1
|
Li J, Duan R, Traore ES, Nguyen RC, Davis I, Griffth WP, Goodwin DC, Jarzecki AA, Liu A. Indole N-Linked Hydroperoxyl Adduct of Protein-Derived Cofactor Modulating Catalase-Peroxidase Functions. Angew Chem Int Ed Engl 2024:e202407018. [PMID: 39300819 DOI: 10.1002/anie.202407018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Bifunctional catalase-peroxidase (KatG) features a posttranslational methionine-tyrosine-tryptophan (MYW) crosslinked cofactor crucial for its catalase function, enabling pathogens to neutralize hydrogen peroxide during infection. We discovered the presence of indole nitrogen-linked hydroperoxyl adduct (MYW-OOH) in Mycobacterium tuberculosis KatG in the solution state under ambient conditions, suggesting its natural occurrence. By isolating predominantly MYW-OOH-containing KatG protein, we investigated the chemical stability and functional impact of MYW-OOH. We discovered that MYW-OOH inhibits catalase activity, presenting a unique temporary lock. Exposure to peroxide or increased temperature removes the hydroperoxyl adduct from the protein cofactor, converting MYW-OOH to MYW and restoring the detoxifying ability of the enzyme against hydrogen peroxide. Thus, the N-linked hydroperoxyl group is releasable. KatG with MYW-OOH represents a catalase dormant, but primed, state of the enzyme. These findings provide insight into chemical strategies targeting the bifunctional enzyme KatG in pathogens, highlighting the role of N-linked hydroperoxyl modifications in enzymatic function.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ran Duan
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ephrahime S Traore
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Romie C Nguyen
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Wendell P Griffth
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Andrzej A Jarzecki
- Department of Chemistry and Biochemistry, Brooklyn College, New York, NY 11210, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Tastan Bishop Ö, Mutemi Musyoka T, Barozi V. Allostery and missense mutations as intermittently linked promising aspects of modern computational drug discovery. J Mol Biol 2022; 434:167610. [DOI: 10.1016/j.jmb.2022.167610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
|
3
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
4
|
Munir A, Wilson MT, Hardwick SW, Chirgadze DY, Worrall JAR, Blundell TL, Chaplin AK. Using cryo-EM to understand antimycobacterial resistance in the catalase-peroxidase (KatG) from Mycobacterium tuberculosis. Structure 2021; 29:899-912.e4. [PMID: 33444527 PMCID: PMC8355310 DOI: 10.1016/j.str.2020.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Resolution advances in cryoelectron microscopy (cryo-EM) now offer the possibility to visualize structural effects of naturally occurring resistance mutations in proteins and also of understanding the binding mechanisms of small drug molecules. In Mycobacterium tuberculosis the multifunctional heme enzyme KatG is indispensable for activation of isoniazid (INH), a first-line pro-drug for treatment of tuberculosis. We present a cryo-EM methodology for structural and functional characterization of KatG and INH resistance variants. The cryo-EM structure of the 161 kDa KatG dimer in the presence of INH is reported to 2.7 Å resolution allowing the observation of potential INH binding sites. In addition, cryo-EM structures of two INH resistance variants, identified from clinical isolates, W107R and T275P, are reported. In combination with electronic absorbance spectroscopy our cryo-EM approach reveals how these resistance variants cause disorder in the heme environment preventing heme uptake and retention, providing insight into INH resistance. A cryo-EM structure to 2.7 Å resolution of M. tuberculosis KatG with isoniazid Cryo-EM is able to visualize multiple dynamic binding modes of isoniazid to KatG Structural disorder in isoniazid resistance mutations is observed Structural disorder of the resistance mutations results in the lack of heme retention
Collapse
Affiliation(s)
- Asma Munir
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Dimitri Y Chirgadze
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
5
|
Laborde J, Deraeve C, Bernardes-Génisson V. Update of Antitubercular Prodrugs from a Molecular Perspective: Mechanisms of Action, Bioactivation Pathways, and Associated Resistance. ChemMedChem 2017; 12:1657-1676. [DOI: 10.1002/cmdc.201700424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Julie Laborde
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Céline Deraeve
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Vania Bernardes-Génisson
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| |
Collapse
|
6
|
Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, Goodwin DC. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme. J Biol Chem 2017; 292:18408-18421. [PMID: 28972181 DOI: 10.1074/jbc.m117.791202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H2O2-induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H2O2 to O2 and H2O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H2O2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting (i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H2O2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates.
Collapse
Affiliation(s)
- Olive J Njuma
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Ian Davis
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and.,the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Elizabeth N Ndontsa
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Jessica R Krewall
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Aimin Liu
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and
| | - Douglas C Goodwin
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312,
| |
Collapse
|
7
|
Gasselhuber B, Graf MMH, Jakopitsch C, Zamocky M, Nicolussi A, Furtmüller PG, Oostenbrink C, Carpena X, Obinger C. Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase. Biochemistry 2016; 55:3528-41. [PMID: 27293030 PMCID: PMC4928148 DOI: 10.1021/acs.biochem.6b00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Catalase-peroxidases
(KatGs) are unique bifunctional heme peroxidases
with an additional posttranslationally formed redox-active Met-Tyr-Trp
cofactor that is essential for catalase activity. On the basis of
studies of bacterial KatGs, controversial mechanisms of hydrogen peroxide
oxidation were proposed. The recent discovery of eukaryotic KatGs
with differing pH optima of catalase activity now allows us to scrutinize
those postulated reaction mechanisms. In our study, secreted KatG
from the fungus Magnaporthe grisea (MagKatG2) was used to analyze the role of a remote KatG-typical mobile
arginine that was shown to interact with the Met-Tyr-Trp adduct in
a pH-dependent manner in bacterial KatGs. Here we present crystal
structures of MagKatG2 at pH 3.0, 5.5, and 7.0 and
investigate the mobility of Arg461 by molecular dynamics simulation.
Data suggest that at pH ≥4.5 Arg461 mostly interacts with the
deprotonated adduct Tyr. Elimination of Arg461 by mutation to Ala
slightly increases the thermal stability but does not alter the active
site architecture or the kinetics of cyanide binding. However, the
variant Arg461Ala lost the wild-type-typical optimum of catalase activity
at pH 5.25 (kcat = 6450 s–1) but exhibits a broad plateau between pH 4.5 and 7.5 (kcat = 270 s–1 at pH 5.5). Moreover,
significant differences in the kinetics of interconversion of redox
intermediates of wild-type and mutant protein mixed with either peroxyacetic
acid or hydrogen peroxide are observed. These findings together with
published data from bacterial KatGs allow us to propose a role of
Arg461 in the H2O2 oxidation reaction of KatG.
Collapse
Affiliation(s)
- Bernhard Gasselhuber
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Michael M H Graf
- Department of Material Sciences and Process Engineering, Institute for Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Christa Jakopitsch
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Marcel Zamocky
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria.,Institute of Molecular Biology, Slovak Academy of Sciences , Dubravska cesta 21, SK-84551 Bratislava, Slovakia
| | - Andrea Nicolussi
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute for Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Xavi Carpena
- Institut de Biologia Molecular (IBMB-CSIC) , Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
8
|
Gasselhuber B, Carpena X, Graf MMH, Pirker KF, Nicolussi A, Sündermann A, Hofbauer S, Zamocky M, Furtmüller PG, Jakopitsch C, Oostenbrink C, Fita I, Obinger C. Eukaryotic Catalase-Peroxidase: The Role of the Trp-Tyr-Met Adduct in Protein Stability, Substrate Accessibility, and Catalysis of Hydrogen Peroxide Dismutation. Biochemistry 2015; 54:5425-38. [DOI: 10.1021/acs.biochem.5b00831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bernhard Gasselhuber
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Xavi Carpena
- Institut de Biologia Molecular (IBMB-CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Michael M. H. Graf
- Department
of Material Sciences and Process Engineering, Institute for Molecular
Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina F. Pirker
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrea Nicolussi
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Axel Sündermann
- Department
of Material Sciences and Process Engineering, Institute for Molecular
Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Biocenter 5, A-1030 Vienna, Austria
| | - Marcel Zamocky
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Institute
of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta
21, SK-84551 Bratislava, Slovakia
| | - Paul G. Furtmüller
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christa Jakopitsch
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Department
of Material Sciences and Process Engineering, Institute for Molecular
Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ignacio Fita
- Institut de Biologia Molecular (IBMB-CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Christian Obinger
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
9
|
Kruft BI, Magliozzo RS, Jarzęcki AA. Density Functional Theory Insights into the Role of the Methionine–Tyrosine–Tryptophan Adduct Radical in the KatG Catalase Reaction: O2 Release from the Oxyheme Intermediate. J Phys Chem A 2015; 119:6850-66. [DOI: 10.1021/jp511358p] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bonnie I. Kruft
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- The Graduate Center, City University of New York, Brooklyn, New York 10016, United States
| | - Richard S. Magliozzo
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- The Graduate Center, City University of New York, Brooklyn, New York 10016, United States
| | - Andrzej A. Jarzęcki
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- The Graduate Center, City University of New York, Brooklyn, New York 10016, United States
| |
Collapse
|
10
|
Kudalkar SN, Njuma OJ, Li Y, Muldowney M, Fuanta NR, Goodwin DC. A role for catalase-peroxidase large loop 2 revealed by deletion mutagenesis: control of active site water and ferric enzyme reactivity. Biochemistry 2015; 54:1648-62. [PMID: 25674665 DOI: 10.1021/bi501221a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalase-peroxidases (KatGs), the only catalase-active members of their superfamily, all possess a 35-residue interhelical loop called large loop 2 (LL2). It is essential for catalase activity, but little is known about its contribution to KatG function. LL2 shows weak sequence conservation; however, its length is nearly identical across KatGs, and its apex invariably makes contact with the KatG-unique C-terminal domain. We used site-directed and deletion mutagenesis to interrogate the role of LL2 and its interaction with the C-terminal domain in KatG structure and catalysis. Single and double substitutions of the LL2 apex had little impact on the active site heme [by magnetic circular dichroism or electron paramagnetic resonance (EPR)] and activity (catalase or peroxidase). Conversely, deletion of a single amino acid from the LL2 apex reduced catalase activity by 80%. Deletion of two or more apex amino acids or all of LL2 diminished catalase activity by 300-fold. Peroxide-dependent but not electron donor-dependent kcat/KM values for deletion variant peroxidase activity were reduced 20-200-fold, and kon for cyanide binding diminished by 3 orders of magnitude. EPR spectra for deletion variants were all consistent with an increase in the level of pentacoordinate high-spin heme at the expense of hexacoordinate high-spin states. Together, these data suggest a shift in the distribution of active site waters, altering the reactivity of the ferric state, toward, among other things, compound I formation. These results identify the importance of LL2 length conservation for maintaining an intersubunit interaction that is essential for an active site water distribution that facilitates KatG catalytic activity.
Collapse
Affiliation(s)
- Shalley N Kudalkar
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849-5312, United States
| | | | | | | | | | | |
Collapse
|
11
|
Teixeira VH, Ventura C, Leitão R, Ràfols C, Bosch E, Martins F, Machuqueiro M. Molecular Details of INH-C10 Binding to wt KatG and Its S315T Mutant. Mol Pharm 2015; 12:898-909. [DOI: 10.1021/mp500736n] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vitor H. Teixeira
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Cristina Ventura
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Instituto Superior de Educação e Ciências, Alameda das Linhas de Torres 179, 1750 Lisboa, Portugal
| | - Ruben Leitão
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Área
Departamental de Engenharia Química, Instituto Superior de
Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro
Emídio Navarro, 1, 1959-007 Lisboa, Portugal
| | - Clara Ràfols
- Departament
de Química Analítica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Elisabeth Bosch
- Departament
de Química Analítica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Filomena Martins
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
12
|
Zámocký M, Gasselhuber B, Furtmüller PG, Obinger C. Turning points in the evolution of peroxidase-catalase superfamily: molecular phylogeny of hybrid heme peroxidases. Cell Mol Life Sci 2014; 71:4681-96. [PMID: 24846396 PMCID: PMC4232752 DOI: 10.1007/s00018-014-1643-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/27/2022]
Abstract
Heme peroxidases and catalases are key enzymes of hydrogen peroxide metabolism and signaling. Here, the reconstruction of the molecular evolution of the peroxidase-catalase superfamily (annotated in pfam as PF00141) based on experimentally verified as well as numerous newly available genomic sequences is presented. The robust phylogenetic tree of this large enzyme superfamily was obtained from 490 full-length protein sequences. Besides already well-known families of heme b peroxidases arranged in three main structural classes, completely new (hybrid type) peroxidase families are described being located at the border of these classes as well as forming (so far missing) links between them. Hybrid-type A peroxidases represent a minor eukaryotic subfamily from Excavates, Stramenopiles and Rhizaria sharing enzymatic and structural features of ascorbate and cytochrome c peroxidases. Hybrid-type B peroxidases are shown to be spread exclusively among various fungi and evolved in parallel with peroxidases in land plants. In some ascomycetous hybrid-type B peroxidases, the peroxidase domain is fused to a carbohydrate binding (WSC) domain. Both here described hybrid-type peroxidase families represent important turning points in the complex evolution of the whole peroxidase-catalase superfamily. We present and discuss their phylogeny, sequence signatures and putative biological function.
Collapse
Affiliation(s)
- Marcel Zámocký
- Division of Biochemistry, Department of Chemistry, VIBT, Vienna Institute of BioTechnology, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria,
| | | | | | | |
Collapse
|
13
|
Zhao X, Hersleth HP, Zhu J, Andersson KK, Magliozzo RS. Access channel residues Ser315 and Asp137 in Mycobacterium tuberculosis catalase-peroxidase (KatG) control peroxidatic activation of the pro-drug isoniazid. Chem Commun (Camb) 2014; 49:11650-2. [PMID: 24185282 DOI: 10.1039/c3cc47022a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peroxidatic activation of the anti-tuberculosis pro-drug isoniazid by Mycobacterium tuberculosis catalase-peroxidase (KatG) is regulated by gating residues of a heme access channel. The steric restriction at the bottleneck of this channel is alleviated by replacement of residue Asp137 with Ser, according to crystallographic and kinetic studies.
Collapse
Affiliation(s)
- Xiangbo Zhao
- Department of Chemistry, Brooklyn College and The Graduate Center of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | | | | | | | | |
Collapse
|
14
|
Njuma OJ, Ndontsa EN, Goodwin DC. Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG. Arch Biochem Biophys 2013; 544:27-39. [PMID: 24280274 DOI: 10.1016/j.abb.2013.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/11/2013] [Accepted: 11/15/2013] [Indexed: 11/26/2022]
Abstract
Catalase-peroxidase (KatG) is found in eubacteria, archaea, and lower eukaryotae. The enzyme from Mycobacterium tuberculosis has received the greatest attention because of its role in activation of the antitubercular pro-drug isoniazid, and the high frequency with which drug resistance stems from mutations to the katG gene. Generally, the catalase activity of KatGs is striking. It rivals that of typical catalases, enzymes with which KatGs share no structural similarity. Instead, catalatic turnover is accomplished with an active site that bears a strong resemblance to a typical peroxidase (e.g., cytochrome c peroxidase). Yet, KatG is the only member of its superfamily with such capability. It does so using two mutually dependent cofactors: a heme and an entirely unique Met-Tyr-Trp (MYW) covalent adduct. Heme is required to generate the MYW cofactor. The MYW cofactor allows KatG to leverage heme intermediates toward a unique mechanism for H2O2 oxidation. This review evaluates the range of intermediates identified and their connection to the diverse catalytic processes KatG facilitates, including mechanisms of isoniazid activation.
Collapse
Affiliation(s)
- Olive J Njuma
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Elizabeth N Ndontsa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
15
|
Abstract
Methylamine dehydrogenase (MADH) requires the cofactor tryptophan tryptophylquinone (TTQ) for activity. TTQ is a posttranslational modification that results from an 8-electron oxidation of two specific tryptophans in the MADH β-subunit. The final 6-electron oxidation is catalyzed by an unusual c-type di-heme enzyme, MauG. The di-ferric enzyme can react with H(2)O(2), but atypically for c-type hemes the di-ferrous enzyme can react with O(2) as well. In both cases, an unprecedented bis-Fe(IV) redox state is formed, composed of a ferryl heme (Fe(IV)=O) with the second heme as Fe(IV) stabilized by His-Tyr axial ligation. Bis-Fe(IV) MauG acts as a potent 2-electron oxidant. Catalysis is long-range and requires a hole hopping electron transfer mechanism. This review highlights the current knowledge and focus of research into this fascinating system.
Collapse
Affiliation(s)
- Carrie M Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
16
|
Wang Y, Goodwin DC. Integral role of the I'-helix in the function of the "inactive" C-terminal domain of catalase-peroxidase (KatG). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:362-71. [PMID: 23084782 DOI: 10.1016/j.bbapap.2012.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 11/19/2022]
Abstract
Catalase-peroxidases (KatGs) have two peroxidase-like domains. The N-terminal domain contains the heme-dependent, bifunctional active site. Though the C-terminal domain lacks the ability to bind heme or directly catalyze any reaction, it has been proposed to serve as a platform to direct the folding of the N-terminal domain. Toward such a purpose, its I'-helix is highly conserved and appears at the interface between the two domains. Single and multiple substitution variants targeting highly conserved residues of the I'-helix were generated for intact KatG as well as the stand-alone C-terminal domain (KatG(C)). Single variants of intact KatG produced only subtle variations in spectroscopic and catalytic properties of the enzyme. However, the double and quadruple variants showed substantial increases in hexa-coordinate low-spin heme and diminished enzyme activity, similar to that observed for the N-terminal domain on its own (KatG(N)). The analogous variants of KatG(C) showed a much more profound loss of function as evaluated by their ability to return KatG(N) to its active conformation. All of the single variants showed a substantial decrease in the rate and extent of KatG(N) reactivation, but with two substitutions, KatG(C) completely lost its capacity for the reactivation of KatG(N). These results suggest that the I'-helix is central to direct structural adjustments in the adjacent N-terminal domain and supports the hypothesis that the C-terminal domain serves as a platform to direct N-terminal domain conformation and bifunctionality.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | | |
Collapse
|
17
|
Ndontsa EN, Moore RL, Goodwin DC. Stimulation of KatG catalase activity by peroxidatic electron donors. Arch Biochem Biophys 2012; 525:215-22. [DOI: 10.1016/j.abb.2012.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
18
|
Zhao X, Khajo A, Jarrett S, Suarez J, Levitsky Y, Burger RM, Jarzecki AA, Magliozzo RS. Specific function of the Met-Tyr-Trp adduct radical and residues Arg-418 and Asp-137 in the atypical catalase reaction of catalase-peroxidase KatG. J Biol Chem 2012; 287:37057-65. [PMID: 22918833 DOI: 10.1074/jbc.m112.401208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H(2)O(2), the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H(2)O(2) consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction.
Collapse
Affiliation(s)
- Xiangbo Zhao
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Enhancing the peroxidatic activity of KatG by deletion mutagenesis. J Inorg Biochem 2012; 116:106-15. [PMID: 23018273 DOI: 10.1016/j.jinorgbio.2012.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
Catalase-peroxidase (KatG) enzymes use a peroxidase active site to facilitate robust catalase activity, an ability all other members of its superfamily lack. KatG's have a Met-Tyr-Trp covalent adduct that is essential for catalatic but not peroxidatic turnover. The tyrosine (Y226 in E. coli KatG) is supplied by a large loop (LL1) that is absent from all other plant peroxidases. Elimination of Y226 from the KatG structure, either by site directed mutagenesis (i.e., Y226F KatG) or by deletion of larger portions of LL1 invariably eliminates catalase activity, but deletion variants were substantially more active as peroxidases, up to an order of magnitude. Moreover, the deletion variants were more resistant to H(2)O(2)-dependent inactivation than Y226F KatG. Stopped-flow evaluation of reactions of H(2)O(2) with Y226F KatG and the most peroxidase active deletion variant (KatG[Δ209-228]) produced highly similar rate constants for formation of compounds I and II, and about a four-fold faster formation of compound III for the deletion variant as opposed to Y226F. Conversely, single turnover experiments showed a 60-fold slower return of Y226F KatG to its ferric state in the presence of the exogenous electron donor 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) than was determined for KatG(Δ209-228). Our data suggest that the peroxidatic output of KatG cannot be optimized simply by elimination of catalase activity alone, but also requires modifications that increase electron transfer between exogenous electron donors and the heme prosthetic group.
Collapse
|
20
|
Zámocký M, Droghetti E, Bellei M, Gasselhuber B, Pabst M, Furtmüller PG, Battistuzzi G, Smulevich G, Obinger C. Eukaryotic extracellular catalase-peroxidase from Magnaporthe grisea - Biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group. Biochimie 2012; 94:673-83. [PMID: 21971530 PMCID: PMC3317519 DOI: 10.1016/j.biochi.2011.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/21/2011] [Indexed: 12/04/2022]
Abstract
All phytopathogenic fungi have two catalase-peroxidase paralogues located either intracellularly (KatG1) or extracellularly (KatG2). Here, for the first time a secreted bifunctional, homodimeric catalase-peroxidase (KatG2 from the rice blast fungus Magnaporthe grisea) has been produced heterologously with almost 100% heme occupancy and comprehensively investigated by using a broad set of methods including UV-Vis, ECD and resonance Raman spectroscopy (RR), thin-layer spectroelectrochemistry, mass spectrometry, steady-state & presteady-state spectroscopy. RR spectroscopy reveals that MagKatG2 shows a unique mixed-spin state, non-planar heme b, and a proximal histidine with pronounced imidazolate character. At pH 7.0 and 25 °C, the standard reduction potential E°' of the Fe(III)/Fe(II) couple for the high-spin native protein was found to fall in the range typical for the KatG family. Binding of cyanide was relatively slow at pH 7.0 and 25 °C and with a K(d) value significantly higher than for the intracellular counterpart. Demonstrated by mass spectrometry MagKatG2 has the typical Trp118-Tyr251-Met277 adduct that is essential for its predominantly catalase activity at the unique acidic pH optimum. In addition, MagKatG2 acts as a versatile peroxidase using both one- and two-electron donors. Based on these data, structure-function relationships of extracellular eukaryotic KatGs are discussed with respect to intracellular KatGs and possible role(s) in host-pathogen interaction.
Collapse
Key Words
- extracellular catalase–peroxidase
- peroxidases–catalase superfamily
- phytopathogen
- oxidative stress
- resonance raman spectroscopy
- reduction potential
- 5c, five-coordinated
- 6c, six-coordinated
- apx, ascorbate peroxidase
- arp, arthromyces ramosus peroxidase
- bp1, barley peroxidase type 1
- cai, codon adaptation index
- caps, 3-(cyclohexylamino)propane-1-sulfonic acid
- ccd, charge-coupled device
- ccp, cytochrome c peroxidase
- cip, coprinus cinereus peroxidase
- ct, charge transfer
- l-dopa, 3,4-dihydroxy-l-phenylalanine
- e°′, reduction potential, referred to the standard hydrogen electrode, measured at ph 7.0
- ecd, electronic cd
- esi, electrospray ionization
- ha, hydroxyapatite
- hgt, horizontal gene transfer
- hrp, horseradish peroxidase
- hs, high-spin
- katg, catalase–peroxidase
- iptg, isopropyl-β-thiogalactopyranoside
- katg1, intracellular eukaryotic catalase–peroxidase
- katg2, extracellular eukaryotic catalase–peroxidase
- lc, liquid chromatography
- lip, lignin peroxidase
- ls, low-spin
- magkatg2, catalase–peroxidase from magnaporthe grisea
- mcac, metal chelate affinity chromatography
- mcd, monochlorodimedone
- mops, 4-morpholinepropane sulfonic acid
- mnp, manganese peroxidase
- nj, neighbor-joining method
- ottle, optically transparent thin-layer electrochemistry
- qs, quantum mixed-spin
- rr, resonance raman
- rt-pcr, reverse-transcription pcr
- sbp, soybean peroxidase
- she, standard hydrogen electrode
Collapse
Affiliation(s)
- Marcel Zámocký
- Division of Biochemistry, Department of Chemistry, Vienna Institute of Biotechnology at BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alfonso-Prieto M, Oberhofer H, Klein ML, Rovira C, Blumberger J. Proton Transfer Drives Protein Radical Formation in Helicobacter pylori Catalase but Not in Penicillium vitale Catalase. J Am Chem Soc 2011; 133:4285-98. [DOI: 10.1021/ja1110706] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Alfonso-Prieto
- Computer Simulation & Modeling Laboratory, Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Computational Molecular Science, Temple University, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - H. Oberhofer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M. L. Klein
- Institute for Computational Molecular Science, Temple University, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - C. Rovira
- Computer Simulation & Modeling Laboratory, Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - J. Blumberger
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
22
|
Zhao X, Suarez J, Khajo A, Yu S, Metlitsky L, Magliozzo RS. A radical on the Met-Tyr-Trp modification required for catalase activity in catalase-peroxidase is established by isotopic labeling and site-directed mutagenesis. J Am Chem Soc 2010; 132:8268-9. [PMID: 20507091 DOI: 10.1021/ja103311e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transient tyrosyl-like radical with a narrow doublet X-band EPR signal is present during catalase turnover by Mycobacterium tuberculosis catalase-peroxidase (KatG). Labeling of KatG with beta-methylene-deuterated tyrosine causes a collapse of the doublet to a singlet, while for 3,5-ring-deuterated tyrosine-labeled enzyme, no changes occur in the EPR signal. Except for the replacement Tyr229Phe, all other single-tyrosine mutants of KatG exhibit the same narrow doublet EPR signal and catalase activity similar to that of the wild-type enzyme. These findings confirm that this catalytically competent radical is associated with Tyr229, whose 3' and 5' protons are replaced as a result of cross-links with neighboring Met255 and Trp107 side chains in the post-translationally modified enzyme containing a distal-side Met255-Tyr229-Trp107 adduct.
Collapse
Affiliation(s)
- Xiangbo Zhao
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, USA
| | | | | | | | | | | |
Collapse
|
23
|
Vlasits J, Jakopitsch C, Bernroitner M, Zamocky M, Furtmüller PG, Obinger C. Mechanisms of catalase activity of heme peroxidases. Arch Biochem Biophys 2010; 500:74-81. [DOI: 10.1016/j.abb.2010.04.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 11/15/2022]
|
24
|
Disruption of the H-bond network in the main access channel of catalase–peroxidase modulates enthalpy and entropy of Fe(III) reduction. J Inorg Biochem 2010; 104:648-56. [DOI: 10.1016/j.jinorgbio.2010.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/15/2010] [Accepted: 02/23/2010] [Indexed: 01/06/2023]
|
25
|
Cade CE, Dlouhy AC, Medzihradszky KF, Salas-Castillo SP, Ghiladi RA. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities. Protein Sci 2010; 19:458-74. [PMID: 20054829 DOI: 10.1002/pro.324] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mycobacterium tuberculosis catalase-peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro-drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD(+)/NADH forming an isoniazid-NADH adduct that ultimately confers anti-tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG-derived INH-resistance, we have compared the catalytic properties (including the ability to form the INH-NADH adduct) of the wild-type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met-Tyr-Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance-conferring mutants were then assayed for their ability to generate the INH-NADH adduct in the presence of peroxide (t-BuOOH and H(2)O(2)), superoxide, and no exogenous oxidant (air-only background control). The results demonstrate that residue location plays a critical role in determining INH-resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant-specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH-resistance that is not correlated with the formation of the INH-NADH adduct.
Collapse
Affiliation(s)
- Christine E Cade
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | | | | | | | | |
Collapse
|
26
|
Probing hydrogen peroxide oxidation kinetics of wild-type Synechocystis catalase-peroxidase (KatG) and selected variants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:799-805. [DOI: 10.1016/j.bbapap.2009.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/02/2009] [Accepted: 12/08/2009] [Indexed: 11/21/2022]
|
27
|
Pipirou Z, Guallar V, Basran J, Metcalfe CL, Murphy EJ, Bottrill AR, Mistry SC, Raven EL. Peroxide-Dependent Formation of a Covalent Link between Trp51 and the Heme in Cytochrome c Peroxidase. Biochemistry 2009; 48:3593-9. [DOI: 10.1021/bi802210g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoi Pipirou
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Victor Guallar
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Jaswir Basran
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Clive L. Metcalfe
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Emma J. Murphy
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Andrew R. Bottrill
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Sharad C. Mistry
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Emma Lloyd Raven
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| |
Collapse
|
28
|
Mechanistic insight into the initiation step of the reaction of Burkholderia pseudomallei catalase-peroxidase with peroxyacetic acid. J Biol Inorg Chem 2009; 14:801-11. [PMID: 19290552 DOI: 10.1007/s00775-009-0493-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 03/01/2009] [Indexed: 10/21/2022]
Abstract
The reaction of the catalase-peroxidase of Burkholderia pseudomallei with peroxyacetic acid has been analyzed using stopped-flow spectrophotometry. Two well-defined species were observed, the first defined by an increase in intensity and narrowing of the Soret band at 407 nm and a 10-nm shift of the charge transfer band from 635 to 625 nm. These features are consistent with a ferric spectrum with a greater proportion of sixth-coordination character and are assigned to an Fe(III)-peroxyacetic acid complex. Complementary 9-GHz EPR characterization of the changes in the ferric signal of the resting enzyme induced by the binding of acetate in the heme pocket substantiates the proposal. Kinetic analysis of the spectral changes as a function of peroxyacetic acid concentration revealed two independent peroxyacetic acid binding events, one coincident with formation of the Fe(III)-peroxyacetic acid complex and the other coincident with the heme oxidation to the subsequent ferryl intermediate. A model to explain the need for two peroxyacetic acid binding events is proposed. The reaction of the W330F variant followed similar kinetics, although the characteristic spectral features of the Fe(IV)=O Por(*+) species were detected. The variant D141A lacking an aspartate at the entrance to the heme cavity as well as the R108A and D141A/R108A variants showed no evidence for the Fe(III)-peroxyacetic acid complex, only the formation of ferryl species with absorbance maxima at 414, 545, and 585 nm.
Collapse
|
29
|
Zhao X, Yu S, Ranguelova K, Suarez J, Metlitsky L, Schelvis JPM, Magliozzo RS. Role of the oxyferrous heme intermediate and distal side adduct radical in the catalase activity of Mycobacterium tuberculosis KatG revealed by the W107F mutant. J Biol Chem 2009; 284:7030-7. [PMID: 19139098 DOI: 10.1074/jbc.m808107200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalase-peroxidase (KatG) is essential in Mycobacterium tuberculosis for oxidative stress management and activation of the antitubercular pro-drug isoniazid. The role of a unique distal side adduct found in KatG enzymes, involving linked side chains of residues Met255, Tyr229, and Trp107 (MYW), in the unusual catalase activity of KatG is addressed here and in our companion paper (Suarez, J., Ranguelova, K., Jarzecki, A. A., Manzerova, J., Krymov, V., Zhao, X., Yu, S., Metlitsky, L., Gerfen, G. J., and Magliozzo, R. S. (2009) J. Biol. Chem. 284, in press). The KatG[W107F] mutant exhibited severely reduced catalase activity yet normal peroxidase activity, and as isolated contains more abundant 6-coordinate heme in high spin and low spin forms compared with the wild-type enzyme. Most interestingly, oxyferrous heme is also found in the purified enzyme. Oxyferrous KatG[W107F] was prepared by photolysis in air of the carbonyl enzyme or was generated using hydrogen peroxide decayed with a t1/2 of 2 days compared with 6 min for wild-type protein. The stability of oxyenyzme was modestly enhanced in KatG[Y229F] but was not affected in KatG[M255A]. Optical stopped-flow experiments showed rapid formation of Compound I in KatG[W107F] and facile formation of oxyferrous heme in the presence of micromolar hydrogen peroxide. An analysis of the relationships between catalase activity, stability of oxyferrous enzyme, and a proposed MYW adduct radical is presented. The loss of catalase function is assigned to the loss of the MYW adduct radical and structural changes that lead to greatly enhanced stability of oxyenzyme, an intermediate of the catalase cycle of native enzyme.
Collapse
Affiliation(s)
- Xiangbo Zhao
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Suarez J, Ranguelova K, Jarzecki AA, Manzerova J, Krymov V, Zhao X, Yu S, Metlitsky L, Gerfen GJ, Magliozzo RS. An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of Mycobacterium tuberculosis catalase-peroxidase (KatG). J Biol Chem 2009; 284:7017-29. [PMID: 19139099 DOI: 10.1074/jbc.m808106200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed.
Collapse
Affiliation(s)
- Javier Suarez
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ranguelova K, Suarez J, Metlitsky L, Yu S, Brejt SZ, Brejt SZ, Zhao L, Schelvis JPM, Magliozzo RS. Impact of Distal Side Water and Residue 315 on Ligand Binding to Ferric Mycobacterium tuberculosis Catalase−Peroxidase (KatG). Biochemistry 2008; 47:12583-92. [DOI: 10.1021/bi801511u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kalina Ranguelova
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Javier Suarez
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Leonid Metlitsky
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Shengwei Yu
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Shelly Zev Brejt
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Sidney Zelig Brejt
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Lin Zhao
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Johannes P. M. Schelvis
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Richard S. Magliozzo
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| |
Collapse
|
32
|
Abstract
Excessive hydrogen peroxide is harmful for almost all cell components, so its rapid and efficient removal is of essential importance for aerobically living organisms. Conversely, hydrogen peroxide acts as a second messenger in signal-transduction pathways. H(2)O(2) is degraded by peroxidases and catalases, the latter being able both to reduce H(2)O(2) to water and to oxidize it to molecular oxygen. Nature has evolved three protein families that are able to catalyze this dismutation at reasonable rates. Two of the protein families are heme enzymes: typical catalases and catalase-peroxidases. Typical catalases comprise the most abundant group found in Eubacteria, Archaeabacteria, Protista, Fungi, Plantae, and Animalia, whereas catalase-peroxidases are not found in plants and animals and exhibit both catalatic and peroxidatic activities. The third group is a minor bacterial protein family with a dimanganese active site called manganese catalases. Although catalyzing the same reaction (2 H(2)O(2)--> 2 H(2)O+ O(2)), the three groups differ significantly in their overall and active-site architecture and the mechanism of reaction. Here, we present an overview of the distribution, phylogeny, structure, and function of these enzymes. Additionally, we report about their physiologic role, response to oxidative stress, and about diseases related to catalase deficiency in humans.
Collapse
Affiliation(s)
- Marcel Zamocky
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | | | |
Collapse
|
33
|
Moore RL, Cook CO, Williams R, Goodwin DC. Substitution of strictly conserved Y111 in catalase–peroxidases: Impact of remote interdomain contacts on active site structure and catalytic performance. J Inorg Biochem 2008; 102:1819-24. [DOI: 10.1016/j.jinorgbio.2008.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/03/2008] [Accepted: 06/05/2008] [Indexed: 11/26/2022]
|
34
|
Moore RL, Powell LJ, Goodwin DC. The kinetic properties producing the perfunctory pH profiles of catalase-peroxidases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:900-7. [PMID: 18413236 DOI: 10.1016/j.bbapap.2008.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
Many structure-function relationship studies performed on the catalase-peroxidase enzymes are based on limited kinetic data. To provide a more substantive understanding of catalase-peroxidase function, we undertook a more exhaustive evaluation of catalase-peroxidase catalysis as a function of pH. Kinetic parameters across a broad pH range for the catalase and peroxidase activities of E. coli catalase peroxidase (KatG) were obtained, including the separate analysis of the oxidizing and reducing substrates of the peroxidase catalytic cycle. This investigation identified ABTS-dependent inhibition of peroxidase activity, particularly at low pH, unveiling that previously reported pH optima are clearly skewed. We show that turnover and efficiency of peroxidase activity increases with decreasing pH until the protein unfolds. The data also suggest that the catalase pH optimum is more complex than it is often assumed to be. The apparent optimum is in fact the intersection of the optimum for binding (7.00) and the optimum for activity (5.75). We also report the apparent pK(a)s for binding and catalysis of catalase activity as well as approximate values for certain peroxidatic and catalatic steps.
Collapse
Affiliation(s)
- Robert L Moore
- Department of Chemistry and Biochemistry, Auburn University, AL 36849, USA
| | | | | |
Collapse
|
35
|
Singh R, Wiseman B, Deemagarn T, Jha V, Switala J, Loewen PC. Comparative study of catalase-peroxidases (KatGs). Arch Biochem Biophys 2008; 471:207-14. [DOI: 10.1016/j.abb.2007.12.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 12/14/2007] [Accepted: 12/15/2007] [Indexed: 11/25/2022]
|
36
|
Replacement of tyrosine residues by phenylalanine in cytochrome P450cam alters the formation of Cpd II-like species in reactions with artificial oxidants. J Biol Inorg Chem 2008; 13:599-611. [DOI: 10.1007/s00775-008-0348-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
|
37
|
Ten-i T, Kumasaka T, Higuchi W, Tanaka S, Yoshimatsu K, Fujiwara T, Sato T. Expression, purification, crystallization and preliminary X-ray analysis of the Met244Ala variant of catalase-peroxidase (KatG) from the haloarchaeon Haloarcula marismortui. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:940-3. [PMID: 18007045 PMCID: PMC2339759 DOI: 10.1107/s1744309107046489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 09/21/2007] [Indexed: 11/10/2022]
Abstract
The covalent modification of the side chains of Trp95, Tyr218 and Met244 within the active site of Haloarcula marismortui catalase-peroxidase (KatG) appears to be common to all KatGs and has been demonstrated to be particularly significant for its bifunctionality [Smulevich et al. (2006), J. Inorg. Biochem. 100, 568-585; Jakopitsch, Kolarich et al. (2003), FEBS Lett. 552, 135-140; Jakopitsch, Auer et al. (2003), J. Biol. Chem. 278, 20185-20191; Jakopitsch et al. (2004), J. Biol. Chem. 279, 46082-46095; Regelsberger et al. (2001), Biochem. Soc. Trans. 29, 99-105; Ghiladi, Knudsen et al. (2005), J. Biol. Chem. 280, 22651-22663; Ghiladi, Medzihradzky et al. (2005), Biochemistry, 44, 15093-15105]. The Met244Ala variant of the H. marismortui KatG enzyme was expressed in haloarchaeal host cells and purified to homogeneity. The variant showed a complete loss of catalase activity, whereas the peroxidase activity of this mutant was highly enhanced owing to an increase in its affinity for the peroxidatic substrate. The variant was crystallized using the hanging-drop vapour-diffusion method with ammonium sulfate and NaCl as precipitants. The reddish-brown rod-shaped crystals obtained belong to the monoclinic space group C2, with unit-cell parameters a = 315.24, b = 81.04, c = 74.77 A, beta = 99.81 degrees . A crystal frozen using lithium sulfate as the cryoprotectant diffracted to beyond 2.0 A resolution. Preliminary X-ray analysis suggests the presence of a dimer in the asymmetric unit.
Collapse
Affiliation(s)
- Tomomi Ten-i
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-10 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Kumasaka
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-10 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Wataru Higuchi
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Satoru Tanaka
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Katsuhiko Yoshimatsu
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Taketomo Fujiwara
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takao Sato
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-10 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
38
|
Vidossich P, Alfonso-Prieto M, Carpena X, Loewen PC, Fita I, Rovira C. Versatility of the Electronic Structure of Compound I in Catalase-Peroxidases. J Am Chem Soc 2007; 129:13436-46. [DOI: 10.1021/ja072245i] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Pietro Vidossich
- Contribution from the Centre de Recerca en Química Teòrica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Institut de Biologia Molecular (IBMB-CSIC), Institut de Recerca Biomèdica (IRB), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada, Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| | - Mercedes Alfonso-Prieto
- Contribution from the Centre de Recerca en Química Teòrica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Institut de Biologia Molecular (IBMB-CSIC), Institut de Recerca Biomèdica (IRB), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada, Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| | - Xavi Carpena
- Contribution from the Centre de Recerca en Química Teòrica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Institut de Biologia Molecular (IBMB-CSIC), Institut de Recerca Biomèdica (IRB), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada, Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| | - Peter C. Loewen
- Contribution from the Centre de Recerca en Química Teòrica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Institut de Biologia Molecular (IBMB-CSIC), Institut de Recerca Biomèdica (IRB), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada, Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| | - Ignacio Fita
- Contribution from the Centre de Recerca en Química Teòrica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Institut de Biologia Molecular (IBMB-CSIC), Institut de Recerca Biomèdica (IRB), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada, Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| | - Carme Rovira
- Contribution from the Centre de Recerca en Química Teòrica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Institut de Biologia Molecular (IBMB-CSIC), Institut de Recerca Biomèdica (IRB), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada, Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| |
Collapse
|
39
|
Rai J, Raghothama S, Sahal D. Tyrosine-heme ligation in heme-peptide complex: design based on conserved motif of catalase. J Pept Sci 2007; 13:406-12. [PMID: 17516588 DOI: 10.1002/psc.862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
On the basis of evolutionary conservation of sequence in catalases, we have designed a heme-binding peptide (Ac-RLKSYTDTQISR12-(GGGG)-CRIVHC22-NH2) for the 'redox activity modulation' of heme. Heme-binding studies showed a blue-shifted Soret (369 nm) in the presence of TFE and a red-shifted Soret (418 nm) in the absence of TFE. These blue- and red-shifted Sorets suggest ligation through tyrosinate and histidine, respectively. This is the first designed peptide ligating to heme through tyrosine. NMR studies have confirmed that tyrosine ligation to heme in this heme-peptide complex occurs only in the presence of TFE. We suggest that TFE induces helicity in the peptide and brings the arginine and tyrosine in proximity, resulting in ionization of the phenolic side chain of tyrosine. In the absence of TFE, the unstructured peptide lacks the intra-molecular Arg(+)Tyr(-) ion pair, allowing heme binding to histidine. This peptide has significant peroxidase activity though it does not have catalase activity.
Collapse
Affiliation(s)
- Jagdish Rai
- International Centre For Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
40
|
Lin TY, Wu CH, Brennan JD. Entrapment of horseradish peroxidase in sugar-modified silica monoliths: Toward the development of a biocatalytic sensor. Biosens Bioelectron 2007; 22:1861-7. [PMID: 16737806 DOI: 10.1016/j.bios.2006.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 04/24/2006] [Accepted: 04/27/2006] [Indexed: 11/24/2022]
Abstract
A miniaturized HRP-entrapped bioreactor was prepared by a one-step enzyme immobilization method using a biocompatible sol-gel processing method employing either diglycerylsilane (DGS) or sodium silicate (SS) as precursors and a covalently tethered sugar, N-(3-triethoxysilylpropyl)gluconamide (GLS) as a silica modifier. Factors such as leaching, catalytic efficiency and long-term stability were examined to assess the role of the precursor and modifier in influencing enzyme performance. The results showed that sodium silicate derived materials modified with covalently bound sugars at a level of 10 mol% were optically transparent and provided the highest catalytic turnover rate for entrapped HRP. The stability and reusability of the entrapped HRP was found to be satisfactory for at least 1 month in the GLS-doped SS materials, and the entrapped HRP was able to respond linearly to the presence of peroxide over the concentration range of 0-750 microM with a detection limit of 6 microM, demonstrating the potential of this material for the development of a reusable optical biosensor.
Collapse
Affiliation(s)
- Tsai-Yin Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | |
Collapse
|
41
|
Jakopitsch C, Vlasits J, Wiseman B, Loewen PC, Obinger C. Redox intermediates in the catalase cycle of catalase-peroxidases from Synechocystis PCC 6803, Burkholderia pseudomallei, and Mycobacterium tuberculosis. Biochemistry 2007; 46:1183-93. [PMID: 17260948 DOI: 10.1021/bi062266+] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monofunctional catalases (EC 1.11.1.6) and catalase-peroxidases (KatGs, EC 1.11.1.7) have neither sequence nor structural homology, but both catalyze the dismutation of hydrogen peroxide (2H2O2 --> 2H2O + O2). In monofunctional catalases, the catalatic mechanism is well-characterized with conventional compound I [oxoiron(IV) porphyrin pi-cation radical intermediate] being responsible for hydrogen peroxide oxidation. The reaction pathway in KatGs is not as clearly defined, and a comprehensive rapid kinetic and spectral analysis of the reactions of KatGs from three different sources (Synechocystis PCC 6803, Burkholderia pseudomallei, and Mycobacterium tuberculosis) with peroxoacetic acid and hydrogen peroxide has focused on the pathway. Independent of KatG, but dependent on pH, two low-spin forms dominated in the catalase cycle with absorbance maxima at 415, 545, and 580 nm at low pH and 418 and 520 nm at high pH. By contrast, oxidation of KatGs with peroxoacetic acid resulted in intermediates with different spectral features that also differed among the three KatGs. Following the rate of H2O2 degradation by stopped-flow allowed the linking of reaction intermediate species with substrate availability to confirm which species were actually present during the catalase cycle. Possible reaction intermediates involved in H2O2 dismutation by KatG are discussed.
Collapse
Affiliation(s)
- Christa Jakopitsch
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
42
|
Pipirou Z, Bottrill AR, Metcalfe CM, Mistry SC, Badyal SK, Rawlings BJ, Raven EL. Autocatalytic formation of a covalent link between tryptophan 41 and the heme in ascorbate peroxidase. Biochemistry 2007; 46:2174-80. [PMID: 17263562 DOI: 10.1021/bi062274q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electronic spectroscopy, HPLC analyses, and mass spectrometry (MALDI-TOF and MS/MS) have been used to show that a covalent link from the heme to the distal Trp41 can occur on exposure of ascorbate peroxidase (APX) to H2O2 under noncatalytic conditions. Parallel analyses with the W41A variant and with APX reconstituted with deuteroheme clearly indicate that the covalent link does not form in the absence of either Trp41 or the heme vinyl groups. The presence of substrate also precludes formation of the link. Formation of a protein radical at Trp41 is implicated, in a reaction mechanism that is analogous to that proposed [Ghiladi, R. A., et al. (2005) Biochemistry 44, 15093-15105] for formation of a covalent Trp-Tyr-Met link in the closely related catalase peroxidase (KatG) enzymes. Collectively, the data suggest that radical formation at the distal tryptophan position is not an exclusive feature of the KatG enzymes and may be used more widely across other members of the class I heme peroxidase family.
Collapse
Affiliation(s)
- Zoi Pipirou
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, England
| | | | | | | | | | | | | |
Collapse
|
43
|
Vlasits J, Jakopitsch C, Schwanninger M, Holubar P, Obinger C. Hydrogen peroxide oxidation by catalase-peroxidase follows a non-scrambling mechanism. FEBS Lett 2007; 581:320-4. [PMID: 17217949 DOI: 10.1016/j.febslet.2006.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/06/2006] [Accepted: 12/19/2006] [Indexed: 11/26/2022]
Abstract
Despite catalyzing the same reaction (2 H2O2-->2 H2O+O2) heme-containing monofunctional catalases and bifunctional catalase-peroxidases (KatGs) do not share sequence or structural similarities raising the question of whether or not the reaction pathways are similar or different. The production of dioxygen from hydrogen peroxide by monofunctional catalases has been shown to be a two-step process involving the redox intermediate compound I which oxidizes H2O2 directly to O2. In order to investigate the origin of O2 released in KatG mediated H2O2 degradation we performed a gas chromatography-mass spectrometry investigation of the evolved O2 from a 50:50 mixture of H2(18)O2/H2(16)O2 solution containing KatGs from Mycobacterium tuberculosis and Synechocystis PCC 6803. The GC-MS analysis clearly demonstrated the formation of (18)O2 (m/e = 36) and (16)O2 (m/e = 32) but not (16)O(18)O (m/e = 34) in the pH range 5.6-8.5 implying that O2 is formed by two-electron oxidation without breaking the O-O bond. Also active site variants of Synechocystis KatG with very low catalase but normal or even enhanced peroxidase activity (D152S, H123E, W122F, Y249F and R439A) are shown to oxidize H2O2 by a non-scrambling mechanism. The results are discussed with respect to the catalatic mechanism of KatG.
Collapse
Affiliation(s)
- Jutta Vlasits
- Department of Chemistry at BOKU, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
44
|
Kapetanaki SM, Zhao X, Yu S, Magliozzo RS, Schelvis JPM. Modification of the active site of Mycobacterium tuberculosis KatG after disruption of the Met-Tyr-Trp cross-linked adduct. J Inorg Biochem 2006; 101:422-33. [PMID: 17188362 PMCID: PMC1885897 DOI: 10.1016/j.jinorgbio.2006.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/01/2006] [Accepted: 11/02/2006] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis catalase-peroxidase (Mtb KatG) is a bifunctional enzyme that possesses both catalase and peroxidase activities and is responsible for the activation of the antituberculosis drug isoniazid. Mtb KatG contains an unusual adduct in its distal heme-pocket that consists of the covalently linked Trp107, Tyr229, and Met255. The KatG(Y229F) mutant lacks this adduct and has decreased steady-state catalase activity and enhanced peroxidase activity. In order to test a potential structural role of the adduct that supports catalase activity, we have used resonance Raman spectroscopy to probe the local heme environment of KatG(Y229F). In comparison to wild-type KatG, resting KatG(Y229F) contains a significant amount of 6-coordinate, low-spin heme and a more planar heme. Resonance Raman spectroscopy of the ferrous-CO complex of KatG(Y229F) suggest a non-linear Fe-CO binding geometry that is less tilted than in wild-type KatG. These data provide evidence that the Met-Tyr-Trp adduct imparts structural stability to the active site of KatG that seems to be important for sustaining catalase activity.
Collapse
Affiliation(s)
- Sofia M. Kapetanaki
- Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003
| | - Xiangbo Zhao
- Department of Chemistry, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210-2889
| | - Shengwei Yu
- Department of Chemistry, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210-2889
| | - Richard S. Magliozzo
- Department of Chemistry, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210-2889
| | - Johannes P. M. Schelvis
- Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003
- *Corresponding author. Tel.: +1 212 998 3597; fax: +1 212 260 7905. E-mail address:
| |
Collapse
|
45
|
Deemagarn T, Wiseman B, Carpena X, Ivancich A, Fita I, Loewen PC. Two alternative substrate paths for compound I formation and reduction in catalase-peroxidase KatG from Burkholderia pseudomallei. Proteins 2006; 66:219-28. [PMID: 17063492 DOI: 10.1002/prot.21209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Five residues in the multifunctional catalase-peroxidase KatG of Burkholderia pesudomallei are essential for catalase, but not peroxidase, activity. Asp141 is the only one of these catalase-specific residues not related with the covalent adduct found in KatGs that when replaced with a nonacidic residue reduces catalase activity to 5% of native levels. Replacing the nearby catalytic residue Arg108 causes a reduction in catalase activity to 35% of native levels, whereas a variant with both Asp141 and Arg108 replaced exhibits near normal catalase activity (82% of native), suggesting a synergism in the roles of the two residues in support of catalase activity in the enzyme. Among the Asp141 variants, D141E is unique in retaining normal catalase activity but with modified kinetics, suggesting more favorable compound I formation and less favorable compound I reduction. The crystal structure of the D141E variant has been determined at 1.8-A resolution, revealing that the carboxylate of Glu141 is moved only slightly compared with Asp141, but retains its hydrogen bond interaction with the main chain nitrogen of Ile237. In contrast, the low temperature ferric Electron Paramagnetic Resonance spectra of the D141A, R108A, and R108A/D141A variants are consistent with modifications of the water matrix and/or the relative positioning of the distal residue side chains. Such changes explain the reduction in catalase activity in all but the double variant R108A/D141A. Two pathways of hydrogen bonded solvent lead from the entrance channel into the heme active site, one running between Asp141 and Arg108 and the second between Asp141 and the main chain atoms of residues 237-239. It is proposed that binding of substrate H(2)O(2) to Asp141 and Arg108 controls H(2)O(2) access to the heme active site, thereby modulating the catalase reaction.
Collapse
Affiliation(s)
- Taweewat Deemagarn
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Carpena X, Wiseman B, Deemagarn T, Herguedas B, Ivancich A, Singh R, Loewen PC, Fita I. Roles for Arg426 and Trp111 in the modulation of NADH oxidase activity of the catalase-peroxidase KatG from Burkholderia pseudomallei inferred from pH-induced structural changes. Biochemistry 2006; 45:5171-9. [PMID: 16618106 DOI: 10.1021/bi060017f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystals of Burkholderia pseudomallei KatG retain their ability to diffract X-rays at high resolution after adjustment of the pH from 5.6 to 4.5, 6.5, 7.5, and 8.5, providing a unique view of the effect of pH on protein structure. One significant pH-sensitive change lies in the appearance of a perhydroxy group attached to the indole nitrogen of the active site Trp111 above pH 7, similar to a modification originally observed in the Ser324Thr variant of the enzyme at pH 5.6. The modification forms rapidly from molecular oxygen in the buffer with 100% occupancy after one minute of soaking of the crystal at room temperature and pH 8.5. The low temperature (4 K) ferric EPR spectra of the resting enzyme, being very sensitive to changes in the heme iron microenvironment, confirm the presence of the modification above pH 7 in native enzyme and variants lacking Arg426 or Met264 and its absence in variants lacking Trp111 or Tyr238. The indole-perhydroxy group is very likely the reactive intermediate of molecular oxygen in the NADH oxidase reaction, and Arg426 is required for its reduction. The second significant pH-sensitive change involves the buried side chain of Arg426 that changes from one predominant conformation at low pH to a second at high pH. The pH profiles of the peroxidase, catalase, and NADH oxidase reactions can be correlated with the distribution of Arg426 conformations. Other pH-induced structural changes include a number of surface-situated side chains, but there is only one change involving a displacement of main chain atoms triggered by the protonation of His53 in a deep pocket in the vicinity of the molecular 2-fold axis.
Collapse
Affiliation(s)
- Xavier Carpena
- Departament de Biologia Estructural (IBMB-CSIC), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bellei M, Jakopitsch C, Battistuzzi G, Sola M, Obinger C. Redox thermodynamics of the ferric-ferrous couple of wild-type synechocystis KatG and KatG(Y249F). Biochemistry 2006; 45:4768-74. [PMID: 16605245 DOI: 10.1021/bi0517943] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystal structures and mass spectrometric analyses of catalase-peroxidases (KatGs) from different organisms revealed the existence of a peculiar distal Met-Tyr-Trp cross-link. The adduct appears to be important for the catalase but not the peroxidase activity of bifunctional KatG. To examine the effect of the adduct on enzyme redox properties and functions, we have determined the thermodynamics of ferric reduction for wild-type KatG and KatG(Y249F), whose tyrosine-to-phenylalanine mutation prevents cross-link formation. At 25 degrees C and pH 7.0, the reduction potential of wild-type KatG is found to be -226 +/- 10 mV, remarkably lower than the published literature values. The reduction potential of KatG(Y249F) is very similar (-222 +/- 10 mV), but variable temperature experiments revealed compensatory differences in reduction enthalpies and entropies. In both proteins, the oxidized state is enthalpically stabilized over the reduced state, but entropy is lost on reduction, which is in strong contrast to horseradish peroxidase, which also features a much more pronounced enthalpic stabilization of the ferriheme. With both proteins, the midpoint potential increased linearly with decreasing pH. We discuss whether the observed redox thermodynamics reflects the differences in structure and function between bifunctional KatG and monofunctional peroxidases.
Collapse
Affiliation(s)
- Marzia Bellei
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy
| | | | | | | | | |
Collapse
|
48
|
Jakopitsch C, Obinger C, Un S, Ivancich A. Identification of Trp106 as the tryptophanyl radical intermediate in Synechocystis PCC6803 catalase-peroxidase by multifrequency Electron Paramagnetic Resonance spectroscopy. J Inorg Biochem 2006; 100:1091-9. [PMID: 16574230 DOI: 10.1016/j.jinorgbio.2006.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/14/2006] [Accepted: 02/14/2006] [Indexed: 11/28/2022]
Abstract
The reactive intermediates formed in the catalase-peroxidase from Synechocystis PCC6803 upon reaction with peroxyacetic acid, and in the absence of peroxidase substrates, are the oxoferryl-porphyrin radical and two subsequent protein-based radicals that we have previously assigned to a tyrosyl (Tyr()) and tryptophanyl (Trp()) radicals by using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with deuterium labeling and site-directed mutagenesis. In this work, we have further investigated the Trp() in order to identify the site for the tryptophanyl radical formation, among the 26 Trp residues of the enzyme and to possibly understand the protein constraints that determine the selective formation of this radical. Based on our previous findings about the absence of the Trp() intermediate in four of the Synechocystis catalase-peroxidase variants on the heme distal side (W122F, W106A, H123Q, and R119A) we constructed new variants on Trp122 and Trp106 positions. Trp122 is very close to the iron on the heme distal side while Trp106 belongs to a short stretch (11 amino acid residues on the enzyme surface) that is highly conserved in catalase-peroxidases. We have used EPR spectroscopy to characterize the changes on the heme microenvironment induced by these mutations as well as the chemical nature of the radicals formed in each variant. Our findings identify Trp106 as the tryptophanyl radical site in Synechocystis catalase-peroxidase. The W122H and W106Y variants were specially designed to mimic the hydrogen-bond interactions of the naturally occurring Trp residues. These variants clearly demonstrated the important role of the extensive hydrogen-bonding network of the heme distal side, in the formation of the tryptophanyl radical. Moreover, the fact that W106Y is the only Synechocystis catalase-peroxidase variant of the distal heme side that recovers a catalase activity comparable to the WT enzyme, strongly indicates that the integrity of the extensive hydrogen-bonding network is also essential for the catalatic activity of the enzyme.
Collapse
Affiliation(s)
- Christa Jakopitsch
- Service de Bioénergétique, URA 2096 CNRS, Département de Biologie Joliot-Curie, CEA Saclay, Bat. 532, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
49
|
Smulevich G, Jakopitsch C, Droghetti E, Obinger C. Probing the structure and bifunctionality of catalase-peroxidase (KatG). J Inorg Biochem 2006; 100:568-85. [PMID: 16516299 DOI: 10.1016/j.jinorgbio.2006.01.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 10/24/2022]
Abstract
Catalase-peroxidases (KatGs) exhibit peroxidase and substantial catalase activities similar to monofunctional catalases. Crystal structures of four different KatGs reveal the presence of a peroxidase-conserved proximal and distal heme pocket together with features unique to KatG. To gain insight into their structure-function properties, many variants were produced and very similar results were obtained irrespective of the origin of the KatG mutated. This review focuses mainly on the electronic absorption and resonance Raman results together with the combined analysis of pre-steady and steady-state kinetics of various mutants involving both the peroxidase-conserved and the KatG-specific residues of recombinant KatG from the cyanobacterium Synechocystis. Marked differences in the structural role of conserved amino acids and hydrogen-bond networks in KatG with respect to the other plant peroxidases were found. Typically, the catalatic but not the peroxidatic activity was very sensitive to mutations that disrupted the KatG-typical extensive hydrogen-bonding network. Moreover, the integrity of this network is crucial for the formation of distinct protein radicals formed upon incubation of KatG with peroxides in the absence of one-electron donors. The correlation between the structural architecture and the bifunctional activity is discussed and compared with data obtained for KatGs from other organisms.
Collapse
Affiliation(s)
- Giulietta Smulevich
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | |
Collapse
|
50
|
Carpena X, Wiseman B, Deemagarn T, Singh R, Switala J, Ivancich A, Fita I, Loewen PC. A molecular switch and electronic circuit modulate catalase activity in catalase-peroxidases. EMBO Rep 2006; 6:1156-62. [PMID: 16211084 PMCID: PMC1369206 DOI: 10.1038/sj.embor.7400550] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/29/2005] [Accepted: 09/09/2005] [Indexed: 11/08/2022] Open
Abstract
The catalase reaction of catalase-peroxidases involves catalase-specific features built into a peroxidase core. An arginine, 20 A from the active-site heme, acts as a molecular switch moving between two conformations, one that activates heme oxidation and one that activates oxoferryl heme reduction by H(2)O(2), facilitating the catalatic pathway in a peroxidase. The influence of the arginine is imparted to the heme through its association with or dissociation from a tyrosinate that modulates reactivity through a Met-Tyr-Trp crosslinked adduct and a pi electron interaction of the heme with the adduct Trp.
Collapse
Affiliation(s)
- Xavier Carpena
- Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - Ben Wiseman
- Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - Taweewat Deemagarn
- Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - Rahul Singh
- Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - Anabella Ivancich
- Service de Bioénergétique, URA 2096 CNRS, Département de Biologie Joliot-Curie, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Ignacio Fita
- Departament de Biologia Estructural (IBMB-CSIC), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Peter C Loewen
- Department of Microbiology, University of Manitoba, Winnipeg MB R3T 2N2, Canada
- Tel: +1 204 474 8334; Fax: +1 204 474 7603; E-mail:
| |
Collapse
|