1
|
Martynowycz MW, Andreev K, Mor A, Gidalevitz D. Cancer-Associated Gangliosides as a Therapeutic Target for Host Defense Peptide Mimics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12541-12549. [PMID: 37647566 DOI: 10.1021/acs.langmuir.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Aberrant levels of glycolipids expressed on cellular surfaces are characteristic of different types of cancers. The oligomer of acylated lysine (OAK) mimicking antimicrobial peptides displays in vitro activity against human and murine melanoma cell lines with upregulated GD3 and GM3 gangliosides. Herein, we demonstrate the capability of OAK to intercalate into the sialo-oligosaccharides of DPPC/GD3 and DPPC/GM3 lipid monolayers using X-ray scattering. The lack of insertion into monolayers containing phosphatidylserine suggests that the mechanism of action by OAKs against glycosylated lipid membranes is not merely driven by charge effects. The fluorescence microscopy data demonstrates the membrane-lytic activity of OAK. Understanding the molecular basis for selectivity toward GD3 and GM3 gangliosides by antimicrobial lipopeptides will contribute to the development of novel therapies to cure melanoma and other malignancies.
Collapse
Affiliation(s)
- Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Amram Mor
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| |
Collapse
|
2
|
Herrera-Marcos LV, Sahali D, Ollero M. 9-O Acetylated Gangliosides in Health and Disease. Biomolecules 2023; 13:biom13050827. [PMID: 37238697 DOI: 10.3390/biom13050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosphingolipids comprise a lipid class characterized by the presence of sugar moieties attached to a ceramide backbone. The role of glycosphingolipids in pathophysiology has gained relevance in recent years in parallel with the development of analytical technologies. Within this vast family of molecules, gangliosides modified by acetylation represent a minority. Described for the first time in the 1980s, their relation to pathologies has resulted in increased interest in their function in normal and diseased cells. This review presents the state of the art on 9-O acetylated gangliosides and their link to cellular disorders.
Collapse
Affiliation(s)
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| |
Collapse
|
3
|
Cavdarli S, Schröter L, Albers M, Baumann AM, Vicogne D, Le Doussal JM, Mühlenhoff M, Delannoy P, Groux-Degroote S. Role of Sialyl- O-Acetyltransferase CASD1 on GD2 Ganglioside O-Acetylation in Breast Cancer Cells. Cells 2021; 10:cells10061468. [PMID: 34208013 PMCID: PMC8230688 DOI: 10.3390/cells10061468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
The O-acetylated form of GD2, almost exclusively expressed in cancerous tissues, is considered to be a promising therapeutic target for neuroectoderm-derived tumors, especially for breast cancer. Our recent data have shown that 9-O-acetylated GD2 (9-OAcGD2) is the major O-acetylated ganglioside species in breast cancer cells. In 2015, Baumann et al. proposed that Cas 1 domain containing 1 (CASD1), which is the only known human sialyl-O-acetyltransferase, plays a role in GD3 O-acetylation. However, the mechanisms of ganglioside O-acetylation remain poorly understood. The aim of this study was to determine the involvement of CASD1 in GD2 O-acetylation in breast cancer. The role of CASD1 in OAcGD2 synthesis was first demonstrated using wild type CHO and CHOΔCasd1 cells as cellular models. Overexpression using plasmid transfection and siRNA strategies was used to modulate CASD1 expression in SUM159PT breast cancer cell line. Our results showed that OAcGD2 expression was reduced in SUM159PT that was transiently depleted for CASD1 expression. Additionally, OAcGD2 expression was increased in SUM159PT cells transiently overexpressing CASD1. The modulation of CASD1 expression using transient transfection strategies provided interesting insights into the role of CASD1 in OAcGD2 and OAcGD3 biosynthesis, and it highlights the importance of further studies on O-acetylation mechanisms.
Collapse
Affiliation(s)
- Sumeyye Cavdarli
- Univ Lille, CNRS, UMR 8576-UGSF- Unité de Glycosylation Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France; (S.C.); (D.V.); (P.D.)
| | - Larissa Schröter
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany; (L.S.); (M.A.); (A.-M.B.); (M.M.)
| | - Malena Albers
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany; (L.S.); (M.A.); (A.-M.B.); (M.M.)
| | - Anna-Maria Baumann
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany; (L.S.); (M.A.); (A.-M.B.); (M.M.)
| | - Dorothée Vicogne
- Univ Lille, CNRS, UMR 8576-UGSF- Unité de Glycosylation Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France; (S.C.); (D.V.); (P.D.)
| | | | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany; (L.S.); (M.A.); (A.-M.B.); (M.M.)
| | - Philippe Delannoy
- Univ Lille, CNRS, UMR 8576-UGSF- Unité de Glycosylation Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France; (S.C.); (D.V.); (P.D.)
| | - Sophie Groux-Degroote
- Univ Lille, CNRS, UMR 8576-UGSF- Unité de Glycosylation Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France; (S.C.); (D.V.); (P.D.)
- Correspondence:
| |
Collapse
|
4
|
Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy. J Immunol Res 2017; 2017:5604891. [PMID: 28154831 PMCID: PMC5244029 DOI: 10.1155/2017/5604891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 12/08/2016] [Indexed: 12/29/2022] Open
Abstract
Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.
Collapse
|
5
|
Ribeiro-Resende VT, Gomes TA, de Lima S, Nascimento-Lima M, Bargas-Rega M, Santiago MF, Reis RADM, de Mello FG. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration. PLoS One 2014; 9:e108919. [PMID: 25330147 PMCID: PMC4199601 DOI: 10.1371/journal.pone.0108919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration.
Collapse
Affiliation(s)
- Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Laboratório de Neuroquímica, Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-BIO, Universidade Federal do Rio de Janeiro, Pólo de Xerém, Duque de Caxias, Rio de Janeiro, Brazil
- * E-mail:
| | - Tiago Araújo Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Laboratório de Neuroquímica, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silmara de Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Laboratório de Neuroquímica, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maiara Nascimento-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Laboratório de Neuroquímica, Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-BIO, Universidade Federal do Rio de Janeiro, Pólo de Xerém, Duque de Caxias, Rio de Janeiro, Brazil
| | - Michele Bargas-Rega
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Laboratório de Neurobiologia Celular e Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Felipe Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Laboratório de Neurobiologia Celular e Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Laboratório de Neuroquímica, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Garcia de Mello
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Laboratório de Neuroquímica, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Parameswaran R, Lim M, Arutyunyan A, Abdel-Azim H, Hurtz C, Lau K, Müschen M, Yu RK, von Itzstein M, Heisterkamp N, Groffen J. O-acetylated N-acetylneuraminic acid as a novel target for therapy in human pre-B acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 210:805-19. [PMID: 23478187 PMCID: PMC3620349 DOI: 10.1084/jem.20121482] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Removal of 9-O-acetyl residues from the cell surface N-acetylneuraminic acid makes ALL cells drug sensitive. The development of resistance to chemotherapy is a major cause of relapse in acute lymphoblastic leukemia (ALL). Though several mechanisms associated with drug resistance have been studied in detail, the role of carbohydrate modification remains unexplored. Here, we investigated the contribution of 9-O-acetylated N-acetylneuraminic acid (Neu5Ac) to survival and drug resistance development in ALL cells. A strong induction of 9-O-acetylated Neu5Ac including 9-O-acetyl GD3 was detected in ALL cells that developed resistance against vincristine or nilotinib, drugs with distinct cytotoxic mechanisms. Removal of 9-O-acetyl residues from Neu5Ac on the cell surface by an O-acetylesterase made ALL cells more vulnerable to such drugs. Moreover, removal of intracellular and cell surface–resident 9-O-acetyl Neu5Ac by lentiviral transduction of the esterase was lethal to ALL cells in vitro even in the presence of stromal protection. Interestingly, expression of the esterase in normal fibroblasts or endothelial cells had no effect on their survival. Transplanted mice induced for expression of the O-acetylesterase in the ALL cells exhibited a reduction of leukemia to minimal cell numbers and significantly increased survival. This demonstrates that Neu5Ac 9-O-acetylation is essential for survival of these cells and suggests that Neu5Ac de-O-acetylation could be used as therapy to eradicate drug-resistant ALL cells.
Collapse
Affiliation(s)
- Reshmi Parameswaran
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, The Saban Research Institute, Children's Hospital Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
8
|
Arming S, Wipfler D, Mayr J, Merling A, Vilas U, Schauer R, Schwartz-Albiez R, Vlasak R. The human Cas1 protein: a sialic acid-specific O-acetyltransferase? Glycobiology 2011; 21:553-64. [PMID: 20947662 PMCID: PMC7108626 DOI: 10.1093/glycob/cwq153] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sialic acids are important sugars at the reducing end of glycoproteins and glycolipids. They are among many other functions involved in cell-cell interactions, host-pathogen recognition and the regulation of serum half-life of glycoproteins. An important modification of sialic acids is O-acetylation, which can alter or mask the biological properties of the parent sialic acid molecule. The nature of mammalian sialate-O-acetyltransferases (EC 2.3.1.45) involved in their biosynthesis is still unknown. We have identified the human CasD1 (capsule structure1 domain containing 1) gene as a candidate to encode the elusive enzyme. The human CasD1 gene encodes a protein with a serine-glycine-asparagine-histidine hydrolase domain and a hydrophobic transmembrane domain. Expression of the Cas1 protein tagged with enhanced green fluorescent protein in mammalian and insect cells directed the protein to the medial and trans-cisternae of the Golgi. Overexpression of the Cas1 protein in combination with α-N-acetyl-neuraminide α-2,8-sialyltransferase 1 (GD3 synthase) resulted in an up to 40% increased biosynthesis of 7-O-acetylated ganglioside GD3. By quantitative real-time polymerase chain reaction, we found up to 5-fold increase in CasD1 mRNA in tumor cells overexpressing O-Ac-GD3. CasD1-specific small interfering RNA reduced O-acetylation in tumor cells. These results suggest that the human Cas1 protein is directly involved in O-acetylation of α2-8-linked sialic acids.
Collapse
Affiliation(s)
- Sigrid Arming
- Department of Molecular Biology, University Salzburg, Austria
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Furukawa K, Aixinjueluo W, Kasama T, Ohkawa Y, Yoshihara M, Ohmi Y, Tajima O, Suzumura A, Kittaka D, Furukawa K. Disruption of GM2/GD2 synthase gene resulted in overt expression of 9-O-acetyl GD3 irrespective of Tis21. J Neurochem 2008; 105:1057-66. [PMID: 18194438 PMCID: PMC2408653 DOI: 10.1111/j.1471-4159.2008.05232.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 12/20/2007] [Indexed: 11/28/2022]
Abstract
GM2/GD2 synthase gene knockout mice lack all complex gangliosides, which are abundantly expressed in the nervous systems of vertebrates. In turn, they have increased precursor structures GM3 and GD3, probably replacing the roles of the depleted complex gangliosides. In this study, we found that 9-O-acetyl GD3 is also highly expressed as one of the major glycosphingolipids accumulating in the nervous tissues of the mutant mice. The identity of the novel component was confirmed by neuraminidase treatment, thin layer chromatography-immunostaining, two-dimensional thin layer chromatography with base treatment, and mass spectrometry. All candidate factors reported to be possible inducer of 9-O- acetylation, such as bitamine D binding protein, acetyl CoA transporter, or O-acetyl ganglioside synthase were not up-regulated. Tis21 which had been reported to be a 9-O-acetylation inducer was partially down-regulated in the null mutants, suggesting that Tis21 is not involved in the induction of 9-O-acetyl-GD3 and that accumulated high amount of GD3 might be the main factor for the dramatic increase of 9-O-acetyl GD3. The ability to acetylate exogenously added GD3 in the normal mouse astrocytes was examined, showing that the wild-type brain might be able to synthesize very low levels of 9-O-acetyl GD3. Increased 9-O-acetyl GD3, in addition to GM3 and GD3, may play an important role in the compensation for deleted complex gangliosides in the mutant mice.
Collapse
Affiliation(s)
- Keiko Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Biomedical Science, College of Life and Health Science, Chubu University, KasugaiAichi, Japan
| | - Wei Aixinjueluo
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Takeshi Kasama
- Instrumental Analysis Research Center for Life Science, Tokyo Medical and Dental UniversityTokyo, Japan
| | - Yuki Ohkawa
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Michiko Yoshihara
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Yusuke Ohmi
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Orie Tajima
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Biomedical Science, College of Life and Health Science, Chubu University, KasugaiAichi, Japan
| | - Akio Suzumura
- Department of Immune System, Institute for Environmental MedicineNagoya, Japan
| | - Daiji Kittaka
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| |
Collapse
|
10
|
Pilkington GJ, Parker K, Murray SA. Approaches to mitochondrially mediated cancer therapy. Semin Cancer Biol 2007; 18:226-35. [PMID: 18203619 DOI: 10.1016/j.semcancer.2007.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 12/05/2007] [Indexed: 01/08/2023]
Abstract
For some malignant cancers even combined surgical, radiotherapeutic and chemotherapeutic approaches are not curative, indeed, in certain tumour types even a modest survival benefit is difficult to achieve. There are various biological reasons which underlie this profound resistance but the propensity of cancer cells to repair breaks caused by DNA-damaging radiation and cytotoxic drugs is of major significance in this context. Such highly resistant tumours include the malignant gliomas which are intrinsic to and directly affect the brain and spinal cord. In evaluating approaches which do not elicit tumour cell death directly by DNA damage, it is intriguing to consider mitochondrially mediated apoptosis as a potentially effective alternative. Since the mitochondrial membrane potentials in cancer cells are frequently reduced in comparison with those of non-neoplastic cells this allows a window of opportunity for small molecule agents to enter the tumour cell mitochondria and reduce oxygen consumption with subsequent release of cytochrome c and activation of a caspase pathway to apoptosis which is cancer cell specific. In the quest for agents which can selectively destroy neoplastic cells in this manner, whilst leaving normal adjacent cells intact, various tricyclic drugs have come under scrutiny. In a range of laboratory assays we, and others, have established that certain cancers and, in particular, malignant glioma, are intrinsically sensitive to this approach. We have also established the cellular, molecular and biochemical mechanisms underlying this process. While such archival tricyclics as the antidepressants, clomipramine and amitriptyline, have been used in these experiments their commercial development in cancer therapy has not been forthcoming and their clinical use in glioma has been confined to anecdotal cases. In addition, the dose-dependant role of agents such as anticonvulsants and steroids commonly used in glioma patients in modulating efficacy of the tricyclics is a matter for continued investigation. Other ways of targeting the mitochondrion for cancer therapy include exploitation of the 18kDa translocator protein (peripheral-type benzodiazepine receptor) within the mitochondrial permeability transition pore and enzymatic or molecular modification of a species of ganglioside (GD3/GD3(A)) expressed on the surface of neoplastic cells which are determinants of mitochondrially mediated apoptosis. It is hoped that such approaches may lead to clinical programmes which will improve the prognosis for patients suffering from highly resistant neoplasms.
Collapse
Affiliation(s)
- Geoffrey J Pilkington
- Cellular and Molecular Neuro-oncology Research Group, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK.
| | | | | |
Collapse
|
11
|
Chen HY, Challa AK, Varki A. 9-O-acetylation of exogenously added ganglioside GD3. The GD3 molecule induces its own O-acetylation machinery. J Biol Chem 2006; 281:7825-33. [PMID: 16434401 DOI: 10.1074/jbc.m512379200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sialic acids are sometimes 9-O-acetylated in a developmentally regulated and cell-type-specific manner. Cells naturally expressing the disialoganglioside GD3 often O-acetylate the terminal sialic acid residue, giving 9-O-acetyl-GD3 (9AcGD3), a marker of neural differentiation and malignant transformation. We also reported that Chinese hamster ovary cells transfected with GD3 synthase can spontaneously O-acetylate some of the newly synthesized GD3. It is unclear whether such phenomena result from induction of the 9-O-acetylation machinery and whether induction is caused by the GD3 synthase protein or by the GD3 molecule itself. We now show that exogenously added GD3 rapidly incorporates into the plasma membrane of Chinese hamster ovary cells, and 9AcGD3 is detected after approximately 6 h. The incorporated GD3 and newly synthesized 9AcGD3 have a half-life of approximately 24 h. This phenomenon is also seen in other cell types, such as human diploid fibroblasts. Inhibitors of gene transcription, protein translation, or endoplasmic reticulum-to-Golgi transport each prevent induction of 9-O-acetylation, without affecting GD3 incorporation. Inhibition of the initial clathrin-independent internalization of incorporated GD3 also blocks induction of 9-O-acetylation. Thus, new synthesis of one or more components of the 9-O-acetylation machinery is induced by incorporation and internalization of GD3. Prepriming with structurally related gangliosides fails to accelerate the onset of 9-O-acetylation of subsequently added GD3, indicating a requirement for specific recognition of GD3. To our knowledge, this is the first example wherein a newly expressed or exogenously introduced ganglioside induces de novo synthesis of an enzymatic machinery to modify itself, and the first evidence for a mechanism of induction of sialic acid O-acetylation.
Collapse
Affiliation(s)
- Helen Y Chen
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego, La Jolla, California 92093-0687, USA
| | | | | |
Collapse
|
12
|
Castiglione M, Spinsanti P, Iacovelli L, Lenti L, Martini F, Gradini R, Di Giorgi Gerevini V, Caricasole A, Caruso A, De Maria R, Nicoletti F, Melchiorri D. Activation of Fas receptor is required for the increased formation of the disialoganglioside GD3 in cultured cerebellar granule cells committed to apoptotic death. Neuroscience 2004; 126:889-98. [PMID: 15207324 DOI: 10.1016/j.neuroscience.2004.04.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Apoptosis was induced in cultured cerebellar granule cells by lowering extracellular K+ concentrations (usually from 25 to 10 mM). The apoptotic phenotype was preceded by an early and transient increase in the intracellular levels of the disialoganglioside, GD3, which behaves as a putative pro-apoptotic factor. We examined whether activation of Fas receptor mediates the increase in GD3 formation in granule cells committed to die. Degenerating granule cells showed increased expression of both Fas receptor and its ligand (Fas-L), at times that coincided with the increase in GD3 levels and the induction of GD3 synthase mRNA. Addition of neutralizing anti-Fas-L antibodies reduced the extent of 'low-K+'-induced apoptosis and abolished the increase in GD3 levels and GD3 synthase mRNA. Similar reductions were observed in cultures prepared from gld or lpr mice, which harbor loss-of-function mutations of Fas-L and Fas receptor, respectively. In addition, exogenous application of soluble Fas-L further enhanced both the increase in GD3 formation and cell death in cultured granule cells switched from 25 into 10 mM K+. We conclude that activation of Fas receptor is entirely responsible for the increase in GD3 levels and contributes to the development of apoptosis by trophic deprivation in cultured cerebellar granule cells.
Collapse
Affiliation(s)
- M Castiglione
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shen Y, Tiralongo J, Kohla G, Schauer R. Regulation of sialic acid O-acetylation in human colon mucosa. Biol Chem 2004; 385:145-52. [PMID: 15101557 DOI: 10.1515/bc.2004.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.
Collapse
Affiliation(s)
- Yanqin Shen
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | | | | |
Collapse
|
14
|
Shen Y, Kohla G, Lrhorfi AL, Sipos B, Kalthoff H, Gerwig GJ, Kamerling JP, Schauer R, Tiralongo J. O-acetylation and de-O-acetylation of sialic acids in human colorectal carcinoma. ACTA ACUST UNITED AC 2004; 271:281-90. [PMID: 14717696 DOI: 10.1046/j.1432-1033.2003.03927.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A decrease in the level of O-acetylated sialic acids observed in colorectal carcinoma may lead to an increase in the expression of sialyl Lewis(X), a tumor-associated antigen, which is related to progression of colorectal cancer to metastasis. The underlying mechanism for this reduction is, however, not fully understood. Two enzymes are thought to be primarily responsible for the turnover of O-acetyl ester groups on sialic acids; sialate-O-acetyltransferase (OAT) and sialate-O-acetylesterase (OAE). We have previously reported the characterization of OAT activity from normal colon mucosa, which efficiently O-acetylates CMP-Neu5Ac exclusively in the Golgi apparatus prior to the action of sialyltransferase. In this report we describe the identification of a lysosomal and a cytosolic OAE activity in human colonic mucosa that specifically hydrolyses 9-O-acetyl groups on sialic acid. Utilizing matched resection margin and cancer tissue from colorectal carcinoma patients we provide strong evidence suggesting that the level of O-acetylated sialic acids present in normal and diseased human colon may be dependent on the relative activities of OAT to lysosomal OAE. Furthermore, we show that the level of free cytosolic Neu5,9Ac2 in human colon is regulated by the relative activity of the cytosolic OAE.
Collapse
Affiliation(s)
- Yanqin Shen
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|