1
|
El-Shoukrofy MS, Atta A, Fahmy S, Sriram D, Mahran MA, Labouta IM. New tetrahydropyrimidine-1,2,3-triazole clubbed compounds: Antitubercular activity and Thymidine Monophosphate Kinase (TMPKmt) inhibition. Bioorg Chem 2023; 131:106312. [PMID: 36528922 DOI: 10.1016/j.bioorg.2022.106312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Two series of new tetrahydropyrimidine (THPM)-1,2,3-triazole clubbed compounds were designed, synthesized and screened for their antitubercular (anti-TB) activity against M. tuberculosis H37Rv strain using microplate alamar blue assay (MABA). The most active compounds 5c, 5d, 5e and 5f were further examined for their cytotoxicity against the growth of RAW 264.7 mouse macrophage cells using MTT assay. The four compounds showed safety profiles better than or comparable to that of ethambutol (EMB). These compounds were evaluated for their inhibition activity against mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt). Compounds 5c and 5e were the most potent exhibiting comparable inhibition activity to that of the natural substrate deoxythymidine monophosphate (dTMP). An in silico study was performed including docking of the most active compounds 5c and 5e into the TMPKmt (PDB: ID 1G3U) binding pocket in addition to prediction of their physicochemical and pharmacokinetic properties to explore the overall activity of these anti-TB candidates. Compounds 5c and 5e are promising anti-TB agents and TMPKmt inhibitors with acceptable oral bioavailability, physicochemical and pharmacokinetic properties.
Collapse
Affiliation(s)
- Mai S El-Shoukrofy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Amal Atta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Salwa Fahmy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Dharmarajan Sriram
- Medicinal Chemistry Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science, Pilani 33031, India
| | - Mona A Mahran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Ibrahim M Labouta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| |
Collapse
|
2
|
Alexandrova LA, Khandazhinskaya AL, Matyugina ES, Makarov DA, Kochetkov SN. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors. Microorganisms 2022; 10:microorganisms10071299. [PMID: 35889017 PMCID: PMC9322969 DOI: 10.3390/microorganisms10071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis (TB) is the oldest human infection disease. Mortality from TB significantly decreased in the 20th century, because of vaccination and the widespread use of antibiotics. However, about a third of the world’s population is currently infected with Mycobacterium tuberculosis (Mtb) and the death rate from TB is about 1.4–2 million people per year. In the second half of the 20th century, new extensively multidrug-resistant strains of Mtb were identified, which are steadily increasing among TB patients. Therefore, there is an urgent need to develop new anti-TB drugs, which remains one of the priorities of pharmacology and medicinal chemistry. The antimycobacterial activity of nucleoside derivatives and analogues was revealed not so long ago, and a lot of studies on their antibacterial properties have been published. Despite the fact that there are no clinically used drugs based on nucleoside analogues, some progress has been made in this area. This review summarizes current research in the field of the design and study of inhibitors of mycobacteria, primarily Mtb.
Collapse
|
3
|
Harini K, Jayashree S, Tiwari V, Vishwanath S, Sowdhamini R. Ligand Docking Methods to Recognize Allosteric Inhibitors for G-Protein-Coupled Receptors. Bioinform Biol Insights 2021; 15:11779322211037769. [PMID: 34733103 PMCID: PMC8558589 DOI: 10.1177/11779322211037769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are membrane proteins which play an important role in many cellular processes and are excellent drug targets. Despite the existence of several US Food and Drug Administration (FDA)-approved GPCR-targeting drugs, there is a continuing challenge of side effects owing to the nonspecific nature of drug binding. We have investigated the diversity of the ligand binding site for this class of proteins against their cognate ligands using computational docking, even if their structures are known already in the ligand-complexed form. The cognate ligand of some of these receptors dock at allosteric binding site with better score than the binding at the conservative site. Interestingly, amino acid residues at such allosteric binding site are not conserved across GPCR subfamilies. Such a computational approach can assist in the prediction of specific allosteric binders for GPCRs.
Collapse
Affiliation(s)
- K Harini
- Department of Bioinformatics, National Centre for Biological Sciences, Bangalore, India
| | - S Jayashree
- Department of Biotechnology, Vellore Institute of Technology, Vellore, India.,Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Vikas Tiwari
- Department of Bioinformatics, National Centre for Biological Sciences, Bangalore, India
| | - Sneha Vishwanath
- Department of Biophysics, Indian Institute of Science, Bangalore, India.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ramanathan Sowdhamini
- Department of Bioinformatics, National Centre for Biological Sciences, Bangalore, India
| |
Collapse
|
4
|
Bacterial Cytological Profiling Identifies Rhodanine-Containing PAINS Analogs as Specific Inhibitors of Escherichia coli Thymidylate Kinase In Vivo. J Bacteriol 2021; 203:e0010521. [PMID: 34280002 DOI: 10.1128/jb.00105-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we sought to determine whether an in vivo assay for studying antibiotic mechanisms of action could provide insight into the activity of compounds that may inhibit multiple targets. Thus, we conducted an activity screen of 31 structural analogs of rhodanine-containing pan-assay interference compounds (PAINS). We identified nine active molecules against Escherichia coli and classified them according to their in vivo mechanisms of action. The mechanisms of action of PAINS are generally difficult to identify due to their promiscuity. However, we leveraged bacterial cytological profiling, a fluorescence microscopy technique, to study these complex mechanisms. Ultimately, we found that although some of our molecules promiscuously inhibit multiple cellular pathways, a few molecules specifically inhibit DNA replication despite structural similarity to related PAINS. A genetic analysis of resistant mutants revealed thymidylate kinase (essential for DNA synthesis) as an intracellular target of some of these rhodanine-containing antibiotics. This finding was supported by in vitro activity assays, as well as experiments utilizing a thymidylate kinase overexpression system. The analog that demonstrated the half-maximal inhibitory concentration in vitro and MIC in vivo displayed the greatest specificity for inhibition of the DNA replication pathway, despite containing a rhodamine moiety. Although it is thought that PAINS cannot be developed as antibiotics, this work showcases novel inhibitors of E. coli thymidylate kinase. Moreover, perhaps more importantly, this work highlights the utility of bacterial cytological profiling for studying the in vivo specificity of antibiotics and demonstrates that bacterial cytological profiling can identify multiple pathways that are inhibited by an individual molecule. IMPORTANCE We demonstrate that bacterial cytological profiling is a powerful tool for directing antibiotic discovery efforts because it can be used to determine the specificity of an antibiotic's in vivo mechanism of action. By assaying analogs of PAINS, molecules that are notoriously intractable and nonspecific, we (surprisingly) identify molecules with specific activity against E. coli thymidylate kinase. This suggests that structural modifications to PAINS can confer stronger inhibition by targeting a specific cellular pathway. While in vitro inhibition assays are susceptible to false-positive results (especially from PAINS), bacterial cytological profiling provides the resolution to identify molecules with specific in vivo activity.
Collapse
|
5
|
Jian Y, Hulpia F, Risseeuw MDP, Forbes HE, Munier-Lehmann H, Caljon G, Boshoff HIM, Van Calenbergh S. Synthesis and structure activity relationships of cyanopyridone based anti-tuberculosis agents. Eur J Med Chem 2020; 201:112450. [PMID: 32623208 DOI: 10.1016/j.ejmech.2020.112450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 11/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, relies on thymidylate kinase (MtbTMPK) for the synthesis of thymidine triphosphates and thus also DNA synthesis. Therefore, this enzyme constitutes a potential Achilles heel of the pathogen. Based on a previously reported MtbTMPK 6-aryl-substituted pyridone inhibitor and guided by two co-crystal structures of MtbTMPK with pyridone- and thymine-based inhibitors, we report the synthesis of a series of aryl-shifted cyanopyridone analogues. These compounds generally lacked significant MtbTMPK inhibitory potency, but some analogues did exhibit promising antitubercular activity. Analogue 11i demonstrated a 10-fold increased antitubercular activity (MIC H37Rv, 1.2 μM) compared to literature compound 5. Many analogues with whole-cell antimycobacterial activity were devoid of significant cytotoxicity.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28 Rue du Dr. Roux, Cedex 15, 75724, Paris, France
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1(S7), B2610, Wilrijk, Belgium
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium.
| |
Collapse
|
6
|
1-(1-Arylethylpiperidin-4-yl)thymine Analogs as Antimycobacterial TMPK Inhibitors. Molecules 2020; 25:molecules25122805. [PMID: 32560578 PMCID: PMC7356956 DOI: 10.3390/molecules25122805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 11/17/2022] Open
Abstract
A series of Mycobacterium tuberculosis TMPK (MtbTMPK) inhibitors based on a reported compound 3 were synthesized and evaluated for their capacity to inhibit MtbTMPK catalytic activity and the growth of a virulent M. tuberculosis strain (H37Rv). Modifications of the scaffold of 3 failed to afford substantial improvements in MtbTMPK inhibitory activity and antimycobacterial activity. Optimization of the substitution pattern of the D ring of 3 resulted in compound 21j with improved MtbTMPK inhibitory potency (three-fold) and H37Rv growth inhibitory activity (two-fold). Moving the 3-chloro substituent of 21j to the para-position afforded isomer 21h, which, despite a 10-fold increase in IC50-value, displayed promising whole cell activity (minimum inhibitory concentration (MIC) = 12.5 μM).
Collapse
|
7
|
Gul S, Khalil R, Zaheer Ul-Haq, Mubarak MS. Computational Overview of Mycobacterial Thymidine Monophosphate Kinase. Curr Pharm Des 2020; 26:1676-1681. [PMID: 32242781 DOI: 10.2174/1381612826666200403114152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) ranks among the diseases with the highest morbidity rate with significantly high prevalence in developing countries. Globally, tuberculosis poses the most substantial burden of mortality. Further, a partially treated tuberculosis patient is worse than untreated; they may lead to standing out as a critical obstacle to global tuberculosis control. The emergence of multi-drug resistant (MDR) and extremely drug-resistant (XDR) strains, and co-infection of HIV further worsen the situation. The present review article discusses validated targets of the bacterial enzyme thymidine monophosphate kinase (TMPK). TMPKMTB enzyme belongs to the nucleoside monophosphate kinases (NMPKs) family. It is involved in phosphorylation of TMP to TDP, and TDP is phosphorylated to TTP. This review highlights structure elucidation of TMP enzymes and their inhibitors study on TMP scaffold, and it also discusses different techniques; including molecular docking, virtual screening, 3DPharmacophore, QSAR for finding anti-tubercular agents.
Collapse
Affiliation(s)
- Sana Gul
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi-75210, Pakistan
| | - Ruqaiya Khalil
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi-75210, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi-75210, Pakistan
| | | |
Collapse
|
8
|
Jian Y, Risseeuw MDP, Froeyen M, Song L, Cappoen D, Cos P, Munier-Lehmann H, van Calenbergh S. 1-(Piperidin-3-yl)thymine amides as inhibitors of M. tuberculosis thymidylate kinase. J Enzyme Inhib Med Chem 2019; 34:1730-1739. [PMID: 31822127 PMCID: PMC6920704 DOI: 10.1080/14756366.2019.1662790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A series of readily accessible 1-(piperidin-3-yl)thymine amides was designed, synthesised and evaluated as Mycobacterium tuberculosis TMPK (MtbTMPK) inhibitors. In line with the modelling results, most inhibitors showed reasonable MtbTMPK inhibitory activity. Compounds 4b and 4i were slightly more potent than the parent compound 3. Moreover, contrary to the latter, amide analogue 4g was active against the avirulent M. tuberculosis H37Ra strain (MIC50=35 µM). This finding opens avenues for future modifications.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Mathy Froeyen
- Department of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lijun Song
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Davie Cappoen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, Paris, France
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Kollatos N, Mitsos C, Manta S, Tzioumaki N, Giannakas C, Alexouli T, Panagiotopoulou A, Schols D, Andrei G, Komiotis D. Design, Synthesis, and Biological Evaluation of Novel C5-Modified Pyrimidine Ribofuranonucleosides as Potential Antitumor or/and Antiviral Agents. Med Chem 2019; 16:368-384. [PMID: 30799795 DOI: 10.2174/1573406415666190225112950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleoside analogues are well-known antitumor, antiviral, and chemotherapeutic agents. Alterations on both their sugar and the heterocyclic parts may lead to significant changes in the spectrum of their biological activity and the degree of selective toxicity, as well as in their physicochemical properties. METHODS C5-arylalkynyl-β-D-ribofuranonucleosides 3-6, 3΄-deoxy 12-15, 3΄-deoxy-3΄-C-methyl- β-D-ribofurananucleosides 18-21 and 2΄-deoxy-β-D-ribofuranonucleosides 23-26 of uracil, were synthesized using a one-step Sonogashira reaction under microwave irradiation and subsequent deprotection. RESULTS All newly synthesized nucleosides were tested for their antitumor or antiviral activity. Moderate cytostatic activity against cervix carcinoma (HeLa), murine leukemia (L1210) and human lymphocyte (CEM) tumor cell lines was displayed by the protected 3΄-deoxy derivatives 12b,12c,12d, and the 3΄-deoxy-3΄-methyl 18a,18b,18c. The antiviral evaluation revealed appreciable activity against Coxsackie virus B4, Respiratory syncytial virus, Yellow Fever Virus and Human Coronavirus (229E) for the 3΄-deoxy compounds 12b,14, and the 3΄-deoxy-3΄-methyl 18a,18c,18d, accompanied by low cytotoxicity. CONCLUSION This report describes the total and facile synthesis of modified furanononucleosides of uracil, with alterations on both the sugar and the heterocyclic portions. Compounds 12b,14 and 18a,c,d showed noticeable antiviral activity against a series of RNA viruses and merit further biological and structural optimization investigations.
Collapse
Affiliation(s)
- Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Christos Mitsos
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Stella Manta
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Niki Tzioumaki
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Christos Giannakas
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Tania Alexouli
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Aggeliki Panagiotopoulou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dominique Schols
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| |
Collapse
|
10
|
Chaudhary SK, Jeyakanthan J, Sekar K. Structural and functional roles of dynamically correlated residues in thymidylate kinase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:341-354. [PMID: 29652261 DOI: 10.1107/s2059798318002267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/07/2018] [Indexed: 11/10/2022]
Abstract
Thymidylate kinase is an important enzyme in DNA synthesis. It catalyzes the conversion of thymidine monophosphate to thymidine diphosphate, with ATP as the preferred phosphoryl donor, in the presence of Mg2+. In this study, the dynamics of the active site and the communication paths between the substrates, ATP and TMP, are reported for thymidylate kinase from Thermus thermophilus. Conformational changes upon ligand binding and the path for communication between the substrates and the protein are important in understanding the catalytic mechanism of the enzyme. High-resolution X-ray crystal structures of thymidylate kinase in apo and ligand-bound states were solved. This is the first report of structures of binary and ternary complexes of thymidylate kinase with its natural substrates ATP and ATP-TMP, respectively. Distinct conformations of the active-site residues, the P-loop and the LID region observed in the apo and ligand-bound structures revealed that their concerted motion is required for the binding and proper positioning of the substrate TMP. Structural analyses provide an insight into the mode of substrate binding at the active site. The residues involved in communication between the substrates were identified through network analysis using molecular-dynamics simulations. The residues identified showed high sequence conservation across species. Biochemical analyses show that mutations of these residues either resulted in a loss of activity or affected the thermal stability of the protein. Further, molecular-dynamics analyses of mutants suggest that the proper positioning of TMP is important for catalysis. These data also provide an insight into the phosphoryl-transfer mechanism.
Collapse
Affiliation(s)
| | | | - Kanagaraj Sekar
- Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
11
|
Patel B, Zunk DM, Grant DG, Rudrawar S. Solid‐Phase Microwave‐Assisted Ligand‐Free Suzuki‐Miyaura Cross‐Coupling of 5‐Iodouridine. ChemistrySelect 2018. [DOI: 10.1002/slct.201703111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bhautikkumar Patel
- Menzies Health Institute Queensland Griffith University Gold Coast QLD 4222 Australia
- School of Pharmacy and Pharmacology Griffith University Gold Coast QLD 4222 Australia
- Quality Use of Medicines Network Griffith University Gold Coast QLD 4222 Australia
| | - Dr Matthew Zunk
- Menzies Health Institute Queensland Griffith University Gold Coast QLD 4222 Australia
- School of Pharmacy and Pharmacology Griffith University Gold Coast QLD 4222 Australia
- Quality Use of Medicines Network Griffith University Gold Coast QLD 4222 Australia
| | - Dr Gary Grant
- Menzies Health Institute Queensland Griffith University Gold Coast QLD 4222 Australia
- School of Pharmacy and Pharmacology Griffith University Gold Coast QLD 4222 Australia
- Quality Use of Medicines Network Griffith University Gold Coast QLD 4222 Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland Griffith University Gold Coast QLD 4222 Australia
- School of Pharmacy and Pharmacology Griffith University Gold Coast QLD 4222 Australia
- Quality Use of Medicines Network Griffith University Gold Coast QLD 4222 Australia
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
12
|
Rajapaksha SM, Mlsna TE, Pittman CU. A Regioselective Synthesis of 6-Alkyl- and 6-Aryluracils by Cs 2CO 3- or K 3PO 4-Promoted Dimerization of 3-Alkyl- and 3-Aryl-2-Propynamides. J Org Chem 2017; 82:5678-5688. [PMID: 28488857 DOI: 10.1021/acs.joc.7b00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A regioselective synthesis of 6-alkyl- and 6-aryluracils was developed by the dimerization of 3-alkyl- and 3-aryl-2-propynamides promoted by either Cs2CO3 or K3PO4. A range of 3-aryl-2-propynamides, with both electron-deficient and electron-rich 3-aryl substituents, were successfully reacted in high yields. Cs+ acts as a soft Lewis acid to polarize the carbon-carbon triple bond, and solid K3PO4 interacts with carbonyl oxygen, promoting intermolecular nucleophilic attack by the only weakly nucleophilic amide nitrogen. Experiments were conducted to support the proposed mechanism.
Collapse
Affiliation(s)
- Suranga M Rajapaksha
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | - Todd E Mlsna
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, United States
| |
Collapse
|
13
|
Matyugina E, Novikov M, Babkov D, Ozerov A, Chernousova L, Andreevskaya S, Smirnova T, Karpenko I, Chizhov A, Murthu P, Lutz S, Kochetkov S, Seley-Radtke KL, Khandazhinskaya AL. 5-Arylaminouracil Derivatives: New Inhibitors of Mycobacterium tuberculosis. Chem Biol Drug Des 2015; 86:1387-96. [PMID: 26061192 DOI: 10.1111/cbdd.12603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/08/2015] [Accepted: 05/30/2015] [Indexed: 11/30/2022]
Abstract
Three series of 5-arylaminouracil derivatives, including 5-(phenylamino)uracils, 1-(4'-hydroxy-2'-cyclopenten-1'-yl)-5-(phenylamino)uracils, and 1,3-di-(4'-hydroxy-2'-cyclopenten-1'-yl)-5-(phenylamino)uracils, were synthesized and screened for potential antimicrobial activity. Most of compounds had a negative effect on the growth of the Mycobacterium tuberculosis H37Rv strain, with 100% inhibition observed at concentrations between 5 and 40 μg/mL. Of those, 1-(4'-hydroxy-2'-cyclopenten-1'-yl)-3-(4‴-hydroxy-2‴-cyclopenten-1‴-yl)-5-(4″-butyloxyphenylamino)uracil proved to be the most active among tested compounds against the M. tuberculosis multidrug-resistant strain MS-115 (MIC90 5 μg/mL). In addition, the thymidylate kinase of M. tuberculosis was evaluated as a possible enzymatic target.
Collapse
Affiliation(s)
- Elena Matyugina
- Engelhardt Institute of Molecular Biology RAS, Vavilova 32, Moscow, 119991, Russia
| | - Mikhail Novikov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd, 400131, Russia
| | - Denis Babkov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd, 400131, Russia
| | - Alexander Ozerov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd, 400131, Russia
| | - Larisa Chernousova
- Central Tuberculosis Research Institute RAMS, Yauzskaya Alley 2, Moscow, 107564, Russia
| | - Sofia Andreevskaya
- Central Tuberculosis Research Institute RAMS, Yauzskaya Alley 2, Moscow, 107564, Russia
| | - Tatiana Smirnova
- Central Tuberculosis Research Institute RAMS, Yauzskaya Alley 2, Moscow, 107564, Russia
| | - Inna Karpenko
- Engelhardt Institute of Molecular Biology RAS, Vavilova 32, Moscow, 119991, Russia
| | - Alexander Chizhov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky pr. 47, Moscow, 119991, Russia
| | - Pravin Murthu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Sergei Kochetkov
- Engelhardt Institute of Molecular Biology RAS, Vavilova 32, Moscow, 119991, Russia
| | | | | |
Collapse
|
14
|
Doharey PK, Suthar MK, Verma A, Kumar V, Yadav S, Balaramnavar VM, Rathaur S, Saxena AK, Siddiqi MI, Saxena JK. Molecular cloning and characterization of Brugia malayi thymidylate kinase. Acta Trop 2014; 133:83-92. [PMID: 24556140 DOI: 10.1016/j.actatropica.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Thymidylate kinase (TMK) is a potential chemotherapeutic target because it is directly involved in the synthesis of deoxythymidine triphosphate, which is an essential component for DNA synthesis. The gene encoding thymidylate kinase of Brugia malayi was amplified by PCR and expressed in Escherichia coli. The native molecular weight of recombinant B. malayi thymidylate kinase (rBmTMK) was estimated to be ∼52kDa by gel filtration chromatography, suggesting a homodimeric structure. rBmTMK activity required divalent cation and Mg(2+) was found to be the most effective cation. The enzyme was sensitive to pH and temperature, it showed maximum activity at pH 7.4 and 37°C. The Km values for dTMP and ATP were 17 and 66μM, respectively. The turnover number kcat was found to be 38.09s(-1), a value indicating the higher catalytic efficiency of the filarial enzyme. The nucleoside analogues 5-bromo-2'-deoxyuridine (5-BrdU), 5-chloro-2'-deoxyuridine (5-CldU) and 3'-azido-3'-deoxythymidine (AZT) showed specific inhibitory effect on the enzyme activity and these effects were in good association with binding interactions and the scoring functions as compared to human TMK. Differences in kinetic properties and structural differences in the substrate binding site of BmTMK model with respect to human TMK can serve as basis for designing specific inhibitors against parasitic enzyme.
Collapse
|
15
|
Ozadali K, Unsal Tan O, Yogeeswari P, Dharmarajan S, Balkan A. Synthesis and antimycobacterial activities of some new thiazolylhydrazone derivatives. Bioorg Med Chem Lett 2014; 24:1695-7. [DOI: 10.1016/j.bmcl.2014.02.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
16
|
Keita M, Kumar A, Dali B, Megnassan E, Siddiqi MI, Frecer V, Miertus S. Quantitative structure–activity relationships and design of thymine-like inhibitors of thymidine monophosphate kinase of Mycobacterium tuberculosis with favourable pharmacokinetic profiles. RSC Adv 2014. [DOI: 10.1039/c4ra06917j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have designed new potent inhibitors of thymidine monophosphate kinase of Mycobacterium tuberculosis (TMPKmt) using structure-based molecular design.
Collapse
Affiliation(s)
- M. Keita
- ICS-UNIDO
- Area Science Park
- Trieste I-34012, Italy
- University of Abobo Adjamé
- UFR SFA
| | - A. Kumar
- ICS-UNIDO
- Area Science Park
- Trieste I-34012, Italy
- Molecular and Structural Biology Division
- Central Drug Research Institute
| | - B. Dali
- ICS-UNIDO
- Area Science Park
- Trieste I-34012, Italy
- University of Abobo Adjamé
- UFR SFA
| | - E. Megnassan
- ICS-UNIDO
- Area Science Park
- Trieste I-34012, Italy
- University of Abobo Adjamé
- UFR SFA
| | - M. I. Siddiqi
- ICS-UNIDO
- Area Science Park
- Trieste I-34012, Italy
- Molecular and Structural Biology Division
- Central Drug Research Institute
| | - V. Frecer
- ICS-UNIDO
- Area Science Park
- Trieste I-34012, Italy
- Department of Physical Chemistry of Drugs
- Faculty of Pharmacy
| | - S. Miertus
- ICS-UNIDO
- Area Science Park
- Trieste I-34012, Italy
- International Centre for Applied Research and Sustainable Technology
- SK-84104 Bratislava, Slovakia
| |
Collapse
|
17
|
Stereoselective facile synthesis of 2′-spiro pyrimidine pyranonucleosides via their key intermediate 2′-C-cyano analogues. Evaluation of their bioactivity. Carbohydr Res 2014; 383:50-7. [DOI: 10.1016/j.carres.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 11/23/2022]
|
18
|
Shmalenyuk ER, Kochetkov SN, Alexandrova LA. Novel inhibitors ofMycobacterium tuberculosisgrowth based on modified pyrimidine nucleosides and their analogues. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n09abeh004404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Synthesis of carbocyclic pyrimidine nucleosides and their inhibitory activities against Plasmodium falciparum thymidylate kinase. Parasitol Int 2013; 62:368-71. [DOI: 10.1016/j.parint.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/01/2013] [Accepted: 03/20/2013] [Indexed: 11/24/2022]
|
20
|
Enderlin G, Sartori G, Hervé G, Len C. Synthesis of 6-aryluridines via Suzuki–Miyaura cross-coupling reaction at room temperature under aerobic ligand-free conditions in neat water. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.04.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Design of Thymidine Analogues Targeting Thymidilate Kinase of Mycobacterium tuberculosis. Tuberc Res Treat 2013; 2013:670836. [PMID: 23634301 PMCID: PMC3619541 DOI: 10.1155/2013/670836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/12/2012] [Indexed: 12/03/2022] Open
Abstract
We design here new nanomolar antituberculotics, inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt), by means of structure-based molecular design. 3D models of TMPKmt-inhibitor complexes have been prepared from the crystal structure of TMPKmt cocrystallized with the natural substrate deoxythymidine monophosphate (dTMP) (1GSI) for a training set of 15 thymidine analogues (TMDs) with known activity to prepare a QSAR model of interaction establishing a correlation between the free energy of complexation and the biological activity. Subsequent validation of the predictability of the model has been performed with a 3D QSAR pharmacophore generation. The structural information derived from the model served to design new subnanomolar thymidine analogues. From molecular modeling investigations, the agreement between free energy of complexation (ΔΔGcom) and Ki values explains 94% of the TMPKmt inhibition (pKi = −0.2924ΔΔGcom + 3.234; R2 = 0.94) by variation of the computed ΔΔGcom and 92% for the pharmacophore (PH4) model (pKi = 1.0206 × pKipred − 0.0832, R2 = 0.92). The analysis of contributions from active site residues suggested substitution at the 5-position of pyrimidine ring and various groups at the 5′-position of the ribose. The best inhibitor reached a predicted Ki of 0.155 nM. The computational approach through the combined use of molecular modeling and PH4 pharmacophore is helpful in targeted drug design, providing valuable information for the synthesis and prediction of activity of novel antituberculotic agents.
Collapse
|
22
|
Koseki Y, Kinjo T, Kobayashi M, Aoki S. Identification of novel antimycobacterial chemical agents through the in silico multi-conformational structure-based drug screening of a large-scale chemical library. Eur J Med Chem 2013; 60:333-9. [DOI: 10.1016/j.ejmech.2012.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
|
23
|
Cheng C, Shih YC, Chen HT, Chien TC. Regioselective arylation of uracil and 4-pyridone derivatives via copper(I) bromide mediated C–H bond activation. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Toti KS, Verbeke F, Risseeuw MD, Frecer V, Munier-Lehmann H, Van Calenbergh S. Synthesis and evaluation of 5′-modified thymidines and 5-hydroxymethyl-2′-deoxyuridines as Mycobacterium tuberculosis thymidylate kinase inhibitors. Bioorg Med Chem 2013. [DOI: 10.1016/j.bmc.2012.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Gallagher-Duval S, Hervé G, Sartori G, Enderlin G, Len C. Improved microwave-assisted ligand-free Suzuki–Miyaura cross-coupling of 5-iodo-2′-deoxyuridine in pure water. NEW J CHEM 2013. [DOI: 10.1039/c3nj00174a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Manta S, Parmenopoulou V, Kiritsis C, Dimopoulou A, Kollatos N, Papasotiriou I, Balzarini J, Komiotis D. Stereocontrolled facile synthesis and biological evaluation of (3'S) and (3'R)-3'-amino (and Azido)-3'-deoxy pyranonucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:522-35. [PMID: 22849646 DOI: 10.1080/15257770.2012.696759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article describes the synthesis of (3 'S) and (3 'R)-3 '-amino-3 '-deoxy pyranonucleosides and their precursors (3 'S) and (3 'R)-3 '-azido-3 '-deoxy pyranonucleosides. Azidation of 1,2:5,6-di-O-isopropylidene-3-O-toluenesulfonyl-α-D-allofuranose followed by hydrolysis and subsequent acetylation afforded 3-azido-3-deoxy-1,2,4,6-tetra-O-acetyl-D-glucopyranose, which upon coupling with the proper silylated bases, deacetylation, and catalytic hydrogenation, obtained the target 3 '-amino-3 '-deoxy-β-D-glucopyranonucleosides. The desired 1-(3 '-amino-3 '-deoxy-β-D-allopyranosyl)5-fluorouracil was readily prepared from the suitable imidazylate sugar after azidation followed by a protection/deprotection sequence and reduction of the unprotected azido precursor. No antiviral activity was observed for the novel nucleosides. Moderate cytostatic activity was recorded for the 5-fluorouracil derivatives.
Collapse
Affiliation(s)
- Stella Manta
- Laboratory of Bio-Organic Chemistry Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kiritsis C, Manta S, Parmenopoulou V, Dimopoulou A, Kollatos N, Papasotiriou I, Balzarini J, Komiotis D. Stereocontrolled synthesis of 4′-C-cyano and 4′-C-cyano-4′-deoxy pyrimidine pyranonucleosides as potential chemotherapeutic agents. Carbohydr Res 2012; 364:8-14. [DOI: 10.1016/j.carres.2012.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/12/2022]
|
28
|
Ul-Haq Z, Uddin R, Gul S. Optimization of Structure Based Virtual Screening Protocols Against Thymidine Monophosphate Kinase Inhibitors as Antitubercular Agents. Mol Inform 2011; 30:851-62. [PMID: 27468105 DOI: 10.1002/minf.201100049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/20/2011] [Indexed: 11/06/2022]
Abstract
Thymidine monophosphate kinase from Mycobacterium tuberculosis (TMPKMtub ) is an established drug target against tuberculosis. The enzyme TMPKMtub is responsible for the survival of bacterium MTB and required to synthesize an essential building block of the bacterial DNA which is thymidine triphosphate (TTP). There are several potent inhibitors available against the target enzyme but the majority are substrate analogues. Recently, three dimensional structures of the enzyme TMPKMtub inhibitor complexes were resolved using X-ray crystallography. These available crystal structures were the basis of initiating a structure based lead identification campaign against TMPKMtub . The available information was utilized to perform structure-based virtual screening against TMPKMtub with the hope to diversify the structures of the current inhibitors. In order to setup the protocol, 10 000 out of 45 000 drug-like molecules were randomly selected from National Cancer Institute's (NCI) database. Additionally 105 known inhibitors along with 11 natural substrates were mixed with the 10 000 selected compounds. For the current study, a rigid based docking algorithm, i.e., FRED has been utilized to set up an efficient docking and scoring protocol. The methods including enrichment curves, consensus scoring and ROC curves are providing useful insights into the setting up of a suitable structure-based docking protocol against TMPKMtub . As a result, an optimum docking and scoring function has been identified for future large scale virtual screening. In the present work, we have demonstrated a rational choice of protocol for structure based virtual screening of chemical libraries and help to understand the influence of receptor flexibility by using multiple geometries.
Collapse
Affiliation(s)
- Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.,Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS) gGmbH, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. , .,Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria. ,
| | - Sana Gul
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
29
|
Chitre TS, Kathiravan MK, Bothara KG, Bhandari SV, Jalnapurkar RR. Pharmacophore Optimization and Design of Competitive Inhibitors of Thymidine Monophosphate Kinase Through Molecular Modeling Studies. Chem Biol Drug Des 2011; 78:826-34. [DOI: 10.1111/j.1747-0285.2011.01200.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Kiritsis C, Manta S, Parmenopoulou V, Balzarini J, Komiotis D. Branched-chain C-cyano pyranonucleosides: synthesis of 3'-C-cyano & 3'-C-cyano-3'-deoxy pyrimidine pyranonucleosides as novel cytotoxic agents. Eur J Med Chem 2011; 46:5668-74. [PMID: 21917363 PMCID: PMC7115479 DOI: 10.1016/j.ejmech.2011.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/30/2022]
Abstract
This report describes the total and facile synthesis of 3′-C-cyano & 3′-C-cyano-3′-deoxy pyrimidine pyranonucleosides. Reaction of 3-keto glucoside 1 with sodium cyanide gave the desired precursor 3-C-cyano-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (2). Hydrolysis followed by acetylation led to the 1,2,3,4,6-penta-O-acetyl-3-C-cyano-D-glucopyranose (4). Compound 4 was condensed with silylated 5-fluorouracil, uracil, thymine and N4-benzoylcytosine, respectively and deacetylated to afford the target 1-(3′-C-cyano-β-D-glucopyranosyl)nucleosides 6a–d. Routine deoxygenation at position 3′ of cyanohydrin 2, followed by hydrolysis and acetylation led to the 3-C-cyano-3-deoxy-1,2,4,6-tetra-O-acetyl-D-allopyranose (10). Coupling of sugar 10 with silylated pyrimidines and subsequent deacetylation yielded the target 1-(3′-C-cyano-3′-deoxy-β-D-allopyranosyl)nucleosides 12a–d. The new analogues were evaluated for their antiviral and cytostatic activities. It was found that 6a was endowed with a pronounced anti-proliferative activity that was only 2- to 8-fold less potent than that shown for the parental base 5-fluorouracil. None of the compounds showed activity against a broad panel of DNA and RNA viruses.
Collapse
Affiliation(s)
- Christos Kiritsis
- Department of Biochemistry and Biotechnology, Laboratory of Bio-Organic Chemistry, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | | | | | | | | |
Collapse
|
31
|
Shih YC, Chien TC. Practical synthesis of 6-aryluridines via palladium(II) acetate catalyzed Suzuki–Miyaura cross-coupling reaction. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.03.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Synthesis and biological evaluation of unsaturated keto and exomethylene d-arabinopyranonucleoside analogs: Novel 5-fluorouracil analogs that target thymidylate synthase. Eur J Med Chem 2011; 46:993-1005. [DOI: 10.1016/j.ejmech.2011.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/06/2010] [Accepted: 01/06/2011] [Indexed: 11/18/2022]
|
33
|
Efficient synthesis of exomethylene- and keto-exomethylene-d-glucopyranosyl nucleoside analogs as potential cytotoxic agents. Carbohydr Res 2011; 346:328-33. [DOI: 10.1016/j.carres.2010.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/26/2010] [Indexed: 01/12/2023]
|
34
|
Frecer V, Seneci P, Miertus S. Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J Comput Aided Mol Des 2010; 25:31-49. [PMID: 21082329 DOI: 10.1007/s10822-010-9399-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/28/2010] [Indexed: 11/28/2022]
Abstract
Thymidine monophosphate kinase (TMPK(mt)) is an essential enzyme for nucleotide metabolism in Mycobacterium tuberculosis, and thus an attractive target for novel antituberculosis agents. In this work, we have explored the chemical space around the 2',3'-bicyclic thymidine nucleus by designing and in silico screening of a virtual focused library selected via structure based methods to identify more potent analogs endowed with favorable ADME-related properties. In all the library members we have exchanged the ribose ring of the template with a cyclopentane moiety that is less prone to enzymatic degradation. In addition, we have replaced the six-membered 2',3'-ring by a number of five-membered and six-membered heterocyclic rings containing alternative proton donor and acceptor groups, to exploit the interaction with the carboxylate groups of Asp9 and Asp163 as well as with several cationic residues present in the vicinity of the TMPK(mt) binding site. The three-dimensional structure of the TMPK(mt) complexed with 5-hydroxymethyl-dUMP, an analog of dTMP, was employed to develop a QSAR model, to parameterize a scoring function specific for the TMPK(mt) target and to select analogues which display the highest predicted binding to the target. As a result, we identified a small highly focused combinatorial subset of bicyclic thymidine analogues as virtual hits that are predicted to inhibit the mycobacterial TMPK in the submicromolar concentration range and to display favorable ADME-related properties.
Collapse
Affiliation(s)
- Vladimir Frecer
- International Centre for Science and High Technology, UNIDO, AREA Science Park, Padriciano 99, 34012, Trieste, Italy
| | | | | |
Collapse
|
35
|
Kumar M, Sharma S, Srinivasan A, Singh TP, Kaur P. Structure-based in-silico rational design of a selective peptide inhibitor for thymidine monophosphate kinase of mycobacterium tuberculosis. J Mol Model 2010; 17:1173-82. [PMID: 20697760 DOI: 10.1007/s00894-010-0821-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/22/2010] [Indexed: 11/28/2022]
Abstract
Tuberculosis still remains one of the most deadly infectious diseases. The emergence of drug resistant strains has fuelled the quest for novel drugs and drug targets for its successful treatment. Thymidine monophosphate kinase (TMPK) lies at the point where the salvage and de novo synthetic pathways meet in nucleotide synthesis. TMPK in M.tb has emerged as an attractive drug target since blocking it will affect both the pathways involved in the thymidine triphosphate synthesis. Moreover, the unique differences at the active site of TMPK enzyme in M.tb and humans can be exploited for the development of ideal drug candidates. Based on a detailed evaluation of known inhibitors and available three-dimensional structures of TMPK, several peptidic inhibitors were designed. In silico docking and selectivity analysis of these inhibitors with TMPK from M.tb and human was carried out to examine their differential binding at the active site. The designed tripeptide, Trp-Pro-Asp, was found to be most selective for M.tb. The ADMET analysis of this peptide indicated that it is likely to be a drug candidate. The tripeptide so designed is a suitable lead molecule for the development of novel TMPK inhibitors as anti-tubercular drugs.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | | | | | | | | |
Collapse
|
36
|
Lou Z, Zhang X. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery. Protein Cell 2010; 1:435-42. [PMID: 21203958 DOI: 10.1007/s13238-010-0057-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/01/2010] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis, which belongs to the genus Mycobacterium, is the pathogenic agent for most tuberculosis (TB). As TB remains one of the most rampant infectious diseases, causing morbidity and death with emergence of multi-drug-resistant and extensively-drug-resistant forms, it is urgent to identify new drugs with novel targets to ensure future therapeutic success. In this regards, the structural genomics of M. tuberculosis provides important information to identify potential targets, perform biochemical assays, determine crystal structures in complex with potential inhibitor(s), reveal the key sites/residues for biological activity, and thus validate drug targets and discover novel drugs. In this review, we will discuss the recent progress on novel targets for structure-based anti-M. tuberculosis drug discovery.
Collapse
Affiliation(s)
- Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
37
|
Structural basis for the efficient phosphorylation of AZT-MP (3'-azido-3'-deoxythymidine monophosphate) and dGMP by Plasmodium falciparum type I thymidylate kinase. Biochem J 2010; 428:499-509. [PMID: 20353400 DOI: 10.1042/bj20091880] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum is the causative agent of malaria, a disease where new drug targets are required due to increasing resistance to current anti-malarials. TMPK (thymidylate kinase) is a good candidate as it is essential for the synthesis of dTTP, a critical precursor of DNA and has been much studied due to its role in prodrug activation and as a drug target. Type I TMPKs, such as the human enzyme, phosphorylate the substrate AZT (3'-azido-3'-deoxythymidine)-MP (monophosphate) inefficiently compared with type II TMPKs (e.g. Escherichia coli TMPK). In the present paper we report that eukaryotic PfTMPK (P. falciparum TMPK) presents sequence features of a type I enzyme yet the kinetic parameters for AZT-MP phosphorylation are similar to those of the highly efficient E. coli enzyme. Structural information shows that this is explained by a different juxtaposition of the P-loop and the azide of AZT-MP. Subsequent formation of the transition state requires no further movement of the PfTMPK P-loop, with no steric conflicts for the azide moiety, allowing efficient phosphate transfer. Likewise, we present results that confirm the ability of the enzyme to uniquely accept dGMP as a substrate and shed light on the basis for its wider substrate specificity. Information resulting from two ternary complexes (dTMP-ADP and AZT-MP-ADP) and a binary complex with the transition state analogue AP5dT [P1-(5'-adenosyl)-P5-(5'-thymidyl) pentaphosphate] all reveal significant differences with the human enzyme, notably in the lid region and in the P-loop which may be exploited in the rational design of Plasmodium-specific TMPK inhibitors with therapeutic potential.
Collapse
|
38
|
Synthesis of 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl analogues of 5-fluorouracil, N6-benzoyl adenine, uracil, thymine, N4-benzoyl cytosine and evaluation of their antitumor activities. Bioorg Chem 2010; 38:48-55. [DOI: 10.1016/j.bioorg.2009.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 11/23/2022]
|
39
|
Andrade CH, Pasqualoto KFM, Ferreira EI, Hopfinger AJ. 3D-Pharmacophore mapping of thymidine-based inhibitors of TMPK as potential antituberculosis agents. J Comput Aided Mol Des 2010; 24:157-72. [PMID: 20217185 DOI: 10.1007/s10822-010-9323-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis monophosphate kinase (TMPKmt) is essential to DNA replication. Thus, this enzyme represents a promising target for developing new drugs against TB. In the present study, the receptor-independent, RI, 4D-QSAR method has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 81 thymidine analogues, and two corresponding subsets, reported as inhibitors of TMPKmt. The resulting optimized models are not only statistically significant with r(2) ranging from 0.83 to 0.92 and q(2) from 0.78 to 0.88, but also are robustly predictive based on test set predictions. The most and the least potent inhibitors in their respective postulated active conformations, derived from each of the models, were docked in the active site of the TMPKmt crystal structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. Moreover, the QSAR models provide insights regarding a probable mechanism of action of the analogues.
Collapse
Affiliation(s)
- Carolina Horta Andrade
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Bloco 13, Sao Paulo, SP, 05586-900, Brazil.
| | | | | | | |
Collapse
|
40
|
Andrade CH, Pasqualoto KFM, Ferreira EI, Hopfinger AJ. Rational design and 3D-pharmacophore mapping of 5'-thiourea-substituted alpha-thymidine analogues as mycobacterial TMPK inhibitors. J Chem Inf Model 2009; 49:1070-8. [PMID: 19296716 DOI: 10.1021/ci8004622] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidine monophosphate kinase (TMPK) has emerged as an attractive target for developing inhibitors of Mycobacterium tuberculosis growth. In this study the receptor-independent (RI) 4D-QSAR formalism has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 5'-thiourea-substituted alpha-thymidine inhibitors. Models were developed for the entire training set and for a subset of the training set consisting of the most potent inhibitors. The optimized (RI) 4D-QSAR models are statistically significant (r(2) = 0.90, q(2) = 0.83 entire set, r(2) = 0.86, q(2) = 0.80 high potency subset) and also possess good predictivity based on test set predictions. The most and least potent inhibitors, in their respective postulated active conformations derived from the models, were docked in the active site of the TMPK crystallographic structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. This model identifies new regions of the inhibitors that contain pharmacophore sites, such as the sugar-pyrimidine ring structure and the region of the 5'-arylthiourea moiety. These new regions of the ligands can be further explored and possibly exploited to identify new, novel, and, perhaps, better antituberculosis inhibitors of TMPKmt. Furthermore, the 3D-pharmacophores defined by these models can be used as a starting point for future receptor-dependent antituberculosis drug design as well as to elucidate candidate sites for substituent addition to optimize ADMET properties of analog inhibitors.
Collapse
Affiliation(s)
- Carolina H Andrade
- Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes, 580, University of Sao Paulo, Sao Paulo, 05508-900, Brazil.
| | | | | | | |
Collapse
|
41
|
Manta S, Tsoukala E, Tzioumaki N, Goropevšek A, Pamulapati RT, Cencič A, Balzarini J, Komiotis D. Dideoxy fluoro-ketopyranosyl nucleosides as potent antiviral agents: synthesis and biological evaluation of 2,3- and 3,4-dideoxy-3-fluoro-4- and -2-keto-beta-d-glucopyranosyl derivatives of N(4)-benzoyl cytosine. Eur J Med Chem 2009; 44:2696-704. [PMID: 19246130 PMCID: PMC7126854 DOI: 10.1016/j.ejmech.2009.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 12/15/2022]
Abstract
The synthesis of the dideoxy fluoro ketopyranonucleoside analogues, 1-(2,3-dideoxy-3-fluoro-6-O-trityl-beta-d-glycero-hexopyranosyl-4-ulose)-N(4)-benzoyl cytosine (7a), 1-(3,4-dideoxy-3-fluoro-6-O-trityl-beta-d-glycero-hexopyranosyl-2-ulose)-N(4)-benzoyl cytosine (13a) and their detritylated analogues 8a and 14a, respectively, is described. Condensation of peracetylated 3-deoxy-3-fluoro-D-glucopyranose (1) with silylated N(4)-benzoyl cytosine, followed by selective deprotection and isopropylidenation afforded compound 2. Routine deoxygenation at position 2', followed by a deprotection-selective reprotection sequence afforded the partially tritylated dideoxy nucleoside of cytosine 6, which upon oxidation of the free hydroxyl group at the 4'-position, furnished the desired tritylated 2,3-dideoxy-3-fluoro ketonucleoside 7a in equilibrium with its hydrated form 7b. Compound 2 was the starting material for the synthesis of the dideoxy fluoro ketopyranonucleoside 13a. Similarly, several subsequent protection and deprotection steps as well as routine deoxygenation at position 4', followed by oxidation of the free hydroxyl group at the 2'-position of the partially tritylated dideoxy nucleoside 12, yielded the desired carbonyl compound 13a in equilibrium with its hydrated form 13b. Finally, trityl removal from 7a/b and 13a/b provided the unprotected 2,3-dideoxy-3-fluoro-4-keto and 3,4-dideoxy-3-fluoro-2-ketopyranonucleoside analogues 8a and 14a, in equilibrium with their gem-diol forms 8b and 14b. None of the compounds showed inhibitory activity against a wide variety of DNA and RNA viruses at subtoxic concentrations, except 7a/b that was highly efficient against rotavirus infection. Nucleoside 7a/b also exhibited cytostatic activity against cells of various cancers. BrdU-cell cycle analysis revealed that the mechanism of cytostatic activity may be related to a delay in G1/S phase and initiation of programmed cell death.
Collapse
Affiliation(s)
- Stella Manta
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Evangelia Tsoukala
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Niki Tzioumaki
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Aleš Goropevšek
- Department of Biochemistry, Medical Faculty, University of Maribor, Slovenia
| | - Ravi Teja Pamulapati
- Department of Microbiology, Biochemistry and Biotechnology, Faculty of Agriculture, University of Maribor, Vrbanska c.30, 2000 Maribor, Slovenia
| | - Avrelija Cencič
- Department of Microbiology, Biochemistry and Biotechnology, Faculty of Agriculture, University of Maribor, Vrbanska c.30, 2000 Maribor, Slovenia
- Department of Biochemistry, Medical Faculty, University of Maribor, Slovenia
| | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universtiteit Leuven, 3000 Leuven, Belgium
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| |
Collapse
|
42
|
Tzioumaki N, Tsoukala E, Manta S, Agelis G, Balzarini J, Komiotis D. Synthesis, Antiviral and Cytostatic Evaluation of Unsaturated Exomethylene and Keto D‐Lyxopyranonucleoside Analogues. Arch Pharm (Weinheim) 2009; 342:353-60. [DOI: 10.1002/ardp.200900004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Mutational, inhibitory and microcalorimetric analyses of Plasmodium falciparum TMP kinase. Implications for drug discovery. Parasitology 2009; 136:11-25. [PMID: 19126267 DOI: 10.1017/s0031182008005301] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Plasmodium falciparum thymidylate kinase (PfTMK) can tolerate a range of substrates, which distinguishes it from other thymidylate kinases. The enzyme not only phosphorylates TMP and dUMP but can also tolerate bulkier purines, namely, dGMP, GMP, and dIMP. In order to probe the flexibility of PfTMK in accommodating ligands of various sizes, we developed 6 mutant enzymes and subjected these to thermodynamic, inhibitory and catalytic evaluation. Kinase activity was markedly affected by introducing a larger lysine residue instead of A111. The lack of the hydroxyl group after inducing mutation of Y107F affected enzyme activity, and had a more severe impact on dGMP kinase activity. PfTMK can be inhibited by both purine and pyrimidine nucleosides, raising the possibility of developing highly selective drugs. Thermodynamic analysis revealed that enthalpic forces govern both purine and pyrimidine nucleoside monophosphate binding, and the binding affinity of both substrates was highly comparable. The heat produced due to dGMP binding is lower than that attributable to TMP. This indicates that additional interactions occur with TMP, which may be lost with larger dGMP. Targeting PfTMK not only affects thymidine nucleotide synthesis but may also affect purine nucleotides, and thus the enzyme represents an attractive antimicrobial target.
Collapse
|
44
|
Synthesis and molecular modelling of unsaturated exomethylene pyranonucleoside analogues with antitumor and antiviral activities. Eur J Med Chem 2008; 43:1366-75. [DOI: 10.1016/j.ejmech.2007.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 10/12/2007] [Indexed: 11/17/2022]
|
45
|
Carnrot C, Wang L, Topalis D, Eriksson S. Mechanisms of substrate selectivity for Bacillus anthracis thymidylate kinase. Protein Sci 2008; 17:1486-93. [PMID: 18523102 DOI: 10.1110/ps.034199.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacillus anthracis is well known in connection with biological warfare. The search for new drug targets and antibiotics is highly motivated because of upcoming multiresistant strains. Thymidylate kinase is an ideal target since this enzyme is at the junction of the de novo and salvage synthesis of dTTP, an essential precursor for DNA synthesis. Here the expression and characterization of thymidylate kinase from B. anthracis (Ba-TMPK) is presented. The enzyme phosphorylated deoxythymidine-5'-monophosphate (dTMP) efficiently with K (m) and V (max) values of 33 microM and 48 micromol mg(-1) min(-1), respectively. The efficiency of deoxyuridine-5'-monophosphate phosphorylation was approximately 10% of that of dTMP. Several dTMP analogs were tested, and D-FMAUMP (2'-fluoroarabinosyl-5-methyldeoxyuridine-5'-monophosphate) was selectively phosphorylated with an efficiency of 172% of that of D-dTMP, but L-FMAUMP was a poor substrate as were 5-fluorodeoxyuridine-5'-monophosphate (5FdUMP) and 2',3'-dideoxy-2',3'-didehydrothymidine-5'-monophosphate (d4TMP). No activity could be detected with 3'-azidothymidine-5'-monophosphate (AZTMP). The corresponding nucleosides known as efficient anticancer and antiviral compounds were also tested, and d-FMAU was a strong inhibitor with an IC(50) value of 10 microM, while other nucleosides--L-FMAU, dThd, 5-FdUrd, d4T, and AZT, and 2'-arabinosylthymidine--were poor inhibitors. A structure model was built for Ba-TMPK based on the Staphylococcus aureus TMPK structure. Docking with various substrates suggested mechanisms explaining the differences in substrate selectivity of the human and the bacterial TMPKs. These results may serve as a start point for development of new antibacterial agents.
Collapse
Affiliation(s)
- Cecilia Carnrot
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, The Biomedical Centre, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
46
|
Kandeel M, Kitade Y. Molecular Characterization, Heterologous Expression and Kinetic Analysis of Recombinant Plasmodium falciparum Thymidylate Kinase. ACTA ACUST UNITED AC 2008; 144:245-50. [DOI: 10.1093/jb/mvn062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Fournier D, Poirier D, Mazumdar M, Lin SX. Design and synthesis of bisubstrate inhibitors of type 1 17beta-hydroxysteroid dehydrogenase: overview and perspectives. Eur J Med Chem 2008; 43:2298-306. [PMID: 18372081 DOI: 10.1016/j.ejmech.2008.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
Type 1 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) is a key steroidogenic enzyme that catalyses the reduction of steroid estrone into the most potent endogenous estrogen estradiol using the cofactor NAD(P)H. Bisubstrate inhibition is a good way to enhance the potency of inhibitors of cofactor-assisted enzymes. The design of a bisubstrate inhibitor of 17beta-HSD1, the estradiol/adenosine hybrid EM-1745, is reviewed and strategies for future designs of inhibitors are proposed.
Collapse
Affiliation(s)
- D Fournier
- Oncology and Molecular Endocrinology Research Center, CHUQ - Pavillon CHUL and Université Laval, 2705 Boulevard Laurier, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
48
|
Tsoukala E, Manta S, Tzioumaki N, Agelis G, Komiotis D. A concise synthesis of 3-fluoro-5-thio-xylo- and glucopyranoses, useful precursors towards their corresponding pyranonucleoside derivatives. Carbohydr Res 2008; 343:1099-103. [PMID: 18313037 DOI: 10.1016/j.carres.2008.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 11/19/2022]
Abstract
The chemical synthesis of 1,2,4-tri-O-acetyl-3-deoxy-3-fluoro-5-thio-D-xylopyranose, 1,2,4,6-tetra-O-acetyl-3-deoxy-3-fluoro-5-thio-alpha-D-glucopyranose and their corresponding nucleosides of thymine is described. Treatment of 3-fluoro-5-S-acetyl-5-thio-D-xylofuranose, obtained by hydrolysis of the isopropylidene group of 3-fluoro-1,2-O-isopropylidene-5-S-acetyl-5-thio-D-xylofuranose, with methanolic ammonia and direct acetylation, led to triacetylated 3-deoxy-3-fluoro-5-thio-D-xylopyranose. Condensation of acetylated 3-fluoro-5-thio-D-xylopyranose with silylated thymine afforded the corresponding nucleoside. Selective benzoylation and direct methanesulfonylation of 3-fluoro-1,2-O-isopropylidene-alpha-D-glucofuranose gave the 6-O-benzoyl-5-O-methylsulfonyl derivative, which on treatment with sodium methoxide afforded the 5,6-anhydro derivative. Treatment of the latter with thiourea, followed by acetolysis, gave the 3-fluoro-5-S-acetyl-6-O-acetyl-1,2-O-isopropylidene-5-thio-alpha-D-glucofuranose. 3-fluoro-5-S-acetyl-6-O-acetyl-5-thio-D-glucofuranose, obtained after hydrolysis of 5-thiofuranose isopropylidene, was treated with ammonia in methanol and directly acetylated, giving tetraacetylated 3-deoxy-3-fluoro-5-thio-alpha-D-glucopyranose. Condensation of the latter with silylated thymine afforded the desired 3-deoxy-3-fluoro-5-thio-beta-D-glucopyranonucleoside analogue.
Collapse
Affiliation(s)
- Evangelia Tsoukala
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Str., GR-41221 Larissa, Greece
| | | | | | | | | |
Collapse
|
49
|
Manta S, Agelis G, Botić T, Cencic A, Komiotis D. Unsaturated fluoro-ketopyranosyl nucleosides: Synthesis and biological evaluation of 3-fluoro-4-keto-β-d-glucopyranosyl derivatives of N4-benzoyl cytosine and N6-benzoyl adenine. Eur J Med Chem 2008; 43:420-8. [PMID: 17548129 DOI: 10.1016/j.ejmech.2007.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
The protected beta-nucleosides 1-(2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-beta-d-glucopyranosyl)-N(4)-benzoyl cytosine (2a) and 9-(2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-beta-d-glucopyranosyl)-N(6)-benzoyl adenine (2b), were synthesized by the coupling of peracetylated 3-deoxy-3-fluoro-d-glucopyranose (1) with silylated N(4)-benzoyl cytosine and N(6)-benzoyl adenine, respectively. The nucleosides were deacetylated and several subsequent protection and deprotection steps afforded the partially acetylated nucleosides of cytosine 7a and adenine 7b, respectively. Finally, direct oxidation of the free hydroxyl group at 4'-position of 7a and 7b, and simultaneous elimination reaction of the beta-acetoxyl group, afforded the desired unsaturated 3-fluoro-4-keto-beta-d-glucopyranosyl derivatives. These newly synthesized compounds were evaluated for their potential antitumor and antiviral activities. Compared to 5FU, the newly synthesized derivatives showed to be more efficient as antitumor growth inhibitors and they exhibited direct antiviral effect toward rotavirus.
Collapse
Affiliation(s)
- Stella Manta
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Street, 41221 Larissa, Greece
| | | | | | | | | |
Collapse
|
50
|
Van Daele I, Munier-Lehmann H, Froeyen M, Balzarini J, Van Calenbergh S. Rational Design of 5‘-Thiourea-Substituted α-Thymidine Analogues as Thymidine Monophosphate Kinase Inhibitors Capable of Inhibiting Mycobacterial Growth. J Med Chem 2007; 50:5281-92. [PMID: 17910427 DOI: 10.1021/jm0706158] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, thymidine monophosphate kinase (TMPK) emerged as an attractive target for developing inhibitors of Mycobacterium tuberculosis growth. The elucidation of the X-ray structure of TMPK of M. tuberculosis (TMPKmt), as well as the structure of an earlier serendipitously discovered dimeric thymidine inhibitor, laid the foundation for the design of potent and selective TMPKmt inhibitors reported here. Several hits identified within a series of 3'-C-branched thiourea-substituted beta-thymidine derivatives inspired us to construct a set of 5'-thiourea-substituted alpha-thymidine derivatives characterized by a similar relative orientation of the thymine and arylthiourea moieties. alpha-Thymidine derivative 15, featuring a (3-trifluoromethyl-4-chlorophenyl)thiourea moiety, has a Ki of 0.6 microM and a selectivity index of 600 versus human TMPK. Moreover, it represents the first TMPK inhibitor showing good inhibitory activity on growing M. bovis (MIC99 = 20 microg/mL) and M. tuberculosis (MIC50 = 6.25 microg/mL) strains.
Collapse
Affiliation(s)
- Ineke Van Daele
- Laboratory for Medicinal Chemistry (FFW), University of Gent, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|