1
|
Sazanov LA. From the 'black box' to 'domino effect' mechanism: what have we learned from the structures of respiratory complex I. Biochem J 2023; 480:319-333. [PMID: 36920092 PMCID: PMC10212512 DOI: 10.1042/bcj20210285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/16/2023]
Abstract
My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant 'black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm ('domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues.
Collapse
Affiliation(s)
- Leonid A. Sazanov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
2
|
Kravchuk V, Petrova O, Kampjut D, Wojciechowska-Bason A, Breese Z, Sazanov L. A universal coupling mechanism of respiratory complex I. Nature 2022; 609:808-814. [DOI: 10.1038/s41586-022-05199-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
|
3
|
Kolata P, Efremov RG. Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation. eLife 2021; 10:e68710. [PMID: 34308841 PMCID: PMC8357420 DOI: 10.7554/elife.68710] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023] Open
Abstract
Respiratory complex I is a multi-subunit membrane protein complex that reversibly couples NADH oxidation and ubiquinone reduction with proton translocation against transmembrane potential. Complex I from Escherichia coli is among the best functionally characterized complexes, but its structure remains unknown, hindering further studies to understand the enzyme coupling mechanism. Here, we describe the single particle cryo-electron microscopy (cryo-EM) structure of the entire catalytically active E. coli complex I reconstituted into lipid nanodiscs. The structure of this mesophilic bacterial complex I displays highly dynamic connection between the peripheral and membrane domains. The peripheral domain assembly is stabilized by unique terminal extensions and an insertion loop. The membrane domain structure reveals novel dynamic features. Unusual conformation of the conserved interface between the peripheral and membrane domains suggests an uncoupled conformation of the complex. Considering constraints imposed by the structural data, we suggest a new simple hypothetical coupling mechanism for the molecular machine.
Collapse
Affiliation(s)
- Piotr Kolata
- Center for Structural Biology, Vlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrusselsBelgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
4
|
Jarman OD, Biner O, Wright JJ, Hirst J. Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I. Sci Rep 2021; 11:10143. [PMID: 33980947 PMCID: PMC8115037 DOI: 10.1038/s41598-021-89575-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His6-tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes.
Collapse
Affiliation(s)
- Owen D. Jarman
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Olivier Biner
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - John J. Wright
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Judy Hirst
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
5
|
Pamplona R, Jové M, Mota-Martorell N, Barja G. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity? FEBS J 2021; 288:6652-6673. [PMID: 33455045 DOI: 10.1111/febs.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at the mitochondrial level and a slower rate of aging of long-lived animals.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Belevich G, Belevich N, Knuuti J, Verkhovskaya M. Ca2+ stabilization of respiratory complex I from Escherichia coli. FEMS Microbiol Lett 2018; 365:4969679. [PMID: 29668960 DOI: 10.1093/femsle/fny097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/11/2018] [Indexed: 11/13/2022] Open
Abstract
Stability of the membrane-bound and purified H+-translocating NADH:ubiquinone oxidoreductase, Complex I, was studied. The loss of the enzyme activity is strongly increased by alkaline pH and dilution of the sample. Complex I inactivation is prevented specifically by a low concentration of Ca2+ and/or an intracellular stabilization factor (ISF). The action of both, Ca2+ and ISF, on Complex I stability is interdependent. The data are discussed in terms of a release of structural Ca2+ as a reason for Complex I decay and an effect of ISF on the affinity and/or accessibility of Ca2+-binding site.
Collapse
Affiliation(s)
- Galina Belevich
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki FIN-00014, Finland
| | - Nikolai Belevich
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki FIN-00014, Finland
| | - Juho Knuuti
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki FIN-00014, Finland
| | - Marina Verkhovskaya
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki FIN-00014, Finland
| |
Collapse
|
7
|
Shimada S, Maeda S, Hikita M, Mieda-Higa K, Uene S, Nariai Y, Shinzawa-Itoh K. Solubilization conditions for bovine heart mitochondrial membranes allow selective purification of large quantities of respiratory complexes I, III, and V. Protein Expr Purif 2018; 150:33-43. [PMID: 29702187 DOI: 10.1016/j.pep.2018.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022]
Abstract
Ascertaining the structure and functions of mitochondrial respiratory chain complexes is essential to understanding the biological mechanisms of energy conversion; therefore, numerous studies have examined these complexes. A fundamental part of that research involves devising a method for purifying samples with good reproducibility; the samples obtained need to be stable and their constituents need to retain the same structure and functions they possess when in mitochondrial membranes. Submitochondrial bovine heart particles were isolated using differential centrifugation to adjust to a membrane concentration of 46.0% (w/v) or 31.5% (w/v) based on weight. After 0.7% (w/v) deoxycholic acid, 0.4% (w/v) decyl maltoside, and 7.2% (w/v) potassium chloride were added to the mitochondrial membranes, those membranes were solubilized. At a membrane concentration of 46%, complex V was selectively solubilized, whereas at a concentration of 31.5% (w/v), complexes I and III were solubilized. Two steps-sucrose density gradient centrifugation and anion-exchange chromatography on a POROS HQ 20 μm column-enabled selective purification of samples that retained their structure and functions. These two steps enabled complexes I, III, and V to be purified in two days with a high yield. Complexes I, III, and V were stabilized with n-decyl-β-D-maltoside. A total of 200 mg-300 mg of those complexes from one bovine heart (1.1 kg muscle) was purified with good reproducibility, and the complexes retained the same functions they possessed while in mitochondrial membranes.
Collapse
Affiliation(s)
- Satoru Shimada
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Shintaro Maeda
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Masahide Hikita
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Kaoru Mieda-Higa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Shigefumi Uene
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Yukiko Nariai
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan.
| |
Collapse
|
8
|
Blaza JN, Vinothkumar KR, Hirst J. Structure of the Deactive State of Mammalian Respiratory Complex I. Structure 2018; 26:312-319.e3. [PMID: 29395787 PMCID: PMC5807054 DOI: 10.1016/j.str.2017.12.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles. Preparation of mammalian complex I in the deactive state that forms during ischemia The structure of the deactive state determined using electron cryomicroscopy Improved particle densities and orientations obtained using PEGylated gold grids Localized unfolding around the quinone-binding site in the deactive state
Collapse
Affiliation(s)
- James N Blaza
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kutti R Vinothkumar
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
9
|
Hoeser J, Gnandt E, Friedrich T. Low cost, microcontroller based heating device for multi-wavelength differential scanning fluorimetry. Sci Rep 2018; 8:1457. [PMID: 29362420 PMCID: PMC5780519 DOI: 10.1038/s41598-018-19702-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/02/2018] [Indexed: 11/09/2022] Open
Abstract
Differential scanning fluorimetry is a popular method to estimate the stability of a protein in distinct buffer conditions by determining its ‘melting point’. The method requires a temperature controlled fluorescence spectrometer or a RT-PCR machine. Here, we introduce a low-budget version of a microcontroller based heating device implemented into a 96-well plate reader that is connected to a standard fluorescence spectrometer. We demonstrate its potential to determine the ‘melting point’ of soluble and membranous proteins at various buffer conditions.
Collapse
Affiliation(s)
- Jo Hoeser
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany. .,Luxembourg Science Center, 50 rue Emile Mark, 4620, Differdange, Luxembourg.
| | - Emmanuel Gnandt
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany.
| |
Collapse
|
10
|
Holt PJ, Efremov RG, Nakamaru-Ogiso E, Sazanov LA. Reversible FMN dissociation from Escherichia coli respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1777-1785. [PMID: 27555334 DOI: 10.1016/j.bbabio.2016.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
Respiratory complex I transfers electrons from NADH to quinone, utilizing the reaction energy to translocate protons across the membrane. It is a key enzyme of the respiratory chain of many prokaryotic and most eukaryotic organisms. The reversible NADH oxidation reaction is facilitated in complex I by non-covalently bound flavin mononucleotide (FMN). Here we report that the catalytic activity of E. coli complex I with artificial electron acceptors potassium ferricyanide (FeCy) and hexaamineruthenium (HAR) is significantly inhibited in the enzyme pre-reduced by NADH. Further, we demonstrate that the inhibition is caused by reversible dissociation of FMN. The binding constant (Kd) for FMN increases from the femto- or picomolar range in oxidized complex I to the nanomolar range in the NADH reduced enzyme, with an FMN dissociation time constant of ~5s. The oxidation state of complex I, rather than that of FMN, proved critical to the dissociation. Such dissociation is not observed with the T. thermophilus enzyme and our analysis suggests that the difference may be due to the unusually high redox potential of Fe-S cluster N1a in E. coli. It is possible that the enzyme attenuates ROS production in vivo by releasing FMN under highly reducing conditions.
Collapse
Affiliation(s)
- Peter J Holt
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Rouslan G Efremov
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, United States
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
11
|
Hanazono Y, Takeda K, Miki K. Characterization of the Nqo5 subunit of bacterial complex I in the isolated state. FEBS Open Bio 2016; 6:687-95. [PMID: 27398308 PMCID: PMC4932448 DOI: 10.1002/2211-5463.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 11/09/2022] Open
Abstract
The subunits that comprise bacterial complex I (NADH:ubiquinone oxidoreductase) are also found in more complicated mitochondrial enzymes in eukaryotic organisms. Although the Nqo5 subunit is one of these conserved components and important for the formation of complex, it has been little studied. Here, we report structure analyses of isolated Nqo5 from Thermus thermophilus. Biochemical studies indicated that the C-terminal region following the 30-Kd subunit motif is disordered in the isolated state, while the remaining portion is already folded. Crystallographic studies of a trypsin-resistant fragment revealed detailed structural differences in the folded domain between the isolated and complexed states.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto Japan
| | - Kazuki Takeda
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto Japan; RIKEN SPring-8 Center at Harima Institute Sayo Hyogo Japan
| | - Kunio Miki
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto Japan; RIKEN SPring-8 Center at Harima Institute Sayo Hyogo Japan
| |
Collapse
|
12
|
Berrisford JM, Baradaran R, Sazanov LA. Structure of bacterial respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:892-901. [PMID: 26807915 DOI: 10.1016/j.bbabio.2016.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/23/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
| | - Rozbeh Baradaran
- Memorial Sloan-Kettering Cancer Center, 430 E 67th Street, NY 10065, USA
| | - Leonid A Sazanov
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
13
|
Vinogradov AD, Grivennikova VG. Oxidation of NADH and ROS production by respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:863-71. [PMID: 26571336 DOI: 10.1016/j.bbabio.2015.11.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/02/2015] [Accepted: 11/07/2015] [Indexed: 12/14/2022]
Abstract
Kinetic characteristics of the proton-pumping NADH:quinone reductases (respiratory complexes I) are reviewed. Unsolved problems of the redox-linked proton translocation activities are outlined. The parameters of complex I-mediated superoxide/hydrogen peroxide generation are summarized, and the physiological significance of mitochondrial ROS production is discussed. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Andrei D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991.
| | - Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991
| |
Collapse
|
14
|
Abstract
The biguanide metformin is widely prescribed for Type II diabetes and has anti-neoplastic activity in laboratory models. Despite evidence that inhibition of mitochondrial respiratory complex I by metformin is the primary cause of its cell-lineage-specific actions and therapeutic effects, the molecular interaction(s) between metformin and complex I remain uncharacterized. In the present paper, we describe the effects of five pharmacologically relevant biguanides on oxidative phosphorylation in mammalian mitochondria. We report that biguanides inhibit complex I by inhibiting ubiquinone reduction (but not competitively) and, independently, stimulate reactive oxygen species production by the complex I flavin. Biguanides also inhibit mitochondrial ATP synthase, and two of them inhibit only ATP hydrolysis, not synthesis. Thus we identify biguanides as a new class of complex I and ATP synthase inhibitor. By comparing biguanide effects on isolated complex I and cultured cells, we distinguish three anti-diabetic and potentially anti-neoplastic biguanides (metformin, buformin and phenformin) from two anti-malarial biguanides (cycloguanil and proguanil): the former are accumulated into mammalian mitochondria and affect oxidative phosphorylation, whereas the latter are excluded so act only on the parasite. Our mechanistic and pharmacokinetic insights are relevant to understanding and developing the role of biguanides in new and existing therapeutic applications, including cancer, diabetes and malaria.
Collapse
|
15
|
Walch M, Dotiwala F, Mulik S, Thiery J, Kirchhausen T, Clayberger C, Krensky AM, Martinvalet D, Lieberman J. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell 2014; 157:1309-1323. [PMID: 24906149 DOI: 10.1016/j.cell.2014.03.062] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/24/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022]
Abstract
When killer lymphocytes recognize infected cells, perforin delivers cytotoxic proteases (granzymes) into the target cell to trigger apoptosis. What happens to intracellular bacteria during this process is unclear. Human, but not rodent, cytotoxic granules also contain granulysin, an antimicrobial peptide. Here, we show that granulysin delivers granzymes into bacteria to kill diverse bacterial strains. In Escherichia coli, granzymes cleave electron transport chain complex I and oxidative stress defense proteins, generating reactive oxygen species (ROS) that rapidly kill bacteria. ROS scavengers and bacterial antioxidant protein overexpression inhibit bacterial death. Bacteria overexpressing a GzmB-uncleavable mutant of the complex I subunit nuoF or strains that lack complex I still die, but more slowly, suggesting that granzymes disrupt multiple vital bacterial pathways. Mice expressing transgenic granulysin are better able to clear Listeria monocytogenes. Thus killer cells play an unexpected role in bacterial defense.
Collapse
Affiliation(s)
- Michael Walch
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Farokh Dotiwala
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Sachin Mulik
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Jerome Thiery
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Tomas Kirchhausen
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Carol Clayberger
- Feinberg School of Medicine, Northwestern University, 420E Superior Street, Chicago, IL 60611, USA
| | - Alan M Krensky
- Feinberg School of Medicine, Northwestern University, 420E Superior Street, Chicago, IL 60611, USA
| | - Denis Martinvalet
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Judy Lieberman
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
A long road towards the structure of respiratory complex I, a giant molecular proton pump. Biochem Soc Trans 2014; 41:1265-71. [PMID: 24059518 DOI: 10.1042/bst20130193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is central to cellular energy production, being the first and largest enzyme of the respiratory chain in mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the inner mitochondrial membrane and is involved in a wide range of human neurodegenerative disorders. Mammalian complex I is composed of 44 different subunits, whereas the 'minimal' bacterial version contains 14 highly conserved 'core' subunits. The L-shaped assembly consists of hydrophilic and membrane domains. We have determined all known atomic structures of complex I, starting from the hydrophilic domain of Thermus thermophilus enzyme (eight subunits, nine Fe-S clusters), followed by the membrane domains of the Escherichia coli (six subunits, 55 transmembrane helices) and T. thermophilus (seven subunits, 64 transmembrane helices) enzymes, and finally culminating in a recent crystal structure of the entire intact complex I from T. thermophilus (536 kDa, 16 subunits, nine Fe-S clusters, 64 transmembrane helices). The structure suggests an unusual and unique coupling mechanism via long-range conformational changes. Determination of the structure of the entire complex was possible only through this step-by-step approach, building on from smaller subcomplexes towards the entire assembly. Large membrane proteins are notoriously difficult to crystallize, and so various non-standard and sometimes counterintuitive approaches were employed in order to achieve crystal diffraction to high resolution and solve the structures. These steps, as well as the implications from the final structure, are discussed in the present review.
Collapse
|
18
|
Shimada S, Shinzawa-Itoh K, Amano S, Akira Y, Miyazawa A, Tsukihara T, Tani K, Gerle C, Yoshikawa S. Three-dimensional structure of bovine heart NADH: ubiquinone oxidoreductase (complex I) by electron microscopy of a single negatively stained two-dimensional crystal. Microscopy (Oxf) 2014; 63:167-74. [PMID: 24523515 DOI: 10.1093/jmicro/dft082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bovine heart NADH:ubiquinone oxidoreductase (complex I), which is the largest (about 1 MDa) membrane protein complex in the mitochondrial respiratory chain, catalyzes the electron transfer from NADH to ubiquinone, coupled with proton pumping. We have crystallized bovine complex I in reconstituted lipid bilayers and obtained a three-dimensional density map by the electron crystallographic analysis of a single negatively stained two-dimensional crystal. The asymmetric unit with dimensions of a = 388 Å, b = 129 Å and γ = 90° contains two molecules and is of P1 symmetry. Structural differences between the two molecules indicate flexibility of the hydrophilic domain relative to the membrane-embedded domain.
Collapse
|
19
|
Sun F, Zhou Q, Pang X, Xu Y, Rao Z. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain. Curr Opin Struct Biol 2013; 23:526-38. [DOI: 10.1016/j.sbi.2013.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 01/23/2023]
|
20
|
Verkhovskaya M, Bloch DA. Energy-converting respiratory Complex I: on the way to the molecular mechanism of the proton pump. Int J Biochem Cell Biol 2012; 45:491-511. [PMID: 22982742 DOI: 10.1016/j.biocel.2012.08.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022]
Abstract
In respiring organisms the major energy transduction flux employs the transmembrane electrochemical proton gradient as a physical link between exergonic redox reactions and endergonic ADP phosphorylation. Establishing the gradient involves electrogenic, transmembrane H(+) translocation by the membrane-embedded respiratory complexes. Among others, Complex I (NADH:ubiquinone oxidoreductase) is the most structurally complex and functionally enigmatic respiratory enzyme; its molecular mechanism is as yet unknown. Here we highlight recent progress and discuss the catalytic events during Complex I turnover in relation to their role in energy conversion and to the enzyme structure.
Collapse
Affiliation(s)
- Marina Verkhovskaya
- Helsinki Bioenergetics Group, Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
21
|
Sinha PK, Nakamaru-Ogiso E, Torres-Bacete J, Sato M, Castro-Guerrero N, Ohnishi T, Matsuno-Yagi A, Yagi T. Electron transfer in subunit NuoI (TYKY) of Escherichia coli NADH:quinone oxidoreductase (NDH-1). J Biol Chem 2012; 287:17363-17373. [PMID: 22474289 DOI: 10.1074/jbc.m111.329649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial proton-translocating NADH:quinone oxidoreductase (NDH-1) consists of a peripheral and a membrane domain. The peripheral domain catalyzes the electron transfer from NADH to quinone through a chain of seven iron-sulfur (Fe/S) clusters. Subunit NuoI in the peripheral domain contains two [4Fe-4S] clusters (N6a and N6b) and plays a role in bridging the electron transfer from cluster N5 to the terminal cluster N2. We constructed mutants for eight individual Cys-coordinating Fe/S clusters. With the exception of C63S, all mutants had damaged architecture of NDH-1, suggesting that Cys-coordinating Fe/S clusters help maintain the NDH-1 structure. Studies of three mutants (C63S-coordinating N6a, P110A located near N6a, and P71A in the vicinity of N6b) were carried out using EPR measurement. These three mutations did not affect the EPR signals from [2Fe-2S] clusters and retained electron transfer activities. Signals at g(z) = 2.09 disappeared in C63S and P110A but not in P71A. Considering our data together with the available information, g(z,x) = 2.09, 1.88 signals are assigned to cluster N6a. It is of interest that, in terms of g(z,x) values, cluster N6a is similar to cluster N4. In addition, we investigated the residues (Ile-94 and Ile-100) that are predicted to serve as electron wires between N6a and N6b and between N6b and N2, respectively. Replacement of Ile-100 and Ile-94 with Ala/Gly did not affect the electron transfer activity significantly. It is concluded that conserved Ile-100 and Ile-94 are not essential for the electron transfer.
Collapse
Affiliation(s)
- Prem Kumar Sinha
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jesus Torres-Bacete
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Motoaki Sato
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Norma Castro-Guerrero
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Tomoko Ohnishi
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Akemi Matsuno-Yagi
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Takao Yagi
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
22
|
Mutations in the Gene Encoding C8orf38 Block Complex I Assembly by Inhibiting Production of the Mitochondria-Encoded Subunit ND1. J Mol Biol 2011; 414:413-26. [DOI: 10.1016/j.jmb.2011.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/11/2022]
|
23
|
Belevich G, Knuuti J, Verkhovsky MI, Wikström M, Verkhovskaya M. Probing the mechanistic role of the long α-helix in subunit L of respiratory Complex I from Escherichia coli by site-directed mutagenesis. Mol Microbiol 2011; 82:1086-95. [PMID: 22060017 PMCID: PMC3274701 DOI: 10.1111/j.1365-2958.2011.07883.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The C-terminus of the NuoL subunit of Complex I includes a long amphipathic α-helix positioned parallel to the membrane, which has been considered to function as a piston in the proton pumping machinery. Here, we have introduced three types of mutations into the nuoL gene to test the piston-like function. First, NuoL was truncated at its C- and N-termini, which resulted in low production of a fragile Complex I with negligible activity. Second, we mutated three partially conserved residues of the amphipathic α-helix: Asp and Lys residues and a Pro were substituted for acidic, basic or neutral residues. All these variants exhibited almost a wild-type phenotype. Third, several substitutions and insertions were made to reduce rigidity of the amphipathic α-helix, and/or to change its geometry. Most insertions/substitutions resulted in a normal growth phenotype, albeit often with reduced stability of Complex I. In contrast, insertion of six to seven amino acids at a site of the long α-helix between NuoL and M resulted in substantial loss of proton pumping efficiency. The implications of these results for the proton pumping mechanism of Complex I are discussed.
Collapse
Affiliation(s)
- Galina Belevich
- Helsinki Bioenergetics Group, Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
24
|
Pätsi J, Maliniemi P, Pakanen S, Hinttala R, Uusimaa J, Majamaa K, Nyström T, Kervinen M, Hassinen IE. LHON/MELAS overlap mutation in ND1 subunit of mitochondrial complex I affects ubiquinone binding as revealed by modeling in Escherichia coli NDH-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:312-8. [PMID: 22079202 DOI: 10.1016/j.bbabio.2011.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.
Collapse
Affiliation(s)
- Jukka Pätsi
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Understanding mitochondrial complex I assembly in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:851-62. [PMID: 21924235 DOI: 10.1016/j.bbabio.2011.08.010] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/17/2011] [Accepted: 08/27/2011] [Indexed: 12/12/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
26
|
Efremov RG, Sazanov LA. Respiratory complex I: 'steam engine' of the cell? Curr Opin Struct Biol 2011; 21:532-40. [PMID: 21831629 DOI: 10.1016/j.sbi.2011.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/01/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022]
Abstract
Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we have determined structures of the hydrophilic domain in several redox states. Last year was marked by fascinating breakthroughs in the understanding of the complete structure. We described the architecture of the membrane domain and of the entire bacterial complex I. X-ray analysis of the larger mitochondrial enzyme has also been published. The core subunits of the bacterial and mitochondrial enzymes have remarkably similar structures. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine.
Collapse
Affiliation(s)
- Rouslan G Efremov
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
27
|
Structure of the membrane domain of respiratory complex I. Nature 2011; 476:414-20. [PMID: 21822288 DOI: 10.1038/nature10330] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/24/2011] [Indexed: 01/30/2023]
Abstract
Complex I is the first and largest enzyme of the respiratory chain, coupling electron transfer between NADH and ubiquinone to the translocation of four protons across the membrane. It has a central role in cellular energy production and has been implicated in many human neurodegenerative diseases. The L-shaped enzyme consists of hydrophilic and membrane domains. Previously, we determined the structure of the hydrophilic domain. Here we report the crystal structure of the Esherichia coli complex I membrane domain at 3.0 Å resolution. It includes six subunits, NuoL, NuoM, NuoN, NuoA, NuoJ and NuoK, with 55 transmembrane helices. The fold of the homologous antiporter-like subunits L, M and N is novel, with two inverted structural repeats of five transmembrane helices arranged, unusually, face-to-back. Each repeat includes a discontinuous transmembrane helix and forms half of a channel across the membrane. A network of conserved polar residues connects the two half-channels, completing the proton translocation pathway. Unexpectedly, lysines rather than carboxylate residues act as the main elements of the proton pump in these subunits. The fourth probable proton-translocation channel is at the interface of subunits N, K, J and A. The structure indicates that proton translocation in complex I, uniquely, involves coordinated conformational changes in six symmetrical structural elements.
Collapse
|
28
|
Selao TT, Branca R, Chae PS, Lehtiö J, Gellman SH, Rasmussen SGF, Nordlund S, Norén A. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum. J Proteome Res 2011; 10:2703-14. [PMID: 21443180 DOI: 10.1021/pr100838x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chromatophore membrane of the photosynthetic diazotroph Rhodospirillum rubrum is of vital importance for a number of central processes, including nitrogen fixation. Using a novel amphiphile, we have identified protein complexes present under different nitrogen availability conditions by the use of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially expressed proteins, such as subunits of the succinate dehydrogenase complex and other TCA cycle enzymes that are usually found in the cytosol, thus hinting at a possible association to the membrane in response to nitrogen deficiency. We propose a redox sensing mechanism that can influence the membrane subproteome in response to nitrogen availability.
Collapse
Affiliation(s)
- Tiago Toscano Selao
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yip CY, Harbour ME, Jayawardena K, Fearnley IM, Sazanov LA. Evolution of respiratory complex I: "supernumerary" subunits are present in the alpha-proteobacterial enzyme. J Biol Chem 2010; 286:5023-33. [PMID: 21115482 DOI: 10.1074/jbc.m110.194993] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modern α-proteobacteria are thought to be closely related to the ancient symbiont of eukaryotes, an ancestor of mitochondria. Respiratory complex I from α-proteobacteria and mitochondria is well conserved at the level of the 14 "core" subunits, consistent with that notion. Mitochondrial complex I contains the core subunits, present in all species, and up to 31 "supernumerary" subunits, generally thought to have originated only within eukaryotic lineages. However, the full protein composition of an α-proteobacterial complex I has not been established previously. Here, we report the first purification and characterization of complex I from the α-proteobacterium Paracoccus denitrificans. Single particle electron microscopy shows that the complex has a well defined L-shape. Unexpectedly, in addition to the 14 core subunits, the enzyme also contains homologues of three supernumerary mitochondrial subunits as follows: B17.2, AQDQ/18, and 13 kDa (bovine nomenclature). This finding suggests that evolution of complex I via addition of supernumerary or "accessory" subunits started before the original endosymbiotic event that led to the creation of the eukaryotic cell. It also provides further confirmation that α-proteobacteria are the closest extant relatives of mitochondria.
Collapse
Affiliation(s)
- Chui-ying Yip
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Efremov RG, Baradaran R, Sazanov LA. The architecture of respiratory complex I. Nature 2010; 465:441-5. [PMID: 20505720 DOI: 10.1038/nature09066] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/31/2010] [Indexed: 12/12/2022]
Abstract
Complex I is the first enzyme of the respiratory chain and has a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation by an unknown mechanism. Dysfunction of complex I has been implicated in many human neurodegenerative diseases. We have determined the structure of its hydrophilic domain previously. Here, we report the alpha-helical structure of the membrane domain of complex I from Escherichia coli at 3.9 A resolution. The antiporter-like subunits NuoL/M/N each contain 14 conserved transmembrane (TM) helices. Two of them are discontinuous, as in some transporters. Unexpectedly, subunit NuoL also contains a 110-A long amphipathic alpha-helix, spanning almost the entire length of the domain. Furthermore, we have determined the structure of the entire complex I from Thermus thermophilus at 4.5 A resolution. The L-shaped assembly consists of the alpha-helical model for the membrane domain, with 63 TM helices, and the known structure of the hydrophilic domain. The architecture of the complex provides strong clues about the coupling mechanism: the conformational changes at the interface of the two main domains may drive the long amphipathic alpha-helix of NuoL in a piston-like motion, tilting nearby discontinuous TM helices, resulting in proton translocation.
Collapse
Affiliation(s)
- Rouslan G Efremov
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
31
|
Price CE, Driessen AJM. Biogenesis of membrane bound respiratory complexes in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:748-66. [PMID: 20138092 DOI: 10.1016/j.bbamcr.2010.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 11/19/2022]
Abstract
Escherichia coli is one of the preferred bacteria for studies on the energetics and regulation of respiration. Respiratory chains consist of primary dehydrogenases and terminal reductases or oxidases linked by quinones. In order to assemble this complex arrangement of protein complexes, synthesis of the subunits occurs in the cytoplasm followed by assembly in the cytoplasm and/or membrane, the incorporation of metal or organic cofactors and the anchoring of the complex to the membrane. In the case of exported metalloproteins, synthesis, assembly and incorporation of metal cofactors must be completed before translocation across the cytoplasmic membrane. Coordination data on these processes is, however, scarce. In this review, we discuss the various processes that respiratory proteins must undergo for correct assembly and functional coupling to the electron transport chain in E. coli. Targeting to and translocation across the membrane together with cofactor synthesis and insertion are discussed in a general manner followed by a review of the coordinated biogenesis of individual respiratory enzyme complexes. Lastly, we address the supramolecular organization of respiratory enzymes into supercomplexes and their localization to specialized domains in the membrane.
Collapse
Affiliation(s)
- Claire E Price
- Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
32
|
Graff A, Fraysse-Ailhas C, Palivan CG, Grzelakowski M, Friedrich T, Vebert C, Gescheidt G, Meier W. Amphiphilic Copolymer Membranes Promote NADH:Ubiquinone Oxidoreductase Activity: Towards an Electron-Transfer Nanodevice. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900517] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1106-11. [PMID: 19265669 DOI: 10.1016/j.bbabio.2009.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 11/20/2022]
Abstract
125I-labeled (trifluoromethyl)phenyldiazirinyl acetogenin, [125I]TDA, a photoaffinity labeling probe of acetogenin, photo-cross-links to the ND1 subunit of bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I) with high specificity [M. Murai, A. Ishihara, T. Nishioka, T. Yagi, and H. Miyoshi, (2007) The ND1 subunit constructs the inhibitor binding domain in bovine heart mitochondrial complex I, Biochemistry 46 6409-6416.]. To identify the binding site of [125I]TDA in the ND1 subunit, we carried out limited proteolysis of the subunit cross-linked by [125I]TDA using various proteases and carefully analyzed the fragmentation patterns. Our results revealed that the cross-linked residue is located within the region of the 4th to 5th transmembrane helices (Val144-Glu192) of the subunit. It is worth noting that an excess amount of short-chain ubiquinones such as ubiquinone-2 (Q2) and 2-azido-Q2 suppressed the cross-linking by [125I]TDA in a concentration-dependent way. Although the question of whether the binding sites for ubiquinone and different inhibitors in complex I are identical remains to be answered, the present study provided, for the first time, direct evidence that an inhibitor (acetogenin) and ubiquinone competitively bind to the enzyme. Considering the present results along with earlier photoaffinity labeling studies, we propose that not all inhibitors acting at the terminal electron transfer step of complex I necessarily bind to the ubiquinone binding site itself.
Collapse
|
34
|
Euro L, Belevich G, Wikström M, Verkhovskaya M. High affinity cation-binding sites in Complex I from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1024-8. [PMID: 19261245 DOI: 10.1016/j.bbabio.2009.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Studies on the activity of Complex I from Escherichia coli in the presence of different metal cations revealed at least two high affinity metal-binding sites. Membrane-bound or isolated Complex I was activated by K(+) (apparent binding constant approximately 125 microM) and inhibited by La(3+) (IC(50)= 1 microM). K(+) and La(3+) do not occupy the same site. Possible localization of these metal-binding sites and their implication in catalysis are discussed.
Collapse
Affiliation(s)
- Liliya Euro
- Helsinki Bioenergetics Group, Institute of Biotechnology, PO Box 65 (Viikinkaari 1) 00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
35
|
Berrisford JM, Thompson CJ, Sazanov LA. Chemical and NADH-induced, ROS-dependent, cross-linking between subunits of complex I from Escherichia coli and Thermus thermophilus. Biochemistry 2008; 47:10262-70. [PMID: 18771280 DOI: 10.1021/bi801160u] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complex I of respiratory chains transfers electrons from NADH to ubiquinone, coupled to the translocation of protons across the membrane. Two alternative coupling mechanisms are being discussed, redox-driven or conformation-driven. Using "zero-length" cross-linking reagent and isolated hydrophilic domains of complex I from Escherichia coli and Thermus thermophilus, we show that the pattern of cross-links between subunits changes significantly in the presence of NADH. Similar observations were made previously with intact purified E. coli and bovine complex I. This indicates that, upon reduction with NADH, similar conformational changes are likely to occur in the intact enzyme and in the isolated hydrophilic domain (which can be used for crystallographic studies). Within intact E. coli complex I, the cross-link between the hydrophobic subunits NuoA and NuoJ was abolished in the presence of NADH, indicating that conformational changes extend into the membrane domain, possibly as part of a coupling mechanism. Unexpectedly, in the absence of any chemical cross-linker, incubation of complex I with NADH resulted in covalent cross-links between subunits Nqo4 (NuoCD) and Nqo6 (NuoB), as well as between Nqo6 and Nqo9. Their formation depends on the presence of oxygen and so is likely a result of oxidative damage via reactive oxygen species (ROS) induced cross-linking. In addition, ROS- and metal ion-dependent proteolysis of these subunits (as well as Nqo3) is observed. Fe-S cluster N2 is coordinated between subunits Nqo4 and Nqo6 and could be involved in these processes. Our observations suggest that oxidative damage to complex I in vivo may include not only side-chain modifications but also protein cross-linking and degradation.
Collapse
Affiliation(s)
- John M Berrisford
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC building, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
36
|
Lazarou M, Thorburn DR, Ryan MT, McKenzie M. Assembly of mitochondrial complex I and defects in disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:78-88. [PMID: 18501715 DOI: 10.1016/j.bbamcr.2008.04.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/15/2008] [Accepted: 04/25/2008] [Indexed: 12/19/2022]
Abstract
Isolated complex I deficiency is the most common cause of respiratory chain dysfunction. Defects in human complex I result in energy generation disorders and they are also implicated in neurodegenerative disease and altered apoptotic signaling. Complex I dysfunction often occurs as a result of its impaired assembly. The assembly process of complex I is poorly understood, complicated by the fact that in mammals, it is composed of 45 different subunits and is regulated by both nuclear and mitochondrial genomes. However, in recent years we have gained new insights into complex I biogenesis and a number of assembly factors involved in this process have also been identified. In most cases, these factors have been discovered through their gene mutations that lead to specific complex I defects and result in mitochondrial disease. Here we review how complex I is assembled and the factors required to mediate this process.
Collapse
Affiliation(s)
- Michael Lazarou
- Department of Biochemistry, La Trobe University, 3086 Melbourne, Australia
| | | | | | | |
Collapse
|
37
|
Morgan DJ, Sazanov LA. Three-dimensional structure of respiratory complex I from Escherichia coli in ice in the presence of nucleotides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:711-8. [PMID: 18433710 DOI: 10.1016/j.bbabio.2008.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/07/2008] [Accepted: 03/25/2008] [Indexed: 11/24/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the largest protein complex of bacterial and mitochondrial respiratory chains. The first three-dimensional structure of bacterial complex I in vitrified ice was determined by electron cryo-microscopy and single particle analysis. The structure of the Escherichia coli enzyme incubated with either NAD(+) (as a reference) or NADH was calculated to 35 and 39 A resolution, respectively. The X-ray structure of the peripheral arm of Thermus thermophilus complex I was docked into the reference EM structure. The model obtained indicates that Fe-S cluster N2 is close to the membrane domain interface, allowing for effective electron transfer to membrane-embedded quinone. At the current resolution, the structures in the presence of NAD(+) or NADH are similar. Additionally, side-view class averages were calculated for the negatively stained bovine enzyme. The structures of bovine complex I in the presence of either NAD(+) or NADH also appeared to be similar. These observations indicate that conformational changes upon reduction with NADH, suggested to occur by a range of studies, are smaller than had been thought previously. The model of the entire bacterial complex I could be built from the crystal structures of subcomplexes using the EM envelope described here.
Collapse
Affiliation(s)
- David J Morgan
- Medical Research Council, Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
38
|
Esterházy D, King MS, Yakovlev G, Hirst J. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 2008; 47:3964-71. [PMID: 18307315 DOI: 10.1021/bi702243b] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The generation of reactive oxygen species by mitochondrial complex I (NADH:ubiquinone oxidoreductase) is considered a significant cause of cellular oxidative stress, linked to neuromuscular diseases and aging. Defining its mechanism is important for the formulation of causative connections between complex I defects and pathological effects. Oxygen is probably reduced at two sites in complex I, one associated with NADH oxidation in the mitochondrial matrix and the other associated with ubiquinone reduction in the membrane. Here, we study complex I from Escherichia coli, exploiting similarities and differences in the bacterial and mitochondrial enzymes to extend our knowledge of O2 reduction at the active site for NADH oxidation. E. coli and bovine complex I reduce O2 at essentially the same rate, with the same potential dependence (set by the NAD (+)/NADH ratio), showing that the rate-determining step is conserved. The potential dependent rate of H2O2 production does not correlate to the potential of the distal [2Fe-2S] cluster N1a in E. coli complex I, excluding it as the point of O2 reduction. Therefore, our results confirm previous proposals that O2 reacts with the fully reduced flavin mononucleotide. Assays for superoxide production by E. coli complex I were prone to artifacts, but dihydroethidium reduction showed that, upon reducing O2, it produces approximately 20% superoxide and 80% H2O2. In contrast, bovine complex I produces 95% superoxide. The results are consistent with (but do not prove) a specific role for cluster N1a in determining the outcome of O2 reduction; possible reaction mechanisms are discussed.
Collapse
Affiliation(s)
- Daria Esterházy
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | | | | | | |
Collapse
|
39
|
Cardol P, Boutaffala L, Memmi S, Devreese B, Matagne RF, Remacle C. In Chlamydomonas, the loss of ND5 subunit prevents the assembly of whole mitochondrial complex I and leads to the formation of a low abundant 700 kDa subcomplex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:388-96. [PMID: 18258177 DOI: 10.1016/j.bbabio.2008.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/26/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
In the green alga Chlamydomonas reinhardtii, a mutant deprived of complex I enzyme activity presents a 1T deletion in the mitochondrial nd5 gene. The loss of the ND5 subunit prevents the assembly of the 950 kDa whole complex I. Instead, a low abundant 700 kDa subcomplex, loosely associated to the inner mitochondrial membrane, is assembled. The resolution of the subcomplex by SDS-PAGE gave rise to 19 individual spots, sixteen having been identified by mass spectrometry analysis. Eleven, mainly associated to the hydrophilic part of the complex, are homologs to subunits of the bovine enzyme whereas five (including gamma-type carbonic anhydrase subunits) are specific to green plants or to plants and fungi. None of the subunits typical of the beta membrane domain of complex I enzyme has been identified in the mutant. This allows us to propose that the truncated enzyme misses the membrane distal domain of complex I but retains the proximal domain associated to the matrix arm of the enzyme. A complex I topology model is presented in the light of our results. Finally, a supercomplex most probably corresponding to complex I-complex III association, was identified in mutant mitochondria, indicating that the missing part of the enzyme is not required for the formation of the supercomplex.
Collapse
Affiliation(s)
- Pierre Cardol
- Genetics of Microorganisms, Department of Life Sciences, B22, University of Liège, B-4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
40
|
Tocilescu MA, Fendel U, Zwicker K, Kerscher S, Brandt U. Exploring the Ubiquinone Binding Cavity of Respiratory Complex I. J Biol Chem 2007; 282:29514-20. [PMID: 17681940 DOI: 10.1074/jbc.m704519200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton pumping respiratory complex I is a major player in mitochondrial energy conversion. Yet little is known about the molecular mechanism of this large membrane protein complex. Understanding the details of ubiquinone reduction will be prerequisite for elucidating this mechanism. Based on a recently published partial structure of the bacterial enzyme, we scanned the proposed ubiquinone binding cavity of complex I by site-directed mutagenesis in the strictly aerobic yeast Yarrowia lipolytica. The observed changes in catalytic activity and inhibitor sensitivity followed a consistent pattern and allowed us to define three functionally important regions near the ubiquinone-reducing iron-sulfur cluster N2. We identified a likely entry path for the substrate ubiquinone and defined a region involved in inhibitor binding within the cavity. Finally, we were able to highlight a functionally critical structural motif in the active site that consisted of Tyr-144 in the 49-kDa subunit, surrounded by three conserved hydrophobic residues.
Collapse
Affiliation(s)
- Maja A Tocilescu
- Johann Wolfgang Goethe-Universität, Fachbereich Medizin, Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Centre of Excellence Frankfurt Macromolecular Complexes, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
41
|
Abstract
The number of NADH dehydrogenases and their role in energy transduction in
Escherchia coli
have been under debate for a long time. Now it is evident that
E. coli
possesses two respiratory NADH dehydrogenases, or NADH:ubiquinone oxidoreductases, that have traditionally been called NDH-I and NDH-II. This review describes the properties of these two NADH dehydrogenases, focusing on the mechanism of the energy converting NADH dehydrogenase as derived from the high resolution structure of the soluble part of the enzyme. In
E. coli
, complex I operates in aerobic and anaerobic respiration, while NDH-II is repressed under anaerobic growth conditions. The insufficient recycling of NADH most likely resulted in excess NADH inhibiting tricarboxylic acid cycle enzymes and the glyoxylate shunt.
Salmonella enterica
serovar Typhimurium complex I mutants are unable to activate ATP-dependent proteolysis under starvation conditions. NDH-II is a single subunit enzyme with a molecular mass of 47 kDa facing the cytosol. Despite the absence of any predicted transmembrane segment it has to be purified in the presence of detergents, and the activity of the preparation is stimulated by an addition of lipids.
Collapse
|
42
|
Battchikova N, Aro EM. Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition. PHYSIOLOGIA PLANTARUM 2007; 131:22-32. [PMID: 18251921 DOI: 10.1111/j.1399-3054.2007.00929.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In cyanobacteria, the NAD(P)H:quinone oxidoreductase (NDH-1) is involved in a variety of functions like respiration, cyclic electron flow around PSI and CO(2) uptake. Several types of NDH-1 complexes, which differ in structure and are responsible for these functions, exist in cyanobacterial membranes. This minireview is based on data obtained by reverse genetics and proteomics studies and focuses on the structural and functional differences of the two types of cyanobacterial NDH-1 complexes: NDH-1L, important for respiration and PSI cyclic electron flow, and NDH-1MS, the low-CO(2) inducible complex participating in CO(2) uptake. The NDH-1 complexes in cyanobacteria share a common NDH-1M 'core' complex and differ in the composition of the distal membrane domain composed of specific NdhD and NdhF proteins, which in complexes involved in CO(2) uptake is further associated with the hydrophilic carbon uptake (CUP) domain. At present, however, very important questions concerning the nature of catalytically active subunits that constitute the electron input device (like NADH dehydrogenase module of the eubacterial 'model' NDH-1 analogs), the substrate specificity and reaction mechanisms of cyanobacterial complexes remain unanswered and are shortly discussed here.
Collapse
Affiliation(s)
- Natalia Battchikova
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20520 Turku, Finland.
| | | |
Collapse
|
43
|
Pohl T, Uhlmann M, Kaufenstein M, Friedrich T. Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochemistry 2007; 46:10694-702. [PMID: 17722886 DOI: 10.1021/bi701057t] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.
Collapse
Affiliation(s)
- Thomas Pohl
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, Spemann Graduate School of Biology and Medicine, D-79104 Freiburg i. Br., Germany
| | | | | | | |
Collapse
|
44
|
Effects of the deletion of the Escherichia coli frataxin homologue CyaY on the respiratory NADH:ubiquinone oxidoreductase. BMC BIOCHEMISTRY 2007; 8:13. [PMID: 17650323 PMCID: PMC1959517 DOI: 10.1186/1471-2091-8-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 07/24/2007] [Indexed: 11/30/2022]
Abstract
Background Frataxin is discussed as involved in the biogenesis of iron-sulfur clusters. Recently it was discovered that a frataxin homologue is a structural component of the respiratory NADH:ubiquinone oxidoreductase (complex I) in Thermus thermophilus. It was not clear whether frataxin is in general a component of complex I from bacteria. The Escherichia coli homologue of frataxin is coined CyaY. Results We report that complex I is completely assembled to a stable and active enzyme complex equipped with all known iron-sulfur clusters in a cyaY mutant of E. coli. However, the amount of complex I is reduced by one third compared to the parental strain. Western blot analysis and live cell imaging of CyaY engineered with a GFP demonstrated that CyaY is located in the cytoplasm and not attached to the membrane as to be expected if it were a component of complex I. Conclusion CyaY plays a non-essential role in the assembly of complex I in E. coli. It is not a structural component but may transiently interact with the complex.
Collapse
|
45
|
Yakovlev G, Reda T, Hirst J. Reevaluating the relationship between EPR spectra and enzyme structure for the iron sulfur clusters in NADH:quinone oxidoreductase. Proc Natl Acad Sci U S A 2007; 104:12720-5. [PMID: 17640900 PMCID: PMC1925037 DOI: 10.1073/pnas.0705593104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NADH:quinone oxidoreductase (complex I) plays a pivotal role in cellular energy production. It employs a series of redox cofactors to couple electron transfer to the generation of a proton-motive force across the inner mitochondrial or bacterial cytoplasmic membrane. Complex I contains a noncovalently bound flavin mononucleotide at the active site for NADH oxidation and eight or nine iron-sulfur clusters to transfer electrons between the flavin and a quinone-binding site. Understanding the mechanism of complex I requires the properties of these clusters to be defined, both individually and as an ensemble. Most functional information on the clusters has been gained from EPR spectroscopy, but some clusters are not observed by EPR and attributing the observed signals to the structurally defined clusters is difficult. The current consensus picture relies on correlating the spectra from overexpressed subunits (containing one to four clusters) with those from intact complexes I. Here, we analyze spectra from the overexpressed NuoG subunit from Escherichia coli complex I and compare them with spectra from the intact enzyme. Consequently, we propose that EPR signals N4 and N5 have been misassigned: signal N4 is from NuoI (not NuoG) and signal N5 is from the conserved cysteine-ligated [4Fe-4S] cluster in NuoG (not from the cluster with a histidine ligand). The consequences of reassigning the EPR signals and their associated functional information on the free energy profile for electron transfer through complex I are discussed.
Collapse
Affiliation(s)
- Gregory Yakovlev
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | - Torsten Reda
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | - Judy Hirst
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Kerscher S, Dröse S, Zickermann V, Brandt U. The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 2007; 45:185-222. [PMID: 17514372 DOI: 10.1007/400_2007_028] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most reducing equivalents extracted from foodstuffs during oxidative metabolism are fed into the respiratory chains of aerobic bacteria and mitochondria by NADH:quinone oxidoreductases. Three families of enzymes can perform this task and differ remarkably in their complexity and role in energy conversion. Alternative or NDH-2-type NADH dehydrogenases are simple one subunit flavoenzymes that completely dissipate the redox energy of the NADH/quinone couple. Sodium-pumping NADH dehydrogenases (Nqr) that are only found in procaryotes contain several flavins and are integral membrane protein complexes composed of six different subunits. Proton-pumping NADH dehydrogenases (NDH-1 or complex I) are highly complicated membrane protein complexes, composed of up to 45 different subunits, that are found in bacteria and mitochondria. This review gives an overview of the origin, structural and functional properties and physiological significance of these three types of NADH dehydrogenase.
Collapse
Affiliation(s)
- Stefan Kerscher
- Molecular Bioenergetics Group, Centre of Excellence Macromolecular Complexes, Johann Wolfgang Goethe-Universität, 60590, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
47
|
Sazanov LA. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 2007; 46:2275-88. [PMID: 17274631 DOI: 10.1021/bi602508x] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complex I of respiratory chains plays a central role in cellular energy production. Mutations in its subunits lead to many human neurodegenerative diseases. Recently, a first atomic structure of the hydrophilic domain of complex I from Thermus thermophilus was determined. This domain represents a catalytic core of the enzyme. It consists of eight different subunits, contains all the redox centers, and comprises more than half of the entire complex. In this review, novel mechanistic implications of the structure are discussed, and the effects of many known mutations of complex I subunits are interpreted in a structural context.
Collapse
Affiliation(s)
- Leonid A Sazanov
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK. sazanov@ mrc-dunn.cam.ac.uk
| |
Collapse
|
48
|
Abstract
In this critical review we discuss recent advances in understanding the modes of interaction of metal ions with membrane proteins, including channels, pumps, transporters, ATP-binding cassette proteins, G-protein coupled receptors, kinases and respiratory enzymes. Such knowledge provides a basis for elucidating the mechanism of action of some classes of metallodrugs, and a stimulus for the further exploration of the coordination chemistry of metal ions in membranes. Such research offers promise for the discovery of new drugs with unusual modes of action. The article will be of interest to bioinorganic chemists, chemical biologists, biochemists, pharmacologists and medicinal chemists. (247 references).
Collapse
Affiliation(s)
- Xiangyang Liang
- School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, UKEH9 3JJ
| | | | | |
Collapse
|
49
|
Baranova EA, Holt PJ, Sazanov LA. Projection structure of the membrane domain of Escherichia coli respiratory complex I at 8 A resolution. J Mol Biol 2006; 366:140-54. [PMID: 17157874 DOI: 10.1016/j.jmb.2006.11.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/31/2006] [Accepted: 11/07/2006] [Indexed: 11/25/2022]
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) is an L-shaped multisubunit protein assembly consisting of a hydrophobic membrane arm and a hydrophilic peripheral arm. It catalyses the transfer of two electrons from NADH to quinone coupled to the translocation of four protons across the membrane. Although we have solved recently the crystal structure of the peripheral arm, the structure of the complete enzyme and the coupling mechanism are not yet known. The membrane domain of Escherichia coli complex I consists of seven different subunits with total molecular mass of 258 kDa. It is significantly more stable than the whole enzyme, which allowed us to obtain well-ordered two-dimensional crystals of the domain, belonging to the space group p22(1)2(1). Comparison of the projection map of negatively stained crystals with previously published low-resolution structures indicated that the characteristic curved shape of the membrane domain is remarkably well conserved between bacterial and mitochondrial enzymes, helping us to interpret projection maps in the context of the intact complex. Two pronounced stain-excluding densities at the distal end of the membrane domain are likely to represent the two large antiporter-like subunits NuoL and NuoM. Cryo-electron microscopy on frozen-hydrated crystals allowed us to calculate a projection map at 8 A resolution. About 60 transmembrane alpha-helices, both perpendicular to the membrane plane and tilted, are present within one membrane domain, which is consistent with secondary structure predictions. A possible binding site and access channel for quinone are found at the interface with the peripheral arm. Tentative assignment of individual subunits to the features of the map has been made. The location of subunits NuoL and NuoM at substantial distance from the peripheral arm, which contains all the redox centres of the complex, indicates that conformational changes are likely to play a role in the mechanism of coupling between electron transfer and proton pumping.
Collapse
Affiliation(s)
- Ekaterina A Baranova
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK
| | | | | |
Collapse
|
50
|
Amarneh B, De Leon-Rangel J, Vik SB. Construction of a deletion strain and expression vector for the Escherichia coli NADH:ubiquinone oxidoreductase (Complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1557-60. [PMID: 16979134 DOI: 10.1016/j.bbabio.2006.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 08/08/2006] [Indexed: 11/23/2022]
Abstract
Complex I of Escherichia coli is encoded by 13 consecutive genes, called the nuo operon. A chromosomal deletion of all nuo genes has been achieved by homologous recombination. A vector that encodes all of the nuo genes has been constructed, and it expresses a functional enzyme.
Collapse
Affiliation(s)
- Bilal Amarneh
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | | | | |
Collapse
|