1
|
Zhang Y, Reinhardt A, Wang P, Song J, Ke Y. Programming the Nucleation of DNA Brick Self-Assembly with a Seeding Strand. Angew Chem Int Ed Engl 2020; 59:8594-8600. [PMID: 32043698 DOI: 10.1002/anie.201915063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Indexed: 01/13/2023]
Abstract
Recently, the DNA brick strategy has provided a highly modular and scalable approach for the construction of complex structures, which can be used as nanoscale pegboards for the precise organization of molecules and nanoparticles for many applications. Despite the dramatic increase of structural complexity provided by the DNA brick method, the assembly pathways are still poorly understood. Herein, we introduce a "seed" strand to control the crucial nucleation and assembly pathway in DNA brick assembly. Through experimental studies and computer simulations, we successfully demonstrate that the regulation of the assembly pathways through seeded growth can accelerate the assembly kinetics and increase the optimal temperature by circa 4-7 °C for isothermal assembly. By improving our understanding of the assembly pathways, we provide new guidelines for the design of programmable pathways to improve the self-assembly of DNA nanostructures.
Collapse
Affiliation(s)
- Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100082, China
| | - Aleks Reinhardt
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Pengfei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Song
- Department of Instrument Science and Engineering, School of Electronic Information and electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Zhang Y, Reinhardt A, Wang P, Song J, Ke Y. Programming the Nucleation of DNA Brick Self‐Assembly with a Seeding Strand. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100082 China
| | - Aleks Reinhardt
- Department of Chemistry University of Cambridge Cambridge CB2 1EW UK
| | - Pengfei Wang
- Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jie Song
- Department of Instrument Science and Engineering School of Electronic Information and electrical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Emory University School of Medicine Atlanta GA 30322 USA
| |
Collapse
|
3
|
Abstract
Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is present in virtually all actin-based structures, participating in the formation of branched actin networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance and organization, as well as adhesion, migration and invasion. To migrate and invade through three-dimensional environments, cells have developed specialized actin-based structures called invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a critical regulator of invadosome formation, function and disassembly. Underscoring this role, Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the roles played by Cortactin in these specific invasive structures.
Collapse
Affiliation(s)
- Pauline Jeannot
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester , Manchester M20 4BX, UK
| | - Arnaud Besson
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,LBCMCP , Centre de Biologie Intégrative, Université de Toulouse , CNRS, UPS, Toulouse Cedex, France
| |
Collapse
|
4
|
Lv P, Zhang F, Yin YJ, Wang YC, Gao M, Xie XL, Zhao LL, Dong LH, Lin YL, Shu YN, Zhang DD, Liu GX, Han M. SM22α inhibits lamellipodium formation and migration via Ras-Arp2/3 signaling in synthetic VSMCs. Am J Physiol Cell Physiol 2016; 311:C758-C767. [PMID: 27629412 DOI: 10.1152/ajpcell.00033.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/07/2016] [Indexed: 02/03/2023]
Abstract
We previously demonstrated that smooth muscle (SM) 22α promotes the migration activity in contractile vascular smooth muscle cells (VSMCs). Based on the varied functions exhibited by SM22α in different VSMC phenotypes, we investigated the effect of SM22α on VSMC migration under pathological conditions. The results demonstrated that SM22α overexpression in synthetic VSMCs inhibited platelet-derived growth factor (PDGF)-BB-induced cell lamellipodium formation and migration, which was different from its action in contractile cells. The results indicated two distinct mechanisms underlying inhibition of lamellipodium formation by SM22α, increased actin dynamic stability and decreased Ras activity via interference with interactions between Ras and guanine nucleotide exchange factor. The former inhibited actin cytoskeleton rearrangement in the cell cortex, while the latter significantly disrupted actin nucleation activation of the Arp2/3 complex. Baicalin, a herb-derived flavonoid compound, inhibited VSMC migration via upregulation of SM22α expression in vitro and in vivo. These data suggest that SM22α regulates lamellipodium formation and cell migration in a phenotype-dependent manner in VSMCs, which may be a new therapeutic target for vascular lesion formation.
Collapse
Affiliation(s)
- Pin Lv
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Fan Zhang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ya-Juan Yin
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yu-Can Wang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Min Gao
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Li Xie
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Li Zhao
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Hua Dong
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yan-Ling Lin
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ya-Nan Shu
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Zhang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Gui-Xia Liu
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Zhang R, Chang M, Zhang M, Wu Y, Qu X, Huang S. The Structurally Plastic CH2 Domain Is Linked to Distinct Functions of Fimbrins/Plastins. J Biol Chem 2016; 291:17881-96. [PMID: 27261463 DOI: 10.1074/jbc.m116.730069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
Fimbrins/plastins have been implicated in the generation of distinct actin structures, which are linked to different cellular processes. Historically, fimbrins/plastins were mainly considered as generating tight actin bundles. Here, we demonstrate that different members of the fimbrin/plastin family have diverged biochemically during evolution to generate either tight actin bundles or loose networks with distinct biochemical and biophysical properties. Using the phylogenetically and functionally distinct Arabidopsis fimbrins FIM4 and FIM5 we found that FIM4 generates both actin bundles and cross-linked actin filaments, whereas FIM5 only generates actin bundles. The distinct functions of FIM4 and FIM5 are clearly observed at single-filament resolution. Domain swapping experiments showed that cooperation between the conformationally plastic calponin-homology domain 2 (CH2) and the N-terminal headpiece determines the function of the full-length protein. Our study suggests that the structural plasticity of fimbrins/plastins has biologically meaningful consequences, and provides novel insights into the structure-function relationship of fimbrins/plastins as well as shedding light on how cells generate distinct actin structures.
Collapse
Affiliation(s)
- Ruihui Zhang
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Chang
- the Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Meng Zhang
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youjun Wu
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
| | - Xiaolu Qu
- the Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, the Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, and
| | - Shanjin Huang
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, the Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084,
| |
Collapse
|
6
|
Dierks S, von Hardenberg S, Schmidt T, Bremmer F, Burfeind P, Kaulfuß S. Leupaxin stimulates adhesion and migration of prostate cancer cells through modulation of the phosphorylation status of the actin-binding protein caldesmon. Oncotarget 2016; 6:13591-606. [PMID: 26079947 PMCID: PMC4537036 DOI: 10.18632/oncotarget.3792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/18/2015] [Indexed: 12/15/2022] Open
Abstract
The focal adhesion protein leupaxin (LPXN) is overexpressed in a subset of prostate cancers (PCa) and is involved in the progression of PCa. In the present study, we analyzed the LPXN-mediated adhesive and cytoskeletal changes during PCa progression. We identified an interaction between the actin-binding protein caldesmon (CaD) and LPXN and this interaction is increased during PCa cell migration. Furthermore, knockdown of LPXN did not affect CaD expression but reduced CaD phosphorylation. This is known to destabilize the affinity of CaD to F-actin, leading to dynamic cell structures that enable cell motility. Thus, downregulation of CaD increased migration and invasion of PCa cells. To identify the kinase responsible for the LPXN-mediated phosphorylation of CaD, we used data from an antibody array, which showed decreased expression of TGF-beta-activated kinase 1 (TAK1) after LPXN knockdown in PC-3 PCa cells. Subsequent analyses of the downstream kinases revealed the extracellular signal-regulated kinase (ERK) as an interaction partner of LPXN that facilitates CaD phosphorylation during LPXN-mediated PCa cell migration. In conclusion, we demonstrate that LPXN directly influences cytoskeletal dynamics via interaction with the actin-binding protein CaD and regulates CaD phosphorylation by recruiting ERK to highly dynamic structures within PCa cells.
Collapse
Affiliation(s)
- Sascha Dierks
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Sandra von Hardenberg
- Institute of Human Genetics, University Medical Center Göttingen, Germany.,Center of Pharmacology and Toxicology, Hannover Medical School, Germany
| | - Thomas Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, Germany.,Department of Anatomy, University of Witten/Herdecke, Witten, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| |
Collapse
|
7
|
Harrison A, Dubois LG, St John-Williams L, Moseley MA, Hardison RL, Heimlich DR, Stoddard A, Kerschner JE, Justice SS, Thompson JW, Mason KM. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment. Mol Cell Proteomics 2015; 15:1117-38. [PMID: 26711468 DOI: 10.1074/mcp.m115.052498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of novel protein targets and metabolic biomarkers will advance development of therapeutic and diagnostic options for treatment of disease.
Collapse
Affiliation(s)
- Alistair Harrison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Laura G Dubois
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Lisa St John-Williams
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - M Arthur Moseley
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Rachael L Hardison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Derek R Heimlich
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | | | - Joseph E Kerschner
- ‖Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; **Division of Pediatric Otolaryngology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sheryl S Justice
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210
| | - J Will Thompson
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Kevin M Mason
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
8
|
Abstract
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
9
|
Structural basis for regulation of Arp2/3 complex by GMF. Nat Struct Mol Biol 2013; 20:1062-8. [PMID: 23893131 PMCID: PMC3766443 DOI: 10.1038/nsmb.2628] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/05/2013] [Indexed: 01/15/2023]
Abstract
Arp2/3 complex mediates formation of complex cellular structures such as lamellapodia by nucleating branched actin filaments. Arp2/3 complex activity is precisely controlled by more than a dozen regulators, yet the structural mechanism by which regulators interact with the complex is unknown. GMF is a recently discovered regulator of Arp2/3 complex that can inhibit nucleation and dissemble branches. We solved the structure of the 240 kDa complex of Mus musculus GMF and Bos taurus Arp2/3 and found GMF binds to the barbed end of Arp2, overlapping with the proposed binding site of WASP family proteins. The structure suggests GMF can bind branch junctions like cofilin binds filament sides, consistent with a modified cofilin-like mechanism for debranching by GMF. The GMF-Arp2 interface reveals how the ADF-H actin-binding domain in GMF is exploited to specifically recognize Arp2/3 complex and not actin.
Collapse
|
10
|
Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Res Treat 2012; 135:445-58. [DOI: 10.1007/s10549-012-2175-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/17/2012] [Indexed: 12/14/2022]
|
11
|
Jensen MH, Morris EJ, Huang R, Rebowski G, Dominguez R, Weitz DA, Moore JR, Wang CLA. The conformational state of actin filaments regulates branching by actin-related protein 2/3 (Arp2/3) complex. J Biol Chem 2012; 287:31447-53. [PMID: 22791711 DOI: 10.1074/jbc.m112.350421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Actin is a highly ubiquitous protein in eukaryotic cells that plays a crucial role in cell mechanics and motility. Cell motility is driven by assembling actin as polymerizing actin drives cell protrusions in a process closely involving a host of other actin-binding proteins, notably the actin-related protein 2/3 (Arp2/3) complex, which nucleates actin and forms branched filamentous structures. The Arp2/3 complex preferentially binds specific actin networks at the cell leading edge and forms branched filamentous structures, which drive cell protrusions, but the exact regulatory mechanism behind this process is not well understood. Here we show using in vitro imaging and binding assays that a fragment of the actin-binding protein caldesmon added to polymerizing actin increases the Arp2/3-mediated branching activity, whereas it has no effect on branch formation when binding to aged actin filaments. Because this caldesmon effect is shown to be independent of nucleotide hydrolysis and phosphate release from actin, our results suggest a mechanism by which caldesmon maintains newly polymerized actin in a distinct state that has a higher affinity for the Arp2/3 complex. Our data show that this new state does not affect the level of cooperativity of binding by Arp2/3 complex or its distribution on actin. This presents a novel regulatory mechanism by which caldesmon, and potentially other actin-binding proteins, regulates the interactions of actin with its binding partners.
Collapse
Affiliation(s)
- Mikkel Herholdt Jensen
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Maritzen T, Zech T, Schmidt MR, Krause E, Machesky LM, Haucke V. Gadkin negatively regulates cell spreading and motility via sequestration of the actin-nucleating ARP2/3 complex. Proc Natl Acad Sci U S A 2012; 109:10382-7. [PMID: 22689987 PMCID: PMC3387086 DOI: 10.1073/pnas.1206468109] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Regulation of actin dynamics is key to many cell physiological processes, ranging from protrusion formation and control of cell shape to cellular motility, endocytosis, and vesicle movement. The actin-related protein (ARP)2/3 complex is a major actin nucleator organizing branched filament networks in lamellipodial protrusions and during cell migration downstream of nucleation-promoting factors (NPFs). Although many NPFs have been characterized in detail, only few ARP2/3 inhibitors are known. Here, we identify the trans-Golgi network (TGN)/endosomally localized adaptor protein (AP)-1-associated adaptor protein Gadkin as a negative regulator of ARP2/3 function. Loss of Gadkin is associated with a partial redistribution of ARP2/3 to the plasma membrane and with increased cell spreading and migration, phenotypes that depend on the presence of a functional ARP2/3 complex. Gadkin directly binds to ARP2/3 via a conserved tryptophan-based acidic cluster motif reminiscent of ARP2/3-binding sequences of NPFs but fails to facilitate ARP2/3-mediated actin assembly. Consistent with an inhibitory role of Gadkin on ARP2/3 function, ARP2/3 is found on motile Gadkin-containing endosomal vesicles under migration-inhibiting conditions from where it relocalizes to the plasma membrane following activation of NPFs. Together with the observation that Gadkin-mediated inhibition of cell spreading requires its binding to ARP2/3, these data indicate that Gadkin is a negative regulator of ARP2/3 function present on intracellular membranes.
Collapse
Affiliation(s)
- Tanja Maritzen
- Laboratory of Membrane Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin and NeuroCure Cluster of Excellence, 14195 Berlin, Germany
- Laboratory for Molecular Pharmacology and Cell Biology, Leibniz Institute for Molecular Pharmacology, 13125 Berlin, Germany; and
| | - Tobias Zech
- Laboratory for Actin in Cell Migration, Invasion and Metastasis, Beatson Institute for Cancer Research, Glasgow G61 1BD, United Kingdom
| | - Michael R. Schmidt
- Laboratory of Membrane Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin and NeuroCure Cluster of Excellence, 14195 Berlin, Germany
| | - Eberhard Krause
- Laboratory for Molecular Pharmacology and Cell Biology, Leibniz Institute for Molecular Pharmacology, 13125 Berlin, Germany; and
| | - Laura M. Machesky
- Laboratory for Actin in Cell Migration, Invasion and Metastasis, Beatson Institute for Cancer Research, Glasgow G61 1BD, United Kingdom
| | - Volker Haucke
- Laboratory of Membrane Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin and NeuroCure Cluster of Excellence, 14195 Berlin, Germany
- Laboratory for Molecular Pharmacology and Cell Biology, Leibniz Institute for Molecular Pharmacology, 13125 Berlin, Germany; and
| |
Collapse
|
13
|
Nie S, Kee Y, Bronner-Fraser M. Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus. Mol Biol Cell 2011; 22:3355-65. [PMID: 21795398 PMCID: PMC3172261 DOI: 10.1091/mbc.e11-02-0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A nonmuscle caldesmon (CaD) is highly expressed in premigratory and migrating Xenopus cranial neural crest cells. A loss-of-function approach shows that CaD is critical for neural crest migration. The results further suggest that CaD influences cell morphology and motility by modulating actin dynamics in neural crest cells. Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca2+-calmodulin–binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration.
Collapse
Affiliation(s)
- Shuyi Nie
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
14
|
Liu SL, Needham KM, May JR, Nolen BJ. Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J Biol Chem 2011; 286:17039-46. [PMID: 21454476 DOI: 10.1074/jbc.m111.219964] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Arp2/3 complex is a key actin filament nucleator that assembles branched actin networks in response to cellular signals. The activity of Arp2/3 complex is regulated by both activating and inhibitory proteins. Coronins make up a large class of actin-binding proteins previously shown to inhibit Arp2/3 complex. Although coronins are known to play a role in controlling actin dynamics in diverse processes, including endocytosis and cell motility, the precise mechanism by which they regulate Arp2/3 complex is unclear. We conducted a detailed biochemical analysis of budding yeast coronin, Crn1, and found that it not only inhibits Arp2/3 complex but also activates it. We mapped regions required for activation and found that Crn1 contains a sequence called CA, which is conserved in WASp/Scar proteins, the prototypical activators of Arp2/3 complex. Point mutations in CA abolished activation of Arp2/3 complex by Crn1 in vitro. Confocal microscopy and quantitative actin patch tracking showed that these mutants had defective endocytic actin patch dynamics in Saccharomyces cerevisiae, indicating that activation of Arp2/3 complex by coronin is required for normal actin dynamics in vivo. The switch between the dual modes of regulation by Crn1 is controlled by concentration, and low concentrations of Crn1 enhance filament binding by Arp2/3 complex, whereas high concentrations block binding. Our data support a direct tethering recruitment model for activation of Arp2/3 complex by Crn1 and suggest that Crn1 indirectly inhibits Arp2/3 complex by blocking it from binding actin filaments.
Collapse
Affiliation(s)
- Su-Ling Liu
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
15
|
Mak AS. p53 regulation of podosome formation and cellular invasion in vascular smooth muscle cells. Cell Adh Migr 2011; 5:144-9. [PMID: 21164280 DOI: 10.4161/cam.5.2.14375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The p53 transcription factor, discovered in 1979 ( 1;2) , is well known as a potent suppressor of tumor development by inhibiting cell cycle progression, and promoting senescence or apoptosis, when the genome is compromised or under oncogenic stress ( 3) . Accumulating evidence has pointed to an alternative role of p53 in the curtailment of tumor progression and colonization of secondary sites by negatively regulating tumor cell metastasis ( 4;5) . Recently, we have found that p53 suppresses Src-induced formation of podosomes and associated invasive phenotypes in fibroblasts and vascular smooth muscle cells (VSMC) ( 6;7) . In this review, I will focus on some recent studies that have identified p53 as a suppressor of cell migration and invasion in general, and VSMC podosome formation and ECM degradation in particular.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
16
|
Mayanagi T, Sobue K. Diversification of caldesmon-linked actin cytoskeleton in cell motility. Cell Adh Migr 2011; 5:150-9. [PMID: 21350330 DOI: 10.4161/cam.5.2.14398] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The actin cytoskeleton plays a key role in regulating cell motility. Caldesmon (CaD) is an actin-linked regulatory protein found in smooth muscle and non-muscle cells that is conserved among a variety of vertebrates. It binds and stabilizes actin filaments, as well as regulating actin-myosin interaction in a calcium (Ca2+)/calmodulin (CaM)- and/or phosphorylation-dependent manner. CaD function is regulated qualitatively by Ca2+/CaM and by its phosphorylation state and quantitatively at the mRNA level, by three different transcriptional regulation of the CALD1 gene. CaD has numerous functions in cell motility, such as migration, invasion, and proliferation, exerted via the reorganization of the actin cytoskeleton. Here we will outline recent findings regarding CaD's structural features and functions.
Collapse
Affiliation(s)
- Taira Mayanagi
- Department of Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
17
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
18
|
Huang R, Grabarek Z, Wang CLA. Differential effects of caldesmon on the intermediate conformational states of polymerizing actin. J Biol Chem 2009; 285:71-9. [PMID: 19889635 DOI: 10.1074/jbc.m109.065078] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The actin-binding protein caldesmon (CaD) reversibly inhibits smooth muscle contraction. In non-muscle cells, a shorter CaD isoform co-exists with microfilaments in the stress fibers at the quiescent state, but the phosphorylated CaD is found at the leading edge of migrating cells where dynamic actin filament remodeling occurs. We have studied the effect of a C-terminal fragment of CaD (H32K) on the kinetics of the in vitro actin polymerization by monitoring the fluorescence of pyrene-labeled actin. Addition of H32K or its phosphorylated form either attenuated or accelerated the pyrene emission enhancement, depending on whether it was added at the early or the late phase of actin polymerization. However, the CaD fragment had no effect on the yield of sedimentable actin, nor did it affect the actin ATPase activity. Our findings can be explained by a model in which nascent actin filaments undergo a maturation process that involves at least two intermediate conformational states. If present at early stages of actin polymerization, CaD stabilizes one of the intermediate states and blocks the subsequent filament maturation. Addition of CaD at a later phase accelerates F-actin formation. The fact that CaD is capable of inhibiting actin filament maturation provides a novel function for CaD and suggests an active role in the dynamic reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Renjian Huang
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | |
Collapse
|
19
|
Kellmann R, Schaffner CA, Grønset TA, Satake M, Ziegler M, Fladmark KE. Proteomic response of human neuroblastoma cells to azaspiracid-1. J Proteomics 2009; 72:695-707. [DOI: 10.1016/j.jprot.2009.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 12/25/2022]
|
20
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2009. [PMID: 19120701 DOI: 10.1111/j.1582-4934.2008.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
21
|
Lin JJ, Li Y, Eppinga RD, Wang Q, Jin J. Chapter 1 Roles of Caldesmon in Cell Motility and Actin Cytoskeleton Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:1-68. [DOI: 10.1016/s1937-6448(08)02001-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2008; 12:2165-80. [PMID: 19120701 PMCID: PMC2692531 DOI: 10.1111/j.1582-4934.2008.00552.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/08/2008] [Indexed: 12/24/2022] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Appel
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Vetterkind
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | | | - K G Morgan
- Department of Health Sciences, Boston UniversityBoston, MA, USA
- Boston Biomedical Research InstituteWatertown, MA, USA
| |
Collapse
|
23
|
Kudryashova TV, Rutkevich PN, Shevelev AY, Vlasik TN, Vorotnikov AV. Caldesmon affects actin organization at the leading edge and inhibits cell migration. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Gimona M. The microfilament system in the formation of invasive adhesions. Semin Cancer Biol 2008; 18:23-34. [DOI: 10.1016/j.semcancer.2007.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/30/2007] [Accepted: 08/31/2007] [Indexed: 12/23/2022]
|
25
|
Wang CLA. Caldesmon and the regulation of cytoskeletal functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:250-72. [PMID: 19209827 DOI: 10.1007/978-0-387-85766-4_19] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caldesmon (CaD) is an extraordinary actin-binding protein, because in addition to actin, it also bindsmyosin, calmodulin and tropomyosin. As a component of the smoothmuscle and nonmuscle contractile apparatus CaD inhibits the actomyosin ATPase activity and its inhibitory action is modulated by both Ca2+ and phosphorylation. The multiplicity of binding partners and diverse biochemical properties suggest CaD is a potent and versatile regulatory protein both in contractility and cell motility. However, after decades ofinvestigation in numerous laboratories, hard evidence is still lacking to unequivocally identify its in vivo functions, although indirect evidence is mounting to support an important role in connection with the actin cytoskeleton. This chapter reviews the highlights of the past findings and summarizes the current views on this protein, with emphasis of its interaction with tropomyosin.
Collapse
Affiliation(s)
- C L Albert Wang
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.
| |
Collapse
|
26
|
Abstract
The motility of the growth cone, an intracellular apparatus located at the tip of the axon in developing neurons, is thought to govern axonal path-finding and the construction of neuronal networks. Growth cones contain an actin-rich cytoskeleton, and their dynamics are regulated by a wide variety of actin-binding proteins and motor proteins. In this review, we will focus on the principal functions of these proteins, their mutual interactions in vitro, and their possible roles in the dynamics of nerve cell growth cones.
Collapse
Affiliation(s)
- Ryoki Ishikawa
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Japan.
| | | |
Collapse
|
27
|
Zhang H, Zhang L. Regulation of alpha1-adrenoceptor-mediated contractions of the uterine artery by protein kinase C: role of the thick- and thin-filament regulatory pathways. J Pharmacol Exp Ther 2007; 322:1253-60. [PMID: 17562849 DOI: 10.1124/jpet.107.124313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previously we demonstrated that activation of protein kinase C (PKC) enhanced alpha(1)-adrenoceptor-induced contractions in nonpregnant uterine arteries (NPUA) by increasing the Ca(2+) sensitivity but that it inhibited the contractions in pregnant uterine arteries (PUA) by decreasing intracellular Ca(2+) mobilization. The present study tested the hypothesis that PKC activation differentially regulated the thick- and thin-filament regulatory pathways in alpha(1)-adrenoceptor-induced contractions of NPUA and PUA in sheep. Simultaneous measurements of contractions and phosphorylation levels of 20-kDa regulatory myosin light chain (LC(20)) in the same tissue revealed that the PKC activator phorbol-12,13-dibutyrate (PDBu) inhibited phenylephrine-induced phosphorylation of LC(20) and contractions in PUA. In NPUA, PDBu significantly potentiated phenylephrine-induced contractions without significantly changing phosphorylation levels of LC(20). Further studies in NPUA demonstrated that PDBu-mediated potentiation of phenylephrine-induced contractions was associated with a significant increase in phosphorylation levels of extracellular signal-regulated kinase (ERK(42/44)) and caldesmon-Ser(789), measured simultaneously with the tension in the same tissue. In addition, the ERK(42/44) inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] and the actin polymerization inhibitor cytochalasin B produced a concentration-dependent inhibition of PDBu-mediated potentiation of phenylephrine-induced contractions in NPUA. The results suggest that activation of PKC inhibits alpha(1)-adrenoceptor-mediated contractions in PUA through down-regulation of the thick-filament pathway and decreased myosin light chain phosphorylation, but that it enhances the contractions in NPUA through its effect on the thin-filament regulatory pathway and activation of ERK/caldesmon and actin polymerization.
Collapse
Affiliation(s)
- Hongying Zhang
- Department of Pharmacology and Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | |
Collapse
|
28
|
Cai L, Marshall TW, Uetrecht AC, Schafer DA, Bear JE. Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 2007; 128:915-29. [PMID: 17350576 PMCID: PMC2630706 DOI: 10.1016/j.cell.2007.01.031] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/13/2006] [Accepted: 01/24/2007] [Indexed: 12/24/2022]
Abstract
Actin filament formation and turnover within the treadmilling actin filament array at the leading edge of migrating cells are interdependent and coupled, but the mechanisms coordinating these two activities are not understood. We report that Coronin 1B interacts simultaneously with Arp2/3 complex and Slingshot (SSH1L) phosphatase, two regulators of actin filament formation and turnover, respectively. Coronin 1B inhibits filament nucleation by Arp2/3 complex and this inhibition is attenuated by phosphorylation of Coronin 1B at Serine 2, a site targeted by SSH1L. Coronin 1B also directs SSH1L to lamellipodia where SSH1L likely regulates Cofilin activity via dephosphorylation. Accordingly, depleting Coronin 1B increases phospho-Cofilin levels, and alters lamellipodial dynamics and actin filament architecture at the leading edge. We conclude that Coronin 1B's coordination of filament formation by Arp2/3 complex and filament turnover by Cofilin is required for effective lamellipodial protrusion and cell migration.
Collapse
Affiliation(s)
- Liang Cai
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center & Dept. of Cell and Developmental Biology
| | - Thomas W. Marshall
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center & Dept. of Cell and Developmental Biology
| | - Andrea C. Uetrecht
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center & Dept. of Cell and Developmental Biology
| | - Dorothy A. Schafer
- University of Virginia, Charlottesville, VA, Depts. of Biology and Cell Biology
| | - James E. Bear
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center & Dept. of Cell and Developmental Biology
- Corresponding Author: Phone: 919-966-5471, Fax: 919-966-3015, E-mail:
| |
Collapse
|
29
|
Morita T, Mayanagi T, Yoshio T, Sobue K. Changes in the Balance between Caldesmon Regulated by p21-activated Kinases and the Arp2/3 Complex Govern Podosome Formation. J Biol Chem 2007; 282:8454-63. [PMID: 17224451 DOI: 10.1074/jbc.m609983200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Podosomes are dynamic cell adhesion structures that degrade the extracellular matrix, permitting extracellular matrix remodeling. Accumulating evidence suggests that actin and its associated proteins play a crucial role in podosome dynamics. Caldesmon is localized to the podosomes, and its expression is down-regulated in transformed and cancer cells. Here we studied the regulatory mode of caldesmon in podosome formation in Rous sarcoma virus-transformed fibroblasts. Exogenous expression analyses revealed that caldesmon represses podosome formation triggered by the N-WASP-Arp2/3 pathway. Conversely, depletion of caldesmon by RNA interference induces numerous small-sized podosomes with high dynamics. Caldesmon competes with the Arp2/3 complex for actin binding and thereby inhibits podosome formation. p21-activated kinases (PAK)1 and 2 are also repressors of podosome formation via phosphorylation of caldesmon. Consequently, phosphorylation of caldesmon by PAK1/2 enhances this regulatory mode of caldesmon. Taken together, we conclude that in Rous sarcoma virus-transformed cells, changes in the balance between PAK1/2-regulated caldesmon and the Arp2/3 complex govern the formation of podosomes.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
30
|
Föger N, Rangell L, Danilenko DM, Chan AC. Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis. Science 2006; 313:839-42. [PMID: 16902139 DOI: 10.1126/science.1130563] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The evolutionarily conserved actin-related protein (Arp2/3) complex is a key component of actin filament networks that is dynamically regulated by nucleation-promoting and inhibitory factors. Although much is known about actin assembly, the physiologic functions of inhibitory proteins are unclear. We generated coronin 1-/- mice and found that coronin 1 exerted an inhibitory effect on cellular steady-state F-actin formation via an Arp2/3-dependent mechanism. Whereas coronin 1 was required for chemokine-mediated migration, it was dispensable for T cell antigen receptor functions in T cells. Moreover, actin dynamics, through a mitochondrial pathway, was linked to lymphocyte homeostasis.
Collapse
Affiliation(s)
- Niko Föger
- Department of Immunology, Genentech, Incorporated, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
31
|
Huang R, Cao GJ, Guo H, Kordowska J, Wang CLA. Direct interaction between caldesmon and cortactin. Arch Biochem Biophys 2006; 456:175-82. [PMID: 16962992 PMCID: PMC1847647 DOI: 10.1016/j.abb.2006.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 07/15/2006] [Accepted: 07/30/2006] [Indexed: 01/04/2023]
Abstract
Actin polymerization and depolymerization plays a central role in controlling a wide spectrum of cellular processes. There are many actin-binding proteins in eukaryotic cells. Their roles in the remodeling of the actin architecture and whether they work cooperatively await further study. Caldesmon (CaD) is an actin-binding protein present in nearly all mammalian cells. Cortactin is another actin-binding protein found mainly in the cell cortex. There have been no reports suggesting that CaD and cortactin interact with each other or work as partners. Here, we present evidence that CaD binds cortactin directly by overlay, pull-down assays, ELISA, and by column chromatography. The interaction involves the N-terminal region of cortactin and the C-terminal region of CaD, and appears to be enhanced by divalent metal ions. Cortactin competes with both full-length CaD and its C-terminal fragment for actin binding. Binding of cortactin partially alleviates the inhibitory effect of CaD on the actomyosin ATPase activity. Not only can binding be demonstrated in vitro, the two proteins also co-localize in activated cells at the cortex. Whether such interactions bear any functional significance awaits further investigation.
Collapse
Affiliation(s)
| | | | | | | | - C.-L. Albert Wang
- Corresponding author at 64 Grove St., Watertown, MA 02472, Tel: 617-658-7803, Fax: 617-972-1753, Email Address:
| |
Collapse
|
32
|
Grosheva I, Vittitow JL, Goichberg P, Gabelt BT, Kaufman PL, Borrás T, Geiger B, Bershadsky AD. Caldesmon effects on the actin cytoskeleton and cell adhesion in cultured HTM cells. Exp Eye Res 2006; 82:945-58. [PMID: 16679125 DOI: 10.1016/j.exer.2006.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/17/2006] [Accepted: 01/17/2006] [Indexed: 01/27/2023]
Abstract
Caldesmon is a multifunctional ubiquitous regulator of the actin cytoskeleton, which can affect both actomyosin contractility and actin polymerization. Previous studies showed that caldesmon over-expression in cultured fibroblasts produces effects that resemble those of chemical inhibitors of cellular contractility. Since these inhibitors (H-7, Y-27632, etc.) have been shown to lower intraocular pressure and increase outflow facility from the anterior chamber of the eye, we proposed that caldesmon might be used for gene therapy of glaucoma. In the present study we examined the effects of expression of adenovirus-delivered rat non-muscle caldesmon fused with green fluorescent protein (AdCaldGFP) on the actin cytoskeleton and matrix adhesions in cultured human trabecular meshwork (HTM) cells. In addition, we assessed the effect of caldesmon on the stability of cell-cell junctions in kidney epithelial MDCK cells. Cultured HTM cells demonstrate a well-developed actin cytoskeleton, comprising mainly arrays of parallel actomyosin bundles (stress fibers). Lamellipodial protrusions containing dense actin networks are also observed. Cell-matrix adhesions are dominated by focal adhesions (FAs) associated with the ends of the stress fibers, focal complexes in lamellipodia, and fibrillar adhesions in the central part of the spread cells. Treatment of HTM cells with AdCaldGFP resulted in dose-dependent morphological changes within 24-48 hr post-infection. Cells expressing moderate levels of caldesmon exhibited straight bundles containing actin and myosin II, which were considerably shorter than those in control cells. Short filament bundles in caldesmon over-expressing cells formed arrays consisting of triangular actin structures with small vinculin-positive FAs at their vertices. In addition, the fraction of cells displaying large lamellipodia increased. About 40-50% of the population of caldesmon-expressing cells demonstrated high levels of GFP-caldesmon expression and severe changes in the actin cytoskeleton, manifested by the disappearance of stress fibers and the formation of curved actin- and myosin-containing bundles. These bundles formed together a dynamic network consisting of pulsating loops filling the entire cytoplasm. Addition of thapsigargin, which increases intracellular Ca++ concentration, resulted in a straightening of the curved bundles. Another type of novel actin structures induced by caldesmon over-expression were highly dynamic circular waves that propagated over the affected cells with a velocity about 10 microm min. In cells with disrupted stress fibers, vinculin-containing FAs and tensin-rich fibrillar adhesions had also essentially vanished. However, phosphotyrosine-positive focal complexes were still prominent throughout the lamellipodia of these cells. Over-expression of caldesmon in MDCK cells reduced, in a dose dependent manner, the beta-catenin content at cell-cell adherens junctions and in some cases led to physical disruption of adherens junctions. Thus, caldesmon over-expression induces unique reorganization of the actin cytoskeleton in affected cells, accompanied by disruption of focal and fibrillar cell-matrix adhesions, and destabilization of cell-cell adherens junctions. Inducing such changes in the contractility and actin cytoskeleton of HTM cells in glaucomatous eyes in vivo could produce a therapeutically useful increase in outflow facility.
Collapse
Affiliation(s)
- Inna Grosheva
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kordowska J, Huang R, Wang CLA. Phosphorylation of caldesmon during smooth muscle contraction and cell migration or proliferation. J Biomed Sci 2006; 13:159-72. [PMID: 16453176 DOI: 10.1007/s11373-005-9060-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The actin-binding protein caldesmon (CaD) exists both in smooth muscle (the heavy isoform, h-CaD) and non-muscle cells (the light isoform, l-CaD). In smooth muscles h-CaD binds to myosin and actin simultaneously and modulates the actomyosin interaction. In non-muscle cells l-CaD binds to actin and stabilizes the actin stress fibers; it may also mediate the interaction between actin and non-muscle myosins. Both h- and l-CaD are phosphorylated in vivo upon stimulation. The major phosphorylation sites of h-CaD when activated by phorbol ester are the Erk-specific sites, modification of which is attenuated by the MEK inhibitor PD98059. The same sites in l-CaD are also phosphorylated when cells are stimulated to migrate, whereas in dividing cells l-CaD is phosphorylated more extensively, presumably by cdc2 kinase. Both Erk and cdc2 are members of the MAPK family. Thus it appears that CaD is a downstream effector of the Ras signaling pathways. Significantly, the phosphorylatable serine residues shared by both CaD isoforms are in the C-terminal region that also contains the actin-binding sites. Biochemical and structural studies indicated that phosphorylation of CaD at the Erk sites is accompanied by a conformational change that partially dissociates CaD from actin. Such a structural change in h-CaD exposes the myosin-binding sites on the actin surface and allows actomyosin interactions in smooth muscles. In the case of non-muscle cells, the change in l-CaD weakens the stability of the actin filament and facilitates its disassembly. Indeed, the level of l-CaD modification correlates very well in a reciprocal manner with the level of actin stress fibers. Since both cell migration and cell division require dynamic remodeling of actin cytoskeleton that leads to cell shape changes, phosphorylation of CaD may therefore serve as a plausible means to regulate these processes. Thus CaD not only links the smooth muscle contractility and non-muscle motility, but also provides a common mechanism for the regulation of cell migration and cell proliferation.
Collapse
Affiliation(s)
- Jolanta Kordowska
- Boston Biomedical Research Institute, 64 Grove Street, 02472, Watertown, MA, USA
| | | | | |
Collapse
|
34
|
Eves R, Webb BA, Zhou S, Mak AS. Caldesmon is an integral component of podosomes in smooth muscle cells. J Cell Sci 2006; 119:1691-702. [PMID: 16595550 DOI: 10.1242/jcs.02881] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Podosomes are highly dynamic actin-based structures commonly found in motile and invasive cells such as macrophages, osteoclasts and vascular smooth muscle cells. Here, we have investigated the role of caldesmon, an actin-binding protein, in the formation of podosomes in aortic smooth muscle A7r5 cells induced by the phorbol ester PDBu. We found that endogenous low molecular weight caldesmon (l-caldesmon), which was normally localised to actin-stress fibres and membrane ruffles, was recruited to the actin cores of PDBu-induced podosomes. Overexpression of l-caldesmon in A7r5 cells caused dissociation of actin-stress fibres and disruption of focal adhesion complexes, and significantly reduced the ability of PDBu to induce podosome formation. By contrast, siRNA interference of caldesmon expression enhanced PDBu-induced formation of podosomes. The N-terminal fragment of l-caldesmon, CaD40, which contains the myosin-binding site, did not label stress fibres and was not translocated to PDBu-induced podosomes. Cad39, the C-terminal fragment housing the binding sites for actin, tropomyosin and calmodulin, was localised to stress fibres and was translocated to podosomes induced by PDBu. The caldesmon mutant, CadCamAB, which does not interact with Ca2+/calmodulin, was not recruited to PDBu-induced podosomes. These results show that (1) l-caldesmon is an integral part of the actin-rich core of the podosome; (2) overexpression of l-caldesmon suppresses podosome formation, whereas siRNA knock-down of l-caldesmon facilitates its formation; and (3) the actin-binding and calmodulin-binding sites on l-caldesmon are essential for the translocation of l-caldesmon to the podosomes. In summary, this data suggests that caldesmon may play a role in the regulation of the dynamics of podosome assembly and that Ca2+/calmodulin may be part of a regulatory mechanism in podosome formation.
Collapse
Affiliation(s)
- Robert Eves
- Department of Biochemistry, and Protein Function Discovery Program, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | |
Collapse
|
35
|
Abstract
Caldesmon is an actin-binding protein that is capable of stabilizing actin filaments against actin-severing proteins, inhibiting actomyosin ATPase activity, and inhibiting Arp2/3-mediated actin polymerization in vitro. Caldesmon is a substrate of cdc2 kinase and Erk1/2 MAPK, and phosphorylation by either of these kinases reverses the inhibitory effects of caldesmon. Cdc2-mediated caldesmon phosphorylation and the resulting dissociation of caldesmon from actin filaments are essential for M-phase progression during mitosis. Cells overexpressing the actin-binding carboxyterminal fragment of caldesmon fail to release the fragment completely from actin filaments during mitosis, resulting in a higher frequency of multinucleated cells. PKC-mediated MEK/Erk/caldesmon phosphorylation is an important signaling cascade in the regulation of smooth muscle contraction. Furthermore, PKC activation has been shown to remodel actin stress fibers into F-actin-enriched podosome columns in cultured vascular smooth muscle cells. Podosomes are cytoskeletal adhesion structures associated with the release of metalloproteases and degradation of extracellular matrix during cell invasion. Interestingly, caldesmon is one of the few actin-binding proteins that is associated with podosomes but excluded from focal adhesions. Caldesmon also inhibits the function of gelsolin and Arp2/3 complex that are essential for the formation of podosomes. Thus, caldesmon appears to be well positioned for playing a modulatory role in the formation of podosomes. Defining the roles of actin filament-stabilizing proteins such as caldesmon and tropomyosin in the formation of podosomes should provide a more complete understanding of molecular systems that regulate the remodeling of the actin cytoskeleton in cell transformation and invasion.
Collapse
Affiliation(s)
- Chi-Ming Hai
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Box G-B3, Providence, RI 02912, USA.
| | | |
Collapse
|
36
|
Cuomo ME, Knebel A, Platt G, Morrice N, Cohen P, Mittnacht S. Regulation of microfilament organization by Kaposi sarcoma-associated herpes virus-cyclin.CDK6 phosphorylation of caldesmon. J Biol Chem 2005; 280:35844-58. [PMID: 16115893 DOI: 10.1074/jbc.m503877200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Kaposi sarcoma-associated herpes virus (KSHV) encodes a D-like cyclin (K-cyclin) that is thought to contribute to the viral oncogenicity. K-cyclin activates cellular cyclin-dependent kinases (CDK) 4 and 6, generating enzymes with a substrate selectivity deviant from CDK4 and CDK6 activated by D-type cyclins, suggesting different biochemical and biological functions. Here we report the identification of the actin- and calmodulin-binding protein caldesmon (CALD1) as a novel K-cyclin.CDK substrate, which is not phosphorylated by D.CDK. CALD1 plays a central role in the regulation of microfilament organization, consequently controlling cell shape, adhesion, cytokinesis and motility. K-cyclin.CDK6 specifically phosphorylates four Ser/Thr sites in the human CALD1 carboxyl terminus, abolishing CALD1 binding to its effector protein, actin, and its regulator protein, calmodulin. CALD1 is hyperphosphorylated in cells following K-cyclin expression and in KSHV-transformed lymphoma cells. Moreover, expression of exogenous K-cyclin results in microfilament loss and changes in cell morphology; both effects are reliant on CDK catalysis and can be reversed by the expression of a phosphorylation defective CALD1. Together, these data strongly suggest that K-cyclin expression modulates the activity of caldesmon and through this the microfilament functions in cells. These results establish a novel link between KSHV infection and the regulation of the actin cytoskeleton.
Collapse
MESH Headings
- Actins/chemistry
- Animals
- Calmodulin-Binding Proteins/chemistry
- Calmodulin-Binding Proteins/metabolism
- Catalysis
- Chromatography, Affinity
- Cloning, Molecular
- Cyclin-Dependent Kinase 4/metabolism
- Cyclin-Dependent Kinase 6/metabolism
- Cytoskeleton/metabolism
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Viral
- HeLa Cells
- Herpesvirus 8, Human/metabolism
- Humans
- Mass Spectrometry
- Mice
- Microscopy, Fluorescence
- NIH 3T3 Cells
- Peptides/chemistry
- Phosphorylation
- Protein Binding
- Protein Structure, Tertiary
- RNA, Small Interfering/metabolism
- Recombinant Proteins/chemistry
- Retinoblastoma Protein/metabolism
- Sepharose/chemistry
- Serine/chemistry
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Threonine/chemistry
- Time Factors
Collapse
Affiliation(s)
- Maria Emanuela Cuomo
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R. TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium 2004; 36:19-28. [PMID: 15126053 DOI: 10.1016/j.ceca.2003.11.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 11/18/2003] [Accepted: 11/19/2003] [Indexed: 10/26/2022]
Abstract
Using patch clamp and Ca(2+) imaging techniques, we have studied Ca(2+) entry pathways in human hepatoblastoma (HepG2) cells. These cells express the mRNA of TRPV1, TRPV2, TRPV3 and TRPV4 channels, but not those of TRPV5 and TRPV6. Functional assessment showed that capsaicin (10 microM), 4alpha-phorbol-12,13-didecanoate (4alphaPDD, 1 microM), arachidonic acid (10 microM), hypotonic stress, and heat all stimulated increases in [Ca(2+)](i) within minutes. The increase in [Ca(2+)](i) depended on extracellular Ca(2+) and on the transmembrane potential, which indicated that both driving forces affected Ca(2+) entry. Capsaicin also stimulated an increase in [Ca(2+)](i) in nominally Ca(2+)-free solutions, which was compatible with the receptor functioning as a Ca(2+) release channel. Hepatocyte growth factor/scatter factor (HGF/SF) modulated Ca(2+) entry. Ca(2+) influx was greater in HepG2 cells incubated with HGF/SF (20 ng/ml for 20 h) compared with non-stimulated cells, but this occurred only in those cells with a migrating phenotype as determined by presence of a lamellipodium and trailing footplate. The effect of capsaicin on [Ca(2+)](i) was greater in migrating HGF/SF-treated cells, and this was inhibited by capsazepine. The difference between control and HGF/SF-treated cells was not found in Ca(2+)-free solutions. 4alphaPDD also had no greater effect on HGF/SF-treated cells. We conclude that TRPV1 and TRPV4 channels provide Ca(2+) entry pathways in HepG2 cells. HGF/SF increases Ca(2+) entry via TRPV1, but not via TRPV4. This rise in [Ca(2+)](i) may constitute an early response of a signalling cascade that gives rise to cell locomotion and the migratory phenotype.
Collapse
Affiliation(s)
- Joris Vriens
- Department of Physiology, Campus Gasthuisberg, Katholieke Universiteit, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
38
|
Millard TH, Sharp SJ, Machesky LM. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 2004; 380:1-17. [PMID: 15040784 PMCID: PMC1224166 DOI: 10.1042/bj20040176] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 02/18/2004] [Accepted: 03/25/2004] [Indexed: 01/15/2023]
Abstract
The assembly of a branched network of actin filaments provides the mechanical propulsion that drives a range of dynamic cellular processes, including cell motility. The Arp2/3 complex is a crucial component of such filament networks. Arp2/3 nucleates new actin filaments while bound to existing filaments, thus creating a branched network. In recent years, a number of proteins that activate the filament nucleation activity of Arp2/3 have been identified, most notably the WASP (Wiskott-Aldrich syndrome protein) family. WASP-family proteins activate the Arp2/3 complex, and consequently stimulate actin assembly, in response to extracellular signals. Structural studies have provided a significant refinement in our understanding of the molecular detail of how the Arp2/3 complex nucleates actin filaments. There has also been much progress towards an understanding of the complicated signalling processes that regulate WASP-family proteins. In addition, the use of gene disruption in a number of organisms has led to new insights into the specific functions of individual WASP-family members. The present review will discuss the Arp2/3 complex and its regulators, in particular the WASP-family proteins. Emphasis will be placed on recent developments in the field that have furthered our understanding of actin dynamics and cell motility.
Collapse
Affiliation(s)
- Thomas H Millard
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
39
|
Clarke DM, Brown MC, LaLonde DP, Turner CE. Phosphorylation of actopaxin regulates cell spreading and migration. ACTA ACUST UNITED AC 2004; 166:901-12. [PMID: 15353548 PMCID: PMC2172128 DOI: 10.1083/jcb.200404024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Actopaxin is an actin and paxillin binding protein that localizes to focal adhesions. It regulates cell spreading and is phosphorylated during mitosis. Herein, we identify a role for actopaxin phosphorylation in cell spreading and migration. Stable clones of U2OS cells expressing actopaxin wild-type (WT), nonphosphorylatable, and phosphomimetic mutants were developed to evaluate actopaxin function. All proteins targeted to focal adhesions, however the nonphosphorylatable mutant inhibited spreading whereas the phosphomimetic mutant cells spread more efficiently than WT cells. Endogenous and WT actopaxin, but not the nonphosphorylatable mutant, were phosphorylated in vivo during cell adhesion/spreading. Expression of the nonphosphorylatable actopaxin mutant significantly reduced cell migration, whereas expression of the phosphomimetic increased cell migration in scrape wound and Boyden chamber migration assays. In vitro kinase assays demonstrate that extracellular signal-regulated protein kinase phosphorylates actopaxin, and treatment of U2OS cells with the MEK1 inhibitor UO126 inhibited adhesion-induced phosphorylation of actopaxin and also inhibited cell migration.
Collapse
Affiliation(s)
- Dominic M Clarke
- Department of Cell Biology and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
40
|
Li Y, Lin JLC, Reiter RS, Daniels K, Soll DR, Lin JJC. Caldesmon mutant defective in Ca2+-calmodulin binding interferes with assembly of stress fibers and affects cell morphology, growth and motility. J Cell Sci 2004; 117:3593-604. [PMID: 15226374 DOI: 10.1242/jcs.01216] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite intensive in vitro studies, little is known about the regulation of caldesmon (CaD) by Ca2+-calmodulin (Ca2+-CaM) in vivo. To investigate this regulation, a mutant was generated of the C-terminal fragment of human fibroblast CaD, termed CaD39-AB, in which two crucial tryptophan residues involved in Ca2+-CaM binding were each replaced with alanine. The mutation abolished most CaD39-AB binding to Ca2+-CaM in vitro but had little effect on in vitro binding to actin filaments and the ability to inhibit actin/tropomyosin-activated heavy meromyosin ATPase. To study the functional consequences of these mutations in vivo, we transfected an expression plasmid carrying CaD39-AB cDNA into Chinese hamster ovary (CHO) cells and isolated several clones expressing various amounts of CaD39-AB. Immunofluorescence microscopy revealed that mutant CaD39-AB was distributed diffusely throughout the cytoplasm but also concentrated at membrane ruffle regions. Stable expression of CaD39-AB in CHO cells disrupted assembly of stress fibers and focal adhesions, altered cell morphology, and slowed cell cycle progression. Moreover, CaD39-AB-expressing cells exhibited motility defects in a wound-healing assay, in both velocity and the persistence of translocation, suggesting a role for CaD regulation by Ca2+-CaM in cell migration. Together, these results demonstrate that CaD plays a crucial role in mediating the effects of Ca2+-CaM on the dynamics of the actin cytoskeleton during cell migration.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, University of Iowa, 340 Biology Building East, Iowa City, IA 52242-1324, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
AIM: To establish a method for optical sections of HepG2 human hepatoblastoma cells with confocal laser scanning microscope (CLSM) and to study the spatial structure of filamentous actin (F-actin) in HepG2 cells.
METHODS: HepG2 cells were stained with FITC-phalloidin that specifically binds F-actin, with propidium iodide (PI) to the nucleus, and scanned with a CLSM to generate optically sectioned images. A series of optical sections taken successively at different focal levels in steps of 0.7 mm were reconstructed with the CLSM reconstruction program.
RESULTS: CLSM images showed that the FITC-stained F-actin was abundant microfilament bundles parallel or netted through the whole cell and its processes. Most F-actin microfilaments extended through the cell from one part toward the other or run through the process. Some microfilaments were attached to the plasma membrane, or formed a structural bridge connecting to the neighboring cells.
CONCLUSION: A method for double labeling HepG2 human hepatoblastoma cells and CLSM imaging F-actin microfilaments and nuclei by image thin optical sections and spatial structure was developed. It provides a very useful way to study the spatial structure of F-actin.
Collapse
Affiliation(s)
- Xia Huo
- Central Laboratory, Shantou University Medical College, Shantou 515031, Guangdong Province, China.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Dynamic actin filaments contribute to cell migration, organelle movements, memory, and gene regulation. These dynamic processes are often regulated by extracellular and?or cell cycle signals. Regulation targets, not actin itself, but the factors that determine it's dynamic properties. Thus, filament nucleation, rate and duration of elongation, and depolymerization are each controlled with regard to time and?or space. Two mechanisms exist for nucleating filaments de novo, the Arp23 complex and the formins; multiple pathways regulate each. A new filament elongates rapidly but transiently before its barbed end is capped. Rapid capping allows the cell to maintain fine temporal and spatial control over F-actin distribution. Modulation of capping protein activity and its access to barbed ends is emerging as a site of local regulation. Finally, to maintain a steady state filaments must depolymerize. Depolymerization can limit the rate of new filament nucleation and elongation. The activity of ADF?cofilin, which facilitates depolymerization, is also regulated by multiple inputs. This chapter describes (1) mechanism and regulation of new filament formation, (2) mechanism of enhancing elongation at barbed ends, (3) capping proteins and their regulators, and (4) recycling of actin monomers from filamentous actin (F-actin) back to globular actin (G-actin).
Collapse
Affiliation(s)
- Sally H Zigmond
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|