1
|
Mikhailov OV. Gelatin as It Is: History and Modernity. Int J Mol Sci 2023; 24:ijms24043583. [PMID: 36834993 PMCID: PMC9963746 DOI: 10.3390/ijms24043583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The data concerning the synthesis and physicochemical characteristics of one of the practically important proteins-gelatin, as well as the possibilities of its practical application, are systematized and discussed. When considering the latter, emphasis is placed on the use of gelatin in those areas of science and technology that are associated with the specifics of the spatial/molecular structure of this high-molecular compound, namely, as a binder for the silver halide photographic process, immobilized matrix systems with a nano-level organization of an immobilized substance, matrices for creating pharmaceutical/dosage forms and protein-based nanosystems. It was concluded that the use of this protein is promising in the future.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
2
|
Mikhailov OV. Gelatin Matrix as Functional Biomaterial for Immobilization of Nanoparticles of Metal-Containing Compounds. J Funct Biomater 2023; 14:92. [PMID: 36826891 PMCID: PMC9958939 DOI: 10.3390/jfb14020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The data concerning the synthesis and physicochemical characteristics of specific functional biomaterials-biopolymer-immobilized matrix systems based on gelatin as an array and chemical compounds, which include atoms of various metal elements-are systematized and discussed. The features of this biopolymer which determine the specific properties of the immobilized matrix systems formed by it and their reactivity, are noted. Data on gelatin-immobilized systems in which immobilized substances are elemental metals and coordination compounds formed as a result of redox processes, nucleophilic/electrophilic substitution reactions, and self-assembly (template synthesis), are presented. The possibilities of the practical use of metal-containing gelatin-immobilized systems are promising for the future; in particular, their potential in medicine and pharmacology as a vehicle for "targeted" drug delivery to various internal organs/tissues of the body, and, also, as potential biosensors is noted.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, 420015 Kazan, Russia
| |
Collapse
|
3
|
Özdemir Bahadir A, Balcioğlu BK, Serhatli M, Işik Ş, Erdağ B. Identifying specific matrix metalloproteinase-2-inhibiting peptides through phage display-based subtractive screening. Turk J Biol 2022; 45:674-682. [PMID: 35068948 PMCID: PMC8733953 DOI: 10.3906/biy-2105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/27/2021] [Indexed: 11/03/2022] Open
Abstract
Gelatinases A and B, which are members of the matrix metalloproteinase (MMP) family, play essential roles in cancer development and metastasis, as they can break down basal membranes. Therefore, the determination and inhibition of gelatinases is essential for cancer treatment. Peptides that can specifically block each gelatinase may, therefore, be useful for cancer treatment. In this study, subtractive panning was carried out using a 12-mer peptide library to identify peptides that block gelatinase A activity (MMP-2), which is a key pharmacological target. Using this method, 17 unique peptide sequences were determined. MMP-2 inhibition by these peptides was evaluated through zymogram analyses, which revealed that four peptides inhibited MMP-2 activity by at least 65%. These four peptides were synthesized and used for in vitro wound healing using human umbilical vein endothelial cells, and two peptides, AOMP12 and AOMP29, were found to inhibit wound healing by 40%. These peptides are, thus, potential candidates for MMP-2 inhibition for cancer treatment. Furthermore, our findings suggest that our substractive biopanning screening method is a suitable strategy for identifying peptides that selectively inhibit MMP-2.
Collapse
Affiliation(s)
- Aylin Özdemir Bahadir
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Bertan Koray Balcioğlu
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Müge Serhatli
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Şeyma Işik
- Department of Medical Biotechnology Institute of Health Sciences Acıbadem Mehmet Ali Aydınlar University, İstanbul Turkey
| | - Berrin Erdağ
- Department of Medical Biology, Basic Medical Sciences, İstanbul Aydın University, İs-tanbul Turkey
| |
Collapse
|
4
|
Patthy L. Miguel Llinás and the Structure of the Kringle Fold. Protein J 2021; 40:450-453. [PMID: 33791899 PMCID: PMC8373733 DOI: 10.1007/s10930-021-09981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/03/2022]
Affiliation(s)
- Laszlo Patthy
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
5
|
Mikhailov OV. Electrophilic substitution in the d-metal hexacyanoferrate(II) gelatin-immobilized matrix systems. REV INORG CHEM 2018. [DOI: 10.1515/revic-2018-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractData of electrophilic substitution processes proceeding into the d-metal hexacyanoferrate(II) gelatin-immobilized matrix systems when they are in contact with aqueous solutions of chlorides of d-elements have been systematized and generalized. The bibliography includes 94 references.
Collapse
Affiliation(s)
- Oleg V. Mikhailov
- Department of Analytical Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
6
|
Mikhailov OV. Polycyclic 3d-metalchelates formed owing to inner-sphere transmutations in the gelatin matrix: synthesis and structures. REV INORG CHEM 2017. [DOI: 10.1515/revic-2017-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractProcesses of synthesis of polycyclic compounds containing various 3d-elements, proceeding in gelatin matrix in the systems M(II) ion – (N,S)- or (N,O,S)-containing organic compound A – mono- or dicarbonyl-containing organic compound B, resulting in one of a variety of inner-sphere transmutations, namely “self-assembly”, have been considered and discussed. The chemical nature of the final products of such a synthesis formed under these specific conditions have been compared with the chemical nature of the final products formed by similar synthesis in solutions. It has been noted that in many cases, the nature and chemical composition of these products differ substantially. Specific features of the density functional theory calculated molecular structures of the metal macrocyclic compounds that can be formed due to such a synthesis in the systems indicated above have been discussed, too. The review covers the period 1990–2016.
Collapse
Affiliation(s)
- Oleg V. Mikhailov
- Department of Analytical Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
7
|
Mikhailov OV. Molecular structure design and soft template synthesis of aza-, oxaaza- and thiaazamacrocyclic metal chelates in the gelatin matrix. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Gandhi S, Arami H, Krishnan KM. Detection of Cancer-Specific Proteases Using Magnetic Relaxation of Peptide-Conjugated Nanoparticles in Biological Environment. NANO LETTERS 2016; 16:3668-3674. [PMID: 27219521 DOI: 10.1021/acs.nanolett.6b00867] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protease expression is closely linked to malignant phenotypes of different solid tumors; as such, their detection is promising for diagnosis and treatment of cancers, Alzheimer's, and vascular diseases. Here, we describe a new method for detecting proteases by sensitively monitoring the magnetic relaxation of monodisperse iron oxide nanoparticles (IONPs) using magnetic particle spectrometer (MPS). In this assay, tailored peptides functioning as activatable nanosensors link magnetic nanoparticles and possess selective sites that are recognizeable and cleaveable by specific proteases. When these linker peptides, labeled with biotin at N- and C-terminals, are added to the neutravidin functionalized IONPs, nanoparticles aggregate, resulting in well-defined changes in the MPS signal. However, as designed, in the presence of proteases these peptides are cleaved at predetermined sites, redispersing IONPs, and returning the MPS signal(s) close to its preaggregation state. These changes observed in all aspects of the MPS signal (peak intensity, its position as a function of field amplitude, and full width at half-maximum-when combined, these three also eliminate false positives), help to detect specific proteases, relying only on the magnetic relaxation characteristics of the functionalized nanoparticles. We demonstrate the general utility of this assay by detecting one each from the two general classes of proteases: trypsin (digestive serine protease, involved in various cancers, promoting proliferation, invasion, and metastasis) and matrix metalloproteinase (MMP-2, observed through metastasis and tumor angiogenesis). This MPS based protease-assay is rapid, reproducible, and highly sensitive and can form the basis of a feasible, high-throughput method for detection of various other proteases.
Collapse
Affiliation(s)
- Sonu Gandhi
- Materials Science & Engineering Department, University of Washington , Seattle, Washington 98195-2120 United States
| | - Hamed Arami
- Materials Science & Engineering Department, University of Washington , Seattle, Washington 98195-2120 United States
| | - Kannan M Krishnan
- Materials Science & Engineering Department, University of Washington , Seattle, Washington 98195-2120 United States
| |
Collapse
|
9
|
Self-assembly and quantum chemical design of macrotricyclic and macrotetracyclic 3d-element metal chelates formed in the gelatin-immobilized matrix. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-1070-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Mikhailov OV. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates. NANO REVIEWS 2014; 5:21485. [PMID: 24516711 PMCID: PMC3918507 DOI: 10.3402/nano.v5.21485] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 11/14/2022]
Abstract
This article is a review of recent developments in the self-assembled nanostructures based on chelate coordination compounds. Molecular nanotechnologies of self-assembly of 3d-element aza- and thiazametalmacrocyclic complexes that happen in nanoreactors on the basis of metal hexacyanoferrate(II) gelatin-immobilized matrix under their contact with water solutions containing various (N,O,S)-donor atomic ligands and organic compounds having one or two carbonyl groups have been considered in this review. It has been noted that the assortment of macrocyclic metal chelates obtained as a result of using molecular nanotechnologies in such specific conditions considerably differs from the assortment of metal chelates formed at the conditions traditional for chemical synthesis.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Kazan National Research Technological University, Kazan, Russia
| |
Collapse
|
11
|
Lv S, Liu H, Cui J, Hasegawa T, Hongo H, Feng W, Li J, Sun B, Kudo A, Amizuka N, Li M. Histochemical examination of cathepsin K, MMP1 and MMP2 in compressed periodontal ligament during orthodontic tooth movement in periostin deficient mice. J Mol Histol 2013; 45:303-9. [PMID: 24202437 DOI: 10.1007/s10735-013-9548-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/28/2013] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to investigate immunolocalization of collagenolytic enzymes including cathepsin K, matrix metalloproteinase (MMP) 1 and 2 in the compressed periodontal ligament (PDL) during orthodontic tooth movement using a periostin deficient (Pn-/-) mouse model. Twelve-week-old male mice homozygous for the disrupted periostin gene and their wild type (WT) littermates were used in these experiments. The tooth movement was performed according to Waldo's method, in which elastic bands of 0.5 mm thickness were inserted between the first and second upper molars of mice under anesthesia. At 1 and 3 days after orthodontic force application, mice were fixed with transcardial perfusion of 4 % paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), and the first molars and peripheral alveolar bones were extracted for histochemical analyses. Compared with WT mice, immunolocalization of cathepsin K, MMP1 and MMP2 was significantly decreased at 1 and 3 days after orthodontic tooth movement in the compressed PDL of Pn-/- mice, although MMP1-reactivity and MMP2-reactivity decreased at different amounts. Very little cathepsin K-immunoreactivity was observed in the assessed regions of Pn-/- mice, both before and after orthodontic force application. Furthermore, Pn-/- mice showed a much wider residual PDL than WT mice. Taken together, we concluded that periostin plays an essential role in the function of collagenolytic enzymes like cathepsin K, MMP1 and MMP2 in the compressed PDL after orthodontic force application.
Collapse
Affiliation(s)
- Shengyu Lv
- Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Bone Metabolism, School of Stomatology, Shandong University, Wenhua West Road 44-1, Jinan, 250012, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mikhailov OV. Synthesis of 3d-element metalmacrocyclic chelates into polypeptide biopolymer medium and their molecular structures. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2012.07.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
14
|
Kalaimathy S, Sowdhamini R, Kanagarajadurai K. Critical assessment of structure-based sequence alignment methods at distant relationships. Brief Bioinform 2011; 12:163-75. [PMID: 21422071 DOI: 10.1093/bib/bbq025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accurate sequence alignments are crucial for modelling and to provide an evolutionary picture of related proteins. It is well-known that alignments are hard to obtain during distant relationships. Three thousand and fifty-two alignments of 218 pairs of protein domain structural entries, with <40% sequence identity, belonging to different structural classes, of diverse domain sizes and length-rigid/variable domains were performed using 12 programs. Structural parameters such as root mean square deviation, secondary-structural content and equivalences were considered for critical assessment. Methods that compare fragments and permit twists and translations align well during distant relationships and length variations.
Collapse
Affiliation(s)
- Singarevelu Kalaimathy
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | |
Collapse
|
15
|
Moroy G, Bourguet E, Decarme M, Sapi J, Alix AJP, Hornebeck W, Lorimier S. Inhibition of human leukocyte elastase, plasmin and matrix metalloproteinases by oleic acid and oleoyl-galardin derivative(s). Biochem Pharmacol 2011; 81:626-35. [PMID: 21146503 DOI: 10.1016/j.bcp.2010.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Molecular modeling was undertaken at aims to analyze the interactions between oleic acid and human leukocyte elastase (HLE), plasmin and matrix metalloproteinase-2 (MMP-2), involved in the inhibitory capacity of fatty acid towards those proteases. The carboxylic acid group of the fatty acid was found to form a salt bridge with Arg(217) of HLE while unsaturation interacted with Phe(192) and Val(216) at the S(3) subsite, and alkyl end group occupied S(1) subsite. In keeping with the main contribution of kringle 5 domain in plasmin-oleic acid interaction [Huet E et al. Biochem Pharmacol 2004;67(4):643-54], docking computations revealed that the long alkyl chain of fatty acid inserted within an hydrophobic groove of this domain with the carboxylate forming a salt bridge with Arg(512). Finally, blind docking revealed that oleic acid could occupy both S'(1) subsite and Fn(II)(3) domain of MMP-2. Several residues involved in Fn(II)(3)/oleic acid interaction were similarly implicated in binding of this domain to collagen. Oleic acid was covalently linked to galardin (at P'(2) position): OL-GAL (CONHOH) or to its carboxylic acid counterpart: OL-GAL (COOH), with the idea to obtain potent MMP inhibitors able to also interfere with elastase and plasmin activity. OL-GALs were found less potent MMP inhibitors as compared to galardin and no selectivity for MMP-2 or MMP-9 could be demonstrated. Docking computations indicated that contrary to oleic acid, OL-GAL binds only to MMP-2 active site and surprisingly, hydroxamic acid was unable to chelate Zn, but instead forms a salt bridge with the N-terminal Tyr(110). Interestingly, oleic acid and particularly OL-GALs proved to potently inhibit MMP-13. OL-GAL was found as potent as galardin (K(i) equal to 1.8nM for OL-GAL and 1.45nM for GAL) and selectivity for that MMP was attained (2-3 log orders of difference in inhibitory potency as compared to other MMPs). Molecular modeling studies indicated that oleic acid could be accommodated within S'(1) pocket of MMP-13 with carboxylic acid chelating Zn ion. OL-GAL also occupied such pocket but hydroxamic acid did not interact with Zn but instead was located at 2.8Å from Tyr(176). Since these derivatives retained, as their oleic acid original counterpart, the capacity to inhibit the amidolytic activity of HLE and plasmin as well as to decrease HLE- and plasmin-mediated pro MMP-3 activation, they might be of therapeutic value to control proteolytic cascades in chronic inflammatory disorders.
Collapse
Affiliation(s)
- Gautier Moroy
- Université Paris Diderot, Molécules thérapeutiques in silico, INSERM UMR-S-973, Bât. Lamarck, 35 rue Hélène Brion, 75205 Paris Cedex 13, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Immunohistochemical and transcriptional expression of matrix metalloproteinases in full-term human umbilical cord and Human Umbilical Vein Endothelial Cells. J Mol Histol 2010; 41:367-77. [DOI: 10.1007/s10735-010-9298-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 09/28/2010] [Indexed: 01/05/2023]
|
17
|
Erat MC, Schwarz-Linek U, Pickford AR, Farndale RW, Campbell ID, Vakonakis I. Implications for collagen binding from the crystallographic structure of fibronectin 6FnI1-2FnII7FnI. J Biol Chem 2010; 285:33764-70. [PMID: 20739283 PMCID: PMC2962475 DOI: 10.1074/jbc.m110.139394] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Collagen and fibronectin (FN) are two abundant and essential components of the vertebrate extracellular matrix; they interact directly with cellular receptors and affect cell adhesion and migration. Past studies identified a FN fragment comprising six modules, 6FnI1–2FnII7–9FnI, and termed the gelatin binding domain (GBD) as responsible for collagen interaction. Recently, we showed that the GBD binds tightly to a specific site within type I collagen and determined the structure of domains 8–9FnI in complex with a peptide from that site. Here, we present the crystallographic structure of domains 6FnI1–2FnII7FnI, which form a compact, globular unit through interdomain interactions. Analysis of NMR titrations with single-stranded collagen peptides reveals a dominant collagen interaction surface on domains 2FnII and 7FnI; a similar surface appears involved in interactions with triple-helical peptides. Models of the complete GBD, based on the new structure and the 8–9FnI·collagen complex show a continuous putative collagen binding surface. We explore the implications of this model using long collagen peptides and discuss our findings in the context of FN interactions with collagen fibrils.
Collapse
Affiliation(s)
- Michèle C Erat
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Mikhailov OV. SOFT TEMPLATE SYNTHESIS OF Fe(II,III), Co(II,III), Ni(II) AND Cu(II) METALMACROCYCLIC COMPOUNDS IN GELATIN-IMMOBILIZED MATRIX IMPLANTS. REV INORG CHEM 2010. [DOI: 10.1515/revic.2010.30.4.199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Xu X, Mikhailova M, Ilangovan U, Chen Z, Yu A, Pal S, Hinck AP, Steffensen B. Nuclear magnetic resonance mapping and functional confirmation of the collagen binding sites of matrix metalloproteinase-2. Biochemistry 2009; 48:5822-31. [PMID: 19459623 DOI: 10.1021/bi900513h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interactions of matrix metalloproteinase-2 (MMP-2) with native and denatured forms of several types of collagen are mediated by the collagen binding domain (CBD). CBD positions substrates relative to the catalytic site and is essential for their cleavage. Our previous studies identified a CBD binding site on the alpha1(I) collagen chain. The corresponding synthetic collagen peptide P713 bound CBD with high affinity and was used in this study to identify specific collagen binding residues by NMR analysis of (15)N-labeled CBD complexed with P713. Results obtained showed that P713 caused chemical shift perturbations of several surface-exposed CBD backbone amide resonances in a concentration-dependent manner. The 10 residues that underwent the largest chemical shift perturbations (R(252) in module 1, R(296), F(297), Y(302), E(321), Y(323), and Y(329) in module 2, and R(368), W(374), and Y(381) in module 3) were investigated by site-specific substitution with alanine. The structural integrity of the CBD variants was also analyzed by one-dimensional (1)H NMR. Surface plasmon resonance and microwell protein binding assays of control and CBD variants showed that residues in all three CBD modules contributed to collagen binding. Single-residue substitutions altered the affinity for peptide P713, as well as native and denatured type I collagen, with the greatest effects observed for residues in modules 2 and 3. Additional alanine substitutions involving residues in two or three modules simultaneously further reduced the level of binding of CBD to native and denatured type I collagen and demonstrated that all three modules contribute to substrate binding. These results have localized and confirmed the key collagen binding site residues in the three fibronectin type II-like modules of MMP-2.
Collapse
Affiliation(s)
- Xiaoping Xu
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The emergence of in vivo cancer biomarkers is promising tool for early detection, risk stratification, and therapeutic intervention in the esophagus, where adenocarcinoma is increasing at a rate that is faster than any other in industrialized nations. Exciting advances in target identification, probe development, and optical instrumentation are creating tremendous new opportunities for advancing techniques of molecular imaging. Progress in these areas is being made with small animal models of esophageal cancer using surgical approaches to induce reflux of acid and bile, and these findings are beginning to be evaluated in the clinic. Further identification of relevant targets, characterization of specific probes, and development of endoscopic imaging technologies are needed to further this direction in the field of molecular medicine. In the future, new methods that use in vivo cancer biomarkers for the early detection of neoplastic changes in the setting of Barrett's esophagus will become available.
Collapse
Affiliation(s)
- Shaoying Lu
- Department of General Surgery, First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, People's Republic of China
| | | |
Collapse
|
21
|
Affiliation(s)
- Oleg V. Mikhailov
- a Analytical Chemistry Department , Kazan State Technological University , K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
22
|
Aziz F, Kuivaniemi H. Role of matrix metalloproteinase inhibitors in preventing abdominal aortic aneurysm. Ann Vasc Surg 2007; 21:392-401. [PMID: 17484978 PMCID: PMC2128752 DOI: 10.1016/j.avsg.2006.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 11/22/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a significant health problem in the United States, with approximately 30,000 repair operations annually. Treatment of AAA is associated with more than 150,000 hospital admissions per year. The development of AAA is characterized by destruction of the elastic media of the aortic wall. A large body of evidence suggests that a group of enzymes called matrix metalloproteinases (MMPs) plays a significant role in the destruction of extracellular matrix in the aortic wall. MMP inhibition has, therefore, been viewed as an alternative pharmacotherapeutic approach to slow down the development and progression of small AAAs, thus reducing the need for surgical intervention.
Collapse
Affiliation(s)
- Faisal Aziz
- Department of Surgery, New York Medical College, Valhalla, NY, USA
| | - Helena Kuivaniemi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
23
|
Xu X, Chen Z, Wang Y, Bonewald L, Steffensen B. Inhibition of MMP-2 gelatinolysis by targeting exodomain-substrate interactions. Biochem J 2007; 406:147-55. [PMID: 17516913 PMCID: PMC1948992 DOI: 10.1042/bj20070591] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MMP-2 (matrix metalloproteinase 2) contains a CBD (collagen-binding domain), which is essential for positioning gelatin substrate molecules relative to the catalytic site for cleavage. Deletion of the CBD or disruption of CBD-mediated gelatin binding inhibits gelatinolysis by MMP-2. To identify CBD-binding sites on type I collagen and collagen peptides with the capacity to compete CBD binding of gelatin and thereby inhibit gelatinolysis by MMP-2, we screened a one-bead one-peptide combinatorial peptide library with recombinant CBD as bait. Analyses of sequences from the CBD-binding peptides pointed to residues 715-721 in human alpha1(I) collagen chain as a binding site for CBD. A peptide (P713) including this collagen segment was synthesized for analyses. In SPR (surface plasmon resonance) assays, the CBD and MMP-2(E404A), a catalytically inactive MMP-2 mutant, both bound immobilized P713 in a concentration-dependent manner, but not a scrambled control peptide. Furthermore, P713 competed gelatin binding by the CBD and MMP-2(E404A). In control assays, neither of the non-collagen binding alkylated CBD or MMP-2 with deletion of CBD (MMP-2DeltaCBD) bound P713. Consistent with the exodomain functions of the CBD, P713 inhibited approximately 90% of the MMP-2 gelatin cleavage, but less than 20% of the MMP-2 activity on a peptide substrate (NFF-1) which does not require the CBD for cleavage. Confirming the specificity of the inhibition, P713 did not alter MMP-2DeltaCBD or MMP-8 activities. These experiments identified a CBD-binding site on type I collagen and demonstrated that a corresponding synthetic peptide can inhibit hydrolysis of type I and IV collagens by competing CBD-mediated gelatin binding to MMP-2.
Collapse
Affiliation(s)
- Xiaoping Xu
- *Departments of Periodontics and Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, TX 78229-3900, U.S.A
| | - Zhihua Chen
- *Departments of Periodontics and Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, TX 78229-3900, U.S.A
| | - Yao Wang
- *Departments of Periodontics and Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, TX 78229-3900, U.S.A
| | - Lynda Bonewald
- †University of Missouri at Kansas City, Kansas City, MO 64108-2784, U.S.A
| | - Bjorn Steffensen
- *Departments of Periodontics and Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, TX 78229-3900, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Uchiyama F, Tanaka Y, Minari Y, Tokui N. Designing scaffolds of peptides for phage display libraries. J Biosci Bioeng 2005; 99:448-56. [PMID: 16233816 DOI: 10.1263/jbb.99.448] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/02/2005] [Indexed: 11/17/2022]
Abstract
Phage display is a powerful method for the discovery of peptide ligands that are used for analytical tools, drug discovery, and target validations. Phage display technology can produce a huge number of peptides and generate novel peptide ligands. Recently, phage display technology has successfully managed to create peptide ligands that bind to pharmaceutically difficult targets such as the erythropoietin receptor. As a result of the structural analysis of their ligands, we found that the conformational design of peptides in library is important for selecting high-affinity ligands that bind to every target from a phage peptide library. Key issues concern constraints on the conformation of peptides on the phage and the development of chemically synthesized peptides derived from peptides on phage. This review discusses studies related to the conformation of peptides selected from phage display peptide libraries in addition to the conversion from peptides to non-peptides.
Collapse
Affiliation(s)
- Fumiaki Uchiyama
- Department of Nutritional Sciences, Graduate School of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jounan-Ku, Fukuoka 814-0198, Japan.
| | | | | | | |
Collapse
|
25
|
Jani M, Tordai H, Trexler M, Bányai L, Patthy L. Hydroxamate-based peptide inhibitors of matrix metalloprotease 2. Biochimie 2005; 87:385-92. [PMID: 15781326 DOI: 10.1016/j.biochi.2004.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 09/10/2004] [Indexed: 11/15/2022]
Abstract
There is major interest in designing inhibitors for matrix metalloproteinase 2 (MMP-2, gelatinase A) since this enzyme is known to be involved in pathological processes such as tumor invasion or rheumatoid arthritis. The majority of MMP-2 inhibitor candidate drugs block the active site of MMP-2 by binding to its catalytic Zn2+ ion through a chelating (hydroxamate, sulphonate etc.) group. Despite the general interest in designing MMP-2 inhibitors, the results with many of the drug candidates were disappointing, their failure was usually explained by cross-reactions with other MMPs. One way to enhance MMP-2 selectivity is to design inhibitors that interact with both the active site and exosites such as the fibronectin type II (FN2) domains of the enzyme. In the present work, we have examined the inhibitory potential and MMP-2 selectivity of hydroxamates of three groups of peptides known to bind to the collagen-binding FN2 domains of MMP-2. The first type of peptides consisted of collagen-like (Pro-Pro-Gly)(n) repeats, peptides of the second group were identified from a random 15-mer phage display library based on their binding to immobilized FN2 domains of MMP-2. A hydroxamate of peptide p33-42, known to bind to the third FN2 domain of MMP-2 has also been tested. Our studies have shown that these compounds inhibited MMP-2 with IC50 values of 10-100 microM. The fact that their inhibitory potential was nearly identical for MMP-2del, a recombinant version of MMP-2 that lacks the FN2 domains, suggests that inhibition is not mediated by their binding to FN2 domains. It seems likely that the failure to exploit interaction with the FN2 domains is due to the fact that the FN2 domains and the catalytic domain of MMP-2 tumble independently, therefore only a tiny fraction of the conformational isomers can bind peptide hydroxamates via both the active site and the FN2 domain(s).
Collapse
Affiliation(s)
- Márton Jani
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, P.O. Box 7, 1518, Hungary
| | | | | | | | | |
Collapse
|
26
|
Björklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta Rev Cancer 2005; 1755:37-69. [PMID: 15907591 DOI: 10.1016/j.bbcan.2005.03.001] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 01/13/2023]
Abstract
The matrix metalloproteinases(MMP)-2 and -9, also known as the gelatinases have been long recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. In the recent years, a plethora of non-matrix proteins have also been identified as gelatinase substrates thus significantly broadening our understanding of these enzymes as proteolytic executors and regulators in various physiological and pathological states including embryonic growth and development, angiogenesis and tumor progression, inflammation, infective diseases, degenerative diseases of the brain and vascular diseases. Although the effect of broad-spectrum inhibitors of MMPs in the treatment of cancer has been disappointing in clinical trials, novel mechanisms of gelatinase inhibition have been now identified. Inhibition of the association of the gelatinases with cell-surface integrins appears to offer highly specific means to target these enzymes without inhibiting their catalytic activity in multiple cell types including endothelial cells, tumor cells and leukocytes. Here, we review the multiple functions of the gelatinases in cancer, and especially their role in the tumor cell migration and invasion.
Collapse
Affiliation(s)
- Mikael Björklund
- Department of Biological and Environmental Sciences, P.O. B 56 (Viikinkaari 5D), University of Helsinki, Finland
| | | |
Collapse
|
27
|
Gehrmann ML, Douglas JT, Bányai L, Tordai H, Patthy L, Llinás M. Modular Autonomy, Ligand Specificity, and Functional Cooperativity of the Three In-tandem Fibronectin Type II Repeats from Human Matrix Metalloproteinase 2. J Biol Chem 2004; 279:46921-9. [PMID: 15317806 DOI: 10.1074/jbc.m408859200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase 2 (MMP-2) contains three fibronectin type II (col) modules that contribute to its collagen specificity. We observed that the CD spectra of the separate col modules account for the CD and temperature profiles of the in-tandem col-123 construct. Thus, to the extent of not significantly perturbing the secondary structure and thermal stability characteristics of the neighboring units, the domains within col-123 do not interact. Via NMR, we investigated ligand binding properties of the three repeats within col-123: col-123/1 (the col-1 domain within col-123), col-123/2, and col-123/3. Interactions of col-123 with the collagen mimic peptide (Pro-Pro-Gly)6 (PPG6) and propeptide segment PIIKFPGDVA (p33-42) were studied. While col-123/1 and col-123/2 bound PPG6, they interacted more weakly with p33-42. In contrast, col-123/3 exhibited a higher affinity for p33-42 than for PPG6. Thus, despite their structural homology, the col repeats of MMP-2 differ in substrate specificity. Furthermore the binding affinities toward the three in-tandem col repeats were close to those determined for the individual isolated domains or for col-12/1, indicating that vis-a-vis these ligands each module interacts essentially as an autonomous unit. Interestingly the domains within col-123 exhibited enhanced affinities for Hel3, a construct that contains ((Gly-Pro-Pro)12)3 in triple helical configuration. Nevertheless the affinities were significantly higher for col-123/1 and col-123/2 relative to col-123/3 in line with their behaviors toward PPG6. This hints at a cooperative participation toward Hel3, which is a closer mimic of collagen, a hypothesis that is supported by the detected lower affinities of col-12/1, col-12/2, col-2, col-23/2, col-3, and col-23/3 for Hel3.
Collapse
Affiliation(s)
- Marion L Gehrmann
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
28
|
Björklund M, Heikkilä P, Koivunen E. Peptide Inhibition of Catalytic and Noncatalytic Activities of Matrix Metalloproteinase-9 Blocks Tumor Cell Migration and Invasion. J Biol Chem 2004; 279:29589-97. [PMID: 15123665 DOI: 10.1074/jbc.m401601200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Migration of invasive cells appears to be dependent on matrix metalloproteinases (MMPs) anchored on the cell surface through integrins. We have previously demonstrated an interaction between the integrin alpha-subunit I domain and the catalytic domain of MMP-9. We now show that there is also an interaction between the integrin beta subunit and MMP-9. Using phage display, we have developed MMP-9 inhibitors that bind either to the MMP-9 catalytic domain, the collagen binding domain, or the C-terminal hemopexin-like domain. The C-terminal domain-binding peptide mimics an activation epitope in the stalk of the integrin beta chain and inhibits the association of MMP-9 C-terminal domain with alpha(V)beta(5) integrin. Unlike other MMP-9 binding peptides, it does not directly inhibit catalytic activity of MMP-9, but still prevents proenzyme activation and cell migration in vitro and tumor xenograft growth in vivo. We also find an association between MMP-9 and urokinase-plasminogen activator receptor and find that urokinase-plasminogen activator receptor is cleaved by MMP-9. Collectively, we have defined molecular details for several interactions mediated by the different MMP-9 domains.
Collapse
Affiliation(s)
- Mikael Björklund
- Department of Biological and Environmental Sciences, Viikinkaari 5D, Viikki Biocenter
| | | | | |
Collapse
|
29
|
Bertini I, Calderone V, Fragai M, Luchinat C, Mangani S, Terni B. Crystal structure of the catalytic domain of human matrix metalloproteinase 10. J Mol Biol 2004; 336:707-16. [PMID: 15095982 DOI: 10.1016/j.jmb.2003.12.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 11/28/2003] [Accepted: 12/11/2003] [Indexed: 11/29/2022]
Abstract
The catalytic domain of matrix metalloproteinase-10 (MMP-10) has been expressed in Escherichia coli and its crystal structure solved at 2.1 A resolution. The availability of this structure allowed us to critically examine the small differences existing between the catalytic domains of MMP-3 and MMP-10, which show the highest sequence identity among all MMPs. Furthermore, the binding mode of N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid (NNGH), which is one of the most known commercial inhibitors of MMPs, is described for the first time.
Collapse
Affiliation(s)
- I Bertini
- CERM, University of Florence and FiorGen Foundation, Via Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | | | |
Collapse
|