM), but low cytotoxicity toward normal human liver HL-7702 cells. Complex 1 caused HeLa cell cycle arrest at S phase and it induced HeLa apoptosis by the activation of caspase-3/9. Various experiments showed that complex 1 preferred to bind with G-quadruplex in c-myc. Taken together, we found that complex 1 exerted its antitumor activity mainly via inhibiting telomerase by interaction with c-myc quadruplex and activation of caspase-3/9.
Collapse
Affiliation(s)
- Qi-Pin Qin
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Zhen-Feng Chen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China.
| | - Wen-Ying Shen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Yan-Hua Jiang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Dong Cao
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Yu-Lan Li
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Qing-Min Xu
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Yan-Cheng Liu
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Ke-Bin Huang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China.
| |
Collapse
|
13
|
Synthesis, crystal structure, cytotoxicity and cell apoptosis induction of a copper(II)-based Schiff base complex. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Salvati E, Zizza P, Rizzo A, Iachettini S, Cingolani C, D’Angelo C, Porru M, Randazzo A, Pagano B, Novellino E, Pisanu ME, Stoppacciaro A, Spinella F, Bagnato A, Gilson E, Leonetti C, Biroccio A. Evidence for G-quadruplex in the promoter of vegfr-2 and its targeting to inhibit tumor angiogenesis. Nucleic Acids Res 2013; 42:2945-57. [PMID: 24335081 PMCID: PMC3950687 DOI: 10.1093/nar/gkt1289] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumor angiogenesis is mainly mediated by vascular endothelial growth factor (VEGF), a pro-angiogenic factor produced by cancer cells and active on the endothelium through the VEGF receptor 2 (VEGFR-2). Here we identify a G-rich sequence within the proximal promoter region of vegfr-2, able to form an antiparallel G-quadruplex (G4) structure. This G4 structure can be efficiently stabilized by small molecules with the consequent inhibition of vegfr-2 expression. Functionally, the G4-mediated reduction of VEGFR-2 protein causes a switching off of signaling components that, converging on actin cytoskeleton, regulate the cellular events leading to endothelial cell proliferation, migration and differentiation. As a result of endothelial cell function impairment, angiogenic process is strongly inhibited by G4 ligands both in vitro and in vivo. Interestingly, the G4-mediated antiangiogenic effect seems to recapitulate that observed by using a specific interference RNA against vegfr-2, and it is strongly antagonized by overexpressing the vegfr-2 gene. In conclusion, we describe the evidence for the existence of G4 in the promoter of vegfr-2, whose expression and function can be markedly inhibited by G4 ligands, thereby revealing a new, and so far undescribed, way to block VEGFR-2 as target for anticancer therapy.
Collapse
Affiliation(s)
- Erica Salvati
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Pasquale Zizza
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Angela Rizzo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Sara Iachettini
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Chiara Cingolani
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Carmen D’Angelo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Manuela Porru
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Antonio Randazzo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Bruno Pagano
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Ettore Novellino
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Maria Elena Pisanu
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Antonella Stoppacciaro
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Francesca Spinella
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Anna Bagnato
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Eric Gilson
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Carlo Leonetti
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy, Laboratory of Molecular Pathology, Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy, Laboratory of Molecular Pathology, Regina Elena National Cancer Institute, Rome, Italy, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France and Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
- *To whom correspondence should be addressed. Tel: +39 06 52662569; Fax: +39 06 52662592;
| |
Collapse
|
15
|
Di Leva FS, Zizza P, Cingolani C, D'Angelo C, Pagano B, Amato J, Salvati E, Sissi C, Pinato O, Marinelli L, Cavalli A, Cosconati S, Novellino E, Randazzo A, Biroccio A. Exploring the chemical space of G-quadruplex binders: discovery of a novel chemotype targeting the human telomeric sequence. J Med Chem 2013; 56:9646-54. [PMID: 24256368 DOI: 10.1021/jm401185b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent findings have unambiguously demonstrated that DNA G-rich sequences can adopt a G-quadruplex folding in living cells, thus further validating them as crucial targets for anticancer therapy. Herein, to identify new potent G4 binders as antitumor drug candidates, we have targeted a 24-nt G4-forming telomeric sequence employing a receptor-based virtual screening approach. Among the best candidates, in vitro binding experiments allowed identification of three novel G4 ligands. Among them, the best compound features an unprecedented binding selectivity for the human telomeric DNA G-quadruplex with no detectable binding for other G4-forming sequences present at different genomic sites. This behavior correlates with the detected ability to generate DNA damage response in tumor cells at the telomeric level and efficient antiproliferative effect on different tumor cell lines at low micromolar concentrations.
Collapse
Affiliation(s)
- Francesco Saverio Di Leva
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3481-3498. [PMID: 23830918 DOI: 10.1016/j.bbamcr.2013.06.026] [Citation(s) in RCA: 761] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 02/07/2023]
Abstract
Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonizing of distant organs. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are vital steps during cancer progression and metastatic colonization, the ability of cancer cells to resist anoikis has now attracted main attention from the scientific community. Cancer cells develop anoikis resistance due to several mechanisms, including change in integrins' repertoire allowing them to grow in different niches, activation of a plethora of inside-out pro-survival signals as over-activation of receptors due to sustained autocrine loops, oncogene activation, growth factor receptor overexpression, or mutation/upregulation of key enzymes involved in integrin or growth factor receptor signaling. In addition, tumor microenvironment has also been acknowledged to contribute to anoikis resistance of bystander cancer cells, by modulating matrix stiffness, enhancing oxidative stress, producing pro-survival soluble factors, triggering epithelial-mesenchymal transition and self-renewal ability, as well as leading to metabolic deregulations of cancer cells. All these events help cancer cells to inhibit the apoptosis machinery and sustain pro-survival signals after detachment, counteracting anoikis and constituting promising targets for anti-metastatic pharmacological therapy. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; Tuscany Tumor Institute and "Center for Research, Transfer and High Education, DENOTHE", 50134 Florence, Italy.
| |
Collapse
|
17
|
Cosconati S, Rizzo A, Trotta R, Pagano B, Iachettini S, De Tito S, Lauri I, Fotticchia I, Giustiniano M, Marinelli L, Giancola C, Novellino E, Biroccio A, Randazzo A. Shooting for selective druglike G-quadruplex binders: evidence for telomeric DNA damage and tumor cell death. J Med Chem 2012; 55:9785-92. [PMID: 23057850 DOI: 10.1021/jm301019w] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeting of DNA secondary structures, such as G-quadruplexes, is now considered an appealing opportunity for drug intervention in anticancer therapy. So far, efforts made in the discovery of chemotypes able to target G-quadruplexes mainly succeeded in the identification of a number of polyaromatic compounds featuring end-stacking binding properties. Against this general trend, we were persuaded that the G-quadruplex grooves can recognize molecular entities with better drug-like and selectivity properties. From this idea, a set of small molecules was identified and the structural features responsible for G-quadruplex recognition were delineated. These compounds were demonstrated to have enhanced affinity and selectivity for the G-quadruplex over the duplex structure. Their ability to induce selective DNA damage at telomeric level and to induction of apoptosis and senescence on tumor cells is herein experimentally proven.
Collapse
Affiliation(s)
- Sandro Cosconati
- Dipartimento di Scienze Ambientali, Seconda Università di Napoli , 81100 Caserta, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Levy S, Forman HJ. C-Myc is a Nrf2-interacting protein that negatively regulates phase II genes through their electrophile responsive elements. IUBMB Life 2010; 62:237-46. [PMID: 20232342 DOI: 10.1002/iub.314] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
c-Myc is a transcription factor that is implicated in many cellular processes including proliferation, apoptosis and cancers. Recently, c-Myc was shown to be involved in regulation of glutamate cysteine ligase through E-box sequences. This investigation examined whether c-Myc also regulates phase II genes through interaction with the electrophile response element (EpRE). Experiments were conducted in human bronchial epithelial cells using si-RNA to knock down c-Myc. RT-PCR and reporter assays were used to measure transcription and promoter activity. c-Myc downregulated transcription and promoter activity of phase II genes. Chromatin immunoprecipitation verified binding of c-Myc to EpRE while coimmunoprecipitation demonstrated interaction of c-Myc with Nrf2. c-Myc also forms a ternary complex with Nrf2 and p-c-Jun. Finally, c-Myc decreased Nrf2 stability. Thus, our results suggest regulation of the EpRE/Nrf2 signaling pathway by c-Myc through both interaction with the EpRE binding complex and increased degradation of Nrf2.
Collapse
Affiliation(s)
- Smadar Levy
- Department of Natural Sciences, University of California, Merced, USA
| | | |
Collapse
|
19
|
Locatelli C, Leal PC, Yunes RA, Nunes RJ, Creczynski-Pasa TB. Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: The relationship between free radical generation, glutathione depletion and cell death. Chem Biol Interact 2009; 181:175-84. [PMID: 19577552 DOI: 10.1016/j.cbi.2009.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 12/21/2022]
Abstract
Malignant melanoma is a lethal disease, and the incidence and mortality associated with it are increasing worldwide. It has a significant tendency to develop both metastasis and resistance to chemotherapy. The tumor cells show abnormal redox regulation, and although the molecular mechanisms involved are not well characterized, they seem to be related to oxidative stress. In a previous study, we showed the antitumoral properties of gallic acid ester derivatives in leukemia cells. Here, we show the effect of octyl, decyl, dodecyl and tetradecyl gallates on B16F10 cells, a melanoma cell line. All compounds induced cytotoxic effects, and the IC(50) values obtained were between 7microM and 17microM after 48h of incubation. Cell death occurred through apoptosis, as demonstrated by the genomic DNA fragmentation pattern. The gallates were able to induce significant production of free radicals, deplete both glutathione and ATP, activate NF-kappaB and promote the inhibition of cell adhesion under the experimental conditions. The glutathione depletion induced by these compounds was related to the inhibition of gamma-glutamylcysteine synthase activity. These results suggest that gallates induce tumoral cell death through apoptosis as a consequence of oxidative stress, though they use different mechanisms to do so. These findings are important since melanoma cells are resistant to death because of their high level of antioxidant defense, adhesion capability and propensity to metastasize.
Collapse
Affiliation(s)
- Claudriana Locatelli
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
20
|
Chow JM, Liu CR, Lin CP, Lee CN, Cheng YC, Lin S, Liu HE. Downregulation of c-Myc determines sensitivity to 2-methoxyestradiol–induced apoptosis in human acute myeloid leukemia. Exp Hematol 2008; 36:140-8. [DOI: 10.1016/j.exphem.2007.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 10/15/2007] [Accepted: 10/25/2007] [Indexed: 12/15/2022]
|
21
|
Kaur T, Gupta R, Vaiphei K, Kapoor R, Gupta N, Khanduja K. Interplay Between Oncoproteins and Antioxidant Enzymes in Esophageal Carcinoma Treated Without and With Chemoradiotherapy: A Prospective Study. Int J Radiat Oncol Biol Phys 2008; 70:563-71. [DOI: 10.1016/j.ijrobp.2007.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 06/01/2007] [Accepted: 06/11/2007] [Indexed: 10/22/2022]
|
22
|
Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance. Biochemistry 2007; 46:9270-82. [PMID: 17636872 PMCID: PMC3222686 DOI: 10.1021/bi700508n] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The binding stoichiometry between Cu(II) and the full-length beta-amyloid Abeta(1-42) and the oxidation state of copper in the resultant complex were determined by electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) and cyclic voltammetry. The same approach was extended to the copper complexes of Abeta(1-16) and Abeta(1-28). A stoichiometric ratio of 1:1 was directly observed, and the oxidation state of copper was deduced to be 2+ for all of the complexes, and residues tyrosine-10 and methionine-35 are not oxidized in the Abeta(1-42)-Cu(II) complex. The stoichiometric ratio remains the same in the presence of more than a 10-fold excess of Cu(II). Redox potentials of the sole tyrosine residue and the Cu(II) center were determined to be ca. 0.75 and 0.08 V vs Ag/AgCl [or 0.95 and 0.28 V vs normal hydrogen electrode (NHE)], respectively. More importantly, for the first time, the Abeta-Cu(I) complex has been generated electrochemically and was found to catalyze the reduction of oxygen to produce hydrogen peroxide. The voltammetric behaviors of the three Abeta segments suggest that diffusion of oxygen to the metal center can be affected by the length and hydrophobicity of the Abeta peptide. The determination and assignment of the redox potentials clarify some misconceptions in the redox reactions involving Abeta and provide new insight into the possible roles of redox metal ions in the Alzheimer's disease (AD) pathogenesis. In cellular environments, the reduction potential of the Abeta-Cu(II) complex is sufficiently high to react with antioxidants (e.g., ascorbic acid) and cellular redox buffers (e.g., glutathione), and the Abeta-Cu(I) complex produced could subsequently reduce oxygen to form hydrogen peroxide via a catalytic cycle. Using voltammetry, the Abeta-Cu(II) complex formed in solution was found to be readily reduced by ascorbic acid. Hydrogen peroxide produced, in addition to its role in damaging DNA, protein, and lipid molecules, can also be involved in the further consumption of antioxidants, causing their depletion in neurons and eventually damaging the neuronal defense system. Another possibility is that Abeta-Cu(II) could react with species involved in the cascade of electron transfer events of mitochondria and might potentially sidetrack the electron transfer processes in the respiratory chain, leading to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Dianlu Jiang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | - Lijie Men
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, USA
| | - Jianxiu Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | - Yi Zhang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | - Sara Chickenyen
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, USA
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| |
Collapse
|
23
|
Benassi B, Zupi G, Biroccio A. γ-Glutamylcysteine Synthetase Mediates the c-Myc-Dependent Response to Antineoplastic Agents in Melanoma Cells. Mol Pharmacol 2007; 72:1015-23. [PMID: 17628013 DOI: 10.1124/mol.107.038687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aims to investigate the role of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme for glutathione (GSH) synthesis, in the c-Myc-dependent response to antineoplastic agents. We found that specific c-Myc inhibition depleted cells of GSH by directly reducing the gene expression of both heavy and light subunits of the gamma-GCS enzyme and increased their susceptibility to antineoplastic drugs with different mechanisms of action, such as cisplatin (CDDP), staurosporine (STR), and 5-fluorouracil (5-FU). The effect caused by c-Myc inhibition on CDDP and STR response, but not to 5-FU treatment, is directly linked to the impairment of the gamma-GCS expression, because up-regulation of gamma-GCS reverted drug sensitivity, whereas the interference of GSH synthesis increased drug susceptibility as much as after c-Myc down-regulation. The role of gamma-GCS in the c-Myc-directed drug response depends on the capacity of drugs to trigger reactive oxygen species (ROS) production. Indeed, although 5-FU exposure did not induce any ROS, CDDP- and STR-induced oxidative stress enhanced the recruitment of c-Myc on both gamma-GCS promoters, thus stimulating GSH neosynthesis and allowing cells to recover from ROS-induced drug damage. In conclusion, our data demonstrate that the gamma-GCS gene is the downstream target of c-Myc oncoprotein, driving the response to ROS-inducing drugs. Thus, gamma-GCS impairment might specifically sensitize high c-Myc tumor cells to chemotherapy.
Collapse
Affiliation(s)
- Barbara Benassi
- Experimental Chemotherapy Laboratory, Experimental Research Center, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | |
Collapse
|
24
|
Biroccio A, Rizzo A, Elli R, Koering CE, Belleville A, Benassi B, Leonetti C, Stevens MFG, D'Incalci M, Zupi G, Gilson E. TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells. Eur J Cancer 2006; 42:1881-8. [PMID: 16750909 DOI: 10.1016/j.ejca.2006.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 01/23/2006] [Accepted: 03/21/2006] [Indexed: 11/25/2022]
Abstract
The inhibition of the telomere-binding protein TRF2, by expressing the dominant negative form TRF2(DeltaBDeltaC), has been used as a model of anti-telomere strategy to induce a reversion of the malignant phenotype of M14 and JR5 human melanoma lines. Over-expression of TRF2(DeltaBDeltaC) induced apoptosis and reduced tumourigenicity exclusively in JR5 cells. p53 and Rb status and apoptotic response to DNA damage did not seem to account for the different response of the two lines to TRF2 inhibition. Interestingly, JR5 cells possess shorter and more dysfunctional telomeres compared to M14 line. Moreover, the treatment with the G-quadruplex-interacting agent (G4-ligand) RHPS4 sensitises M14 cells to TRF2 inhibition. These results demonstrate that TRF2 can impair tumuorigenicity of human cancer cells. They further suggest that a basal level of telomere instability favours an efficient response to TRF2 inhibition and that a combined anti-TRF2 and G4-ligand therapy would have synergistic inhibitory effects on tumour cell growth.
Collapse
Affiliation(s)
- Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Experimental Research Centre, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, Rome 00158, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Todorova VK, Kaufmann Y, Luo S, Klimberg VS. Modulation of p53 and c-myc in DMBA-Induced Mammary Tumors by Oral Glutamine. Nutr Cancer 2006; 54:263-73. [PMID: 16898871 DOI: 10.1207/s15327914nc5402_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Previous studies established that oral glutamine (GLN) reduced tumor development in implantable and 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer models. This finding was associated with a decrease in tumor glutathione (GSH) levels, while maintaining normal gut, blood, and breast GSH. Alterations in GSH levels contribute to the control of apoptotic and cell cycle-regulating signaling. The aim of this study was to examine the role of dietary GLN on activation of p53 and c-myc, which play critical roles in cancer development and sensitivity to radiation and chemotherapy. Mammary gland carcinomas were induced in rats by DMBA. The rats were gavaged daily with GLN or water (controls), starting 1 wk prior DMBA-application and throughout the duration of the experiment (11 wk after DMBA). Tumor DNA was examined for mutations in p53 exons 5 and 6. Protein and mRNA levels of p53, p21(WAF1/CIP1), PTEN, IGF-IR, mdm2, and c-myc in tumors of GLN-supplemented rats were compared with those of the control rats (received water). The sequencing of p53 showed that it was wild type. Increased phosphorylation of p53, as well as higher mRNA and protein levels of p21(WAF1/CIP1), PTEN, and mdm2, and lower levels of IGF-IR were detected in tumors of GLN-supplemented rats vs. controls. Both phosphorylated c-myc and c-myc mRNA levels were reduced by GLN. The up-regulation of tumor p53 signaling and down-regulation of c-myc, in addition to previously established inhibition of Akt signaling in DMBA-breast cancer model, suggest that dietary GLN could be a useful approach for increasing the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Valentina K Todorova
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | |
Collapse
|
26
|
Parreño M, Vaqué JP, Casanova I, Frade P, Céspedes MV, Pavón MA, Molins A, Camacho M, Vila L, Nomdedeu JF, Mangues R, León J. Novel triiodophenol derivatives induce caspase-independent mitochondrial cell death in leukemia cells inhibited by Myc. Mol Cancer Ther 2006; 5:1166-75. [PMID: 16731748 DOI: 10.1158/1535-7163.mct-05-0257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2,4,6-Triiodophenol (Bobel-24, AM-24) was originally described as a nonsteroid antiinflammatory molecule. We have synthesized three derivatives of Bobel-24 (Bobel-4, Bobel-16, and Bobel-30) and tested their activities as putative antileukemic agents. We have found that Bobel-24 and Bobel-16 were dual inhibitors of cyclooxygenase and 5-lipoxygenase, whereas Bobel-4 and Bobel-30 were selective against 5-lipoxygenase. We have tested the antiproliferative activity of these compounds on a panel of cell lines derived from myeloid and lymphoid leukemias (K562, Raji, HL-60, and Molt4). The cytotoxic IC(50) in these cell lines ranged between 14 and 50 micromol/L, but it was higher for nontransformed cells such as 32D, NIH3T3, or human leukocytes. All compounds showed cytotoxic activity on all tested cell lines, accompanied by DNA synthesis inhibition and arrest in the G(0)/G(1) phase. Bobel-16, Bobel-4, and Bobel-24 induced a caspase-independent cell death in K562 and Raji cells, accompanied by chromatin condensation, cytochrome c release, and dissipation of mitochondrial membrane potential in a concentration-dependent manner and production of reactive oxygen species. As the proto-oncogene MYC is involved in mitochondrial biogenesis and survival of leukemia cells, we tested its effect on bobel activity. Bobel-24 induced down-regulation of MYC in K562 and, consistently, ectopic expression of MYC results in partial protection towards the cytotoxic effect of Bobel-24. In conclusion, Bobel derivatives induce a caspase- and Bcl-2-independent cell death in which mitochondrial permeabilization and MYC down-regulation are involved. Bobels may serve as prototypes for the development of new agents for the therapy of leukemia.
Collapse
Affiliation(s)
- Matilde Parreño
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Avenida Cardenal Herrera Oria, s/n 39011 Santander, Cantabria, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M, Zupi G, Biroccio A. c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell 2006; 21:509-19. [PMID: 16483932 DOI: 10.1016/j.molcel.2006.01.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/18/2005] [Accepted: 01/09/2006] [Indexed: 11/17/2022]
Abstract
Aside from the well-established roles of c-Myc in the regulation of cell cycle, differentiation, and apoptosis, a recent picture is beginning to emerge linking c-Myc to the regulation of metabolic pathways. Here, we define a further function for c-Myc in determining cellular redox balance, identifying glutathione (GSH) as the leading molecule mediating this process. The link between c-Myc and GSH is gamma-glutamyl-cysteine synthetase (gamma-GCS), the rate-limiting enzyme catalyzing GSH biosynthesis. Indeed, c-Myc transcriptionally regulates gamma-GCS by binding and activating the promoters of both gamma-GCS heavy and light subunits. Exposure to H2O2 enhances c-Myc recruitment to gamma-GCS regulatory regions through ERK-dependent phosphorylation. Phosphorylation at Ser-62 is required for c-Myc recruitment to gamma-GCS promoters and determines the cellular response to oxidative stress induced by different stimuli. Thus, the c-Myc phosphorylation-dependent activation of the GSH-directed survival pathway can contribute to oxidative stress resistance in tumor cells, which generally exhibit deregulated c-Myc expression.
Collapse
Affiliation(s)
- Barbara Benassi
- Experimental Chemotherapy Laboratory, Experimental Research Center, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bressin C, Bourgarel-Rey V, Carré M, Pourroy B, Arango D, Braguer D, Barra Y. Decrease in c-Myc activity enhances cancer cell sensitivity to vinblastine. Anticancer Drugs 2006; 17:181-7. [PMID: 16428936 DOI: 10.1097/00001813-200602000-00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The c-myc oncogene encodes for a transcriptional factor involved in many cellular processes such as proliferation, differentiation and apoptosis. According to these different functions, the role of c-Myc protein in cellular sensitivity to anti-cancer drugs is controversial. We defined the role of c-Myc in cancer cell sensitivity to vinblastine (VLB) using human colon cancer cells: LoVo wild-type or transfected with a plasmid containing the human c-myc gene in antisense orientation (LoVo-mycANS). Analysis of VLB cytotoxicity demonstrated a 3-fold increase in VLB sensitivity in LoVo-mycANS cells. Comparison between cells revealed different apoptosis kinetics: accumulation of cells in sub-G1 phase and poly(ADP-ribose) polymerase cleavage occurred earlier in LoVo-mycANS. Then, we demonstrated a mitochondrial membrane potential disruption followed by cytochrome c release that indicates the involvement of mitochondria in this apoptotic signaling pathway. This earlier apoptosis was accompanied by a Bcl-2 decrease and a p53 increase. In conclusion, the decrease in c-Myc expression enhanced the VLB sensitivity, triggering earlier apoptosis through induction of the intrinsic pathway. Thus, c-myc induction is a resistance factor and our findings suggest that tumors carrying low levels of c-Myc protein could be more responsive to vinca alkaloids treatment. Moreover, the downregulation of c-myc oncogene by an antisense strategy might represent a useful goal for improving the efficacy of this anti-neoplastic drug family.
Collapse
Affiliation(s)
- Céline Bressin
- CNRS FRE 2737, UFR Pharmacie, University of La Mediterranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Del Bufalo D, Rizzo A, Trisciuoglio D, Cardinali G, Torrisi MR, Zangemeister-Wittke U, Zupi G, Biroccio A. Involvement of hTERT in apoptosis induced by interference with Bcl-2 expression and function. Cell Death Differ 2005; 12:1429-38. [PMID: 15920535 DOI: 10.1038/sj.cdd.4401670] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Here, we investigated the role of telomerase on Bcl-2-dependent apoptosis. To this end, the 4625 Bcl-2/Bcl-xL bispecific antisense oligonucleotide and the HA14-1 Bcl-2 inhibitor were used. We found that apoptosis induced by 4625 oligonucleotide was associated with decreased Bcl-2 protein expression and telomerase activity, while HA14-1 triggered apoptosis without affecting both Bcl-2 and telomerase levels. Interestingly, HA14-1 treatment resulted in a profound change from predominantly nuclear to a predominantly cytoplasmic localization of hTERT. Downregulation of endogenous hTERT protein by RNA interference markedly increased apoptosis induced by both 4625 and HA14-1, while overexpression of wild-type hTERT blocked Bcl-2-dependent apoptosis in a p53-independent manner. Catalytically and biologically inactive hTERT mutants showed a similar behavior as the wild-type form, indicating that hTERT inhibited the 4625 and HA14-1-induced apoptosis regardless of telomerase activity and its ability to lengthening telomeres. Finally, hTERT overexpression abrogated 4625 and HA14-1-induced mitochondrial dysfunction and nuclear translocation of hTERT. In conclusion, our results demonstrate that hTERT is involved in mitochondrial apoptosis induced by targeted inhibition of Bcl-2.
Collapse
Affiliation(s)
- D Del Bufalo
- Experimental Chemotherapy Laboratory, Experimental Research Center, Regina Elena Cancer Institute, Rome 00158, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Biroccio A, D'Angelo C, Jansen B, Gleave ME, Zupi G. Antisense clusterin oligodeoxynucleotides increase the response of HER-2 gene amplified breast cancer cells to Trastuzumab. J Cell Physiol 2005; 204:463-9. [PMID: 15685647 DOI: 10.1002/jcp.20295] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Clusterin (CLU) is a heterodimeric secreted glycoprotein implicated in several physiological and pathological processes including cancer. Although recent data showed that overexpression of CLU is closely associated with disease progression in patients with breast tumor, the functional role of CLU expression in this tumor hystotype remains to be determined. The objectives in this study were to evaluate CLU expression levels after treatment with Trastuzumab, a HER2-targeted monoclonal antibody used in the clinical management of advanced breast cancer patients, and to test the usefulness of combined treatment with OGX-011, the second generation 2'-methoxyethyl gapmer oligonucleotides targeting the CLU gene, and Trastuzumab in this tumor hystotype. By using the HER-2 gene amplified-BT474 human breast cancer cells, we found Trastuzumab decreased HER-2 expression and inhibited cell proliferation without affecting apoptosis. Interestingly, Trastuzumab treatment up-regulated CLU protein expression in a dose-dependent fashion. We therefore hypothesized that the treatment with OGX-011, by blocking Trastuzumab-induced CLU expression, might potentiate the growth-inhibitory effect of Trastuzumab alone. Although OGX-011 had no effect on the behavior of the BT474 cells when used alone, it significantly enhanced the sensitivity of cells to Trastuzumab. A significant increase in the percentage of apoptotic cells, analyzed in terms of annexin V positivity and cleavage of poly(ADP-ribose) polymerase, was observed after combined treatment with OGX-011 plus Trastuzumab but not with either agent alone. Altogether our findings suggest that combined targeting of HER-2 and CLU may represent a novel, rational approach to breast cancer therapy.
Collapse
Affiliation(s)
- Annamaria Biroccio
- Experimental Chemotherapy Laboratory, "Centro di Ricerca Sperimentale", Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | |
Collapse
|
31
|
Turella P, Cerella C, Filomeni G, Bullo A, De Maria F, Ghibelli L, Ciriolo MR, Cianfriglia M, Mattei M, Federici G, Ricci G, Caccuri AM. Proapoptotic activity of new glutathione S-transferase inhibitors. Cancer Res 2005; 65:3751-61. [PMID: 15867371 DOI: 10.1158/0008-5472.can-04-3903] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Selected 7-nitro-2,1,3-benzoxadiazole derivatives have been recently found very efficient inhibitors of glutathione S-transferase (GST) P1-1, an enzyme which displays antiapoptotic activity and is also involved in the cellular resistance to anticancer drugs. These new inhibitors are not tripeptide glutathione-peptidomimetic molecules and display lipophylic properties suitable for crossing the plasma membrane. In the present work, we show the strong cytotoxic activity of these compounds in the following four different cell lines: K562 (human myeloid leukemia), HepG2 (human hepatic carcinoma), CCRF-CEM (human T-lymphoblastic leukemia), and GLC-4 (human small cell lung carcinoma). The LC50 values are in the micromolar/submicromolar range and are close to the IC50 values obtained with GSTP1-1, suggesting that the target of these molecules inside the cell is indeed this enzyme. The cytotoxic mechanism of 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, the most effective GSTP1-1 inhibitor, has been carefully investigated in leukemic CCRF-CEM and K562 cell lines. Western blot and immunoprecipitation analyzes have shown that 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol promotes in both cell lines the dissociation of the GSTP1-1 in a complex with c-jun NH2-terminal kinase (JNK). This process triggers a reactive oxygen species (ROS)-independent activation of the JNK-mediated pathway that results in a typical process of apoptosis. Besides this main pathway, in K562 cells, a ROS-mediated apoptosis partially occurs (about 30%) which involves the p38MAPK signal transduction pathway. The low concentration of this new compound needed to trigger cytotoxic effects on tumor cells and the low toxicity on mice indicate that the new 7-nitro-2,1,3-benzoxadiazole derivatives are promising anticancer agents.
Collapse
Affiliation(s)
- Paola Turella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boonplueang R, Akopian G, Stevenson FF, Kuhlenkamp JF, Lu SC, Walsh JP, Andersen JK. Increased susceptibility of glutathione peroxidase-1 transgenic mice to kainic acid-related seizure activity and hippocampal neuronal cell death. Exp Neurol 2005; 192:203-14. [PMID: 15698635 DOI: 10.1016/j.expneurol.2004.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 12/15/2004] [Accepted: 12/16/2004] [Indexed: 12/23/2022]
Abstract
Glutathione peroxidase (GSHPx) has been demonstrated in several in vivo studies to reduce both the risk and severity of oxidatively-induced tissue damage. The seizure-inducing neurotoxin kainic acid (KA) has been suggested to elicit its toxic effects in part via generation of oxidative stress. In this study, we report that expression of elevated levels of murine GSHPx-1 in transgenic mice surprisingly results in increased rather than decreased KA susceptibility including increased seizure activity and neuronal hippocampal damage. Isolated transgenic primary hippocampal culture neurons also display increased susceptibility to KA treatment compared with those from wildtype animals. This could be due to alterations in the redox state of the glutathione system resulting in elevated glutathione disulfide (GSSG) levels which, in turn, may directly activate NMDA receptors or enhanced response of the NMDA receptor.
Collapse
Affiliation(s)
- R Boonplueang
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Biroccio A, Benassi B, Fiorentino F, Zupi G. Glutathione depletion induced by c-Myc downregulation triggers apoptosis on treatment with alkylating agents. Neoplasia 2004; 6:195-206. [PMID: 15153331 PMCID: PMC1502103 DOI: 10.1593/neo.3370] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we investigate the mechanism(s) involved in the c-Myc-dependent drug response of melanoma cells. By using three M14-derived c-Myc low-expressing clones, we demonstrate that alkylating agents, cisplatin and melphalan, trigger apoptosis in the c-Myc antisense transfectants, but not in the parental line. On the contrary, topoisomerase inhibitors, adriamycin and camptothecin, induce apoptosis to the same extent regardless of c-Myc expression. Because we previously demonstrated that c-Myc downregulation decreases glutathione (GSH) content, we evaluated the role of GSH in the apoptosis induced by the different drugs. In control cells treated with one of the alkylating agents or the others, GSH depletion achieved by L-buthionine-sulfoximine preincubation opens the apoptotic pathway. The apoptosis proceeded through early Bax relocalization, cytochrome c release, and concomitant caspase-9 activation, whereas reactive oxygen species production and alteration of mitochondria membrane potential were late events. That GSH was determining in the c-Myc-dependent drug-induced apoptosis was demonstrated by altering the intracellular GSH content of the c-Myc low-expressing cells up to the level of controls. Indeed, GSH ethyl ester-mediated increase of GSH abrogated apoptosis induced by cisplatin and melphalan by inhibition of Bax/cytochrome c redistribution. The relationship among c-Myc, GSH content, and the response to alkylating agent has been also evaluated in the M14 Myc overexpressing clones as well as in the melanoma JR8 c-Myc antisense transfectants. All together, these results demonstrate that GSH plays a key role in governing c-Myc-dependent drug-induced apoptosis.
Collapse
Affiliation(s)
- Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Experimental Research Center, Regina Elena Cancer Institute, Rome 00158, Italy.
| | | | | | | |
Collapse
|
34
|
Glutathione Depletion Induced by c-Myc Downregulation Triggers Apoptosis on Treatment with Alkylating Agents. Neoplasia 2004. [DOI: 10.1593/neo.03370] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Conn KJ, Ullman MD, Larned MJ, Eisenhauer PB, Fine RE, Wells JM. cDNA microarray analysis of changes in gene expression associated with MPP+ toxicity in SH-SY5Y cells. Neurochem Res 2004; 28:1873-81. [PMID: 14649730 DOI: 10.1023/a:1026179926780] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
cDNA microarray analysis of 1-methyl-4-phenyl-pyridinium (MPP+) toxicity (1 mM, 72 h) in undifferentiated SH-SY5Y cells identified 48 genes that displayed a signal intensity greater than the mean of all differentially expressed genes and a two-fold or greater difference in normalized expression. RT-PCR analysis of a subset of genes showed that c-Myc and RNA-binding protein 3 (RMB3) expression decreased by approximately 50% after 72 h of exposure to MPP+ (1 mM) but did not change after 72 h of exposure to 6-hydroxydopamine (25 microM), rotenone (50 nM), and hydrogen peroxide (600 microM). Exposure of retinoic acid (RA)-differentiated SH-SY5Y cells to MPP+ (1 mM, 72 h) also resulted in a decrease in RMB3 expression and an increase in GADD153 expression. In contrast, c-Myc expression was slightly increased in RA-differentiated cells. Collectively, these data provide new insights into the molecular mechanisms of MPP+ toxicity and show that MPP+ can elicit distinct patterns of gene expression in undifferentiated and RA-differentiated SH-SY5Y cells.
Collapse
Affiliation(s)
- Kelly J Conn
- Department of Veterans Affairs, VA Medical Center, 200 Springs Road, Bedford, Massachusetts 01730, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Biroccio A, Leonetti C, Zupi G. The future of antisense therapy: combination with anticancer treatments. Oncogene 2003; 22:6579-88. [PMID: 14528283 DOI: 10.1038/sj.onc.1206812] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The current direction in cancer research is rational drug design, which is based on the evidence that transformed cells are characterized by alterations of genes devoted to the regulation of both cell proliferation and apoptosis. A variety of approaches have been carried out to develop new agents selective for cancer cells. Among these, antisense oligonucleotides (ASOs) are one of such class of new agents able to inhibit specifically the synthesis of a particular cancer-associated protein by binding to protein-encoding RNA, thereby preventing RNA function. In the past decade, several ASOs have been developed and tested in preclinical and clinical studies. Many have shown convincing in vitro reduction in target gene expression and promising activity against a wide variety of tumors. However, because of the multigenic alterations of tumors, the use of ASOs as single agents does not seem to be effective in the treatment of malignancies. Antisense therapy that interferes with signaling pathways involved in cell proliferation and apoptosis are particularly promising in combination with conventional anticancer treatment. An overview of the progress of ASOs used in combination therapy is provided.
Collapse
Affiliation(s)
- Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | | | | |
Collapse
|
37
|
Di Padova M, Bruno T, De Nicola F, Iezzi S, D'Angelo C, Gallo R, Nicosia D, Corbi N, Biroccio A, Floridi A, Passananti C, Fanciulli M. Che-1 arrests human colon carcinoma cell proliferation by displacing HDAC1 from the p21WAF1/CIP1 promoter. J Biol Chem 2003; 278:36496-504. [PMID: 12847090 DOI: 10.1074/jbc.m306694200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Che-1 is a recently identified human RNA polymerase II binding protein involved in the regulation of gene transcription and cell proliferation. We previously demonstrated that Che-1 inhibits the Rb growth-suppressing function by interfering with Rb-mediated HDAC1 recruitment on E2F target gene promoters. By hybridization of cancer profile arrays, we found that Che-1 expression is strongly down-regulated in several tumors, including colon and kidney carcinomas, compared with the relative normal tissues. Consistent with these data, Che-1 overexpression inhibits proliferation of HCT116 and LoVo human colon carcinoma cell lines by activation of the cyclin-dependent kinase inhibitor p21WAF1/Cip1 in a p53-independent manner and by promoting growth arrest at the G1 phase of the cell cycle. Che-1 activates p21WAF1/Cip1 by displacing histone deacetylase (HDAC)1 from the Sp1 binding sites of the p21WAF1/Cip1 gene promoter and accumulating acetylated histone H3 on these sites. Accordingly, Che-1-specific RNA interference negatively affects p21WAF1/Cip1 transactivation and increases cell proliferation in HCT116 cells. Taken together, our results indicate that Che-1 can be considered a general HDAC1 competitor and its down-regulation is involved in colon carcinoma cell proliferation.
Collapse
|
38
|
Biroccio A, Amodei S, Antonelli A, Benassi B, Zupi G. Inhibition of c-Myc oncoprotein limits the growth of human melanoma cells by inducing cellular crisis. J Biol Chem 2003; 278:35693-701. [PMID: 12824159 DOI: 10.1074/jbc.m304597200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we show that inhibition of c-Myc causes a proliferative arrest of M14 melanoma cells through cellular crisis, evident by the increase in size, multiple nuclei, vacuolated cytoplasm, induction of senescence-associated beta-galactosidase activity and massive apoptosis. The c-Myc-induced crisis is associated with decreased human telomerase reverse transcriptase expression, telomerase activity, progressive telomere shortening, glutathione (GSH), depletion and, increased production of reactive oxygen species. Treatment of control cells with L-buthionine sulfoximine decreases GSH to levels of c-Myc low expressing cells, but it does not modify the growth kinetic of the cells. Surprisingly, when GSH is increased in the c-Myc low expressing cells by treatment with N-acetyl-L-cysteine, cells escape crisis. To test the hypothesis that both oxidative stress and telomerase dysfunction are involved in the c-Myc-dependent crisis, we directly inhibited telomerase function and glutathione levels. Inactivation of telomerase, by expression of a catalytically inactive, dominant negative form of reverse transcriptase, reduces cellular lifespan by inducing telomere shortening. Treatment of cells with L-buthionine sulfoximine decreases GSH content and accelerates cell crisis. Analysis of telomere status demonstrated that oxidative stress affects c-Myc-induced crisis by increasing telomere dysfunction. Our results demonstrate that inhibition of c-Myc oncoprotein induces cellular crisis through cooperation between telomerase dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Centro di Ricerca Sperimentale, Regina Elena Cancer Institute, 00158 Rome, Italy.
| | | | | | | | | |
Collapse
|
39
|
Kwon YW, Masutani H, Nakamura H, Ishii Y, Yodoi J. Redox regulation of cell growth and cell death. Biol Chem 2003; 384:991-6. [PMID: 12956415 DOI: 10.1515/bc.2003.111] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxidative stress evokes various cellular events, including activation of transcription factors, apoptosis, and cell cycle arrest. Accumulating evidence shows that reduction/oxidation (redox) plays an important role in the regulation of apoptosis and cell cycle arrest elicited by oxidative stress. Cellular redox is controlled by the thioredoxin (TRX) and glutathione (GSH) systems. TRX and GSH systems regulate cell growth and cell death by the activation of transcription factors, the sensitivity of cells to cytokines and growth factors, and the components of the apoptosis pathways. This brief review describes the current knowledge on the redox regulation of cell growth and apoptosis.
Collapse
Affiliation(s)
- Yong-Won Kwon
- Institute for Virus Research, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|