1
|
Wang SH, Yeh CH, Wu CW, Hsu CY, Tsai EM, Hung CM, Wang YW, Hsieh TH. PFDN4 as a Prognostic Marker Was Associated with Chemotherapy Resistance through CREBP1/AURKA Pathway in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:3906. [PMID: 38612711 PMCID: PMC11012048 DOI: 10.3390/ijms25073906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer is the most common malignancy and its incidence is increasing. It is currently mainly treated by clinical chemotherapy, but chemoresistance remains poorly understood. Prefolded proteins 4 (PFDN4) are molecular chaperone complexes that bind to newly synthesized polypeptides and allow them to fold correctly to stabilize protein formation. This study aimed to investigate the role of PFDN4 in chemotherapy resistance in breast cancer. Our study found that PFDN4 was highly expressed in breast cancer compared to normal tissues and was statistically significantly associated with stage, nodal status, subclasses (luminal, HER2 positive and triple negative), triple-negative subtype and disease-specific survival by TCGA database analysis. CRISPR knockout of PFDN4 inhibited the growth of 89% of breast cancer cell lines, and the triple-negative cell line exhibited a stronger inhibitory effect than the non-triple-negative cell line. High PFDN4 expression was associated with poor overall survival in chemotherapy and resistance to doxorubicin and paclitaxel through the CREBP1/AURKA pathway in the triple-negative MDAMB231 cell line. This study provides insightful evidence for the value of PFDN4 in poor prognosis and chemotherapy resistance in breast cancer patients.
Collapse
Affiliation(s)
- Shih-Ho Wang
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Cheng-Hsi Yeh
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (Y.-W.W.)
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.)
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.)
| | - Chao-Ming Hung
- Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yi-Wen Wang
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (Y.-W.W.)
| | - Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (Y.-W.W.)
| |
Collapse
|
2
|
Amarah A, Elsabagh AA, Ouda A, Karen O, Ferih K, Elmakaty I, Malki MI. Emerging roles of activating transcription factor 2 in the development of breast cancer: a comprehensive review. PRECISION CLINICAL MEDICINE 2023; 6:pbad028. [PMID: 37955015 PMCID: PMC10639104 DOI: 10.1093/pcmedi/pbad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA binding proteins that are responsible for regulating various genes that play an essential role in major biological and cellular functions. Since ATF2 plays a vital role in cellular proliferation and apoptosis, it is believed that it greatly affects the development of breast cancers. However, its exact role in breast cancer is incompletely understood. It remains a subject of debate, ambiguity, and continuous research. Several studies have suggested the role of ATF2 as an oncogene, promoting cellular proliferation and worsening the outcome of cancers. In contrast, other studies have postulated that ATF2 plays a tumor suppressive role in estrogen receptor-positive breast cancer. The ambiguity surrounding its role in breast cancer is the reason why there is an influx of recent studies and research in this area. In this narrative review, we investigate several studies that have been published about the role of ATF2 in breast cancer. We also explore studies that have examined the association between ATF2 and endocrine therapy resistance. ATF2 has been suggested to modulate estrogen receptor (ER) expression and activity, potentially affecting tamoxifen sensitivity in breast cancer cells. Therefore, the role of ATF2 in DNA repair mechanisms and drug resistance has been deeply explored in this review. Additionally, there are numerous ongoing clinical trials exploring the effect of targeting ATF2 pathways and mechanisms on the outcome of breast cancers, some of which we have discussed. The studies and clinical trials that are being conducted to understand the multifaceted role of ATF2 and its signaling pathways may provide valuable insight for developing efficient targeted therapeutic solutions to enhance the outcomes of breast cancer and overcome endocrine resistance. We suggest further research to elucidate the dual roles of ATF2 in breast cancer and potential therapeutic therapies for its treatment.
Collapse
Affiliation(s)
- Ahmed Amarah
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ahmed Adel Elsabagh
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Amr Ouda
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Omar Karen
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Khaled Ferih
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ibrahim Elmakaty
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
3
|
Tolue Ghasaban F, Maharati A, Zangouei AS, Zangooie A, Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in head and neck cancers. Cancer Cell Int 2023; 23:170. [PMID: 37587481 PMCID: PMC10428558 DOI: 10.1186/s12935-023-03010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Although, there is a high rate of good prognosis in early stage head and neck tumors, about half of these tumors are detected in advanced stages with poor prognosis. A combination of chemotherapy, radiotherapy, and surgery is the treatment option in head and neck cancer (HNC) patients. Although, cisplatin (CDDP) as the first-line drug has a significant role in the treatment of HNC patients, CDDP resistance can be observed in a large number of these patients. Therefore, identification of the molecular mechanisms involved in CDDP resistance can help to reduce the side effects and also provides a better therapeutic management. MicroRNAs (miRNAs) as the post-transcriptional regulators play an important role in drug resistance. Therefore, in the present review we investigated the role of miRNAs in CDDP response of head and neck tumors. It has been reported that the miRNAs exerted their roles in CDDP response by regulation of signaling pathways such as WNT, NOTCH, PI3K/AKT, TGF-β, and NF-kB as well as apoptosis, autophagy, and EMT process. The present review paves the way to suggest a non-invasive miRNA based panel marker for the prediction of CDDP response among HNC patients. Therefore, such diagnostic miRNA based panel marker reduces the CDDP side effects and improves the clinical outcomes of these patients following an efficient therapeutic management.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student research committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Yang H, Huebner K, Hampel C, Erlenbach-Wuensch K, Selvamani SB, Shukla V, Geppert CI, Hartmann A, Mahadevan V, Schneider-Stock R. ATF2 loss promotes 5-FU resistance in colon cancer cells via activation of the ATR-Chk1 damage response pathway. BMC Cancer 2023; 23:480. [PMID: 37237279 DOI: 10.1186/s12885-023-10940-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The role of ATF2 in colon cancer (CC) is controversial. Recently, we reported that low ATF2 expression is characteristic of highly invasive tumors, suggesting that ATF2 might also be involved in therapy resistance. 5-Fluorouracil (5-FU) is the best-known chemotherapeutic drug for CC, but drug resistance affects its curative effect. To date, the role of ATF2 in the 5-FU response remains elusive. METHODS/RESULTS For our study, we had available HCT116 cells (wild-type p53) and HT29 colon tumor cells (mutant p53) and their corresponding CRISPR‒Cas9-generated ATF2-KO clones. We observed that loss of ATF2 triggered dose- and time-dependent 5-FU resistance in HCT116 cells by activating the DNA damage response (DDR) pathway with high p-ATRThr1989 and p-Chk1Ser317 levels accompanied by an increase in the DNA damage marker γ-H2AX in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. Chk1 inhibitor studies causally displayed the link between DDR and drug resistance. There were contradictory findings in HT29 ATF2-KO cells upon 5-FU exposure with low p-Chk1Ser317 levels, strong apoptosis induction, but no effects on DNA damage. In ATF2-silenced HCT116 p53-/- cells, 5-FU did not activate the DDR pathway. Co-immunoprecipitation and proximity ligation assays revealed that upon 5-FU treatment, ATF2 binds to ATR to prevent Chk1 phosphorylation. Indeed, in silico modelling showed reduced ATR-Chk1 binding when ATF2 was docked into the complex. CONCLUSIONS We demonstrated a novel ATF2 scaffold function involved in the DDR pathway. ATF2-negative cells are highly resistant due to effective ATR/Chk1 DNA damage repair. Mutant p53 seems to overwrite the tumor suppressor function of ATF2.
Collapse
Affiliation(s)
- Hao Yang
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Kerstin Huebner
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Chuanpit Hampel
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Selva Babu Selvamani
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, 560100, India
| | - Vikas Shukla
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, 560100, India
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
- Comprehensive Cancer Center Erlangen‑EMN (CCC ER‑EMN), Östliche Stadtmauerstr. 30, Erlangen, 91054, Germany
| | | | - Regine Schneider-Stock
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany.
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany.
- Comprehensive Cancer Center Erlangen‑EMN (CCC ER‑EMN), Östliche Stadtmauerstr. 30, Erlangen, 91054, Germany.
| |
Collapse
|
5
|
El-Mahdy HA, Mohamadin AM, Abulsoud AI, Khidr EG, El-Husseiny AA, Ismail A, Elsakka EGE, Mokhlis HA, El-Husseiny HM, Doghish AS. miRNAs as potential game-changers in head and neck cancer: Future clinical and medicinal uses. Pathol Res Pract 2023; 245:154457. [PMID: 37058745 DOI: 10.1016/j.prp.2023.154457] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Head and neck cancers (HNCs) are a group of heterogeneous tumors formed most frequently from epithelial cells of the larynx, lips, oropharynx, nasopharynx, and mouth. Numerous epigenetic components, including miRNAs, have been demonstrated to have an impact on HNCs characteristics like progression, angiogenesis, initiation, and resistance to therapeutic interventions. The miRNAs may control the production of numerous genes linked to HNCs pathogenesis. The roles that miRNAs play in angiogenesis, invasion, metastasis, cell cycle, proliferation, and apoptosis are responsible for this impact. The miRNAs also have an impact on crucial HNCs-related mechanistic networks like the WNT/β-catenin signaling, PTEN/Akt/mTOR pathway, TGFβ, and KRAS mutations. miRNAs may affect how the HNCs respond to treatments like radiation and chemotherapy in addition to pathophysiology. This review aims to demonstrate the relationship between miRNAs and HNCs with a particular emphasis on how miRNAs impact HNCs signaling networks.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed M Mohamadin
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hamada Ahmed Mokhlis
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Al Qalyubia 13736, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
6
|
Xing J, Chen W, Chen K, Zhu S, Lin F, Qi Y, Zhang Y, Han S, Rao T, Ruan Y, Zhao S, Yu W, Cheng F. TFAP2C Knockdown Sensitizes Bladder Cancer Cells to Cisplatin Treatment via Regulation of EGFR and NF-κB. Cancers (Basel) 2022; 14:cancers14194809. [PMID: 36230734 PMCID: PMC9562889 DOI: 10.3390/cancers14194809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Bladder cancer (BCa) is considered one of the most common neoplasms of the urology system. Cisplatin-based chemotherapy has been the primary treatment for patients with advanced or metastatic BCa. Nevertheless, cisplatin resistance often limits the treatment of bladder cancer. We expect to find approaches to improve the therapeutic efficacy of cisplatin in bladder cancer. In recent years, many studies have shown that transcription factor AP-2 gamma (TFAP2C) acts as a key player in cancer development and and its expression level is closely related to the sensitivity of tumors to cisplatin. Our study investigated whether TFAP2C affects the sensitivity of BCa cells to cisplatin and the possible mechanisms. We found that TFAP2C expression was significantly upregulated in most BCa tissues compared to adjacent normal tissues. The present study confirmed that TFAP2C knockdown enhanced the anti-tumor effects of cisplatin by decreasing cisplatin-induced activation levels of epidermal growth factor receptor (EGFR) and nuclear factor kappaB (NF-κB). Specifically, this study provides a novel approach to improve the efficacy of cisplatin. Abstract Cisplatin is the first-line chemotherapy for advanced or metastatic bladder cancer. Nevertheless, approximately half of patients with BCa are insensitive to cisplatin therapy or develop cisplatin resistance during the treatment process. Therefore, it is especially crucial to investigate ways to enhance the sensitivity of tumor cells to cisplatin. Transcription factor AP-2 gamma (TFAP2C) is involved in cancer development and chemotherapy sensitivity. However, its relationship with chemotherapy has not been studied in BCa. In this study, we aimed to investigate the therapeutic potential of TFAP2C in human BCa. Results based on TCGA (The Cancer Genome Atlas), GTEx (The Genotype-Tissue Expression) and GEO (Gene Expression Omnibus) data showed that TFAP2C expression was upregulated in BCa tissues and that its high expression was associated with poor prognosis. Meanwhile, we demonstrated the overexpression of TFAP2C in BCa clinical specimens. Subsequently, in vitro, we knocked down TFAP2C in BCa cells and found that TFAP2C knockdown further increased cell cycle arrest and apoptosis caused by cisplatin. In addition, the inhibitory effect of cisplatin on BCa cell migration and invasion was enhanced by TFAP2C knockdown. Our data indicated that cisplatin increased epidermal growth factor receptor (EGFR) and nuclear factor-kappaB (NF-κB) activation levels, but TFAP2C knockdown suppressed this effect. Finally, in vivo data further validated these findings. Our study showed that TFAP2C knockdown affected the activation levels of EGFR and NF-κB and enhanced the anti-tumor effects of cisplatin in vivo and in vitro. This provides a new direction to improve the efficacy of traditional cisplatin chemotherapy.
Collapse
Affiliation(s)
- Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kang Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shaoming Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yucheng Qi
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunlong Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shangting Han
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (W.Y.); (F.C.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (W.Y.); (F.C.)
| |
Collapse
|
7
|
Zheng Y, Lei L, Liang S, Ai J, Deng X, Li YQ, Zhang TP, Pu SB, Ren YS. Protective Effect of Fresh/Dry Dandelion Extracts on APAP-Overdose-Induced Acute Liver Injury. Chin J Integr Med 2022; 28:683-692. [PMID: 34816363 DOI: 10.1007/s11655-021-3295-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 10/19/2022]
Abstract
OBJECITVIE To compare the liver protective activity of fresh/dried dandelion extracts against acetaminophen (APAP)-induced hepatotoxicity. METHODS Totally 90 Kunming mice were randomly divided into 10 groups according to body weight (9 mice for each group). The mice in the normal control and model (vehicle control) groups were administered sodium carboxymethyl cellulose (CMC-Na, 0.5%) only. Administration groups were pretreated with high and low-dose dry dandelion extract (1,000 or 500 g fresh herb dried and then decocted into 120 mL solution, DDE-H and DDE-L); low-, medium- and high-dose dandelion juice (250, 500, 1,000 g/120 mL, DJ-L, DJ-M, and DJ-H); fresh dandelions evaporation juice water (120 mL, DEJW); dry dandelion extract dissolved by pure water (1 kg/120 mL, DDED-PW); dry dandelion extract dissolved by DEJW (120 g/120 mL, DDED-DEJW) by oral gavage for 7 days at the dosage of 0.5 mL solution/10 g body weight; after that, except normal control group, all other groups were intraperitonealy injected with 350 mg/kg APAP to induce liver injury. Twenty hours after APAP administration, serum and liver tissue were collected and serum alanine aminotransferase (AST), aspartate transaminase (ALT), alkaline phosphatase (AKP), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) activities were quantified by biochemical kits; tumor necrosis factor (TNF-α), interleukin (IL)-2, and IL-1 β contents in liver tissue were determined by enzyme linked immunosorbent assay kits. Histopathological changes in liver tissues were observed by hematoxylin and eosin staining; TUNEL Assay and Hoechst 33258 staining were applied for cell apoptosis evaluation. The expressions of heme oxygenase-1 (HO-1), nuclear factor erythroid-2-related factor 2 (Nrf-2), caspase-9, B-cell leukemia/lymphoma 2 (Bcl-2), Bax and p-JNK were determined by Western blot analysis. RESULTS Pretreatment with fresh dandelion juice (FDJ, including DJ-L, DJ-M, DJ-H, DEJW and DDED-DEJW) significantly decreased the levels of serum ALT, AST, AKP, TNF-α and IL-1β compared with vehicle control group (P<0.05 or P<0.01). Additionally, compared with the vehicle control group, FDJ decreased the levels of hepatic MDA and restored GSH levels and SOD activity in livers (P<0.05 or P<0.01). FDJ inhibited the overexpression of pro-inflammatory factors including cyclooxygenase-2 and inducible nitric oxide synthase in the liver tissues (P<0.05 or P<0.01). Furthermore, Western blot analysis revealed that FDJ pretreatment inhibited activation of apoptotic signaling pathways via decreasing of Bax, and caspase-9 and JNK protein expression, and inhibited activation of JNK pathway (P<0.05 or P<0.01). Liver histopathological observation provided further evidence that FDJ pretreatment significantly inhibited APAP-induced hepatocyte necrosis, inflammatory cell infiltration and congestion. CONCLUSIONS FDJ pretreatment protects against APAP-induced hepatic injury by activating the Nrf-2/HO-1 pathway and inhibition of the intrinsic apoptosis pathway, and the effect of fresh dandelion extracts was superior to dried dandelion extracts in APAP hepatotoxicity model mice.
Collapse
Affiliation(s)
- Yao Zheng
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Lei Lei
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shuai Liang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jiao Ai
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xin Deng
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yan-Qiu Li
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Tian-Pei Zhang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shi-Biao Pu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yong-Shen Ren
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
8
|
Park D, Kim DY, Byun MR, Hwang H, Ko SH, Baek JH, Baek K. Undercarboxylated, but not Carboxylated, Osteocalcin suppresses TNF-α induced inflammatory signaling pathway in Myoblast. J Endocr Soc 2022; 6:bvac084. [PMID: 35702666 PMCID: PMC9188654 DOI: 10.1210/jendso/bvac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
Undercarboxylated osteocalcin (ucOCN) has been considered to be an important endocrine factor, especially to regulate bone and energy metabolism. Even with the mounting evidence showing the consistent inverse correlation of ucOCN levels in chronic inflammatory diseases, however, the mechanism underlying the involvement of ucOCN in the muscular inflammation has not been fully understood. In the present study, we explored 1) the endocrine role of ucOCN in the regulation of inflammation in C2C12 myoblasts and primary myoblasts and the underlying intracellular signaling mechanisms, and 2) whether G protein–coupled receptor family C group 6 member A (GPRC6A) is the ucOCN-sensing receptor associated with the ucOCN-mediated anti-inflammatory signaling pathway in myoblasts. ucOCN suppressed the tumor necrosis factor-α (TNF-α)–induced expressions of major inflammatory cytokines, including interleukin-1β (IL-1β) and inhibited the TNF-α–stimulated activities of transcription factors, including NF-κB, in C2C12 and primary myoblasts. Both knockdown and knockout of GPRC6A, by using siRNA or a CRISPR/CAS9 system, respectively, did not reverse the effect of ucOCN on IL-1β expression in myoblasts. Interestingly, TNF-α–induced IL-1β expression was inhibited by knockdown or deletion of GPRC6A itself, regardless of the ucOCN treatment. ucOCN was rapidly internalized into the cytoplasmic region via caveolae-mediated endocytosis, suggesting the presence of new target proteins in the cell membrane and/or in the cytoplasm for interaction with ucOCN in myoblasts. Taken together, these findings indicate that ucOCN suppresses the TNF-α–induced inflammatory signaling pathway in myoblasts. GPRC6A is not a sensing receptor associated with the ucOCN-mediated anti-inflammatory signaling pathway in myoblasts.
Collapse
Affiliation(s)
- Danbi Park
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University , Daegu 41940, Republic of Korea
| | - Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Hyorin Hwang
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| | - Seong Hee Ko
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University , Seoul 08826, Republic of Korea
| | - Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| |
Collapse
|
9
|
Zhou W, Xu Y, Zhang J, Zhang P, Yao Z, Yan Z, Wang H, Chu J, Yao S, Zhao S, Yang S, Guo Y, Miao J, Liu K, Chan WC, Xia Q, Liu Y. MiRNA-363-3p/DUSP10/JNK axis mediates chemoresistance by enhancing DNA damage repair in diffuse large B-cell lymphoma. Leukemia 2022; 36:1861-1869. [PMID: 35488020 PMCID: PMC9252898 DOI: 10.1038/s41375-022-01565-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
Anthracycline-based chemotherapy resistance represents a major challenge in diffuse large B-cell lymphoma (DLBCL). MiRNA and gene expression profiles (n = 47) were determined to uncover potential chemoresistance mechanisms and therapeutic approaches. An independent correlation between high expression of miRNA-363-3p and chemoresistance was observed and validated in a larger cohort (n = 106). MiRNA-363-3p was shown to reduce doxorubicin-induced apoptosis and tumor shrinkage in in vitro and in vivo experiments by ectopic expression and CRISPR/Cas9-mediated knockout in DLBCL cell lines. DNA methylation was found to participate in transcriptional regulation of miRNA-363-3p. Further investigation revealed that dual specificity phosphatase 10 (DUSP10) is a target of miRNA-363-3p and its suppression promotes the phosphorylation of c-Jun N-terminal kinase (JNK). The miRNA-363-3p/DUSP10/JNK axis was predominantly associated with negative regulation of homologous recombination (HR) and DNA repair pathways. Ectopic expression of miRNA-363-3p more effectively repaired doxorubicin-induced double-strand break (DSB) while enhancing non-homologous end joining repair and reducing HR repair. Targeting JNK and poly (ADP-ribose) polymerase 1 significantly inhibited doxorubicin-induced DSB repair, increased doxorubicin-induced cell apoptosis and tumor shrinkage, and improved the survival of tumor-bearing mice. In conclusion, the miRNA-363-3p/DUSP10/JNK axis is a novel chemoresistance mechanism in DLBCL that may be reversed by targeted therapy.
Collapse
Affiliation(s)
- Wenping Zhou
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Lymphoma Research, Henan Cancer Institute, Zhengzhou, Henan, China
| | - Yuanlin Xu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jiuyang Zhang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Peipei Zhang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Lymphoma Research, Henan Cancer Institute, Zhengzhou, Henan, China
| | - Zhihua Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zheng Yan
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Haiying Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Junfeng Chu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuna Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuang Zhao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shujun Yang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yongjun Guo
- Department of Molecule and Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Qingxin Xia
- Department of Molecule and Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Yanyan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China. .,Department of Lymphoma Research, Henan Cancer Institute, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Valdez BC, Yuan B, Murray D, Nieto Y, Popat U, Andersson BS. Enhanced cytotoxicity of bisantrene when combined with venetoclax, panobinostat, decitabine and olaparib in acute myeloid leukemia cells. Leuk Lymphoma 2022; 63:1634-1644. [DOI: 10.1080/10428194.2022.2042689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yuan
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Murray
- Department of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Yago Nieto
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Uday Popat
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Borje S. Andersson
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Majtnerova P, Capek J, Petira F, Handl J, Rousar T. Quantitative spectrofluorometric assay detecting nuclear condensation and fragmentation in intact cells. Sci Rep 2021; 11:11921. [PMID: 34099803 PMCID: PMC8184882 DOI: 10.1038/s41598-021-91380-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
At present, nuclear condensation and fragmentation have been estimated also using Hoechst probes in fluorescence microscopy and flow cytometry. However, none of the methods used the Hoechst probes for quantitative spectrofluorometric assessment. Therefore, the aim of the present study was to develop a spectrofluorometric assay for detection of nuclear condensation and fragmentation in the intact cells. We used human hepatoma HepG2 and renal HK-2 cells cultured in 96-well plates treated with potent apoptotic inducers (i.e. cisplatin, staurosporine, camptothecin) for 6-48 h. Afterwards, the cells were incubated with Hoechst 33258 (2 µg/mL) and the increase of fluorescence after binding of the dye to DNA was measured. The developed spectrofluorometric assay was capable to detect nuclear changes caused by all tested apoptotic inducers. Then, we compared the outcomes of the spectrofluorometric assay with other methods detecting cell impairment and apoptosis (i.e. WST-1 and glutathione tests, TUNEL, DNA ladder, caspase activity, PARP-1 and JNKs expressions). We found that our developed spectrofluorometric assay provided results of the same sensitivity as the TUNEL assay but with the advantages of being fast processing, low-cost and a high throughput. Because nuclear condensation and fragmentation can be typical markers of cell death, especially in apoptosis, we suppose that the spectrofluorometric assay could become a routinely used method for characterizing cell death processes.
Collapse
Affiliation(s)
- Pavlina Majtnerova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Filip Petira
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
12
|
Schröder M, Tan L, Wang J, Liang Y, Gray NS, Knapp S, Chaikuad A. Catalytic Domain Plasticity of MKK7 Reveals Structural Mechanisms of Allosteric Activation and Diverse Targeting Opportunities. Cell Chem Biol 2020; 27:1285-1295.e4. [DOI: 10.1016/j.chembiol.2020.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/08/2020] [Accepted: 07/21/2020] [Indexed: 01/19/2023]
|
13
|
Dandelion polyphenols protect against acetaminophen-induced hepatotoxicity in mice via activation of the Nrf-2/HO-1 pathway and inhibition of the JNK signaling pathway. Chin J Nat Med 2020; 18:103-113. [PMID: 32172946 DOI: 10.1016/s1875-5364(20)30011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/11/2022]
Abstract
We investigated the liver protective activity of dandelion polyphenols (DP) against acetaminophen (APAP; Paracetamol)-induced hepatotoxicity. Mice were acclimated for 1 week and randomly divided into the following groups (n = 9 per group): Control, APAP, APAP + DP (100 mg·kg-1), APAP + DP (200 mg·kg-1), and APAP + DP (400 mg·kg-1) groups. Mice were pretreated with DP (100, 200, and 400 mg·kg-1) by oral gavage for 7 d before being treated with 350 mg·kg-1 APAP for 24 h to induced hepatotoxicity. Severe liver injury was observed, and hepatotoxicity was analyzed after 24 h by evaluation of biochemical markers, protein expressions levels, and liver histopathology. Pretreatment with DP was able to restore serum liver characteristics (aspartate transaminase, AST; alanine aminotransferase, ALT; alkaline phosphatase, AKP), improve redox imbalance (superoxide dismutase, SOD; glutathione, GSH; malondialdehyde, MDA), and decrease inflammatory factors (tumor necrosis factor-α, TNF-α; interleukin-1β, IL-1β). Pretreatment with DP also significantly inhibited the expression levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, DP pretreatment could inhibit the apoptosis of liver cells caused by APAP through up-regulation of Bcl-2 and down-regulation of Bax and caspase-9 protein. DP also down-regulated p-JNK protein expression levels to inhibit APAP-induced mitochondrial oxidative stress and up-regulated the expression of Nrf-2 and its target gene HO-1. The histopathological staining demonstrated that DP pretreatment could inhibit APAP-induced hepatocyte infiltration, congestion, and necrosis. Our results demonstrate that DP pretreatment could protect against APAP-induced hepatic injury by activating the Nrf-2/HO-1 pathway and inhibition of the intrinsic apoptosis pathway.
Collapse
|
14
|
Lipner MB, Peng XL, Jin C, Xu Y, Gao Y, East MP, Rashid NU, Moffitt RA, Herrera Loeza SG, Morrison AB, Golitz BT, Vaziri C, Graves LM, Johnson GL, Yeh JJ. Irreversible JNK1-JUN inhibition by JNK-IN-8 sensitizes pancreatic cancer to 5-FU/FOLFOX chemotherapy. JCI Insight 2020; 5:129905. [PMID: 32213714 DOI: 10.1172/jci.insight.129905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Over 55,000 people in the United States are diagnosed with pancreatic ductal adenocarcinoma (PDAC) yearly, and fewer than 20% of these patients survive a year beyond diagnosis. Chemotherapies are considered or used in nearly every PDAC case, but there is limited understanding of the complex signaling responses underlying resistance to these common treatments. Here, we take an unbiased approach to study protein kinase network changes following chemotherapies in patient-derived xenograft (PDX) models of PDAC to facilitate design of rational drug combinations. Proteomics profiling following chemotherapy regimens reveals that activation of JNK-JUN signaling occurs after 5-fluorouracil plus leucovorin (5-FU + LEU) and FOLFOX (5-FU + LEU plus oxaliplatin [OX]), but not after OX alone or gemcitabine. Cell and tumor growth assays with the irreversible inhibitor JNK-IN-8 and genetic manipulations demonstrate that JNK and JUN each contribute to chemoresistance and cancer cell survival after FOLFOX. Active JNK1 and JUN are specifically implicated in these effects, and synergy with JNK-IN-8 is linked to FOLFOX-mediated JUN activation, cell cycle dysregulation, and DNA damage response. This study highlights the potential for JNK-IN-8 as a biological tool and potential combination therapy with FOLFOX in PDAC and reinforces the need to tailor treatment to functional characteristics of individual tumors.
Collapse
Affiliation(s)
- Matthew B Lipner
- Department of Pharmacology.,Lineberger Comprehensive Cancer Center
| | | | - Chong Jin
- Lineberger Comprehensive Cancer Center.,Department of Biostatistics
| | - Yi Xu
- Lineberger Comprehensive Cancer Center
| | - Yanzhe Gao
- Lineberger Comprehensive Cancer Center.,Department of Pathology, and
| | - Michael P East
- Department of Pharmacology.,Lineberger Comprehensive Cancer Center
| | - Naim U Rashid
- Lineberger Comprehensive Cancer Center.,Department of Biostatistics
| | | | | | | | | | - Cyrus Vaziri
- Lineberger Comprehensive Cancer Center.,Department of Pathology, and
| | - Lee M Graves
- Department of Pharmacology.,Lineberger Comprehensive Cancer Center
| | - Gary L Johnson
- Department of Pharmacology.,Lineberger Comprehensive Cancer Center
| | - Jen Jen Yeh
- Department of Pharmacology.,Lineberger Comprehensive Cancer Center.,Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K. JNK signaling in cancer cell survival. Med Res Rev 2019; 39:2082-2104. [PMID: 30912203 DOI: 10.1002/med.21574] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/01/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
c-Jun N-terminal kinase (JNK) is involved in cancer cell apoptosis; however, emerging evidence indicates that this Janus signaling promotes cancer cell survival. JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. JNK positively regulates autophagy to counteract apoptosis, and its effect on autophagy is related to the development of chemotherapeutic resistance. The prosurvival effect of JNK may involve an immune evasion mechanism mediated by transforming growth factor-β, toll-like receptors, interferon-γ, and autophagy, as well as compensatory JNK-dependent cell proliferation. The present review focuses on recent advances in understanding the prosurvival function of JNK and its role in tumor development and chemoresistance, including a comprehensive analysis of the molecular mechanisms underlying JNK-mediated cancer cell survival. There is a focus on the specific "Yin and Yang" functions of JNK1 and JNK2 in the regulation of cancer cell survival. We highlight recent advances in our knowledge of the roles of JNK in cancer cell survival, which may provide insight into the distinct functions of JNK in cancer and its potential for cancer therapy.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bishi Fu
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
cAMP-mediated regulation of melanocyte genomic instability: A melanoma-preventive strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:247-295. [PMID: 30798934 DOI: 10.1016/bs.apcsb.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant melanoma of the skin is the leading cause of death from skin cancer and ranks fifth in cancer incidence among all cancers in the United States. While melanoma mortality has remained steady for the past several decades, melanoma incidence has been increasing, particularly among fair-skinned individuals. According to the American Cancer Society, nearly 10,000 people in the United States will die from melanoma this year. Individuals with dark skin complexion are protected damage generated by UV-light due to the high content of UV-blocking melanin pigment in their epidermis as well as better capacity for melanocytes to cope with UV damage. There is now ample evidence that suggests that the melanocortin 1 receptor (MC1R) is a major melanoma risk factor. Inherited loss-of-function mutations in MC1R are common in melanoma-prone persons, correlating with a less melanized skin complexion and poorer recovery from mutagenic photodamage. We and others are interested in the MC1R signaling pathway in melanocytes, its mechanisms of enhancing genomic stability and pharmacologic opportunities to reduce melanoma risk based on those insights. In this chapter, we review melanoma risk factors, the MC1R signaling pathway, and the relationship between MC1R signaling and DNA repair.
Collapse
|
17
|
Wu X, Liu Z, Guo K, Ma G, Song S. Inactivation of ATF-2 enhances epithelial-mesenchymal transition and gemcitabine sensitivity in human pancreatic cancer cells. J Cell Biochem 2018; 120:4463-4471. [PMID: 30367508 DOI: 10.1002/jcb.27734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This work aimed to study the activating transcription factor 2 or AMP-dependent transcription factor-2 (ATF-2) inhibition mediated gemcitabine sensitivity in human pancreatic cancer cells. METHODS The protein and messenger RNA expressions of ATF-2 in 42 pancreatic cancer tissues and adjacent nontumorous tissues were detected. Kaplan-Meier survival analysis was performed based on the expression level of ATF-2 protein in tumor tissues. Then the pancreatic cancer cells were transduced with ATF-2-expressing lentivirus and small interfering RNAs (siRNAs) to investigate the effect of ATF-2 on pancreatic cancer cell invasion, epithelium to mesenchyme transition, apoptosis, and gemcitabine sensitivity. RESULTS The expression of phosphorylated (p)-ATF-2 protein was upregulated in pancreatic cancer tissues compared with adjacent nontumorous tissues. Patients with relative higher p-ATF-2 level showed significantly lower survival time. Then we found that the transfection ATF-2 siRNA into BxPC3 cells inhibited cell proliferation, invasion, and epithelium to mesenchyme transition, but enhanced cell apoptosis. These changes could be enhanced by the additional administration of gemcitabine. In addition, we confirmed that the overexpression of ATF-2 in Panc-1 cells promoted cell invasion and epithelium to mesenchyme transition. CONCLUSION We concluded that inhibition-promoted ATF-2 expression was responsible for epithelium to mesenchyme transition and invasion of pancreatic cancer cells, while the inhibition of ATF-2 confers to gemcitabine sensitivity in human pancreatic cancer cells in vitro.
Collapse
Affiliation(s)
- Xingda Wu
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Kejia Guo
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Gang Ma
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shaowei Song
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Kucharczyk M, Kurek A, Pomierny B, Detka J, Papp M, Tota K, Budziszewska B. The reduced level of growth factors in an animal model of depression is accompanied by regulated necrosis in the frontal cortex but not in the hippocampus. Psychoneuroendocrinology 2018; 94:121-133. [PMID: 29775875 DOI: 10.1016/j.psyneuen.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
In the present study, we asked if the different types of stress alter neuronal plasticity markers distinctively in the frontal cortex (FCx) and in the hippocampus (Hp). To do so, we implemented various stress regimens to analyze changes evoked in these rat brain structures. We utilized several molecular techniques, including western blot, ELISA, quantitative RT-PCR, and various biochemical assays, to examine a range of proteins and subjected rats to behavioral tests to evaluate potential maladaptive alterations. A decrease in the level of growth factors in the FCx was accompanied by changes suggesting damage of this structure in the manner of regulated necrosis, while the Hp appeared to be protected. The observed changes in the brain region-specific alterations in neurotrophin processing may also depend on the period of life, in which an animal experiences stress and the duration of the stressful stimuli. We conclude that chronic stress during pregnancy can result in serious alterations in the functioning of the FCx of the progeny, facilitating the development of depressive behavior later in life. We also suggest that the altered energy metabolism may redirect pro-NGF/p75NTR/ATF2 signaling in the cortical neurons towards cellular death resembling regulated necrosis, rather than apoptosis.
Collapse
Affiliation(s)
- Mateusz Kucharczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Anna Kurek
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Chair of Toxicology, Faculty of Pharmacy, Medical College, Jagiellonian University, Kraków, Poland
| | - Jan Detka
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Mariusz Papp
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Tota
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Bogusława Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
19
|
Ebenezer AJ, Prasad K, Rajan S, Thangam EB. Silencing of H4R inhibits the production of IL-1β through SAPK/JNK signaling in human mast cells. J Recept Signal Transduct Res 2018; 38:204-212. [PMID: 29863427 DOI: 10.1080/10799893.2018.1468783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Mast cell (MC) activation through H4R releases various inflammatory mediators which are associated with allergic asthma. OBJECTIVES To investigate the siRNA-mediated gene silencing effect of H4R on human mast cells (HMCs) functions and the activation of stress-activated protein kinases (SAPK)/jun amino-terminal kinases (JNK) signaling pathways for the release of ineterleukin-1β (IL-1β) in HMCs. MATERIALS AND METHODS H4R expression was analyzed by RT-PCR and western blotting in human mast cell line-1 (HMC-1) cells and H4RsiRNA transfected cells. The effect of H4RsiRNA and H4R-antagonist on H4R mediated MC functions such as intracellular Ca2+ release, degranulation, IL-6 and IL-1β release, and the activation SAPK/JNK signaling pathways were studied. HMC-1 cells were stimulated with 10 μM of histamine (His) and 4-methylhistamine (4-MH) and pretreated individually with H4R-antagonist JNJ7777120 (JNJ), histamine H1 receptor (H1R)-antagonist mepyramine, and signaling molecule inhibitors SP600125 (SP) and Bay117082. RESULTS We found that the HMC-1 cells expressed H4R and H4RsiRNA treatment down regulated the H4R expression in HMC-1 cells. Both His and 4-MH induced the intracellular Ca2+ release and degranulation whereas; H4R siRNA and JNJ inhibited the effect. Furthermore, the activation of H4R caused the phosphorylation of SAPK/JNK pathways. H4R gene silencing and pretreatment with SP and JNJ decreased His and 4-MH induced phosphorylation of SAPK/JNK. We found that the activation of H4R caused the release of IL-1β (124.22 pg/ml) and IL-6 (122.50 pg/ml) on HMC-1 cells. Whereas, SAPK/JNK inhibitor (68.36 pg/ml) inhibited the H4R mediated IL-1β release. CONCLUSIONS Taken together, the silencing of H4R inhibited the H4R mediated MC functions and SAPK/JNK phosphorylation. Furthermore, the H4R activation utilized SAPK/JNK signaling pathway for IL-1β release in HMC-1 cells.
Collapse
Affiliation(s)
- Angel Jemima Ebenezer
- a Department of Biotechnology, School of Bioengineering , SRM University , Kattankulathur , India
| | - Kavya Prasad
- a Department of Biotechnology, School of Bioengineering , SRM University , Kattankulathur , India
| | - Sanjana Rajan
- a Department of Biotechnology, School of Bioengineering , SRM University , Kattankulathur , India
| | - Elden Berla Thangam
- a Department of Biotechnology, School of Bioengineering , SRM University , Kattankulathur , India
| |
Collapse
|
20
|
MicroRNA-132 and microRNA-212 mediate doxorubicin resistance by down-regulating the PTEN-AKT/NF-κB signaling pathway in breast cancer. Biomed Pharmacother 2018; 102:286-294. [DOI: 10.1016/j.biopha.2018.03.088] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
|
21
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
22
|
The inhibitory effect of Cordycepin on the proliferation of cisplatin-resistant A549 lung cancer cells. Biochem Biophys Res Commun 2018; 498:431-436. [PMID: 29496448 DOI: 10.1016/j.bbrc.2018.02.188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 02/25/2018] [Indexed: 01/05/2023]
Abstract
The goal of this study is to determine the anti-cancer mechanism of Cordycepin in A549 Cisplatin-Resistance (CR) lung cancer cells. Cordycepin inhibited the viability of A549CR cells in a dose-dependent manner. The cell inhibition was due to induction of apoptosis in the cells treated with Cordycepin by activation of caspase -3, -8 and -9 activities. The cell cycle analysis showed that accumulation of Sub G1 was observed in Cordycepin-treated with A549CR lung cancer cells. Based on the data of expression profile analysis of cell signaling proteins using IPS-FPAA, H-Ras was down-regulated in Cordycepin-treated A549CR cells. Collectively, anti-proliferative function of Cordycepin was due to stimulation of the cell apoptosis and the cell cycle arrest via caspases activation and down-regulation of H-Ras.
Collapse
|
23
|
Pang L, Lu J, Huang J, Xu C, Li H, Yuan G, Cheng X, Chen J. Upregulation of miR-146a increases cisplatin sensitivity of the non-small cell lung cancer A549 cell line by targeting JNK-2. Oncol Lett 2017; 14:7745-7752. [PMID: 29344219 PMCID: PMC5755143 DOI: 10.3892/ol.2017.7242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR-)146a on the cisplatin sensitivity of the non-small cell lung cancer (NSCLC) A549 cell line and study the underlying molecular mechanism. The differences in expression of miRNAs between A549 and A549/cisplatin (A549/DDP) cells were determined, and miR-146a was selected to study its effect on cisplatin sensitivity of A549/DDP cells. miR-146a mimic and inhibitor transient transfection systems were constructed using vectors, and A549/DDP cells were infected with miR-146a mimic and inhibitor to investigate growth, apoptosis and migration. The directed target of miR-146a was determined and the underlying molecular mechanism was validated in the present study. The results of the present study demonstrated that miR-146a was downregulated in NSCLC A549/DDP cells, compared with A549 cells. The overexpression of miR-146a induced apoptosis and inhibited the growth and invasion of A549/DDP cells, which resulted in increased cisplatin sensitivity in NSCLC cells. The JNK2 gene was determined as the direct target of miR-146a, and may be activated by the overexpression of miR-146a. Additionally, JNK2 activated the expression of p53 and inhibited B cell lymphoma 2. The upregulation of miR-146a increased cisplatin sensitivity of the A549 cell line by targeting JNK2, which may provide a novel method for treating NSCLC cisplatin resistance.
Collapse
Affiliation(s)
- Linrong Pang
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jinger Lu
- Department of Endocrinology, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jia Huang
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Caihong Xu
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Hui Li
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Guangbo Yuan
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaochun Cheng
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
24
|
Tian L, Zhang J, Ren X, Liu X, Gao W, Zhang C, Sun Y, Liu M. Overexpression of miR-26b decreases the cisplatin-resistance in laryngeal cancer by targeting ATF2. Oncotarget 2017; 8:79023-79033. [PMID: 29108284 PMCID: PMC5668017 DOI: 10.18632/oncotarget.20784] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 01/09/2023] Open
Abstract
Cisplatin is a common used chemotherapeutic drug for the treatment of laryngeal cancer. However, drug-resistance is a major obstacle in platinum-based chemotherapy for laryngeal cancer. Recent studies have demonstrated that dysregulation of microRNAs (miRNAs) is responsible for chemoresistance in multiple cancers including laryngeal cancer, but the potential mechanisms are required to be explored. In the present study, we constantly exposed the laryngeal cancer cell line Hep-2 with cisplatin to establish a cisplatin-resistant laryngeal cancer cell model (Hep-2/R). We found that Hep-2/R cells exhibited obvious resistance to cisplatin compared to the Hep-2 cells. However, overexpression of miR-26b significantly decreased the half maximal inhibitory concentration (IC50) of cisplatin to Hep-2/R. Mechanically, miR-26b in Hep-2/R decreased the expression of ATF2, and thus inhibiting the phosphorylation of ATF2 and formation of cellular ATF2-c-Jun complex induced by cisplatin. As the results, Hep-2/R cells failed to overexpress the Bcl-xl which is a key anti-apoptotic protein under the cisplatin treatment. Therefore, overexpression of miR-26b was found to be able to promote mitochondrial apoptosis induced by cisplatin.
Collapse
Affiliation(s)
- Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Jiarui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Xiuxia Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Xinyu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Wei Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Chen Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| |
Collapse
|
25
|
Feng X, Liu H, Zhang Z, Gu Y, Qiu H, He Z. Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:123. [PMID: 28886730 PMCID: PMC5591524 DOI: 10.1186/s13046-017-0594-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Development of resistance to therapy continues to be a serious clinical problem in lung cancer management. We previously identified that Annexin A2 is significantly up-regulated in cisplatin-resistant non-small cell lung cancer (NSCLC) A549/DDP cells. However, the exact function and molecular mechanism of Annexin A2 in cisplatin resistance of NSCLCs has not been determined. METHODS Western blot and qRT-PCR were performed to analyze the protein and mRNA level of indicated molecules, respectively. Immunohistochemistry was performed to analyze the expression of Annexin A2 in NSCLC tissue samples. MTS assay, Colony formation assays, AnnexinV/PI apoptosis assay, Luciferase Reporter Assay, Chromatin-immunoprecipitation, and nude mice xenograft assay were used to visualize the function of Annexin A2 on cisplatin resistance. RESULTS Our results demonstrated that knockdown of Annexin A2 increased cisplatin sensitivity of cisplatin-resistant A549/DDP cells both in vitro and in vivo, whereas overexpression of Annexin A2 increased cisplatin resistance of A549, H460 and H1650 cells. Moreover, we found that Annexin A2 enhanced cisplatin resistance via inhibition of cisplatin-induced cell apoptosis. Our studies showed that Annexin A2 suppressed the expression of p53 through activation of JNK/c-Jun signaling, which in turn resulted in a decrease in the expression of p53-regulated apoptotic genes p21, GADD45 and BAX, as well as p53-dependent cell apoptosis. Furthermore, we found that in NSCLC cases that Annexin A2 is highly expressed; it is positively correlated with a poor prognosis, as well as correlated with short disease-free survival for patients who received chemotherapy after surgery. CONCLUSIONS These data suggested that Annexin A2 induces cisplatin resistance of NSCLCs via regulation of JNK/c-Jun/p53 signaling, and provided an evidence that blockade of Annexin A2 could serve as a novel therapeutic approach for overcoming drug resistance in NSCLCs.
Collapse
Affiliation(s)
- Xiaomin Feng
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Zhijie Zhang
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Yixue Gu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Huisi Qiu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Zhimin He
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China.
| |
Collapse
|
26
|
Song WJ, Dong Y, Luo C, Chen YY. p38MAPK family isoform p38α and activating transcription factor 2 are associated with the malignant phenotypes and poor prognosis of patients with ovarian adenocarcinoma. Pathol Res Pract 2017; 213:1282-1288. [PMID: 28916425 DOI: 10.1016/j.prp.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
This study was to identify the biomarkers for the malignancy and poor prognosis in patients with ovarian cancer. The protein expression of p38MAPK family isoform p38α (p38α) and activating transcription factor 2 (ATF2) was measured in 120 ovarian serous adenocarcinomas and 34 normal fallopian tubes using immunohistochemistry. Stable OV-90 cells expressing p38α and ATF2 inhibitor were established using shRNA lentivirus. Cell proliferation, invasion, and migration were analyzed in vitro. Tumor growth and chemosensitivity were investigated in xenograft tumor models. The percentage of positive p38α and ATF2 expression was significantly higher in ovarian serous adenocarcinomas than that in normal fallopian tubes. Positive p38α and ATF2 expression were significantly associated with high clinical stage (III/IV), lymph node metastasis, and shorter overall survival. Silencing of p38α and ATF2 gene expression in OV-90 cells significantly inhibited cell proliferation, migration, and invasion in vitro. OV-90 cells with p38α and ATF2 gene being silenced grew significantly slow and were significantly sensitive to the chemotherapy compared to cells with high p38α and ATF2 expression. p38α and ATF2 expression play a crucial role in the malignant phenotypes of ovarian tumor cells and are a marker for the poor prognosis of patients with ovarian serous adenocarcinomas.
Collapse
Affiliation(s)
- Wan-Juan Song
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yu Dong
- Maternal and Children's Hospital of Heping District, Shenyang, Laioling 110014, PR China
| | - Cheng Luo
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yuan-Yuan Chen
- Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, PR China.
| |
Collapse
|
27
|
Liu ZC, Cao K, Xiao ZH, Qiao L, Wang XQ, Shang B, Jia Y, Wang Z. VRK1 promotes cisplatin resistance by up-regulating c-MYC via c-Jun activation and serves as a therapeutic target in esophageal squamous cell carcinoma. Oncotarget 2017; 8:65642-65658. [PMID: 29029460 PMCID: PMC5630360 DOI: 10.18632/oncotarget.20020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant disease characterized by poor prognosis. Chemoresistance remains a major cause of ESCC relapse. Vaccinia-related kinase 1 (VRK1) has previously been identified as a cancer-related gene. However, there is little research demonstrating an association between VRK1 and ESCC. In this study, we show that VRK1 is overexpressed in ESCC primary tumor samples and cell lines. VRK1 expression was significantly correlated with clinical characteristics and predicted poor outcomes in ESCC patients. Functionally, knockdown of VRK1 inhibited ESCC cell proliferation, survival, migration and invasion; conversely, VRK1 overexpression produced the opposite effects. Furthermore, we found that up-regulation of VRK1 promoted cisplatin (CDDP) resistance in ESCC both in vitro and in vivo, whereas knockdown of VRK1 reduced this resistance. Further studies verified that VRK1 phosphorylated c-Jun and that the VRK1/c-Jun pathway contributed to CDDP resistance in ESCC. Mechanistically, a dual luciferase reporter assay revealed that c-Jun transcriptionally activated the expression of c-MYC. Silencing c-MYC abolished the c-Jun-mediated CDDP resistance of ESCC cells. A Kaplan-Meier analysis indicated that c-MYC is a potential prognostic factor in ESCC. Finally, luteolin, a VRK1 inhibitor, attenuated the malignant biological behaviors and CDDP resistance in ESCC cells. Collectively, we conclude that VRK1 promotes CDDP resistance through c-MYC by activating c-Jun and potentiating a malignant phenotype in ESCC. Our studies provide novel insight into the role of VRK1 in carcinogenesis and indicate that VRK1 can serve as a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Zhen-Chuan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Kuo Cao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Zhao-Hua Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Liang Qiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xue-Qing Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
28
|
Valdez BC, Li Y, Murray D, Liu Y, Nieto Y, Champlin RE, Andersson BS. The PARP inhibitor olaparib enhances the cytotoxicity of combined gemcitabine, busulfan and melphalan in lymphoma cells. Leuk Lymphoma 2017; 58:2705-2716. [PMID: 28394191 DOI: 10.1080/10428194.2017.1306647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The combination of gemcitabine (Gem), busulfan (Bu), and melphalan (Mel) is a promising regimen for autologous stem-cell transplantation (SCT) for lymphomas. To further improve the efficacy of [Gem + Bu + Mel], we added poly(ADP-ribose) polymerase (PARP) inhibitor olaparib (Ola). We hypothesized that Ola would inhibit the repair of damaged DNA caused by [Gem + Bu + Mel]. Exposure of J45.01 and Toledo cell lines to IC10-20 of individual drug inhibited proliferation by 6-16%; [Gem + Bu + Mel] by 20-27%; and [Gem + Bu + Mel + Ola] by 61-67%. The synergistic cytotoxicity of the four-drug combination may be attributed to activation of the DNA-damage response, inhibition of PARP activity and DNA repair, decreased mitochondrial membrane potential, increased production of reactive oxygen species, and activation of the SAPK/JNK stress signaling pathway, all of which may enhance apoptosis. Similar observations were obtained using mononuclear cells isolated from patients with T-cell lymphocytic leukemia. Our results provide a rationale for undertaking clinical trials of this drug combination for lymphoma patients undergoing SCT.
Collapse
Affiliation(s)
- Benigno C Valdez
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Yang Li
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - David Murray
- b Department of Experimental Oncology , Cross Cancer Institute , Edmonton , Canada
| | - Yan Liu
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Yago Nieto
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Richard E Champlin
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Borje S Andersson
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
29
|
Li M, Wu X, Liu N, Li X, Meng F, Song S. Silencing of ATF2 inhibits growth of pancreatic cancer cells and enhances sensitivity to chemotherapy. Cell Biol Int 2017; 41:599-610. [PMID: 28318081 DOI: 10.1002/cbin.10760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/04/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Mu Li
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Xingda Wu
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Ning Liu
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Xiaoying Li
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Fanbin Meng
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Shaowei Song
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| |
Collapse
|
30
|
Kim EY, Jung JY, Kim A, Chang YS, Kim SK. ABT-737 Synergizes with Cisplatin Bypassing Aberration of Apoptotic Pathway in Non-small Cell Lung Cancer. Neoplasia 2017; 19:354-363. [PMID: 28319809 PMCID: PMC5358954 DOI: 10.1016/j.neo.2017.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023] Open
Abstract
A subset of non-small cell lung cancer (NSCLC), which does not have a druggable driver mutation, is treated with platinum-based cytotoxic chemotherapy, but it develops resistance triggered by DNA damage responses. Here, we investigated the effect of activation of STAT3 by cisplatin on anti-apoptotic proteins and the effectiveness of a co-treatment with cisplatin and a BH3 mimetic, ABT-737. We analyzed the relationship between cisplatin and STAT3 pathway and effect of ABT-737, when combined with cisplatin in NSCLC cells and K-ras mutant mouse models. The synergism of this combination was evaluated by the Chou-Talalay Combination Index method. In vivo activity was evaluated by micro-CT. In NSCLC cells, there was a time and dose-dependent phosphorylation of SRC-JAK2-STAT3 by cisplatin, followed by increased expression of anti-apoptotic molecules. When the expression of the BCL-2 protein family members was evaluated in clinical samples, BCL-xL was most frequently overexpressed. Dominant negative STAT3 suppressed their expression, suggesting that STAT3 mediates cisplatin mediated overexpression of the anti-apoptotic molecules. ABT-737 displaced BCL-xL from mitochondria and induced oligomerization of BAK. ABT-737 itself showed cytotoxic effects and a combination of ABT-737 with cisplatin showed strong synergistic cytotoxicity. In a murine lung cancer model, co-treatment with ABT-737 and cisplatin induced significant tumor regression. These findings reveal a synergistic cytotoxic and anti-tumor activity of ABT-737 and cisplatin co-treatment in preclinical models, and suggest that clinical trials using this strategy may be beneficial in advanced NSCLC.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Internal Medicine, 3(rd) Floor, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Rep of Korea
| | - Ji Ye Jung
- Department of Internal Medicine, 3(rd) Floor, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Rep of Korea
| | - Arum Kim
- Department of Internal Medicine, 8(th) Floor Annex Bldg, Gangnam Severance Hospital, Yonsei University College of Medicine, 211-Eonju-ro, Gangnam-gu, 06273, Seoul, Rep of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, 8(th) Floor Annex Bldg, Gangnam Severance Hospital, Yonsei University College of Medicine, 211-Eonju-ro, Gangnam-gu, 06273, Seoul, Rep of Korea.
| | - Se Kyu Kim
- Department of Internal Medicine, 3(rd) Floor, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Rep of Korea
| |
Collapse
|
31
|
The role of Nrf2 and ATF2 in resistance to platinum-based chemotherapy. Cancer Chemother Pharmacol 2017; 79:369-380. [DOI: 10.1007/s00280-016-3225-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
32
|
Huang Y, He L, Song Z, Chan L, He J, Huang W, Zhou B, Chen T. Phycocyanin-based nanocarrier as a new nanoplatform for efficient overcoming of cancer drug resistance. J Mater Chem B 2017; 5:3300-3314. [DOI: 10.1039/c7tb00287d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rational design of a novel phycocyanin-based nanosystem with bio-responsive properties to achieve prolonged blood circulation and overcome drug resistance without causing systemic toxicity.
Collapse
Affiliation(s)
- Yanyu Huang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Lizhen He
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Zhenhuan Song
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Leung Chan
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jintao He
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Wei Huang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Binwei Zhou
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
33
|
Inactivation of transforming growth factor-β-activated kinase 1 promotes taxol efficacy in ovarian cancer cells. Biomed Pharmacother 2016; 84:917-924. [DOI: 10.1016/j.biopha.2016.09.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022] Open
|
34
|
Kim YJ, Kim HJ, Kim HL, Kim HJ, Kim HS, Lee TR, Shin DW, Seo YR. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity. J Invest Dermatol 2016; 137:466-474. [PMID: 27729279 DOI: 10.1016/j.jid.2016.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/16/2016] [Accepted: 07/21/2016] [Indexed: 01/21/2023]
Abstract
The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hye Lim Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyo Jeong Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
35
|
Ye P, Xing H, Lou F, Wang K, Pan Q, Zhou X, Gong L, Li D. Histone deacetylase 2 regulates doxorubicin (Dox) sensitivity of colorectal cancer cells by targeting ABCB1 transcription. Cancer Chemother Pharmacol 2016; 77:613-21. [DOI: 10.1007/s00280-016-2979-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
|
36
|
Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V. Radioprotective Agents: Strategies and Translational Advances. Med Res Rev 2016; 36:461-93. [PMID: 26807693 DOI: 10.1002/med.21386] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/15/2015] [Accepted: 01/01/2016] [Indexed: 01/08/2023]
Abstract
Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed.
Collapse
Affiliation(s)
- Mohammad Zahid Kamran
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Atul Ranjan
- Kansas University of Medical Center, Kansas City, KS, 66160
| | - Navrinder Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
37
|
Paszel-Jaworska A, Rubiś B, Bednarczyk-Cwynar B, Zaprutko L, Rybczyńska M. Proapoptotic activity and ABCC1-related multidrug resistance reduction ability of semisynthetic oleanolic acid derivatives DIOXOL and HIMOXOL in human acute promyelocytic leukemia cells. Chem Biol Interact 2015; 242:1-12. [DOI: 10.1016/j.cbi.2015.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/02/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023]
|
38
|
Seino M, Okada M, Sakaki H, Takeda H, Watarai H, Suzuki S, Seino S, Kuramoto K, Ohta T, Nagase S, Kurachi H, Kitanaka C. Time-staggered inhibition of JNK effectively sensitizes chemoresistant ovarian cancer cells to cisplatin and paclitaxel. Oncol Rep 2015; 35:593-601. [PMID: 26534836 DOI: 10.3892/or.2015.4377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/26/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy, for which platinum- and taxane-based chemotherapy plays a major role. Chemoresistance of ovarian cancer poses a major obstacle to the successful management of this devastating disease; however, effective measures to overcome platinum and taxane resistance are yet to be established. In the present study, while investigating the mechanism underlying the chemoresistance of ovarian cancer, we found that JNK may have a key role in the resistance of ovarian cancer cells to cisplatin and paclitaxel. Importantly, whereas simultaneous application of a JNK inhibitor and either of the chemotherapeutic agents had contrasting effects for cisplatin (enhanced cytotoxicity) and paclitaxel (decreased cytotoxicity), JNK inhibitor treatment prior to chemotherapeutic agent application invariably enhanced the cytotoxicity of both drugs, suggesting that the basal JNK activity is commonly involved in the chemoresistance of ovarian cancer cells to cisplatin and paclitaxel in contrast to drug‑induced JNK activity which may have different roles for these two drugs. Furthermore, we confirmed using non-transformed human and rodent fibroblasts that sequential application of the JNK inhibitor and the chemotherapeutic agents did not augment their toxicity. Thus, our findings highlight for the first time the possible differential roles of the basal and induced JNK activities in the chemoresistance of ovarian cancer cells and also suggest that time‑staggered JNK inhibition may be a rational and promising strategy to overcome the resistance of ovarian cancer to platinum- and taxane-based chemotherapy.
Collapse
Affiliation(s)
- Manabu Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Hirotsugu Sakaki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Hiroyuki Takeda
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Hikaru Watarai
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Kenta Kuramoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Tsuyoshi Ohta
- Department of Obstetrics and Gynecology, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Hirohisa Kurachi
- Department of Obstetrics and Gynecology, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990‑9585, Japan
| |
Collapse
|
39
|
Dong Y, Kimura Y, Ito T, Velayo C, Sato T, Sugibayashi R, Funamoto K, Hitomi K, Iida K, Endo M, Sato N, Yaegashi N. Vaginal LPS changed gene transcriptional regulation response to ischemic reperfusion and increased vulnerability of fetal brain hemorrhage. Biochem Biophys Res Commun 2015; 468:228-33. [PMID: 26523514 DOI: 10.1016/j.bbrc.2015.10.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 01/09/2023]
Abstract
During pregnancy, both ischemic reperfusion and bacterial agent LPS are known risk factors for fetal brain damage. However, there is a lack of evidence to explain whether vaginal LPS affects the fetus response to ischemic reperfusion. Here we reported that there was more than 2 folds higher vulnerability of fetal brain hemorrhage response to ischemic reperfusion when mother mouse was treated with vaginal LPS. As our previously reported, ischemic reperfusion induces P53-dependent fetal brain damage was based on a molecular mechanism: the transcriptional pattern was changed from HIF-1alpha-dependent to P53-dependent immediately. In the present work, only with vaginal LPS precondition, phosphorylation of activated transcriptional factor (ATF) 2 at Thr71 appeared in response to ischemic reperfusion. Moreover, this phosphorylation was completely blocked by pre-treatment with a P53 inhibitor, pifithrin-α. We concluded that vaginal LPS precondition trigged the p53-dependent phosphorylation of ATF2 in response to ischemic reperfusion, which played an important role of increasing vulnerability to hemorrhage in fetus.
Collapse
Affiliation(s)
- Yupeng Dong
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshitaka Kimura
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics & Gynecology, Tohoku University Hospital, Sendai, Japan
| | - Takuya Ito
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Clarissa Velayo
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Sato
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rika Sugibayashi
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoe Funamoto
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kudo Hitomi
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keita Iida
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Endo
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoaki Sato
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics & Gynecology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
40
|
Rho GTPases: Novel Players in the Regulation of the DNA Damage Response? Biomolecules 2015; 5:2417-34. [PMID: 26437439 PMCID: PMC4693241 DOI: 10.3390/biom5042417] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022] Open
Abstract
The Ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to the family of Ras-homologous small GTPases. It is well characterized as a membrane-bound signal transducing molecule that is involved in the regulation of cell motility and adhesion as well as cell cycle progression, mitosis, cell death and gene expression. Rac1 also adjusts cellular responses to genotoxic stress by regulating the activity of stress kinases, including c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinases as well as related transcription factors. Apart from being found on the inner side of the outer cell membrane and in the cytosol, Rac1 has also been detected inside the nucleus. Different lines of evidence indicate that genotoxin-induced DNA damage is able to activate nuclear Rac1. The exact mechanisms involved and the biological consequences, however, are unclear. The data available so far indicate that Rac1 might integrate DNA damage independent and DNA damage dependent cellular stress responses following genotoxin treatment, thereby coordinating mechanisms of the DNA damage response (DDR) that are related to DNA repair, survival and cell death.
Collapse
|
41
|
Deng S, Yan T, Nikolova T, Fuhrmann D, Nemecek A, Gödtel-Armbrust U, Kaina B, Wojnowski L. The catalytic topoisomerase II inhibitor dexrazoxane induces DNA breaks, ATF3 and the DNA damage response in cancer cells. Br J Pharmacol 2015; 172:2246-57. [PMID: 25521189 DOI: 10.1111/bph.13046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/21/2014] [Accepted: 12/03/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The catalytic topoisomerase II inhibitor dexrazoxane has been associated not only with improved cancer patient survival but also with secondary malignancies and reduced tumour response. EXPERIMENTAL APPROACH We investigated the DNA damage response and the role of the activating transcription factor 3 (ATF3) accumulation in tumour cells exposed to dexrazoxane. KEY RESULTS Dexrazoxane exposure induced topoisomerase IIα (TOP2A)-dependent cell death, γ-H2AX accumulation and increased tail moment in neutral comet assays. Dexrazoxane induced DNA damage responses, shown by enhanced levels of γ-H2AX/53BP1 foci, ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), Chk1 and Chk2 phosphorylation, and by p53 accumulation. Dexrazoxane-induced γ-H2AX accumulation was dependent on ATM. ATF3 protein was induced by dexrazoxane in a concentration- and time-dependent manner, which was abolished in TOP2A-depleted cells and in cells pre-incubated with ATM inhibitor. Knockdown of ATF3 gene expression by siRNA triggered apoptosis in control cells and diminished the p53 protein level in both control and dexrazoxane -treated cells. This was accompanied by increased γ-H2AX accumulation. ATF3 knockdown also delayed the repair of dexrazoxane -induced DNA double-strand breaks. CONCLUSIONS AND IMPLICATIONS As with other TOP2A poisons, dexrazoxane induced DNA double-strand breaks followed by activation of the DNA damage response. The DNA damage-triggered ATF3 controlled p53 accumulation and generation of double-strand breaks and is proposed to serve as a switch between DNA damage and cell death following dexrazoxane treatment. These findings suggest a mechanistic explanation for the diverse clinical observations associated with dexrazoxane.
Collapse
Affiliation(s)
- Shiwei Deng
- Institute of Pharmacology, Medical Center of the University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yu L, Gu C, Zhong D, Shi L, Kong Y, Zhou Z, Liu S. Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance. Cancer Lett 2014; 355:34-45. [PMID: 25236911 DOI: 10.1016/j.canlet.2014.09.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023]
Abstract
Cisplatin-based chemotherapy frequently resulted in acquired resistance. The underpinning mechanism of such resistance remains obscure especially in relation to autophagic response. This study thus investigated the role of autophagy in the anticancer activity of cisplatin in human esophageal cancer cells with acquired cisplatin resistance. In response to cisplatin treatment, EC109 cells exhibited substantial apoptosis and senescence whereas cisplatin-resistant EC109/CDDP cells exhibited resistance. In this respect, cisplatin increased ERK phosphorylation whose inhibition by MEK inhibitor significantly attenuated the cytotoxic and cytostatic effect of cisplatin. Notably, cisplatin preferentially induces autophagy in EC109/CDDP cells but not in EC109 cells. Moreover, the induction of autophagy was accompanied by the suppression of mTORC1 activity. Abolition of autophagy by pharmacological inhibitors or knockdown of ATG5/7 re-sensitized EC109/CDDP cells. Co-administration of an autophagy inhibitor chloroquine and cisplatin significantly suppressed tumor growth whereas cisplatin monotherapy failed to elicit anticancer activity in nude mice xenografted with EC109/CDDP cells. To conclude, our data implicate autophagic response as a key mechanism of acquired resistance to cisplatin, suggesting that autophagy is a novel target to improve therapy efficiency of cisplatin toward human esophageal cancers with acquired resistance.
Collapse
Affiliation(s)
- Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chunping Gu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Desheng Zhong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lili Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Kong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Electron Microscopy Laboratory, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
43
|
Lo Iacono M, Monica V, Vavalà T, Gisabella M, Saviozzi S, Bracco E, Novello S, Papotti M, Scagliotti GV. ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway. Int J Cancer 2014; 136:2598-609. [PMID: 25359574 DOI: 10.1002/ijc.29302] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
ATF2 is a transcription factor involved in stress and DNA damage. A correlation between ATF2 JNK-mediated activation and resistance to damaging agents has already been reported. The purpose of the present study was to investigate whether ATF2 may have a role in acquired resistance to cisplatin in non-small cell lung cancer (NSCLC). mRNA and protein analysis on matched cancer and corresponding normal tissues from surgically resected NSCLC have been performed. Furthermore, in NSCLC cell lines, ATF2 expression levels were evaluated and correlated to platinum (CDDP) resistance. Celastrol-mediated ATF2/cJUN activity was measured. High expression levels of both ATF2 transcript and proteins were observed in lung cancer specimens (p << 0.01, Log2 (FC) = +4.7). CDDP-resistant NSCLC cell lines expressed high levels of ATF2 protein. By contrast, Celastrol-mediated ATF2/cJUN functional inhibition restored the response to CDDP. Moreover, ATF2 protein activation correlates with worse outcome in advanced CDDP-treated patients. For the first time, it has been shown NSCLC ATF2 upregulation at both mRNA/protein levels in NSCLC. In addition, we reported that in NSCLC cell lines a correlation between ATF2 protein expression and CDDP resistance occurs. Altogether, our results indicate a potential increase in CDDP sensitivity, on Celastrol-mediated ATF2/cJUN inhibition. These data suggest a possible involvement of ATF2 in NSCLC CDDP-resistance.
Collapse
Affiliation(s)
- Marco Lo Iacono
- Department of Oncology, University of Turin, S. Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rudraraju B, Droog M, Abdel-Fatah TMA, Zwart W, Giannoudis A, Malki MI, Moore D, Patel H, Shaw J, Ellis IO, Chan S, Brooke GN, Nevedomskaya E, Lo Nigro C, Carroll J, Coombes RC, Bevan C, Ali S, Palmieri C. Phosphorylation of activating transcription factor-2 (ATF-2) within the activation domain is a key determinant of sensitivity to tamoxifen in breast cancer. Breast Cancer Res Treat 2014; 147:295-309. [PMID: 25141981 DOI: 10.1007/s10549-014-3098-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/07/2014] [Indexed: 12/31/2022]
Abstract
Activating transcription factor-2 (ATF-2) has been implicated as a tumour suppressor in breast cancer (BC). c-JUN N-terminal kinase (JNK) and p38 MAPK phosphorylate ATF-2 within the activation domain (AD), which is required for its transcriptional activity. To date, the role of ATF-2 in determining response to endocrine therapy has not been explored. Effects of ATF-2 loss in the oestrogen receptor (ER)-positive luminal BC cell line MCF7 were explored, as well as its role in response to tamoxifen treatment. Genome-wide chromatin binding patterns of ATF-2 when phosphorylated within the AD in MCF-7 cells were determined using ChIP-seq. The expression of ATF-2 and phosphorylated ATF-2 (pATF-2-Thr71) was determined in a series of 1,650 BC patients and correlated with clinico-pathological features and clinical outcome. Loss of ATF-2 diminished the growth-inhibitory effects of tamoxifen, while tamoxifen treatment induced ATF-2 phosphorylation within the AD, to regulate the expression of a set of 227 genes for proximal phospho-ATF-2 binding, involved in cell development, assembly and survival. Low expression of both ATF-2 and pATF-2-Thr71 was significantly associated with aggressive pathological features. Furthermore, pATF-2 was associated with both p-p38 and pJNK1/2 (< 0.0001). While expression of ATF-2 is not associated with outcome, pATF-2 is associated with longer disease-free (p = 0.002) and BC-specific survival in patients exposed to tamoxifen (p = 0.01). Furthermore, multivariate analysis confirmed pATF-2-Thr71 as an independent prognostic factor. ATF-2 is important for modulating the effect of tamoxifen and phosphorylation of ATF-2 within the AD at Thr71 predicts for improved outcome for ER-positive BC receiving tamoxifen.
Collapse
Affiliation(s)
- Bharath Rudraraju
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Ionizing radiation, like a variety of other cellular stress factors, can activate or down-regulate multiple signaling pathways, leading to either increased cell death or increased cell proliferation. Modulation of the signaling process, however, depends on the cell type, radiation dose, and culture conditions. The mitogen-activated protein kinase (MAPK) pathway transduces signals from the cell membrane to the nucleus in response to a variety of different stimuli and participates in various intracellular signaling pathways that control a wide spectrum of cellular processes, including growth, differentiation, and stress responses, and is known to have a key role in cancer progression. Multiple signal transduction pathways stimulated by ionizing radiation are mediated by the MAPK superfamily including the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. The ERK pathway, activated by mitogenic stimuli such as growth factors, cytokines, and phorbol esters, plays a major role in regulating cell growth, survival, and differentiation. In contrast, JNK and p38 MAPK are weakly activated by growth factors but respond strongly to stress signals including tumor necrosis factor (TNF), interleukin-1, ionizing and ultraviolet radiation, hyperosmotic stress, and chemotherapeutic drugs. Activation of JNK and p38 MAPK by stress stimuli is strongly associated with apoptotic cell death. MAPK signaling is also known to potentially influence tumor cell radiosensitivity because of their activity associated with radiation-induced DNA damage response. This review will discuss the MAPK signaling pathways and their roles in cellular radiation responses.
Collapse
Affiliation(s)
- Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
46
|
The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm 2014; 2014:950472. [PMID: 25049453 PMCID: PMC4090481 DOI: 10.1155/2014/950472] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/30/2014] [Indexed: 01/06/2023] Open
Abstract
Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA-binding proteins and is widely distributed in tissues including the liver, lung, spleen, and kidney. Like c-Jun and c-Fos, ATF2 responds to stress-related stimuli and may thereby influence cell proliferation, inflammation, apoptosis, oncogenesis, neurological development and function, and skeletal remodeling. Recent studies clarify the regulatory role of ATF2 in inflammation and describe potential inhibitors of this protein. In this paper, we summarize the properties and functions of ATF2 and explore potential applications of ATF2 inhibitors as tools for research and for the development of immunosuppressive and anti-inflammatory drugs.
Collapse
|
47
|
Mamrosh JL, Lee JM, Wagner M, Stambrook PJ, Whitby RJ, Sifers RN, Wu SP, Tsai MJ, Demayo FJ, Moore DD. Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution. eLife 2014; 3:e01694. [PMID: 24737860 PMCID: PMC3987120 DOI: 10.7554/elife.01694] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, hepatic Lrh-1-null mice cannot resolve ER stress, despite a functional UPR. In response to ER stress, LRH-1 induces expression of the kinase Plk3, which phosphorylates and activates the transcription factor ATF2. Plk3-null mice also cannot resolve ER stress, and restoring Plk3 expression in Lrh-1-null cells rescues ER stress resolution. Reduced or heightened ATF2 activity also sensitizes or desensitizes cells to ER stress, respectively. LRH-1 agonist treatment increases ER stress resistance and decreases cell death. We conclude that LRH-1 initiates a novel pathway of ER stress resolution that is independent of the UPR, yet equivalently required. Targeting LRH-1 may be beneficial in human disorders associated with chronic ER stress. DOI:http://dx.doi.org/10.7554/eLife.01694.001 A protein can only work properly if it has been folded into the correct shape. However, it is estimated that about one third of new proteins have the wrong shape. This is a major challenge for cells because misfolded proteins are often toxic, and cause many neurodegenerative and metabolic disorders. In eukaryotic cells, most protein folding takes place inside a part of the cell called the endoplasmic reticulum (ER). If an incorrectly folded protein is detected, it is prevented from leaving the ER until it is refolded correctly, or destroyed. If too many proteins are misfolded, a process called the unfolded protein response helps the cell to cope with this ‘ER stress’ by expanding the ER and producing more of the molecules that assist protein folding. If this does not relieve the ER stress, the cell self-destructs. Neighboring cells then have to increase protein production to compensate for what would have been produced by the dead cell, thereby increasing the chance that they will also experience ER stress. Activation of a protein called LRH-1 (short for liver receptor homolog-1) that is produced in the liver, pancreas and intestine can relieve the symptoms of the various metabolic diseases that are associated with chronic ER stress, including type II diabetes and fatty liver disease. However, researchers have been puzzled by the fact that although LRH-1 performs many different roles, its molecular structure provides few clues as to how it can do this. Mamrosh et al. now confirm the speculated link between LRH-1 and ER stress relief in mice. LRH-1 triggers a previously unknown pathway that can relieve ER stress and is completely independent of the unfolded protein response. Targeting LRH-1 with certain chemical compounds alters its activity, suggesting that drug treatments could be developed to relieve ER stress. As similar targets for drugs have not been found in the unfolded protein response, the discovery of the LRH-1 pathway could lead to new approaches to the treatment of the diseases that result from ER stress. DOI:http://dx.doi.org/10.7554/eLife.01694.002
Collapse
Affiliation(s)
- Jennifer L Mamrosh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen J, Solomides C, Simpkins H. Sensitization of mesothelioma cells to platinum-based chemotherapy by GSTπ knockdown. Biochem Biophys Res Commun 2014; 447:77-82. [PMID: 24690178 DOI: 10.1016/j.bbrc.2014.03.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/13/2023]
Abstract
It is predicted that the incidence of mesothelioma will increase and thus it is important to find new ways to treat this chemoresistant tumor. Glutathione-S-Transferase π (GSTπ) is found at significant levels in mesotheliomas and thus attenuating its intracellular levels may provide a means of sensitizing mesothelioma cells to chemotherapy. GSTπ knockdowns were therefore prepared with shRNA (less off-target effects) employing two cell lines (211H, H2452) that were typed by immunohistochemistry to be of mesothelial origin. The knockdowns exhibited a decrease in both total GST enzyme activity and GSTπ protein levels as well as an increase in both glutathione levels and sensitivity to cis and oxaliplatin. Cisplatin treatment of the knockdowns increased ROS levels significantly (as compared to the parental cells) and produced activation of the JNK/p38 pathways and activating transcription factor (ATF2). The degree of activation and increase in ROS appeared to correlate with the cell line's sensitivity to cisplatin. Treatment with N-Acetyl Cysteine decreased ROS production and JNK/p38 phosphorylation but had minimal affect on ATF2 suggesting a direct interaction of GTPπ with this transcription factor. Oxaliplatin treatment produced only minimal changes in ROS levels and activation of the JNK/p38 pathway. Recently, new methods of siRNA delivery (nanoparticles) have been shown to be effective in decreasing the levels of target proteins in humans including candidate genes involved in drug resistance - thus this approach may have promise in sensitizing cisplatin-resistant tumors to chemotherapy.
Collapse
Affiliation(s)
- Jianli Chen
- The Feinstein Institute for Medical Research, NS-LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA; Department of Pathology and Laboratory Medicine at Staten Island University Hospital, 475 Seaview Avenue, Staten Island, NY 10305, USA.
| | - Charalambos Solomides
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Jefferson Medical College, 132 S. 10th Street, 260E Main, Philadelphia, PA 19107, USA.
| | - Henry Simpkins
- The Feinstein Institute for Medical Research, NS-LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA; Department of Pathology and Laboratory Medicine at Staten Island University Hospital, 475 Seaview Avenue, Staten Island, NY 10305, USA.
| |
Collapse
|
49
|
Valdez BC, Zander AR, Song G, Murray D, Nieto Y, Li Y, Champlin RE, Andersson BS. Synergistic cytotoxicity of gemcitabine, clofarabine and edelfosine in lymphoma cell lines. Blood Cancer J 2014; 4:e171. [PMID: 24413065 PMCID: PMC3913938 DOI: 10.1038/bcj.2013.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/11/2013] [Accepted: 11/22/2013] [Indexed: 01/04/2023] Open
Abstract
Treatments for lymphomas include gemcitabine (Gem) and clofarabine (Clo) which inhibit DNA synthesis. To improve their cytotoxicity, we studied their synergism with the alkyl phospholipid edelfosine (Ed). Exposure of the J45.01 and SUP-T1 (T-cell) and the OCI-LY10 (B-cell) lymphoma cell lines to IC10–IC20 levels of the drugs resulted in strong synergistic cytotoxicity for the 3-drug combination based on various assays of cell proliferation and apoptosis. Cell death correlated with increased phosphorylation of histone 2AX and KAP1, decreased mitochondrial transmembrane potential, increased production of reactive oxygen species and release of pro-apoptotic factors. Caspase 8-negative I9.2 cells were considerably more resistant to [Gem+Clo+Ed] than caspase 8-positive cells. In all three cell lines [Gem+Clo+Ed] decreased the level of phosphorylation of the pro-survival protein AKT and activated the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) stress signaling pathway, which in J45.01 cells resulted in the phosphorylation and heterodimerization of the transcription factors ATF2 and c-Jun. The observed rational mechanism-based efficacy of [Gem+Clo+Ed] based on the synergistic convergence of several pro-death and anti-apoptotic signaling pathways in three very different cell backgrounds provides a powerful foundation for undertaking clinical trials of this drug combination for the treatment of lymphomas.
Collapse
Affiliation(s)
- B C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A R Zander
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G Song
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Murray
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Y Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Li
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - B S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|