1
|
Omarniyaz Z, Yu Y, Yang T, Shan L, Miao W, Reyimu R, Upur H, Aikemu A. Anti-tumor effects of Abnormal Savda Munziq on the transplanted cervical cancer (U27) mouse model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:477. [PMID: 27881109 PMCID: PMC5122163 DOI: 10.1186/s12906-016-1458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/03/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Abnormal Savda Munziq (ASMq), a traditional uyghur medicine, has shown anti-tumour properties in vitro. it was showed that total flavonoids of ASMq could inhibit the proliferation and enhance the antioxidant ability of human cervix cancer HeLa cell. This study attempts to confirm these effects on the transplanted cervical cancer (U27) mouse model in vivo. METHODS Forty eight Kunming mice were randomly divided in to six groups: normal control group (Control group), U27 tumor model group (Model group), cyclophosphamide administration group (CTX group),low-dose ASMq group (ASMq.L group), medium-dose ASMq group (ASMq.M group), and high-dose ASMq group (ASMq.H group). The five groups except normal control group transplanted with cervical cancer (U27) cells. We observed mice tumor inhibition rate and conducted the histopathological analysisUsing the western blot assay, the expression of TGF-β1 and TNF-α protein in transplanted cervical cancer U27 tumor tissue were detected. RESULTS The tumor inhibition rates of CTX group, ASMq.L group, ASMq.M group, and ASMq.H group were 72.21, 31.27, 60.53 and 51.94% respectively, has obvious antitumor effect. ASMq significantly promote the spleen tlymphocyte proliferation of transplanted cervical cancer U27 mice. Invasive growth and diffusion rate in tumor tissue were accelerate in the transplanted cervical cancer U27 model group. Tumor tissue necrosis of tumor cells are smaller in the medium, high dosage group. Compared with the U27 model group, the expression levels of TGF-β1 protein and TNF-α protein expression exhibited statistically significant decreased in the mice tumor tissues in the CTX administration group and the ASMq administration group. CONCLUSIONS ASMq has some antitumor effects on U27 model mice in vivo, The effects are achieved not only by improving the immune function of U27 model mice, but also by inhibiting the expression levels of TGF-β1 protein while promoting the expression levels of TNF-α protein.
Collapse
Affiliation(s)
- Zuhragul Omarniyaz
- Department of pharmaceutical analysis, Xinjiang Medical University, Urumqi, 830011, China
| | - Yang Yu
- Uyghur Medical College, Xinjiang Medical University, Urumqi, 830011, China
| | - Tao Yang
- Department of pharmaceutical analysis, Xinjiang Medical University, Urumqi, 830011, China
| | - Lianlian Shan
- Department of pharmaceutical analysis, Xinjiang Medical University, Urumqi, 830011, China
| | - Weiwei Miao
- Department of pharmaceutical analysis, Xinjiang Medical University, Urumqi, 830011, China
| | - Renaguli Reyimu
- Department of pharmaceutical analysis, Xinjiang Medical University, Urumqi, 830011, China
| | - Halmurat Upur
- Uyghur Medical College, Xinjiang Medical University, Urumqi, 830011, China.
| | - Ainiwaer Aikemu
- Central Laboratory of Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
2
|
Gentle ME, Shi S, Daehn I, Zhang T, Qi H, Yu L, D'Agati VD, Schlondorff DO, Bottinger EP. Epithelial cell TGFβ signaling induces acute tubular injury and interstitial inflammation. J Am Soc Nephrol 2013; 24:787-99. [PMID: 23539761 DOI: 10.1681/asn.2012101024] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
TGFβ signaling plays a central role in the development of acute and chronic kidney diseases. Previous in vivo studies involved systemic alteration of TGFβ signaling, however, limiting conclusions about the direct role of TGFβ in tubular cell injury. Here, we generated a double transgenic mouse that inducibly expresses a ligand-independent constitutively active TGFβ receptor type 1 (TβR1) kinase specifically in tubular epithelial cells, with expression restricted by the Pax8 promoter. In this model, activation of TGFβ signaling in the tubular epithelium alone was sufficient to cause AKI characterized by marked tubular cell apoptosis and necrosis, oxidative stress, dedifferentiation and regenerative cell proliferation, reduced renal function, and interstitial accumulation of inflammatory cells. This tubular injury was associated with mitochondrial-derived generation of reactive oxygen species (ROS), but cell damage and apoptosis were partially independent of mitochondrial-derived ROS. TβR1 signaling-induced tubular injury also associated with significant leukocyte infiltration consisting of F4/80(+) macrophages, CD11c(+) F4/80(+) dendritic cells, CD11c(+) F4/80(-) Ly6C(high) dendritic cells/monocytes, and T cells. Inhibition of mitochondrial-derived ROS significantly reduced accumulation of CD11c(+) F4/80(+) dendritic cells and T cells, suggesting a role for ROS in the activation and recruitment of the adaptive immune response to tubular injury. Taken together, these results suggest that TGFβ signaling in the tubular epithelium alone is sufficient to cause acute tubular injury and inflammation; therefore, TGFβ may be a mechanistic link between acute injury and chronic progression of kidney disease.
Collapse
Affiliation(s)
- Madeleine E Gentle
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
TSC-22 promotes transforming growth factor β-mediated cardiac myofibroblast differentiation by antagonizing Smad7 activity. Mol Cell Biol 2011; 31:3700-9. [PMID: 21791611 DOI: 10.1128/mcb.05448-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor β (TGF-β) plays a critical role in tissue fibrosis. The duration and intensity of TGF-β signaling are tightly regulated. Here we report that TSC-22 (TGF-β-stimulated clone 22) facilitates TGF-β signaling by antagonizing Smad7 activity to increase receptor stability. TSC-22 enhances TGF-β-induced Smad2/3 phosphorylation and transcriptional responsiveness. The stimulatory effect of TSC-22 is dependent on Smad7, as silencing Smad7 expression abolishes it. TSC-22 interacts with TGF-β type I receptor TβRI and Smad7 in mutually exclusive ways and disrupts the association of Smad7/Smurfs with TβRI, thereby preventing ubiquitination and degradation of the receptor. We also found that TSC-22 can promote the differentiation of cardiac myofibroblasts by increasing expression of the fibrotic genes for α-smooth muscle actin (α-SMA), PAI-1, fibronectin, and collagen I, which is consistent with upregulation of TSC-22, phospho-Smad2/3, and the fibrotic genes in isoproterenol-induced rat myocardial fibrotic hearts. Taken together with the notion that TGF-β induces TSC-22 expression, our findings suggest that TSC-22 regulates TGF-β signaling via a positive-feedback mechanism and may contribute to myocardial fibrosis.
Collapse
|
4
|
Abstract
The ubiquitin-like modifier FAT10 (HLA-F adjacent transcript 10) is the only ubiquitin-like modifier known, which apart from ubiquitin, directly targets proteins to proteasomal degradation. The covalent linkage of ubiquitin or other ubiquitin-like modifiers (ULM) to specific substrates is achieved by adjoining them to target proteins with an enzyme cascade using three enzymes: E1, E2 and E3. The first enzyme activates the ULM, the second enzyme serves a conjugating enzyme and the third enzyme ligates the ULM to its target. More recently, the first enzyme in the FAT10 conjugation machinery was characterized. It turned out that the novel E1 activating enzyme UBA6, which serves as a second E1 for ubiquitin in higher eukaryotes, additionally has the ability to activate FAT10. In this chapter the activation of FAT10 and ubiquitin by UBA6 as well as the role of FAT10 in protein degradation will be discussed.
Collapse
Affiliation(s)
- Christiane Pelzer
- Department of Biochemistry, Quartier UNIL-Epalinges, Epalinges, Switzerland
| | | |
Collapse
|
5
|
Vasilaki E, Papadimitriou E, Tajadura V, Ridley AJ, Stournaras C, Kardassis D. Transcriptional regulation of the small GTPase RhoB gene by TGFß‐induced signaling pathways. FASEB J 2009; 24:891-905. [DOI: 10.1096/fj.09-134742] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eleftheria Vasilaki
- Department of BiochemistrySchool of MedicineUniversity of CreteHeraklionGreece
| | - Elsa Papadimitriou
- Department of BiochemistrySchool of MedicineUniversity of CreteHeraklionGreece
| | - Virginia Tajadura
- Randall Division of Cell and Molecular BiophysicsGuy's CampusKing's College LondonLondonUK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular BiophysicsGuy's CampusKing's College LondonLondonUK
| | - Christos Stournaras
- Department of BiochemistrySchool of MedicineUniversity of CreteHeraklionGreece
| | - Dimitris Kardassis
- Department of BiochemistrySchool of MedicineUniversity of CreteHeraklionGreece
| |
Collapse
|
6
|
Nozyński J, Zakliczyński M, Konecka-Mrówka D, Zegleń S, Przybylski R, Zembala M, Lange D, Zembala-Nozyńska E, Mecik-Kronenberg T, Dabrówka K. Differences in antiapoptotic, proliferative activities and morphometry in dilated and ischemic cardiomyopathy: study of hearts explanted from transplant recipients. Transplant Proc 2009; 41:3171-8. [PMID: 19857704 DOI: 10.1016/j.transproceed.2009.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Antiapoptotic as well as replacement and proliferative mechanisms take place in the myocardium in dilated cardiomyopathy (DCM) and ischemic heart disease (IHD). We sought to estimate antiapoptotic, proliferative and replacement activities in cardiomyopathies. MATERIALS The study groups included seven hearts with DCM and eight with IHD, which had been explanted at the time of transplantation. The comparator group consisted of cases of myocardial hypertrophy and the control group, donor fragments. METHODS Antiapoptotic and proliferative responses were determined immunohistochemically as Bcl-2 and Ki67 expression by semiquantitative assessment of the intensity of staining. We also measured and statistically analyzed the integrative morphometric measurements of the fraction of fibrosis area, the nucleosarcoplasmic ratio, and cardiocyte diameter. RESULTS No Bcl-2 expression was observed in the controls. The strongest reaction was seen in the DCM group, then in the IHD, and in the comparator group of myocardial hypertrophy. Proliferative activity was seen only in endocardial and interstitial fibroblasts in DCM and IHD cases. The cardiocyte diameter showed no statistical association between myocardial hypertrophy and IHD, or IHD and DCM, whereas the nucleosarcoplasmic ratios were significantly different from control groups for all comparisons. Myocardial fibrosis showed the highest values in DCM and IHD. Discriminant analysis showed the value of interstitial fibrosis and cardiocyte diameter to categorize the analyzed groups. CONCLUSIONS Antiapoptotic Bcl-2 activity seemed to play an important role in cardiocyte preservation, while proliferative activity was resticted to interstitial connective tissue cells as a replacement process. Myocardial Bcl-2 expression, the extent of myocardial fibrosis, and cardiocyte diameter may serve as additional diagnostic tools to differentiate cardiomyopathies.
Collapse
Affiliation(s)
- J Nozyński
- Silesian Centre for Heart Diseases, 41-800 Zabrze, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tarakanova VL, Wold WSM. Adenovirus E1A and E1B-19K proteins protect human hepatoma cells from transforming growth factor beta1-induced apoptosis. Virus Res 2009; 147:67-76. [PMID: 19854227 DOI: 10.1016/j.virusres.2009.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 01/19/2023]
Abstract
Primary and some transformed hepatocytes undergo apoptosis in response to transforming growth factor beta1 (TGFbeta). We report that infection with species C human adenovirus conferred resistance to TGFbeta-induced apoptosis in human hepatocellular carcinoma cells (Huh-7). Protection against TGFbeta-mediated cell death in adenovirus-infected cells correlated with the maintenance of normal nuclear morphology, lack of pro-caspases 8 and 3 processing, maintenance of the mitochondrial membrane potential, and lack of cellular DNA degradation. The TGFbeta pro-apoptotic signaling pathway was blocked upstream of mitochondria in adenovirus-infected cells. Both the N-terminal sequences of the E1A proteins and the E1B-19K protein were necessary to protect infected cells against TGFbeta-induced apoptosis.
Collapse
Affiliation(s)
- Vera L Tarakanova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | | |
Collapse
|
8
|
Tsuchiya M, Sharma R, Tye CE, Sugiyama T, Bartlett JD. Transforming growth factor-beta1 expression is up-regulated in maturation-stage enamel organ and may induce ameloblast apoptosis. Eur J Oral Sci 2009; 117:105-12. [PMID: 19320718 DOI: 10.1111/j.1600-0722.2009.00612.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) regulates a variety of cellular responses that are dependent on the developmental stage and on the origins of the cell or the tissue. In mature tissues, and especially in tissues of epithelial origin, TGF-beta1 is generally considered to be a growth inhibitor that may also promote apoptosis. The ameloblast cells of the enamel organ epithelium are adjacent to and responsible for the developing enamel layer on unerupted teeth. Once the enamel layer reaches its full thickness, the tall columnar secretory-stage ameloblasts shorten, and a portion of these maturation-stage ameloblasts become apoptotic. Here we investigate whether TGF-beta1 plays a role in apoptosis of the maturation-stage ameloblasts. We demonstrate in vitro that ameloblast lineage cells are highly susceptible to TGF-beta1-mediated growth arrest and are prone to TGF-beta1-mediated cell death/apoptosis. We also demonstrate in vivo that TGF-beta1 is expressed in the maturation-stage enamel organ at significantly higher levels than in the earlier secretory-stage enamel organ. This increased expression of TGF-beta1 correlates with an increase in expression of the enamel organ immediate-early stress-response gene and with a decrease in the anti-apoptotic Bcl2 : Bax expression ratio. We conclude that TGF-beta1 may play an important role in ameloblast apoptosis during the maturation stage of enamel development.
Collapse
Affiliation(s)
- Masahiro Tsuchiya
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
9
|
Yoo KS, Nastiuk KL, Krolewski JJ. Transforming growth factor ß1 induces apoptosis by suppressing FLICE-like inhibitory protein in DU145 prostate epithelial cells. Int J Cancer 2009; 124:834-42. [DOI: 10.1002/ijc.24024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Sancho P, Bertran E, Caja L, Carmona-Cuenca I, Murillo MM, Fabregat I. The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-beta-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:253-63. [PMID: 18848961 DOI: 10.1016/j.bbamcr.2008.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/21/2008] [Accepted: 09/11/2008] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta (TGF-beta) induces apoptosis in hepatocytes, through a mechanism mediated by reactive oxygen species (ROS) production. Numerous tumoral cells develop mechanisms to escape from the TGF-beta-induced tumor suppressor effects. In this work we show that in FaO rat hepatoma cells inhibition of the epidermal growth factor receptor (EGFR) with the tyrphostin AG1478 enhances TGF-beta-induced cell death, coincident with an elevated increase in ROS production and GSH depletion. These events correlate with down-regulation of genes involved in the maintenance of redox homeostasis, such as gamma-GCS and MnSOD, and elevated mitochondrial ROS. Nonetheless, not all the ROS proceed from the mitochondria. Emerging evidences indicate that ROS production by TGF-beta is also mediated by the NADPH oxidase (NOX) system. TGF-beta-treated FaO cells induce nox1 expression. However, the treatment with TGF-beta and AG1478 greatly enhanced the expression of another family member: nox4. NOX1 and NOX4 targeted knock-down by siRNA experiments suggest that they play opposite roles, because NOX1 knockdown increases caspase-3 activity and cell death, whilst NOX4 knock-down attenuates the apoptotic process. This attenuation correlates with maintenance of GSH and antioxidant enzymes levels. In summary, EGFR inhibition enhances apoptosis induced by TGF-beta in FaO rat hepatoma cells through an increased oxidative stress coincident with a change in the expression pattern of NOX enzymes.
Collapse
Affiliation(s)
- Patricia Sancho
- Centre d'Oncologia Molecular (COM), IDIBELL-Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Jin MH, Hong CH, Lee HY, Kang HJ, Han SW. Enhanced TGF-β1 is involved in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced oxidative stress in C57BL/6 mouse testis. Toxicol Lett 2008; 178:202-9. [DOI: 10.1016/j.toxlet.2008.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 03/08/2008] [Accepted: 03/10/2008] [Indexed: 01/11/2023]
|
12
|
Nastiuk KL, Yoo K, Lo K, Su K, Yeung P, Kutaka J, Danielpour D, Krolewski JJ. FLICE-Like Inhibitory Protein Blocks Transforming Growth Factor β1–Induced Caspase Activation and Apoptosis in Prostate Epithelial Cells. Mol Cancer Res 2008; 6:231-42. [DOI: 10.1158/1541-7786.mcr-07-0386] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Quiroga AD, Alvarez MDL, Parody JP, Ronco MT, Francés DE, Pisani GB, Carnovale CE, Carrillo MC. Involvement of reactive oxygen species on the apoptotic mechanism induced by IFN-alpha2b in rat preneoplastic liver. Biochem Pharmacol 2007; 73:1776-85. [PMID: 17368426 DOI: 10.1016/j.bcp.2007.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 01/06/2023]
Abstract
Interferon-alpha2b (IFN-alpha2b) is an important component in the preventive treatment of patients who have severe hepatic illness such as hepatitis B or C and hepatocarcinomas. In a previous work, using a rat liver preneoplastic model, we have demonstrated that IFN-alpha2b reduces the number and volume of altered hepatic foci (AHF) inducing apoptosis through a mechanism mediated by TGF-beta(1). In this study, the implication of hepatocytes redox status of IFN-alpha2b-treated preneoplastic liver in the TGF-beta(1)-induced apoptotic death was analyzed. Results indicate that IFN-alpha2b induces hepatocytic TGF-beta(1) production and secretion by induction of reactive oxygen species (ROS) formation through the activation of a membrane bound NADPH oxidase complex. TGF-beta(1), in turn, reduces hepatocytes antioxidant defenses and induces programmed cell death. On the other hand, it was also demonstrated that treatment of rats with IFN-alpha2b plus a ROS scavenger such as ascorbic acid, abolishes the apoptotic effect of IFN-alpha2b in rat preneoplastic livers, leading to an increase of the foci volume. In conclusion, these findings strongly suggest that ROS have a fundamental role as signaling and/or regulator molecules in the IFN-alpha2b-induced apoptosis in hepatic preneoplastic cells.
Collapse
Affiliation(s)
- Ariel D Quiroga
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ge R, Rajeev V, Ray P, Lattime E, Rittling S, Medicherla S, Protter A, Murphy A, Chakravarty J, Dugar S, Schreiner G, Barnard N, Reiss M. Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo. Clin Cancer Res 2007; 12:4315-30. [PMID: 16857807 DOI: 10.1158/1078-0432.ccr-06-0162] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Transforming growth factor-beta (TGF-beta) suppresses tumor development by inhibiting cellular proliferation, inducing differentiation and apoptosis, and maintaining genomic integrity. However, once tumor cells escape from the tumor-suppressive effects of TGF-beta, they often constitutively overexpress and activate TGF-beta, which may promote tumor progression by enhancing invasion, metastasis, and angiogenesis and by suppressing antitumor immunity. The purpose of this study was to test this hypothesis using TGF-beta pathway antagonists. EXPERIMENTAL DESIGN We examined the effects of selective TGF-beta type I receptor kinase inhibitors, SD-093 and SD-208, on two murine mammary carcinoma cell lines (R3T and 4T1) in vitro and in vivo. RESULTS Both agents blocked TGF-beta-induced phosphorylation of the receptor-associated Smads, Smad2 and Smad3, in a dose-dependent manner, with IC50 between 20 and 80 nmol/L. TGF-beta failed to inhibit growth of these cell lines but stimulated epithelial-to-mesenchymal transdifferentiation, migration, and invasiveness into Matrigel in vitro. These effects were inhibited by SD-093, indicating that these processes are partly driven by TGF-beta. Treatment of syngeneic R3T or 4T1 tumor-bearing mice with orally given SD-208 inhibited primary tumor growth as well as the number and size of metastases. In contrast, SD-208 failed to inhibit R3T tumor growth or metastasis in athymic nude mice. Moreover, in vitro anti-4T1 cell cytotoxic T-cell responses of splenocytes from drug-treated animals were enhanced compared with cells from control animals. In addition, SD-208 treatment resulted in a decrease in tumor angiogenesis. CONCLUSION TGF-beta type I receptor kinase inhibitors hold promise as novel therapeutic agents for metastatic breast cancer.
Collapse
Affiliation(s)
- Rongrong Ge
- Department of Internal Medicine, The Cancer Institute of New Jersey, New Jersey 08903, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ramjaun AR, Tomlinson S, Eddaoudi A, Downward J. Upregulation of two BH3-only proteins, Bmf and Bim, during TGFβ-induced apoptosis. Oncogene 2006; 26:970-81. [PMID: 16909112 DOI: 10.1038/sj.onc.1209852] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor-beta (TGFbeta)-activated signalling pathways can lead to apoptosis, growth arrest or promotion of malignant behaviour, dependent on cellular context. The molecular mechanisms involved in TGFbeta-induced apoptosis remain controversial; although changes in gene expression are thought to be pivotal to the process, several different candidate apoptotic initiators and mediators have been proposed. Smad4, a critical component of the TGFbeta-induced transcriptional machinery, is shown here to be essential for induction of apoptosis. Gene expression analysis identified the proapoptotic Bcl-2 family members, Bmf and Bim, as induced by TGFbeta, dependent on both Smad4 and p38 function and the generation of reactive oxygen species. TGFbeta-induced Bmf and Bim localize to cellular membranes implicated in apoptosis. Inhibition of the TGFbeta-induced expression of both these proteins together provides significant protection of cells from apoptosis. The TGFbeta-triggered cell death programme thus involves induction of multiple BH3-only proteins during the induction of apoptosis.
Collapse
Affiliation(s)
- A R Ramjaun
- 1Signal Transduction, Cancer Research UK London Research Institute, London, UK
| | | | | | | |
Collapse
|
16
|
Gotzmann J, Fischer ANM, Zojer M, Mikula M, Proell V, Huber H, Jechlinger M, Waerner T, Weith A, Beug H, Mikulits W. A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene 2006; 25:3170-85. [PMID: 16607286 DOI: 10.1038/sj.onc.1209083] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polarized hepatocytes expressing hyperactive Ha-Ras adopt an invasive and metastatic phenotype in cooperation with transforming growth factor (TGF)-beta. This dramatic increase in malignancy is displayed by an epithelial to mesenchymal transition (EMT), which mimics the TGF-beta-mediated progression of human hepatocellular carcinomas. In culture, hepatocellular EMT occurs highly synchronously, facilitating the analysis of molecular events underlying the various stages of this process. Here, we show that in response to TGF-beta, phosphorylated Smads rapidly translocated into the nucleus and activated transcription of target genes such as E-cadherin repressors of the Snail superfamily, causing loss of cell adhesion. Within the TGF-beta superfamily of cytokines, TGF-beta1, -beta2 and -beta3 were specific for the induction of hepatocellular EMT. Expression profiling of EMT kinetics revealed 78 up- and 235 downregulated genes, which preferentially modulate metabolic activities, extracellular matrix composition, transcriptional activities and cell survival. Independent of the genetic background, platelet-derived growth factor (PDGF)-A ligand and both PDGF receptor subunits were highly elevated, together with autocrine secretion of bioactive PDGF. Interference with PDGF signalling by employing hepatocytes expressing the dominant-negative PDGF-alpha receptor revealed decreased TGF-beta-induced migration in vitro and efficient suppression of tumour growth in vivo. In conclusion, these results provide evidence for a crucial role of PDGF in TGF-beta-mediated tumour progression of hepatocytes and suggest PDGF as a target for therapeutic intervention in liver cancer.
Collapse
Affiliation(s)
- J Gotzmann
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Szeto CC, Chow KM, Lai KB, Szeto CYK, Kwan BCH, Li PKT. Connective Tissue Growth Factor Is Responsible for Transforming Growth Factor-Beta-Induced Peritoneal Mesothelial Cell Apoptosis. ACTA ACUST UNITED AC 2006; 103:e166-74. [PMID: 16636587 DOI: 10.1159/000092907] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 01/11/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Previous studies found that transforming growth factor-beta (TGF-beta) induces mesothelial production of connective tissue growth factor (CTGF), which may be downstream mediators of TGF-beta. Since high dose TGF-beta induces apoptosis of peritoneal mesothelial cells (PMC), we study the effect of CTGF blockade in the system of TGF-beta-induced PMC apoptosis. METHOD We examined the effect of TGF-W in primary culture of rat peritoneal mesothelial cells (PMC). PMC apoptosis was studied by flow cytometry. The effect of CTGF was blocked by antibody and short-interfering RNA (siRNA). Expression of apoptotic gene was studied by real-time polymerase chain reaction. RESULT In cultured unstimulated rat PMC, there is a low but definite incidence of spontaneous apoptosis. Stimulation with TGF-beta 50 pg/ml induces an upregulation of apoptotic gene BAX expression and a downregulation of anti-apoptotic gene BCL-2L expression, and a 4-fold increase in PMC apoptosis. The effect of TGF-beta-induced PMC apoptosis was partly prevented by antibody against CTGF, and completely abolished by CTGF-specific siRNA, while CTGF-blockade by siRNA had no effect on PMC necrosis. CTGF silencing by siRNA prevented the down-regulation of BCL-2L expression induced by TGF-beta, had no effect on the BAX expression. CONCLUSION Our results indicate that CTGF is an important downstream mediator of TGF-beta-induced PMC apoptosis.
Collapse
Affiliation(s)
- Cheuk-Chun Szeto
- Department of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
| | | | | | | | | | | |
Collapse
|
18
|
Ross MJ, Wosnitzer MS, Ross MD, Granelli B, Gusella GL, Husain M, Kaufman L, Vasievich M, D'Agati VD, Wilson PD, Klotman ME, Klotman PE. Role of Ubiquitin-Like Protein FAT10 in Epithelial Apoptosis in Renal Disease. J Am Soc Nephrol 2006; 17:996-1004. [PMID: 16495380 DOI: 10.1681/asn.2005070692] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dysregulated apoptosis of renal tubular epithelial cells (RTEC) is an important component of the pathogenesis of several renal diseases, including HIV-associated nephropathy (HIVAN), the most common cause of chronic kidney failure in HIV-infected patients. In HIVAN, RTEC become infected by HIV-1 in a focal distribution, and HIV-1 infection has been shown to induce apoptosis in vitro. In microarray studies that used a novel renal tubular epithelial cell line from a patient with HIVAN, it was found that the ubiquitin-like protein FAT10 is one of the most upregulated genes in HIV-infected cells. Previously, FAT10 was shown to induce apoptosis in murine fibroblasts. The expression of FAT10 in HIVAN and the ability of FAT10 to induce apoptosis in human RTEC therefore were studied. This study revealed that FAT10 expression is induced after infection of RTEC by HIV-1 and that expression of FAT10 induces apoptosis in RTEC in vitro. Moreover, it was found that inhibition of endogenous FAT10 expression abrogated HIV-induced apoptosis of RTEC. Immunohistochemical studies demonstrated increased FAT10 expression in a murine model of HIVAN, in HIVAN biopsy samples, and in autosomal dominant polycystic kidney disease, another renal disease that is characterized by cystic tubular enlargement and epithelial apoptosis. These results suggest a novel role for FAT10 in epithelial apoptosis, which is an important component of the pathogenesis of many renal diseases.
Collapse
Affiliation(s)
- Michael J Ross
- Mount Sinai School of Medicine, Division of Nephrology, Box 1243, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brecht K, Simonen M, Heim J. Upregulation of alpha globin promotes apoptotic cell death in the hematopoietic cell line FL5.12. Apoptosis 2005; 10:1043-62. [PMID: 16151639 DOI: 10.1007/s10495-005-0617-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The function of alpha globin in the context of oxygen transport in erythroid cells is well described. Recently the expression of alpha globin was shown to be upregulated upon specific apoptotic stimuli like cytokine deprivation or cisplatin treatment in the hematopoietic pro-B cell line, FL5.12. In contrast to alpha globin, beta globin or globin-like genes were expressed at a very low level or were not expressed at all. Further, we found that alpha globin was not associated with heme. Apoptotic cells neither produced hemoglobin nor displayed a phenotype of cells differentiating down the erythroid lineage. Also other cell lines of variable differentiation status (NIH3T3, HeLa, K562) upregulated alpha globin during treatment with apoptosis-inducing agents. Under IL-3-deprived conditions GFP-alpha globin accelerated the progression of apoptosis comparable to GFP-Bax. GFP-alpha globin was expressed at a low level and enrichment of FL5.12 cells expressing GFP-alpha globin was difficult even in the presence of IL-3. Caspase-8, -9 and -3 as well as the proapoptotic factor Bax and cytochrome c were activated. Antisense alpha globin downregulated the expression of endogenous alpha globin und reduced caspase activity. Taken together these data indicate that alpha globin is a new and crucial factor in apoptosis especially supporting the mitochondrial pathway.
Collapse
Affiliation(s)
- K Brecht
- Novartis Institutes for BioMedical Research Basel, CH-4002 Basel, Switzerland.
| | | | | |
Collapse
|
20
|
Cariello NF, Romach EH, Colton HM, Ni H, Yoon L, Falls JG, Casey W, Creech D, Anderson SP, Benavides GR, Hoivik DJ, Brown R, Miller RT. Gene expression profiling of the PPAR-alpha agonist ciprofibrate in the cynomolgus monkey liver. Toxicol Sci 2005; 88:250-64. [PMID: 16081524 DOI: 10.1093/toxsci/kfi273] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibrates, such as ciprofibrate, fenofibrate, and clofibrate, are peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists that have been in clinical use for many decades for treatment of dyslipidemia. When mice and rats are given PPARalpha agonists, these drugs cause hepatic peroxisome proliferation, hypertrophy, hyperplasia, and eventually hepatocarcinogenesis. Importantly, primates are relatively refractory to these effects; however, the mechanisms for the species differences are not clearly understood. Cynomolgus monkeys were exposed to ciprofibrate at various dose levels for either 4 or 15 days, and the liver transcriptional profiles were examined using Affymetrix human GeneChips. Strong upregulation of many genes relating to fatty acid metabolism and mitochondrial oxidative phosphorylation was observed; this reflects the known pharmacology and activity of the fibrates. In addition, (1) many genes related to ribosome and proteasome biosynthesis were upregulated, (2) a large number of genes downregulated were in the complement and coagulation cascades, (3) a number of key regulatory genes, including members of the JUN, MYC, and NFkappaB families were downregulated, which appears to be in contrast to the rodent, where JUN and MYC are reported to upregulated after PPARalpha agonist treatment, (4) no transcriptional signal for DNA damage or oxidative stress was observed, and (5) transcriptional signals consistent with an anti-proliferative and a pro-apoptotic effect were seen. We also compared the primate data to literature reports of hepatic transcriptional profiling in PPARalpha-treated rodents, which showed that the magnitude of induction in beta-oxidation pathways was substantially greater in the rodent than the primate.
Collapse
Affiliation(s)
- Neal F Cariello
- GlaxoSmithKline Inc., Safety Assessment, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 2005; 16:1987-2002. [PMID: 15689496 PMCID: PMC1073677 DOI: 10.1091/mbc.e04-08-0658] [Citation(s) in RCA: 447] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to normal tissue patterning and carcinoma invasiveness. We show that transforming growth factor (TGF)-beta/activin members, but not bone morphogenetic protein (BMP) members, can induce EMT in normal human and mouse epithelial cells. EMT correlates with the ability of these ligands to induce growth arrest. Ectopic expression of all type I receptors of the TGF-beta superfamily establishes that TGF-beta but not BMP pathways can elicit EMT. Ectopic Smad2 or Smad3 together with Smad4 enhanced, whereas dominant-negative forms of Smad2, Smad3, or Smad4, and wild-type inhibitory Smad7, blocked TGF-beta-induced EMT. Transcriptomic analysis of EMT kinetics identified novel TGF-beta target genes with ligand-specific responses. Using a TGF-beta type I receptor that cannot activate Smads nor induce EMT, we found that Smad signaling is critical for regulation of all tested gene targets during EMT. One such gene, Id2, whose expression is repressed by TGF-beta1 but induced by BMP-7 is critical for regulation of at least one important myoepithelial marker, alpha-smooth muscle actin, during EMT. Thus, based on ligand-specific responsiveness and evolutionary conservation of the gene expression patterns, we begin deciphering a genetic network downstream of TGF-beta and predict functional links to the control of cell proliferation and EMT.
Collapse
|
22
|
Bakin AV, Stourman NV, Sekhar KR, Rinehart C, Yan X, Meredith MJ, Arteaga CL, Freeman ML. Smad3-ATF3 signaling mediates TGF-beta suppression of genes encoding Phase II detoxifying proteins. Free Radic Biol Med 2005; 38:375-87. [PMID: 15629866 DOI: 10.1016/j.freeradbiomed.2004.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 10/20/2004] [Accepted: 10/25/2004] [Indexed: 11/30/2022]
Abstract
This study provides evidence that in mammary epithelial cells the pluripotent cytokine TGF-beta1 repressed expression of multiple genes involved in Phase II detoxification. GCLC, the gene that encodes the catalytic subunit of the enzyme glutamate cysteine ligase, the rate-limiting enzyme in the biosynthesis of glutathione, was used as a molecular surrogate for investigating the mechanisms by which TGF-beta suppressed Phase II gene expression. TGF-beta was found to suppress luciferase reporter activity mediated by the human GCLC proximal promoter, as well as reporter activity mediated by the GCLC antioxidant response element, ARE4. TGF-beta downregulated expression of endogenous GCLC mRNA and GCLC protein. TGF-beta suppression of the Phase II genes correlated with a decrease in cellular glutathione and an increase in cellular reactive oxygen species. Ectopic expression of constitutively active Smad3E was sufficient to inhibit both reporters in the absence of TGF-beta, whereas dominant negative Smad3A blocked TGF-beta suppression. Smad3E suppressed Nrf2-mediated activation of the GCLC reporter. We demonstrate that TGF-beta increased ATF3 protein levels, as did transient overexpression of Smad3E. Ectopic expression of ATF3 was sufficient to suppress the GCLC reporter activity, as well as endogenous GCLC expression. These results demonstrate that Smad3-ATF3 signaling mediates TGF-beta repression of ARE-dependent Phase II gene expression and potentially provide critical insight into mechanisms underlying TGF-beta1 function in carcinogenesis, tissue repair, and fibrosis.
Collapse
Affiliation(s)
- Andrei V Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Herrera B, Alvarez AM, Beltrán J, Valdés F, Fabregat I, Fernández M. Resistance to TGF-beta-induced apoptosis in regenerating hepatocytes. J Cell Physiol 2004; 201:385-92. [PMID: 15389556 DOI: 10.1002/jcp.20078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Treatment with transforming growth factor beta (TGF-beta) of hepatocytes from two different proliferative conditions, such as fetal development and adult liver regeneration, shows that regenerating cells respond to this cytokine in terms of growth inhibition, but are less sensitive than the fetal ones to the apoptosis induced by this factor. Regenerating TGF-beta treated cells show higher cell viability and lower percentage of apoptotic cells than the fetal treated ones. Furthermore, TGF-beta treated regenerating hepatocytes maintain a well-preserved parenchyma-like organization. Treatment with TGF-beta induces the loss of mitochondrial transmembrane potential in fetal but not in regenerating hepatocytes and activation of caspase-3 is lower in regenerating than in fetal cells. Regenerating hepatocytes show higher intracellular levels of some antiapoptotic proteins, such as Bcl-x(L) and c-IAP-1 and, interestingly, they present higher intracellular glutathione levels, which might provide of mechanisms to avoid potential dangerous effects of the oxidative stress-mediated apoptosis induced by TGF-beta. In fact, treatment with BSO (a glutathione synthesis inhibitor) restores the response of regenerating hepatocytes to TGF-beta in terms of cell death. In conclusion, increased levels of Bcl-x(L) and cIAP-1 and higher intracellular glutathione levels could confer resistance to the apoptosis induced by TGF-beta during liver regeneration.
Collapse
Affiliation(s)
- Blanca Herrera
- Departamento de Bioquímica y Biología Molecular, Instituto de Bioquímica, Centro Mixto CSIC/UCM, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Wanke I, Schwarz M, Buchmann A. Insulin and dexamethasone inhibit TGF-beta-induced apoptosis of hepatoma cells upstream of the caspase activation cascade. Toxicology 2004; 204:141-54. [PMID: 15388240 DOI: 10.1016/j.tox.2004.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 12/11/2022]
Abstract
Insulin and dexamethasone are potent inhibitors of apoptosis induced by transforming growth factor-beta1 (TGF-beta) in hepatoma cells. Using FTO-2B rat hepatoma cells, we determined whether the anti-apoptotic effects of these agents result from interference within or upstream of the TGF-beta-induced caspase cascade. Activation of different initiator and effector caspases, Bax and Bcl-xL expression, mitochondrial cytochrome c release and activation of PKB/Akt were analyzed by use of synthetic caspase substrates and Western blotting, respectively. TGF-beta-induced apoptosis was characterized by release of cytochrome c from mitochondria and activation of caspases-3, -7, -8 and -9. These effects were observable as early as 8-12 h after start of treatment and increased with time of observation. Inhibition of TGF-beta-induced apoptosis by insulin and dexamethasone was paralleled by a strong reduction of caspase-3-like activity. Caspase-8 activation was almost completely suppressed by these agents, and caspase-9 activity was decreased to levels within or slightly above unstimulated control cells. In addition, cytochrome c release from mitochondria was efficiently repressed, which was associated with upregulation of Bcl-xL by dexamethasone and activation of PKB/Akt by insulin. Thus, both anti-apoptotic compounds exert their inhibitory effects through modulation of anti-apoptotic signalling pathways involved in regulation of cytochrome c release and activation of the caspase machinery.
Collapse
Affiliation(s)
- Ines Wanke
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Wilhelmstr. 56, 72074 Tübingen, Germany
| | | | | |
Collapse
|
25
|
Chiba T, Yokosuka O, Arai M, Tada M, Fukai K, Imazeki F, Kato M, Seki N, Saisho H. Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells. J Hepatol 2004; 41:436-45. [PMID: 15336447 DOI: 10.1016/j.jhep.2004.05.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2003] [Revised: 04/19/2004] [Accepted: 05/27/2004] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS Epigenetics is the key factor in the regulation of gene expression. We conducted cDNA microarray analysis to screen for genes induced by histone deacetylase (HDAC) inhibition and examined epigenetic alterations. METHODS Microarray analysis was performed in six hepatoma cell lines and primary hepatocytes treated with trichostatin A (TSA). mRNA expression of several genes was examined by reverse transcription-polymerase chain reaction in TSA-treated cells and hepatoma samples. Acetylated histones and methylation status in 5'CpG islands was assessed by chromatin immunoprecipitation (ChIP) assay and bisulfite genomic sequencing, respectively. RESULTS Fifty-seven genes showed greater than 2-fold change after TSA treatment in multiple cell lines. Among them, four genes including p21(WAF1) exhibited substantial induction (greater than 5-fold changes). Decreased mRNA levels of these genes in hepatoma tissues were observed in more than half of patients. ChIP assay, in general, demonstrated a good correlation between mRNA expression and histone acetylation, but only a limited correlation with the methylated DNA in the promoter region. CONCLUSIONS We identified 57 up-regulated genes by TSA treatment in hepatoma cells and some of them appeared to be cancer-related genes in hepatomas. The alterations in acetylated histones are likely closely associated with gene expression.
Collapse
Affiliation(s)
- Tetsuhiro Chiba
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo Ward, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim KH, Park GT, Lim YB, Rue SW, Jung JC, Sonn JK, Bae YS, Park JW, Lee YS. Expression of connective tissue growth factor, a biomarker in senescence of human diploid fibroblasts, is up-regulated by a transforming growth factor-beta-mediated signaling pathway. Biochem Biophys Res Commun 2004; 318:819-25. [PMID: 15147944 DOI: 10.1016/j.bbrc.2004.04.108] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Indexed: 02/05/2023]
Abstract
Molecular changes associated with cellular senescence in human diploid fibroblasts (HDF), IMR-90, were analyzed by two-dimensional differential proteome analysis. A high percentage of replicative senescent cells were positive for senescence-associated beta-galactosidase activity, and displayed elevated levels of p21 and p53 proteins. Comparison of early population doubling level (PDL) versus replicative senescent cells among the 1000 spots resolved on gels revealed that the signal intensities of six spots were increased fivefold, whereas those of four spots were decreased. Proteome analysis data demonstrated that connective tissue growth factor (CTGF) is an age-associated protein. Up-regulation of CTGF expression in senescent cells was further confirmed by Western blotting and RT-PCR. We postulate that CTGF expression is controlled, in part, by transforming growth factor-beta (TGF-beta), in view of the high levels of TGF-beta isoforms as well as type I and II receptors detected only in late PDL of HDF cells. To verify this hypothesis, we stimulated early PDL cells with TGF-beta1 as well as stress inducing agents such as hydrogen peroxide. As expected, CTGF expression and Smad protein phosphorylation were dramatically increased up to observed levels in normal replicative senescent cells. In vivo experiments disclosed that CTGF, pSmad, and p53 were constitutively expressed at basal levels in up to 18-month-old rat liver, and expression was significantly up-regulated in 24-month-old rat tissue. However, expression patterns were not altered at all periods examined in livers of caloric-restricted rats. In view of both in vitro and in vivo data, we propose that the TGF-beta/Smad pathway functions in the induction of CTGF, a novel biomarker protein of cellular senescence in human fibroblasts.
Collapse
Affiliation(s)
- Kook-Hee Kim
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim BC, van Gelder H, Kim TA, Lee HJ, Baik KG, Chun HH, Lee DA, Choi KS, Kim SJ. Activin receptor-like kinase-7 induces apoptosis through activation of MAPKs in a Smad3-dependent mechanism in hepatoma cells. J Biol Chem 2004; 279:28458-65. [PMID: 15107418 DOI: 10.1074/jbc.m313277200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activin receptor-like kinase (ALK)7 is a type I serine/threonine kinase receptor of the transforming growth factor (TGF)-beta family of proteins that has similar properties to other type I receptors when activated. To see whether ALK7 can induce apoptosis as can some of the other ALK proteins, we infected the FaO rat hepatoma cell line with adenovirus expressing a constitutively active form of the ALK7. Cells infected with active ALK7 adenovirus showed an apoptotic-positive phenotype, as opposed to those that were infected with a control protein. DNA fragmentation assays and fluorescence-activated cell sorter analysis also indicated that ALK7 infection induced apoptosis in FaO cells. We also confirmed this finding in Hep3B human hepatoma cells by transiently transfecting the constitutively active form of ALK7, ALK7(T194D). Investigation into the downstream targets and mechanisms involved in ALK7-induced apoptosis revealed that the TGF-beta signaling intermediates, Smad2 and -3, were activated, as well as the MAPKs JNK and p38. In addition, caspase-3 and -9 were also activated, and cytochrome c release from the mitochondria was observed. Short interfering RNA-mediated inhibition of Smad3 markedly suppressed ALK7-induced caspase-3 activation. Treatment with protein synthesis inhibitors or the expression of the dominant-negative form of the stress-activated protein/extracellular signal-regulated kinase 1 abolished not only JNK activation but apoptosis as well. Taken together, these results suggest that ALK7 induces apoptosis through activation of the traditional TGF-beta pathway components, thus resulting in new gene transcription and JNK and p38 activation that initiates cross-talk with the cellular stress death pathway and ultimately leads to apoptosis.
Collapse
Affiliation(s)
- Byung-Chul Kim
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Herrera B, Murillo MM, Alvarez-Barrientos A, Beltrán J, Fernández M, Fabregat I. Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-beta in fetal rat hepatocytes. Free Radic Biol Med 2004; 36:16-26. [PMID: 14732287 DOI: 10.1016/j.freeradbiomed.2003.09.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 09/17/2003] [Accepted: 09/17/2003] [Indexed: 11/25/2022]
Abstract
Transforming growth factor-beta (TGF-beta) induces an oxidative stress process in hepatocytes that mediates its apoptotic activity. To determine the cellular source of the early reactive oxygen species (ROS) generated by fetal rat hepatocytes in response to TGF-beta, we used inhibitors that block different ROS-producing systems. Diphenyleneiodonium, which inhibits NADPH oxidase and other flavoproteins, completely blocked the increase in ROS induced by TGF-beta, coincidently with an impairment of caspase-3 activation and cell death. Rotenone, an inhibitor of the NADH dehydrogenase in mitochondrial complex I, attenuated, but did not completely inhibit, ROS-production, caspase activation, and cell death mediated by TGF-beta. No significant protection was observed with inhibitors of other ROS-producing systems, such as cytochrome P450 (metyrapone), cyclooxygenase (indomethacin), and xanthine oxidase (allopurinol). Additional experiments have indicated that two different mechanisms could be involved in the early ROS production by TGF-beta. First, an inducible (cycloheximide-inhibited) NADPH oxidase-like system could account for the extramitochondrial production of ROS. Second, TGF-beta could increase ROS by a rapid downregulation of antioxidant genes. In particular, intramitochondrial ROS would increase by depletion of MnSOD. Finally, glutathione depletion is a late event and it would be more the consequence than the cause of the increase in ROS induced by TGF-beta.
Collapse
Affiliation(s)
- Blanca Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Roberts R, Cain K, Coyle B, Freathy C, Leonard JF, Gautier JC. Early Drug Safety Evaluation: Biomarkers, Signatures, and Fingerprints. Drug Metab Rev 2003; 35:269-75. [PMID: 14705860 DOI: 10.1081/dmr-120026395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
When target organ toxicity arises in animal models during routine drug safety evaluation, it raises several key questions: Is this target organ toxicity related to the pharmacology? What is the mode of action (MOA)? Is the target organ toxicity relevant to humans? Pathology or prior knowledge of the compound class may provide clues on a possible MOA for toxicity. However, if this deductive approach yields no results, the inductive approach offered by new technologies can generate novel research leads. For example, toxicogenomics can generate a gene expression profile of the toxicity that can be compared with reference compounds or with other candidate drugs. Similarly, proteomic analysis of the protein profile at the toxic vs. the efficacious dose can provide clues on MOA for the toxicity and may allow differentiation of the pathways of the toxic response from those required for pharmacological activity.
Collapse
Affiliation(s)
- Ruth Roberts
- Aventis Pharma, Drug Safety Evaluation, Centre de Recherche de Paris, Paris, France.
| | | | | | | | | | | |
Collapse
|
30
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2447368 DOI: 10.1002/cfg.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|