1
|
Puntman DC, Arora S, Farina M, Toonen RF, Verhage M. Munc18-1 Is Essential for Neuropeptide Secretion in Neurons. J Neurosci 2021; 41:5980-5993. [PMID: 34103363 PMCID: PMC8276746 DOI: 10.1523/jneurosci.3150-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide secretion from dense-core vesicles (DCVs) controls many brain functions. Several components of the DCV exocytosis machinery have recently been identified, but the participation of a SEC1/MUNC18 (SM) protein has remained elusive. Here, we tested the ability of the three exocytic SM proteins expressed in the mammalian brain, MUNC18-1/2/3, to support neuropeptide secretion. We quantified DCV exocytosis at a single vesicle resolution on action potential (AP) train-stimulation in mouse CNS neurons (of unknown sex) using pHluorin-tagged and/or mCherry-tagged neuropeptide Y (NPY) or brain-derived neurotrophic factor (BDNF). Conditional inactivation of Munc18-1 abolished all DCV exocytosis. Expression of MUNC18-1, but not MUNC18-2 or MUNC18-3, supported DCV exocytosis in Munc18-1 null neurons. Heterozygous (HZ) inactivation of Munc18-1, as a model for reduced MUNC18-1 expression, impaired DCV exocytosis, especially during the initial phase of train-stimulation, when the release was maximal. These data show that neurons critically and selectively depend on MUNC18-1 for neuropeptide secretion. Impaired neuropeptide secretion may explain aspects of the behavioral and neurodevelopmental phenotypes that were observed in Munc18-1 HZ mice.SIGNIFICANCE STATEMENT Neuropeptide secretion from dense-core vesicles (DCVs) modulates synaptic transmission, sleep, appetite, cognition and mood. However, the mechanisms of DCV exocytosis are poorly characterized. Here, we identify MUNC18-1 as an essential component for neuropeptide secretion from DCVs. Paralogs MUNC18-2 or MUNC18-3 cannot compensate for MUNC18-1. MUNC18-1 is the first protein identified to be essential for both neuropeptide secretion and synaptic transmission. In heterozygous (HZ) Munc18-1 neurons, that have a 50% reduced MUNC18-1expression and model the human STXBP1 syndrome, DCV exocytosis is impaired, especially during the initial phase of train-stimulation, when the release is maximal. These data show that MUNC18-1 is essential for neuropeptide secretion and that impaired neuropeptide secretion on reduced MUNC18-1expression may contribute to the symptoms of STXBP1 syndrome.
Collapse
Affiliation(s)
- Daniël C Puntman
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Swati Arora
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Margherita Farina
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Matthijs Verhage
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| |
Collapse
|
2
|
Dolai S, Liang T, Orabi AI, Xie L, Holmyard D, Javed TA, Fernandez NA, Xie H, Cattral MS, Thurmond DC, Thorn P, Gaisano HY. Depletion of the membrane-fusion regulator Munc18c attenuates caerulein hyperstimulation-induced pancreatitis. J Biol Chem 2017; 293:2510-2522. [PMID: 29284677 DOI: 10.1074/jbc.ra117.000792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial pancreatic acinar cells perform crucial functions in food digestion, and acinar cell homeostasis required for secretion of digestive enzymes relies on SNARE-mediated exocytosis. The ubiquitously expressed Sec1/Munc18 protein mammalian uncoordinated-18c (Munc18c) regulates membrane fusion by activating syntaxin-4 (STX-4) to bind cognate SNARE proteins to form a SNARE complex that mediates exocytosis in many cell types. However, in the acinar cell, Munc18c's functions in exocytosis and homeostasis remain inconclusive. Here, we found that pancreatic acini from Munc18c-depleted mice (Munc18c+/-) and human pancreas (lenti-Munc18c-shRNA-treated) exhibit normal apical exocytosis of zymogen granules (ZGs) in response to physiologic stimulation with the intestinal hormone cholecystokinin (CCK-8). However, when stimulated with supraphysiologic CCK-8 levels to mimic pancreatitis, Munc18c-depleted (Munc18c+/-) mouse acini exhibited a reduction in pathological basolateral exocytosis of ZGs resulting from a decrease in fusogenic STX-4 SNARE complexes. This reduced basolateral exocytosis in part explained the less severe pancreatitis observed in Munc18c+/- mice after hyperstimulation with the CCK-8 analog caerulein. Likely as a result of this secretory blockade, Munc18c-depleted acini unexpectedly activated a component of the endoplasmic reticulum (ER) stress response that contributed to autophagy induction, resulting in downstream accumulation of autophagic vacuoles and autolysosomes. We conclude that Munc18c's role in mediating ectopic basolateral membrane fusion of ZGs contributes to the initiation of CCK-induced pancreatic injury, and that blockade of this secretory process could increase autophagy induction.
Collapse
Affiliation(s)
- Subhankar Dolai
- From the Departments of Medicine and .,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Liang
- From the Departments of Medicine and.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Abrahim I Orabi
- Division of Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Li Xie
- From the Departments of Medicine and.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Douglas Holmyard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Tanveer A Javed
- Division of Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | | | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2N2, Canada
| | - Debbie C Thurmond
- Beckman Research Institute of the City of Hope, Duarte, California 91010, and
| | - Peter Thorn
- School of Biomedical Sciences,University of Sydney, Sydney, New South Wales 2050, Australia
| | - Herbert Y Gaisano
- From the Departments of Medicine and .,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Qin T, Liang T, Zhu D, Kang Y, Xie L, Dolai S, Sugita S, Takahashi N, Ostenson CG, Banks K, Gaisano HY. Munc18b Increases Insulin Granule Fusion, Restoring Deficient Insulin Secretion in Type-2 Diabetes Human and Goto-Kakizaki Rat Islets with Improvement in Glucose Homeostasis. EBioMedicine 2017; 16:262-274. [PMID: 28163042 PMCID: PMC5474508 DOI: 10.1016/j.ebiom.2017.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/09/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
Reduced pancreatic islet levels of Munc18a/SNARE complex proteins have been postulated to contribute to the deficient glucose-stimulated insulin secretion (GSIS) in type-2 diabetes (T2D). Whereas much previous work has purported Munc18a/SNARE complex (Syntaxin-1A/VAMP-2/SNAP25) to be primarily involved in predocked secretory granule (SG) fusion, less is known about newcomer SGs that undergo minimal docking time at the plasma membrane before fusion. Newcomer SG fusion has been postulated to involve a distinct SM/SNARE complex (Munc18b/Syntaxin-3/VAMP8/SNAP25), whose levels we find also reduced in islets of T2D humans and T2D Goto-Kakizaki (GK) rats. Munc18b overexpression by adenovirus infection (Ad-Munc18b), by increasing assembly of Munc18b/SNARE complexes, mediated increased fusion of not only newcomer SGs but also predocked SGs in T2D human and GK rat islets, resulting in rescue of the deficient biphasic GSIS. Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS. Human T2D islet β-cells exhibit reduced fusion of predocked & newcomer secretory granules (SGs). Munc18b increases SNARE complexes involved in fusions of both newcomer & predocked SGs. Munc18b rescue of newcomer & predocked SGs increased biphasic secretion in human T2D β-cells. Munc18b rescue of T2D Goto-Kakizaki rat β-cell secretion improves glucose homeostasis.
Deficient insulin secretion from pancreatic islet β-cells in type-2 diabetes (T2D) is partly due to reduced expression of many proteins that assemble into specific complexes that mediate fusion of insulin secretory granules (SGs) with plasma membrane, termed exocytosis. We here show we can infuse a virus that contains the construct of one of the SG fusion proteins, Munc18b, into pancreatic ducts of T2D rats to reach the islets, which restored insulin secretion and improved glycemic control. Munc18b acts to promote the assembly of SG fusion complexes. This strategy could potentially be applied to treat human T2D by endoscopic infusion.
Collapse
Affiliation(s)
- Tairan Qin
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dan Zhu
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Li Xie
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Subhankar Dolai
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuzo Sugita
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Fundamental Neurobiology, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Claes-Goran Ostenson
- Department of Molecular Medicine and Surgery, Endocrinology and Diabetology Unit, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Kate Banks
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Comparative Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
Brochetta C, Suzuki R, Vita F, Soranzo MR, Claver J, Madjene LC, Attout T, Vitte J, Varin-Blank N, Zabucchi G, Rivera J, Blank U. Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation. THE JOURNAL OF IMMUNOLOGY 2013; 192:41-51. [PMID: 24323579 DOI: 10.4049/jimmunol.1301277] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mast cell degranulation requires N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) and mammalian uncoordinated18 (Munc18) fusion accessory proteins for membrane fusion. However, it is still unknown how their interaction supports fusion. In this study, we found that small interfering RNA-mediated silencing of the isoform Munc18-2 in mast cells inhibits cytoplasmic secretory granule (SG) release but not CCL2 chemokine secretion. Silencing of its SNARE-binding partner syntaxin 3 (STX3) also markedly inhibited degranulation, whereas combined knockdown produced an additive inhibitory effect. Strikingly, while Munc18-2 silencing impaired SG translocation, silencing of STX3 inhibited fusion, demonstrating unique roles of each protein. Immunogold studies showed that both Munc18-2 and STX3 are located on the granule surface, but also within the granule matrix and in small nocodazole-sensitive clusters of the cytoskeletal meshwork surrounding SG. After stimulation, clusters containing both effectors were detected at fusion sites. In resting cells, Munc18-2, but not STX3, interacted with tubulin. This interaction was sensitive to nocodazole treatment and decreased after stimulation. Our results indicate that Munc18-2 dynamically couples the membrane fusion machinery to the microtubule cytoskeleton and demonstrate that Munc18-2 and STX3 perform distinct, but complementary, functions to support, respectively, SG translocation and membrane fusion in mast cells.
Collapse
Affiliation(s)
- Cristiana Brochetta
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Ryo Suzuki
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Francesca Vita
- Department of Life Sciences Department of Physiology and Pathology, University of Trieste, Italy
| | - Maria Rosa Soranzo
- Department of Life Sciences Department of Physiology and Pathology, University of Trieste, Italy
| | - Julien Claver
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Lydia Celia Madjene
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Tarik Attout
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Joana Vitte
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Nadine Varin-Blank
- Inserm U978, 93000 Bobigny, France.,Laboratoire d'excellence "Inflamex," Unité de Formation et de Recherche Santé-Médecine-Biologie Humaine, 93000 Bobigny, France
| | - Giuliano Zabucchi
- Department of Life Sciences Department of Physiology and Pathology, University of Trieste, Italy
| | - Juan Rivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Ulrich Blank
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| |
Collapse
|
5
|
Lam PP, Ohno M, Dolai S, He Y, Qin T, Liang T, Zhu D, Kang Y, Liu Y, Kauppi M, Xie L, Wan WC, Bin NR, Sugita S, Olkkonen VM, Takahashi N, Kasai H, Gaisano HY. Munc18b is a major mediator of insulin exocytosis in rat pancreatic β-cells. Diabetes 2013; 62:2416-28. [PMID: 23423569 PMCID: PMC3712044 DOI: 10.2337/db12-1380] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sec1/Munc18 proteins facilitate the formation of trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes that mediate fusion of secretory granule (SG) with plasma membrane (PM). The capacity of pancreatic β-cells to exocytose insulin becomes compromised in diabetes. β-Cells express three Munc18 isoforms of which the role of Munc18b is unknown. We found that Munc18b depletion in rat islets disabled SNARE complex formation formed by syntaxin (Syn)-2 and Syn-3. Two-photon imaging analysis revealed in Munc18b-depleted β-cells a 40% reduction in primary exocytosis (SG-PM fusion) and abrogation of almost all sequential SG-SG fusion, together accounting for a 50% reduction in glucose-stimulated insulin secretion (GSIS). In contrast, gain-of-function expression of Munc18b wild-type and, more so, dominant-positive K314L/R315L mutant promoted the assembly of cognate SNARE complexes, which caused potentiation of biphasic GSIS. We found that this was attributed to a more than threefold enhancement of both primary exocytosis and sequential SG-SG fusion, including long-chain fusion (6-8 SGs) not normally (2-3 SG fusion) observed. Thus, Munc18b-mediated exocytosis may be deployed to increase secretory efficiency of SGs in deeper cytosolic layers of β-cells as well as additional primary exocytosis, which may open new avenues of therapy development for diabetes.
Collapse
Affiliation(s)
- Patrick P.L. Lam
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mitsuyo Ohno
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | - Subhankar Dolai
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yu He
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tairan Qin
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dan Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yunfeng Liu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maria Kauppi
- National Institute for Health and Welfare, Biomedicum, Helsinki, Finland
| | - Li Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wilson C.Y. Wan
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Na-Rhum Bin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario, Canada
| | - Shuzo Sugita
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario, Canada
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
- Corresponding authors: Haruo Kasai, , and Herbert Y. Gaisano,
| | - Herbert Y. Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Corresponding authors: Haruo Kasai, , and Herbert Y. Gaisano,
| |
Collapse
|
6
|
Han GA, Bin NR, Kang SYA, Han L, Sugita S. Domain 3a of Munc18-1 plays a crucial role at the priming stage of exocytosis. J Cell Sci 2013; 126:2361-71. [PMID: 23525015 DOI: 10.1242/jcs.126862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Munc18-1 is believed to prime or stimulate SNARE-mediated membrane fusion/exocytosis through binding to the SNARE complex, in addition to chaperoning its cognate syntaxins. Nevertheless, a Munc18-1 mutant that selectively loses the priming function while retaining the syntaxin chaperoning activity has not been identified. As a consequence, the mechanism that mediates Munc18-1-dependent priming remains unclear. In the course of analyzing the functional outcomes of a variety of point mutations in domain 3a of Munc18-1, we discovered insertion mutants (K332E/K333E with insertions of 5 or 39 residues). These mutants completely lose their ability to rescue secretion whereas they effectively restore syntaxin-1 expression at the plasma membrane as well as dense-core vesicle docking in Munc18-1 and Munc18-2 double-knockdown PC12 cells. The mutants can bind syntaxin-1A in a stoichiometric manner. However, binding to the SNARE complex is impaired compared with the wild type or the hydrophobic pocket mutant (F115E). Our results suggest that the domain 3a of Munc18-1 plays a crucial role in priming of exocytosis, which is independent of its syntaxin-1 chaperoning activity and is downstream of dense-core vesicle docking. We also suggest that the priming mechanism of Munc18-1 involves its domain-3a-dependent interaction with the SNARE complex.
Collapse
Affiliation(s)
- Gayoung Anna Han
- Division of Fundamental Neurobiology, University Health Network, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | | | | | | | | |
Collapse
|
7
|
Zhu D, Koo E, Kwan E, Kang Y, Park S, Xie H, Sugita S, Gaisano HY. Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia 2013; 56:359-69. [PMID: 23132338 DOI: 10.1007/s00125-012-2757-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/01/2012] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS The molecular basis of the exocytosis of secretory insulin-containing granules (SGs) during biphasic glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells remains unclear. Syntaxin (SYN)-1A and SYN-4 have been shown to mediate insulin exocytosis. The insulin-secretory function of SYN-3, which is particularly abundant in SGs, is unclear. METHODS Mouse pancreatic islets and INS-1 cells were treated with adenovirus carrying Syn-3 (also known as Stx3) or small interfering RNA targeting Syn-3 in order to examine insulin secretion by radioimmunoassay. The localisation and distribution of insulin granules were examined by confocal and electron microscopy. Dynamic single-granule fusion events were assessed using total internal reflection fluorescence microscopy (TIRFM). RESULTS Depletion of endogenous SYN-3 inhibited insulin release. TIRFM showed no change in the number or fusion competence of previously docked SGs but, instead, a marked reduction in the recruitment of newcomer SGs and their subsequent exocytotic fusion during biphasic GSIS. Conversely, overexpression of Syn-3 enhanced both phases of GSIS, owing to the increase in newcomer SGs and, remarkably, to increased SG-SG fusion, which was confirmed by electron microscopy. CONCLUSIONS/INTERPRETATION In insulin secretion, SYN-3 plays a role in the mediation of newcomer SG exocytosis and SG-SG fusion that contributes to biphasic GSIS.
Collapse
Affiliation(s)
- D Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Munc18b is an essential gene in mice whose expression is limiting for secretion by airway epithelial and mast cells. Biochem J 2012; 446:383-94. [PMID: 22694344 PMCID: PMC3430001 DOI: 10.1042/bj20120057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Airway mucin secretion and MC (mast cell) degranulation must be tightly controlled for homoeostasis of the lungs and immune system respectively. We found the exocytic protein Munc18b to be highly expressed in mouse airway epithelial cells and MCs, and localized to the apical pole of airway secretory cells. To address its functions, we created a mouse with a severely hypomorphic Munc18b allele such that protein expression in heterozygotes was reduced by ~50%. Homozygous mutant mice were not viable, but heterozygotes showed a ~50% reduction in stimulated release of mucin from epithelial cells and granule contents from MCs. The defect in MCs affected only regulated secretion and not constitutive or transporter-mediated secretion. The severity of passive cutaneous anaphylaxis was also reduced by ~50%, showing that reduction of Munc18b expression results in an attenuation of physiological responses dependent on MC degranulation. The Munc18b promoter is controlled by INR (initiator), Sp1 (specificity protein 1), Ets, CRE (cAMP-response element), GRE (glucocorticoid-response element), GATA and E-box elements in airway epithelial cells; however, protein levels did not change during mucous metaplasia induced by allergic inflammation. Taken together, the results of the present study identify Munc18b as an essential gene that is a limiting component of the exocytic machinery of epithelial cells and MCs.
Collapse
|
9
|
Han GA, Malintan NT, Saw NMN, Li L, Han L, Meunier FA, Collins BM, Sugita S. Munc18-1 domain-1 controls vesicle docking and secretion by interacting with syntaxin-1 and chaperoning it to the plasma membrane. Mol Biol Cell 2011; 22:4134-49. [PMID: 21900502 PMCID: PMC3204074 DOI: 10.1091/mbc.e11-02-0135] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Munc18-1 plays pleiotropic roles in neurosecretion by acting as 1) a molecular chaperone of syntaxin-1, 2) a mediator of dense-core vesicle docking, and 3) a priming factor for soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion. However, how these functions are executed and whether they are correlated remains unclear. Here we analyzed the role of the domain-1 cleft of Munc18-1 by measuring the abilities of various mutants (D34N, D34N/M38V, K46E, E59K, K46E/E59K, K63E, and E66A) to bind and chaperone syntaxin-1 and to restore the docking and secretion of dense-core vesicles in Munc18-1/-2 double-knockdown cells. We identified striking correlations between the abilities of these mutants to bind and chaperone syntaxin-1 with their ability to restore vesicle docking and secretion. These results suggest that the domain-1 cleft of Munc18-1 is essential for binding to syntaxin-1 and thereby critical for its chaperoning, docking, and secretory functions. Our results demonstrate that the effect of the alleged priming mutants (E59K, D34N/M38V) on exocytosis can largely be explained by their reduced syntaxin-1-chaperoning functions. Finally, our data suggest that the intracellular expression and distribution of syntaxin-1 determines the level of dense-core vesicle docking.
Collapse
Affiliation(s)
- Gayoung A Han
- Division of Fundamental Neurobiology, University Health Network, Toronto ON M5T 2S8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Han GA, Malintan NT, Collins BM, Meunier FA, Sugita S. Munc18-1 as a key regulator of neurosecretion. J Neurochem 2010; 115:1-10. [PMID: 20681955 DOI: 10.1111/j.1471-4159.2010.06900.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Munc18-1 plays essential roles in neurosecretion by interacting with syntaxin-1 and controlling the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) complex. At least three important functions of Munc18-1 have been proposed: (i) molecular chaperone of syntaxin-1 for appropriate localization and expression of syntaxin-1, (ii) priming/stimulation of the SNARE-mediated membrane fusion, and (iii) docking of large dense-core vesicles to the plasma membrane. Similarly, at least two different binding modes have been proposed for the interaction between Munc18-1 and syntaxin-1: (i) binary binding to a 'closed' conformation of syntaxin-1, and (ii) binding to the N-terminal peptide of syntaxin-1, which is thought to enable an interaction with the quaternary SNARE complex and/or further stabilize the binary interaction between Munc18-1 and closed syntaxin-1. Recent structural analyses have identified critical Munc18-1 residues implicated in these different modes of binding. These have recently been tested functionally in rescue experiments using Munc18-1 null neurons, chromaffin cells and Munc18-1/-2 knockdown PC12 cells, allowing remarkable progress to be made in the structural/functional understanding of Munc18-1. In this review, we summarize these recent advances and attempt to propose an updated model of the pleiotropic functions of Munc18-1 in neuroexocytosis.
Collapse
Affiliation(s)
- Gayoung A Han
- Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
11
|
An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 2010; 29:3286-300. [PMID: 20711167 DOI: 10.1038/emboj.2010.195] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 07/20/2010] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing achieves coordinated changes in post-transcriptional gene expression programmes through the activities of diverse RNA-binding proteins. Epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) are cell-type-specific regulators of transcripts that switch splicing during the epithelial-mesenchymal transition (EMT). To define a comprehensive programme of alternative splicing that is regulated during the EMT, we identified an extensive ESRP-regulated splicing network of hundreds of alternative splicing events within numerous genes with functions in cell-cell adhesion, polarity, and migration. Loss of this global ESRP-regulated epithelial splicing programme induces the phenotypic changes in cell morphology that are observed during the EMT. Components of this splicing signature provide novel molecular markers that can be used to characterize the EMT. Bioinformatics and experimental approaches revealed a high-affinity ESRP-binding motif and a predictive RNA map that governs their activity. This work establishes the ESRPs as coordinators of a complex alternative splicing network that adds an important post-transcriptional layer to the changes in gene expression that underlie epithelial-mesenchymal transitions during development and disease.
Collapse
|
12
|
Côte M, Ménager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, Al-Manjomi F, Al-Harbi M, Alangari A, Le Deist F, Gennery AR, Prince N, Cariou A, Nitschke P, Blank U, El-Ghazali G, Ménasché G, Latour S, Fischer A, de Saint Basile G. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 2009; 119:3765-73. [PMID: 19884660 DOI: 10.1172/jci40732] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/23/2009] [Indexed: 12/27/2022] Open
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is a genetically heterogeneous autosomal recessive immune disorder characterized by the occurrence of uncontrolled activation of lymphocytes and macrophages infiltrating multiple organs. Disease-causing mutations in the perforin (PRF1; also known as FHL2), Munc13-4 (UNC13D; also known as FHL3), and syntaxin-11 (STX11; also known as FHL4) genes have been identified in individuals with FHL. These genes all encode proteins involved in the cytotoxic activity of lymphocytes. Here, we show that the gene encoding syntaxin-binding protein 2 (Munc18-2; official gene symbol STXBP2) is mutated in another subset of patients with FHL (designated by us as "FHL5"). Lymphoblasts isolated from these patients had strongly decreased STXBP2 protein expression, and NK cells exhibited impaired cytotoxic granule exocytosis, a defect that could be overcome by ectopic expression of wild-type STXBP2. Furthermore, we provide evidence that syntaxin-11 is the main partner of STXBP2 in lymphocytes, as its expression required the presence of STXBP2. Our work shows that STXBP2 deficiency causes FHL5. These data indicate that STXBP2 is required at a late step of the secretory pathway for the release of cytotoxic granules by binding syntaxin 11, another component of the intracellular membrane fusion machinery.
Collapse
Affiliation(s)
- Marjorie Côte
- INSERM U768, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Han L, Jiang T, Han GA, Malintan NT, Xie L, Wang L, Tse FW, Gaisano HY, Collins BM, Meunier FA, Sugita S. Rescue of Munc18-1 and -2 double knockdown reveals the essential functions of interaction between Munc18 and closed syntaxin in PC12 cells. Mol Biol Cell 2009; 20:4962-75. [PMID: 19812250 DOI: 10.1091/mbc.e09-08-0712] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Munc18-1 binds to syntaxin-1A via two distinct sites referred to as the "closed" conformation and N terminus binding. The latter has been shown to stimulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated exocytosis, whereas the former is believed to be inhibitory or dispensable. To precisely define the contributions of each binding mode, we have engineered Munc18-1/-2 double knockdown neurosecretory cells and show that not only syntaxin-1A and -1B but also syntaxin-2 and -3 are significantly reduced as a result of Munc18-1 and -2 knockdown. Syntaxin-1 was mislocalized and the regulated secretion was abolished. We next examined the abilities of Munc18-1 mutants to rescue the defective phenotypes. Mutation (K46E/E59K) of Munc18-1 that selectively prevents binding to closed syntaxin-1 was unable to restore syntaxin-1 expression, localization, or secretion. In contrast, mutations (F115E/E132A) of Munc18-1 that selectively impair binding to the syntaxin-1 N terminus could still rescue the defective phenotypes. Our results indicate that Munc18-1 and -2 act in concert to support the expression of a broad range of syntaxins and to deliver syntaxin-1 to the plasma membrane. Our studies also indicate that the binding to the closed conformation of syntaxin is essential for Munc18-1 stimulatory action, whereas the binding to syntaxin N terminus plays a more limited role in neurosecretory cells.
Collapse
Affiliation(s)
- Liping Han
- Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet 2009; 85:482-92. [PMID: 19804848 DOI: 10.1016/j.ajhg.2009.09.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 12/12/2022] Open
Abstract
Rapid intracellular transport and secretion of cytotoxic granules through the immunological synapse requires a balanced interaction of several proteins. Disturbance of this highly regulated process underlies familial hemophagocytic lymphohistiocytosis (FHL), a genetically heterogeneous autosomal-recessive disorder characterized by a severe hyperinflammatory phenotype. Here, we have assigned FHL-5 to a 1 Mb region on chromosome 19p by using high-resolution SNP genotyping in eight unrelated FHL patients from consanguineous families. Subsequently, we found nine different mutations, either truncating or missense, in STXBP2 in twelve patients from Turkey, Saudi Arabia, and Central Europe. STXBP2 encodes syntaxin binding protein 2 (Munc18-2), involved in the regulation of vesicle transport to the plasma membrane. We have identified syntaxin 11, a SNARE protein mutated in FHL-4, as an interaction partner of STXBP2. This interaction is eliminated by the missense mutations found in our FHL-5 patients, which leads to a decreased stability of both proteins, as shown in patient lymphocytes. Activity of natural killer and cytotoxic T cells was markedly reduced or absent, as determined by CD107 degranulation. Our findings thus identify a key role for STXBP2 in lytic granule exocytosis.
Collapse
|
15
|
Montesano Gesualdi N, Chirico G, Catanese MT, Pirozzi G, Esposito F. AROS-29 is involved in adaptive response to oxidative stress. Free Radic Res 2009; 40:467-76. [PMID: 16551573 DOI: 10.1080/10715760600570547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Transient adaptation to mild oxidative stress was induced in human osteosarcoma cells chronically grown in sub-toxic concentrations of diethylmaleate (DEM), a glutathione (GSH) depleting agent. The adapted cells, compared to untreated cells, contain increased concentrations of GSH (4-6 fold) which, upon DEM withdrawal from the culture medium, return to normal values and are more resistant to subsequent oxidizing stress induced either by toxic concentrations of the same agent or by (H(2)O(2)) treatment. To investigate the molecular mechanisms involved in the adaptive response to oxidative stress, we analyzed the gene expression profiles of DEM-adapted cells by differential display. The expression of adaptive response to oxidative stress (AROS)-29 gene, coding for a transmembrane protein of unknown function, as well as of some known genes involved in energy metabolism, protein folding and membrane traffic is up-regulated in adapted cells. The increased resistance to both DNA damage and apoptosis, in cells stably overexpressing AROS-29, demonstrated its functional role in the protection against oxidative stress.
Collapse
|
16
|
Cosen-Binker LI, Binker MG, Wang CC, Hong W, Gaisano HY. VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis. J Clin Invest 2008; 118:2535-51. [PMID: 18535671 DOI: 10.1172/jci34672] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 04/30/2008] [Indexed: 12/12/2022] Open
Abstract
In rodents and humans, alcohol exposure has been shown to predispose the pancreas to cholinergic or viral induction of pancreatitis. We previously developed a rodent model in which exposure to an ethanol (EtOH) diet, followed by carbachol (Cch) stimulation, redirects exocytosis from the apical to the basolateral plasma membrane of acinar cells, resulting in ectopic zymogen enzyme activation and pancreatitis. This redirection of exocytosis involves a soluble NSF attachment receptor (SNARE) complex consisting of syntaxin-4 and synapse-associated protein of 23 kDa (SNAP-23). Here, we investigated the role of the zymogen granule (ZG) SNARE vesicle-associated membrane protein 8 (VAMP8) in mediating basolateral exocytosis. In WT mice, in vitro EtOH exposure or EtOH diet reduced Cch-stimulated amylase release by redirecting apical exocytosis to the basolateral membrane, leading to alcoholic pancreatitis. Further reduction of zymogen secretion, caused by blockade of both apical and basolateral exocytosis and resulting in a more mild induction of alcoholic pancreatitis, was observed in Vamp8(-/-) mice in response to these treatments. In addition, although ZGs accumulated in Vamp8(-/-) acinar cells, ZG-ZG fusions were reduced compared with those in WT acinar cells, as visualized by electron microscopy. This reduction in ZG fusion may account for reduced efficiency of apical exocytosis in Vamp8(-/-) acini. These findings indicate that VAMP8 is the ZG-SNARE that mediates basolateral exocytosis in alcoholic pancreatitis and that VAMP8 is critical for ZG-ZG homotypic fusion.
Collapse
Affiliation(s)
- Laura I Cosen-Binker
- Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Vergara D, Chiriacò F, Acierno R, Maffia M. Proteomic map of peripheral blood mononuclear cells. Proteomics 2008; 8:2045-51. [PMID: 18491318 DOI: 10.1002/pmic.200700726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the field of proteomics extensive efforts have been focused on the knowledge of proteins expressed by different cell types. In particular, enormous progress has been done in the characterization of blood cellular components. In this work, we have established a public 2-DE database for human peripheral blood mononuclear cells (PBMCs) proteins. Two hundred and forty-six spots corresponding to 174 different proteins have been identified on 2-DE gels from PBMCs isolated from six healthy individuals. All the identified proteins have been classified in thirteen categories on the basis of their differential functions or cellular localization and annotated at the http://physiology.unile.it/proteomics. The role of several proteins has been discussed in relation to their biological function. We intend to show the potentiality of PBMCs to investigate the proteomics changes possibly associated with a large number of pathologies such as autoimmune, neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas 77251-1892, USA.
| |
Collapse
|
19
|
Torkko JM, Manninen A, Schuck S, Simons K. Depletion of apical transport proteins perturbs epithelial cyst formation and ciliogenesis. J Cell Sci 2008; 121:1193-203. [PMID: 18349078 DOI: 10.1242/jcs.015495] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epithelial cells are vital for maintaining the complex architecture and functions of organs in the body. Directed by cues from the extracellular matrix, cells polarize their surface into apical and basolateral domains, and connect by extensive cell-cell junctions to form tightly vowen epithelial layers. In fully polarized cells, primary cilia project from the apical surface. Madin-Darby canine kidney (MDCK) cells provide a model to study organization of cells as monolayers and also in 3D in cysts. In this study retrovirus-mediated RNA interference (RNAi) was used to generate a series of knockdowns (KDs) for proteins implicated in apical transport: annexin-13, caveolin-1, galectin-3, syntaxin-3, syntaxin-2 and VIP17 and/or MAL. Cyst cultures were then employed to study the effects of these KDs on epithelial morphogenesis. Depletion of these proteins by RNAi stalled the development of the apical lumen in cysts and resulted in impaired ciliogenesis. The most severe ciliary defects were observed in annexin-13 and syntaxin-3 KD cysts. Although the phenotypes demonstrate the robustness of the formation of the polarized membrane domains, they indicate the important role of apical membrane biogenesis in epithelial organization.
Collapse
Affiliation(s)
- Juha M Torkko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
20
|
Arunachalam L, Han L, Tassew NG, He Y, Wang L, Xie L, Fujita Y, Kwan E, Davletov B, Monnier PP, Gaisano HY, Sugita S. Munc18-1 is critical for plasma membrane localization of syntaxin1 but not of SNAP-25 in PC12 cells. Mol Biol Cell 2008; 19:722-34. [PMID: 18077557 PMCID: PMC2230596 DOI: 10.1091/mbc.e07-07-0662] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/31/2007] [Accepted: 11/29/2007] [Indexed: 11/11/2022] Open
Abstract
Although Munc18-1 was originally identified as a syntaxin1-interacting protein, the physiological significance of this interaction remains unclear. In fact, recent studies of Munc18-1 mutants have suggested that Munc18-1 plays a critical role for docking of secretory vesicles, independent of syntaxin1 regulation. Here we investigated the role of Munc18-1 in syntaxin1 localization by generating stable neuroendocrine cell lines in which Munc18-1 was strongly down-regulated. In these cells, the secretion capability, as well as the docking of dense-core vesicles, was significantly reduced. More importantly, not only was the expression level of syntaxin1 reduced, but the localization of syntaxin1 at the plasma membrane was also severely perturbed. The mislocalized syntaxin1 resided primarily in the perinuclear region of the cells, in which it was highly colocalized with Secretogranin II, a marker protein for dense-core vesicles. In contrast, the expression level and the plasma membrane localization of SNAP-25 were not affected. Furthermore, the syntaxin1 localization and the secretion capability were restored upon transfection-mediated reintroduction of Munc18-1. Our results indicate that endogenous Munc18-1 plays a critical role for the plasma membrane localization of syntaxin1 in neuroendocrine cells and therefore necessitates the interpretation of Munc18-1 mutant phenotypes to be in terms of mislocalized syntaxin1.
Collapse
Affiliation(s)
| | - Liping Han
- *Division of Fundamental Neurobiology and
- Departments of Physiology and
| | - Nardos G. Tassew
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | - Yu He
- Departments of Physiology and
- Medicine, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada; and
| | - Li Wang
- *Division of Fundamental Neurobiology and
| | - Li Xie
- Departments of Physiology and
- Medicine, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada; and
| | | | - Edwin Kwan
- Departments of Physiology and
- Medicine, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada; and
| | - Bazbek Davletov
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | - Philippe P. Monnier
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada
- Departments of Physiology and
| | - Herbert Y. Gaisano
- *Division of Fundamental Neurobiology and
- Departments of Physiology and
- Medicine, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada; and
| | - Shuzo Sugita
- *Division of Fundamental Neurobiology and
- Departments of Physiology and
| |
Collapse
|
21
|
Wang P, Chintagari NR, Gou D, Su L, Liu L. Physical and functional interactions of SNAP-23 with annexin A2. Am J Respir Cell Mol Biol 2007; 37:467-76. [PMID: 17575076 PMCID: PMC2176122 DOI: 10.1165/rcmb.2006-0447oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung surfactant is secreted through the fusion of lamellar bodies with the plasma membrane of alveolar epithelial type II cells. Annexin A2, a Ca(2+)- and phospholipid-binding protein, promotes the fusion of lamellar bodies with the plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are known to have an essential role in surfactant secretion. We hypothesized that annexin A2 acts as a Ca(2+) sensor and mediates membrane fusion via its interaction with SNAREs. Both purified or endogenous annexin A2 in type II cells specifically bound with SNAP-23 in a Ca(2+)-dependent manner, as determined by pull-down experiments using recombinant glutathione S-transferase-tagged SNAP-23. A deletion study identified the cysteine-rich region (CRR) of SNAP-23 as the binding site for annexin A2. Mutations of cysteine residues in the CRR dramatically decreased the binding. SNAP-23 also co-immunoprecipitated with annexin A2; however, a SNAP-23 mutant failed to co-immunoprecipitate with annexin A2. Immunofluorescence revealed a co-localization of SNAP-23 and annexin A2 in type II cells. Furthermore, anti-SNAP-23 antibody significantly inhibited annexin A2-mediated fusion between lamellar bodies and the plasma membrane. These data suggest that annexin A2 and SNAP-23 are involved in the same pathway in the regulation of lung surfactant secretion.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK 74078, USA
| | | | | | | | | |
Collapse
|
22
|
Lam PPL, Hyvärinen K, Kauppi M, Cosen-Binker L, Laitinen S, Keränen S, Gaisano HY, Olkkonen VM. A cytosolic splice variant of Cab45 interacts with Munc18b and impacts on amylase secretion by pancreatic acini. Mol Biol Cell 2007; 18:2473-80. [PMID: 17442889 PMCID: PMC1924827 DOI: 10.1091/mbc.e06-10-0950] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We identified in a yeast two-hybrid screen the EF-hand Ca(2+)-binding protein Cab45 as an interaction partner of Munc18b. Although the full-length Cab45 resides in Golgi lumen, we characterize a cytosolic splice variant, Cab45b, expressed in pancreatic acini. Cab45b is shown to bind (45)Ca(2+), and, of its three EF-hand motifs, EF-hand 2 is demonstrated to be crucial for the ion binding. Cab45b is shown to interact with Munc18b in an in vitro assay, and this interaction is enhanced in the presence of Ca(2+). In this assay, Cab45b also binds the Munc18a isoform in a Ca(2+)-dependent manner. The endogenous Cab45b in rat acini coimmunoprecipitates with Munc18b, syntaxin 2, and syntaxin 3, soluble N-ethylmaleimide-sensitive factor attachment protein receptors with key roles in the Ca(2+)-triggered zymogen secretion. Furthermore, we show that Munc18b bound to syntaxin 3 recruits Cab45b onto the plasma membrane. Importantly, antibodies against Cab45b are shown to inhibit in a specific and dose-dependent manner the Ca(2+)-induced amylase release from streptolysin-O-permeabilized acini. The present study identifies Cab45b as a novel protein factor involved in the exocytosis of zymogens by pancreatic acini.
Collapse
Affiliation(s)
- Patrick P L Lam
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sharma N, Low SH, Misra S, Pallavi B, Weimbs T. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. ACTA ACUST UNITED AC 2006; 173:937-48. [PMID: 16785322 PMCID: PMC2063918 DOI: 10.1083/jcb.200603132] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In polarized epithelial cells, syntaxin 3 localizes to the apical plasma membrane and is involved in membrane fusion of apical trafficking pathways. We show that syntaxin 3 contains a necessary and sufficient apical targeting signal centered around a conserved FMDE motif. Mutation of any of three critical residues within this motif leads to loss of specific apical targeting. Modeling based on the known structure of syntaxin 1 revealed that these residues are exposed on the surface of a three-helix bundle. Syntaxin 3 targeting does not require binding to Munc18b. Instead, syntaxin 3 recruits Munc18b to the plasma membrane. Expression of mislocalized mutant syntaxin 3 in Madin-Darby canine kidney cells leads to basolateral mistargeting of apical membrane proteins, disturbance of tight junction formation, and loss of ability to form an organized polarized epithelium. These results indicate that SNARE proteins contribute to the overall specificity of membrane trafficking in vivo, and that the polarity of syntaxin 3 is essential for epithelial cell polarization.
Collapse
Affiliation(s)
- Nikunj Sharma
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
24
|
Hong W. SNAREs and traffic. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:120-44. [PMID: 15893389 DOI: 10.1016/j.bbamcr.2005.03.014] [Citation(s) in RCA: 362] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/24/2005] [Accepted: 03/28/2005] [Indexed: 01/05/2023]
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are now generally accepted to be the major players in the final stage of the docking and the subsequent fusion of diverse vesicle-mediated transport events. The SNARE-mediated process is conserved evolutionally from yeast to human, as well as mechanistically and structurally across different transport events in eukaryotic cells. In the post-genomic era, a fairly complete list of "all" SNAREs in several organisms (including human) can now be made. This review aims to summarize the key properties and the mechanism of action of SNAREs in mammalian cells.
Collapse
Affiliation(s)
- Wanjin Hong
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore.
| |
Collapse
|
25
|
Bajohrs M, Rickman C, Binz T, Davletov B. A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep 2005; 5:1090-5. [PMID: 15486565 PMCID: PMC1299173 DOI: 10.1038/sj.embor.7400278] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 08/31/2004] [Accepted: 09/20/2004] [Indexed: 11/08/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of the proteins responsible for vesicle exocytosis. Paradoxically, two serotypes of BoNTs, A and E, cleave the same molecule, synaptosome-associated protein with relative molecular mass 25K (SNAP-25), and yet they cause synaptic blockade with very different properties. Here we compared the action of BoNTs A and E on the plasma membrane fusion machinery composed of syntaxin and SNAP-25. We now show that the BoNT/A-cleaved SNAP-25 maintains its association with two syntaxin isoforms in vitro, which is mirrored by retention of SNAP-25 on the plasma membrane in vivo. In contrast, BoNT/E severely compromises the ability of SNAP-25 to bind the plasma membrane syntaxin isoforms, leading to dissociation of SNAP-25. The distinct properties of botulinum intoxication, therefore, can result from the ability of shortened SNAP-25 to maintain its association with syntaxins-in the case of BoNT/A poisoning resulting in unproductive syntaxin/SNAP-25 complexes that impede vesicle exocytosis.
Collapse
Affiliation(s)
- Mark Bajohrs
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Colin Rickman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Thomas Binz
- Department of Biochemistry, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Bazbek Davletov
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
- Tel: +44 1223 402071; Fax: +44 1223 402310; E-mail:
| |
Collapse
|
26
|
Abonyo BO, Gou D, Wang P, Narasaraju T, Wang Z, Liu L. Syntaxin 2 and SNAP-23 are required for regulated surfactant secretion. Biochemistry 2004; 43:3499-506. [PMID: 15035620 DOI: 10.1021/bi036338y] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secretion of lung surfactant in alveolar type II cells is a complex process involving the fusion of lamellar bodies with the plasma membrane. This process is somewhat different from the exocytosis of hormones and neurotransmitters. For example, it is a relatively slower process, and lamellar bodies are very large vesicles with a diameter of approximately 1 microm. SNARE proteins are the conserved molecular machinery of exocytosis in the majority of secretory cells. However, their involvement in surfactant secretion has not been reported. Here, we showed that syntaxin 2 and SNAP-23 are expressed in alveolar type II cells. Both proteins are associated with the plasma membrane, and to some degree with lamellar bodies. An antisense oligonucleotide complementary to syntaxin 2 decreased its mRNA and protein levels. The same oligonucleotide also inhibited surfactant secretion, independent of secretagogues. A peptide derived from the N-terminus of syntaxin 2 or the C-terminus of SNAP-23 significantly inhibited Ca(2+)- and GTPgammaS-stimulated surfactant secretion from permeabilized type II cells in a dose-dependent manner. Furthermore, introduction of anti-syntaxin 2 or anti-SNAP-23 antibodies into permeabilized type II cells also inhibited surfactant release. Our results suggest that syntaxin 2 and SNAP-23 are required for regulated surfactant secretion.
Collapse
Affiliation(s)
- Barack O Abonyo
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The Sec1-Munc18 (SM) proteins are required for cellular exocytosis, but their mechanistic function remains poorly understood. We examined SM-syntaxin complexes in human platelets, which are terminally differentiated, anuclear cells that secrete the contents of their intracellular granules through syntaxin 2- and syntaxin 4-dependent mechanisms. Munc18a, Munc18b, and Munc18c were detected in human platelets by immunoblotting and/or PCR. The SM proteins and syntaxin 2 were found in the membrane and cytosolic fractions of cells, whereas syntaxin 4 was detected only in the membrane. Platelet membranes contain Munc18c-syntaxin 4 complexes, but minimal if any Munc18c-syntaxin 2 complexes were found. No significant amounts of Munc18a or Munc18b complexes were seen with either syntaxin. Munc18c-syntaxin 4 complexes were dissociated when cells were activated to secrete. Two potential inhibitors of Munc18c-syntaxin 4 complexes were generated to examine whether complex dissociation may lead to exocytosis. Peptides that mimic the projected intermolecular contact sites of Munc18c with syntaxin enhanced Ca2+-triggered dense granule exocytosis in permeabilized cells. Similarly, an anti-Munc18c monoclonal antibody that inhibited the Munc18c-syntaxin complex potently amplified Ca2+-induced platelet granule secretion. In summary, Munc18 proteins bind to specific syntaxin isoforms in platelets despite the presence of other potential binding partners. Acute inhibition of the SM-syntaxin complex promotes Ca2+-induced exocytosis, suggesting that complex formation per se has a regulatory effect on triggered secretion.
Collapse
Affiliation(s)
- Aiilyan Houng
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|