1
|
Gohlke J, Lindqvist J, Hourani Z, Heintzman S, Tonino P, Elsheikh B, Morales A, Vatta M, Burghes A, Granzier H, Roggenbuck J. Pathomechanisms of Monoallelic variants in TTN causing skeletal muscle disease. Hum Mol Genet 2024:ddae136. [PMID: 39277846 DOI: 10.1093/hmg/ddae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Pathogenic variants in the titin gene (TTN) are known to cause a wide range of cardiac and musculoskeletal disorders, with skeletal myopathy mostly attributed to biallelic variants. We identified monoallelic truncating variants (TTNtv), splice site or internal deletions in TTN in probands with mild, progressive axial and proximal weakness, with dilated cardiomyopathy frequently developing with age. These variants segregated in an autosomal dominant pattern in 7 out of 8 studied families. We investigated the impact of these variants on mRNA, protein levels, and skeletal muscle structure and function. Results reveal that nonsense-mediated decay likely prevents accumulation of harmful truncated protein in skeletal muscle in patients with TTNtvs. Splice variants and an out-of-frame deletion induce aberrant exon skipping, while an in-frame deletion produces shortened titin with intact N- and C-termini, resulting in disrupted sarcomeric structure. All variant types were associated with genome-wide changes in splicing patterns, which represent a hallmark of disease progression. Lastly, RNA-seq studies revealed that GDF11, a member of the TGF-β superfamily, is upregulated in diseased tissue, indicating that it might be a useful therapeutic target in skeletal muscle titinopathies.
Collapse
Affiliation(s)
- Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, United States
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, United States
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, United States
| | - Sarah Heintzman
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States
| | - Paola Tonino
- Research, Innovation and Impact Core Facilities Department, University of Arizona, 1333 N. Martin Ave, Tucson, AZ 85719, United States
| | - Bakri Elsheikh
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States
| | - Ana Morales
- Invitae Corporation, 1400 16th St., San Francisco, CA 94103, United States
| | - Matteo Vatta
- Invitae Corporation, 1400 16th St., San Francisco, CA 94103, United States
| | - Arthur Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 370 W 9th Ave, Columbus, OH 43210, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, United States
| | - Jennifer Roggenbuck
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States
| |
Collapse
|
2
|
Agarwal S, Parija M, Naik S, Kumari P, Mishra SK, Adhya AK, Kashaw SK, Dixit A. Dysregulated gene subnetworks in breast invasive carcinoma reveal novel tumor suppressor genes. Sci Rep 2024; 14:15691. [PMID: 38977697 PMCID: PMC11231308 DOI: 10.1038/s41598-024-59953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/17/2024] [Indexed: 07/10/2024] Open
Abstract
Breast invasive carcinoma (BRCA) is the most malignant and leading cause of death in women. Global efforts are ongoing for improvement in early detection, prevention, and treatment. In this milieu, a comprehensive analysis of RNA-sequencing data of 1097 BRCA samples and 114 normal adjacent tissues is done to identify dysregulated genes in major molecular classes of BRCA in various clinical stages. Significantly enriched pathways in distinct molecular classes of BRCA have been identified. Pathways such as interferon signaling, tryptophan degradation, granulocyte adhesion & diapedesis, and catecholamine biosynthesis were found to be significantly enriched in Estrogen/Progesterone Receptor positive/Human Epidermal Growth Factor Receptor 2 negative, pathways such as RAR activation, adipogenesis, the role of JAK1/2 in interferon signaling, TGF-β and STAT3 signaling intricated in Estrogen/Progesterone Receptor negative/Human Epidermal Growth Factor Receptor 2 positive and pathways as IL-1/IL-8, TNFR1/TNFR2, TWEAK, and relaxin signaling were found in triple-negative breast cancer. The dysregulated genes were clustered based on their mutation frequency which revealed nine mutated clusters, some of which were well characterized in cancer while others were less characterized. Each cluster was analyzed in detail which led to the identification of NLGN3, MAML2, TTN, SYNE1, ANK2 as candidate genes in BRCA. They are central hubs in the protein-protein-interaction network, indicating their important regulatory roles. Experimentally, the Real-Time Quantitative Reverse Transcription PCR and western blot confirmed our computational predictions in cell lines. Further, immunohistochemistry corroborated the results in ~ 100 tissue samples. We could experimentally show that the NLGN3 & ANK2 have tumor-suppressor roles in BRCA as shown by cell viability assay, transwell migration, colony forming and wound healing assay. The cell viability and migration was found to be significantly reduced in MCF7 and MDA-MB-231 cell lines in which the selected genes were over-expressed as compared to control cell lines. The wound healing assay also demonstrated a significant decrease in wound closure at 12 h and 24 h time intervals in MCF7 & MDA-MB-231 cells. These findings established the tumor suppressor roles of NLGN3 & ANK2 in BRCA. This will have important ramifications for the therapeutics discovery against BRCA.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, India
| | - Monalisa Parija
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India
| | - Sanoj Naik
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India
| | - Pratima Kumari
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India
| | - Sandip K Mishra
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India
| | - Amit K Adhya
- All India Institute of Medical Sciences, Bhubanesawar, 751019, India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, India
| | - Anshuman Dixit
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India.
| |
Collapse
|
3
|
Stroik D, Gregorich ZR, Raza F, Ge Y, Guo W. Titin: roles in cardiac function and diseases. Front Physiol 2024; 15:1385821. [PMID: 38660537 PMCID: PMC11040099 DOI: 10.3389/fphys.2024.1385821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The giant protein titin is an essential component of muscle sarcomeres. A single titin molecule spans half a sarcomere and mediates diverse functions along its length by virtue of its unique domains. The A-band of titin functions as a molecular blueprint that defines the length of the thick filaments, the I-band constitutes a molecular spring that determines cell-based passive stiffness, and various domains, including the Z-disk, I-band, and M-line, serve as scaffolds for stretch-sensing signaling pathways that mediate mechanotransduction. This review aims to discuss recent insights into titin's functional roles and their relationship to cardiac function. The role of titin in heart diseases, such as dilated cardiomyopathy and heart failure with preserved ejection fraction, as well as its potential as a therapeutic target, is also discussed.
Collapse
Affiliation(s)
- Dawson Stroik
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachery R. Gregorich
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Farhan Raza
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Wei Guo
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Di Feo MF, Lillback V, Jokela M, McEntagart M, Homfray T, Giorgio E, Casalis Cavalchini GC, Brusco A, Iascone M, Spaccini L, D'Oria P, Savarese M, Udd B. The crucial role of titin in fetal development: recurrent miscarriages and bone, heart and muscle anomalies characterise the severe end of titinopathies spectrum. J Med Genet 2023; 60:866-873. [PMID: 36977548 DOI: 10.1136/jmg-2022-109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/18/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Titin truncating variants (TTNtvs) have been associated with several forms of myopathies and/or cardiomyopathies. In homozygosity or in compound heterozygosity, they cause a wide spectrum of recessive phenotypes with a congenital or childhood onset. Most recessive phenotypes showing a congenital or childhood onset have been described in subjects carrying biallelic TTNtv in specific exons. Often karyotype or chromosomal microarray analyses are the only tests performed when prenatal anomalies are identified. Thereby, many cases caused by TTN defects might be missed in the diagnostic evaluations. In this study, we aimed to dissect the most severe end of the titinopathies spectrum. METHODS We performed a retrospective study analysing an international cohort of 93 published and 10 unpublished cases carrying biallelic TTNtv. RESULTS We identified recurrent clinical features showing a significant correlation with the genotype, including fetal akinesia (up to 62%), arthrogryposis (up to 85%), facial dysmorphisms (up to 73%), joint (up to 17%), bone (up to 22%) and heart anomalies (up to 27%) resembling complex, syndromic phenotypes. CONCLUSION We suggest TTN to be carefully evaluated in any diagnostic process involving patients with these prenatal signs. This step will be essential to improve diagnostic performance, expand our knowledge and optimise prenatal genetic counselling.
Collapse
Affiliation(s)
- Maria Francesca Di Feo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (DINOGMI), University of Genoa, Genova, Italy
| | - Victoria Lillback
- Folkhälsan Research Center, Helsinki, Uusimaa, Finland
- University of Helsinki Department of Medical and Clinical Genetics, Helsinki, Uusimaa, Finland
| | - Manu Jokela
- Tampere University Hospital, Tampere, Pirkanmaa, Finland
- TYKS Turku University Hospital, Turku, Varsinais-Suomi, Finland
| | - Meriel McEntagart
- Department of Medical Genetics, St George's University of London, London, London, UK
| | - Tessa Homfray
- St George's University of London, London, London, UK
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
- Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Guido C Casalis Cavalchini
- Medical Genetics Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin School of Medicine, Torino, Piemonte, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, BG, Italy
| | - Luigina Spaccini
- Unità di Genetica Medica, UOC Ostetricia e Ginecologia, Ospedale dei Bambini Vittore Buzzi, Milano, Lombardia, Italy
| | - Patrizia D'Oria
- UOC Ostetrica e Ginecologia, Ospedale Bolognini di Seriate, Seriate, Lombardia, Italy
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Uusimaa, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Uusimaa, Finland
- Tampere University Hospital Department of Musculoskeletal Diseases, Tampere, Pirkanmaa, Finland
| |
Collapse
|
5
|
Banga S, Cardoso R, Castellani C, Srivastava S, Watkins J, Lima J. Cardiac MRI as an Imaging Tool in Titin Variant-Related Dilated Cardiomyopathy. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 52:86-93. [PMID: 36934006 DOI: 10.1016/j.carrev.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Dilated Cardiomyopathy is a common myocardial disease characterized by dilation and loss of function of one or both ventricles. A variety of etiologies have been implicated including genetic variation. Advancement in genetic sequencing, and diagnostic imaging allows for detection of genetic mutations in sarcomere protein titin (TTN) and high resolution assessment of cardiac function. This review article discusses the role of cardiac MRI in diagnosing dilated cardiomyopathy in patients with TTN variant related cardiomyopathy.
Collapse
Affiliation(s)
- Sandeep Banga
- Division of Cardiology, Michigan State University, Sparrow Hospital, Lansing, MI, USA.
| | | | - Carson Castellani
- Division of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shaurya Srivastava
- Division of Internal Medicine, Michigan State University, Lansing, MI, USA
| | - Jennifer Watkins
- Division of Cardiology, Michigan State University, Sparrow Hospital, Lansing, MI, USA
| | - Joao Lima
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Wang J, Fan Y, Wang C, Dube S, Poiesz BJ, Dube DK, Ma Z, Sanger JM, Sanger JW. Inhibitors of the Ubiquitin Proteasome System block myofibril assembly in cardiomyocytes derived from chick embryos and human pluripotent stem cells. Cytoskeleton (Hoboken) 2022; 78:461-491. [PMID: 35502133 DOI: 10.1002/cm.21697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
Details of sarcomeric protein assembly during de novo myofibril formation closely resemble myofibrillogenesis in skeletal and cardiac myocytes in birds, rodents and zebrafish. The arrangement of proteins during myofibrillogenesis follows a three-step process: beginning with premyofibrils, followed by nascent myofibrils, and concluding with mature myofibrils (reviewed in Sanger et al., 2017). Our aim is to determine if the same pathway is followed in human cardiomyocytes derived from human inducible pluripotent stem cells. We found that the human cardiomyocytes developed patterns of protein organization identical to the three-step series seen in the model organisms cited above. Further experiments showed that myofibril assembly can be blocked at the nascent myofibril by five different inhibitors of the Ubiquitin Proteasome System (UPS) stage in both avian and human cardiomyocytes. With the exception of Carfilzomib, removal of the UPS inhibitors allows nascent myofibrils to proceed to mature myofibrils. Some proteasomal inhibitors, such as Bortezomib and Carfilzomib, used to treat multiple myeloma patients, have off-target effects of damage to hearts in three to six percent of these patients. These cardiovascular adverse events may result from prevention of mature myofibril formation in the cardiomyocytes. In summary, our results support a common three-step model for the formation of myofibrils ranging from avian to human cardiomyocytes. The Ubiquitin Proteasome System is required for progression from nascent myofibrils to mature myofibrils. Our experiments suggest a possible explanation for the cardiac and skeletal muscle off-target effects reported in multiple myeloma patients treated with proteasome inhibitors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
7
|
Bogomolovas J, Fleming JR, Franke B, Manso B, Simon B, Gasch A, Markovic M, Brunner T, Knöll R, Chen J, Labeit S, Scheffner M, Peter C, Mayans O. Titin kinase ubiquitination aligns autophagy receptors with mechanical signals in the sarcomere. EMBO Rep 2021; 22:e48018. [PMID: 34402565 PMCID: PMC8490993 DOI: 10.15252/embr.201948018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Striated muscle undergoes remodelling in response to mechanical and physiological stress, but little is known about the integration of such varied signals in the myofibril. The interaction of the elastic kinase region from sarcomeric titin (A168-M1) with the autophagy receptors Nbr1/p62 and MuRF E3 ubiquitin ligases is well suited to link mechanosensing with the trophic response of the myofibril. To investigate the mechanisms of signal cross-talk at this titin node, we elucidated its 3D structure, analysed its response to stretch using steered molecular dynamics simulations and explored its functional relation to MuRF1 and Nbr1/p62 using cellular assays. We found that MuRF1-mediated ubiquitination of titin kinase promotes its scaffolding of Nbr1/p62 and that the process can be dynamically down-regulated by the mechanical unfolding of a linker sequence joining titin kinase with the MuRF1 receptor site in titin. We propose that titin ubiquitination is sensitive to the mechanical state of the sarcomere, the regulation of sarcomere targeting by Nbr1/p62 being a functional outcome. We conclude that MuRF1/Titin Kinase/Nbr1/p62 constitutes a distinct assembly that predictably promotes sarcomere breakdown in inactive muscle.
Collapse
Affiliation(s)
- Julius Bogomolovas
- Department of MedicineSchool of MedicineUniversity of CaliforniaSan Diego, La JollaCAUSA
- Department of Cognitive and Clinical NeuroscienceCentral Institute of Mental HealthMedical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Integrative PathophysiologyMedical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | | | - Barbara Franke
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Bruno Manso
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Bernd Simon
- Structural and Computational Biology UnitEMBLHeidelbergGermany
| | - Alexander Gasch
- Department of Integrative PathophysiologyMedical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | | | - Thomas Brunner
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Ralph Knöll
- Integrated Cardio Metabolic Centre (ICMC)Heart and Vascular ThemeUniversity Hospital, MedHKarolinska InstitutetHuddingeSweden
- Bioscience, CardiovascularRenal & MetabolismBioPharmaceuticalsR&D, AstraZenecaGothenburgSweden
| | - Ju Chen
- Department of MedicineSchool of MedicineUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Siegfried Labeit
- Department of Integrative PathophysiologyMedical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | | | - Christine Peter
- Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Olga Mayans
- Department of BiologyUniversity of KonstanzKonstanzGermany
| |
Collapse
|
8
|
Biquand A, Spinozzi S, Tonino P, Cosette J, Strom J, Elbeck Z, Knöll R, Granzier H, Lostal W, Richard I. Titin M-line insertion sequence 7 is required for proper cardiac function in mice. J Cell Sci 2021; 134:271843. [PMID: 34401916 DOI: 10.1242/jcs.258684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Titin is a giant sarcomeric protein that is involved in a large number of functions, with a primary role in skeletal and cardiac sarcomere organization and stiffness. The titin gene (TTN) is subject to various alternative splicing events, but in the region that is present at the M-line, the only exon that can be spliced out is Mex5, which encodes for the insertion sequence 7 (is7). Interestingly, in the heart, the majority of titin isoforms are Mex5+, suggesting a cardiac role for is7. Here, we performed comprehensive functional, histological, transcriptomic, microscopic and molecular analyses of a mouse model lacking the Ttn Mex5 exon (ΔMex5), and revealed that the absence of the is7 is causative for dilated cardiomyopathy. ΔMex5 mice showed altered cardiac function accompanied by increased fibrosis and ultrastructural alterations. Abnormal expression of excitation-contraction coupling proteins was also observed. The results reported here confirm the importance of the C-terminal region of titin in cardiac function and are the first to suggest a possible relationship between the is7 and excitation-contraction coupling. Finally, these findings give important insights for the identification of new targets in the treatment of titinopathies.
Collapse
Affiliation(s)
- Ariane Biquand
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Simone Spinozzi
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | | | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Zaher Elbeck
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden.,Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - William Lostal
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Isabelle Richard
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| |
Collapse
|
9
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
10
|
Napolitano F, Terracciano C, Bruno G, De Blasiis P, Lombardi L, Gialluisi A, Gianfrancesco F, De Giovanni D, Tummolo A, Di Iorio G, Limongelli G, Esposito T, Melone MAB, Sampaolo S. Novel autophagic vacuolar myopathies: Phenotype and genotype features. Neuropathol Appl Neurobiol 2021; 47:664-678. [PMID: 33393119 DOI: 10.1111/nan.12690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Autophagic vacuolar myopathies (AVMs) are an emerging group of heterogeneous myopathies sharing histopathological features on muscle pathology, in which autophagic vacuoles are the pathognomonic morphologic hallmarks. Glycogen storage disease type II (GSDII) caused by lysosomal acid α-glucosidase (GAA) deficiency is the best-characterised AVM. AIMS This study aimed to investigate the mutational profiling of seven neuromuscular outpatients sharing clinical, myopathological and biochemical findings with AVMs. METHODS We applied a diagnostic protocol, recently published by our research group for suspected late-onset GSDII (LO-GSDII), including counting PAS-positive lymphocytes on blood smears, dried blood spot (DBS)-GAA, muscle biopsy histological and immunofluorescence studies, GAA activity assay and expression studies on muscle homogenate, GAA sequencing, GAA multiplex ligation-dependent probe amplification (MLPA) and whole exome sequencing (WES). RESULTS The patients had a limb girdle-like muscular pattern with persistent hyperCKaemia; vacuolated PAS-positive lymphocytes, glycogen accumulation and impaired autophagy at muscle biopsy. Decreased GAA activity was also measured. While GAA sequencing identified no pathogenic mutations, WES approach allowed us to identify for each patient an unexpected mutational pattern in genes cooperating in lysosomal-autophagic machinery, some of which have never been linked to human diseases. CONCLUSIONS Our data suggest that reduced GAA activity may occur in any condition of impaired autophagy and that WES approach is advisable in all genetically undefined cases of autophagic myopathy. Therefore, deficiency of GAA activity and PAS-positive lymphocytes should be considered as AVM markers together with LC3/p62-positive autophagic vacuoles.
Collapse
Affiliation(s)
- Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Chiara Terracciano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Neurology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Giorgia Bruno
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo De Blasiis
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luca Lombardi
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Donatella De Giovanni
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Bari, Italy
| | - Albina Tummolo
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Bari, Italy
| | - Giuseppe Di Iorio
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy.,IRCCS INM Neuromed, Pozzilli, IS, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania, USA
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Swist S, Unger A, Li Y, Vöge A, von Frieling-Salewsky M, Skärlén Å, Cacciani N, Braun T, Larsson L, Linke WA. Maintenance of sarcomeric integrity in adult muscle cells crucially depends on Z-disc anchored titin. Nat Commun 2020; 11:4479. [PMID: 32900999 PMCID: PMC7478974 DOI: 10.1038/s41467-020-18131-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The giant protein titin is thought to be required for sarcomeric integrity in mature myocytes, but direct evidence for this hypothesis is limited. Here, we describe a mouse model in which Z-disc-anchored TTN is depleted in adult skeletal muscles. Inactivation of TTN causes sarcomere disassembly and Z-disc deformations, force impairment, myocyte de-stiffening, upregulation of TTN-binding mechanosensitive proteins and activation of protein quality-control pathways, concomitant with preferential loss of thick-filament proteins. Interestingly, expression of the myosin-bound Cronos-isoform of TTN, generated from an alternative promoter not affected by the targeting strategy, does not prevent deterioration of sarcomere formation and maintenance. Finally, we demonstrate that loss of Z-disc-anchored TTN recapitulates muscle remodeling in critical illness ‘myosinopathy’ patients, characterized by TTN-depletion and loss of thick filaments. We conclude that full-length TTN is required to integrate Z-disc and A-band proteins into the mature sarcomere, a function that is lost when TTN expression is pathologically lowered. Titin is considered an integrator of muscle cell proteins but direct evidence is limited. Here, titin is inactivated in adult mouse muscles, which causes sarcomere disassembly, protein mis-expression and force impairment, recapitulating key alterations in critical illness myopathy patient muscles.
Collapse
Affiliation(s)
- Sandra Swist
- Department of Systems Physiology, Ruhr University Bochum, D-44780, Bochum, Germany.
| | - Andreas Unger
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany
| | - Yong Li
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany
| | - Anja Vöge
- Department of Systems Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | | | - Åsa Skärlén
- Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231, Bad Nauheim, Germany
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany.
| |
Collapse
|
12
|
Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. J Clin Med 2020; 9:jcm9092770. [PMID: 32859027 PMCID: PMC7564493 DOI: 10.3390/jcm9092770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Titin is the largest human protein and an essential component of the cardiac sarcomere. With multiple immunoglobulin(Ig)-like domains that serve as molecular springs, titin contributes significantly to the passive tension, systolic function, and diastolic function of the heart. Mutations leading to early termination of titin are the most common genetic cause of dilated cardiomyopathy. Modifications of titin, which change protein length, and relative stiffness affect resting tension of the ventricle and are associated with acquired forms of heart failure. Transcriptional and post-translational changes that increase titin’s length and extensibility, making the sarcomere longer and softer, are associated with systolic dysfunction and left ventricular dilation. Modifications of titin that decrease its length and extensibility, making the sarcomere shorter and stiffer, are associated with diastolic dysfunction in animal models. There has been significant progress in understanding the mechanisms by which titin is modified. As molecular pathways that modify titin’s mechanical properties are elucidated, they represent therapeutic targets for treatment of both systolic and diastolic dysfunction. In this article, we review titin’s contribution to normal cardiac physiology, the pathophysiology of titin truncation variations leading to dilated cardiomyopathy, and transcriptional and post-translational modifications of titin. Emphasis is on how modification of titin can be utilized as a therapeutic target for treatment of heart failure.
Collapse
|
13
|
Genotype-phenotype correlations in recessive titinopathies. Genet Med 2020; 22:2029-2040. [PMID: 32778822 DOI: 10.1038/s41436-020-0914-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE High throughput sequencing analysis has facilitated the rapid analysis of the entire titin (TTN) coding sequence. This has resulted in the identification of a growing number of recessive titinopathy patients. The aim of this study was to (1) characterize the causative genetic variants and clinical features of the largest cohort of recessive titinopathy patients reported to date and (2) to evaluate genotype-phenotype correlations in this cohort. METHODS We analyzed clinical and genetic data in a cohort of patients with biallelic pathogenic or likely pathogenic TTN variants. The cohort included both previously reported cases (100 patients from 81 unrelated families) and unreported cases (23 patients from 20 unrelated families). RESULTS Overall, 132 causative variants were identified in cohort members. More than half of the cases had hypotonia at birth or muscle weakness and a delayed motor development within the first 12 months of life (congenital myopathy) with causative variants located along the entire gene. The remaining patients had a distal or proximal phenotype and a childhood or later (noncongenital) onset. All noncongenital cases had at least one pathogenic variant in one of the final three TTN exons (362-364). CONCLUSION Our findings suggest a novel association between the location of nonsense variants and the clinical severity of the disease.
Collapse
|
14
|
Lange S, Pinotsis N, Agarkova I, Ehler E. The M-band: The underestimated part of the sarcomere. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118440. [PMID: 30738787 PMCID: PMC7023976 DOI: 10.1016/j.bbamcr.2019.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick (myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of proteins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle is better understood, while the molecular constituents of the M-band and its function are less well defined. Evidence discussed here suggests that the M-band is important for managing force imbalances during active muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by members of the myomesin family are concerned and depends on the specific mechanical characteristics of each particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.
Collapse
Affiliation(s)
- Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, San Diego, Medical Sciences Research Bldg, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Irina Agarkova
- InSphero, Wagistrasse 27, CH-8952 Schlieren, Switzerland
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
15
|
Radke MH, Polack C, Methawasin M, Fink C, Granzier HL, Gotthardt M. Deleting Full Length Titin Versus the Titin M-Band Region Leads to Differential Mechanosignaling and Cardiac Phenotypes. Circulation 2020; 139:1813-1827. [PMID: 30700140 DOI: 10.1161/circulationaha.118.037588] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Titin is a giant elastic protein that spans the half-sarcomere from Z-disk to M-band. It acts as a molecular spring and mechanosensor and has been linked to striated muscle disease. The pathways that govern titin-dependent cardiac growth and contribute to disease are diverse and difficult to dissect. METHODS To study titin deficiency versus dysfunction, the authors generated and compared striated muscle specific knockouts (KOs) with progressive postnatal loss of the complete titin protein by removing exon 2 (E2-KO) or an M-band truncation that eliminates proper sarcomeric integration, but retains all other functional domains (M-band exon 1/2 [M1/2]-KO). The authors evaluated cardiac function, cardiomyocyte mechanics, and the molecular basis of the phenotype. RESULTS Skeletal muscle atrophy with reduced strength, severe sarcomere disassembly, and lethality from 2 weeks of age were shared between the models. Cardiac phenotypes differed considerably: loss of titin leads to dilated cardiomyopathy with combined systolic and diastolic dysfunction-the absence of M-band titin to cardiac atrophy and preserved function. The elastic properties of M1/2-KO cardiomyocytes are maintained, while passive stiffness is reduced in the E2-KO. In both KOs, we find an increased stress response and increased expression of proteins linked to titin-based mechanotransduction (CryAB, ANKRD1, muscle LIM protein, FHLs, p42, Camk2d, p62, and Nbr1). Among them, FHL2 and the M-band signaling proteins p62 and Nbr1 are exclusively upregulated in the E2-KO, suggesting a role in the differential pathology of titin truncation versus deficiency of the full-length protein. The differential stress response is consistent with truncated titin contributing to the mechanical properties in M1/2-KOs, while low titin levels in E2-KOs lead to reduced titin-based stiffness and increased strain on the remaining titin molecules. CONCLUSIONS Progressive depletion of titin leads to sarcomere disassembly and atrophy in striated muscle. In the complete knockout, remaining titin molecules experience increased strain, resulting in mechanically induced trophic signaling and eventually dilated cardiomyopathy. The truncated titin in M1/2-KO helps maintain the passive properties and thus reduces mechanically induced signaling. Together, these findings contribute to the molecular understanding of why titin mutations differentially affect cardiac growth and have implications for genotype-phenotype relations that support a personalized medicine approach to the diverse titinopathies.
Collapse
Affiliation(s)
- Michael H Radke
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.).,DZHK: German Centre for Cardiovascular Research, Partner Site, Berlin, Germany (M.H.R., M.G.)
| | - Christopher Polack
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.)
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (M.M., H.G.). The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Claudia Fink
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.)
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (M.M., H.G.). The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.).,DZHK: German Centre for Cardiovascular Research, Partner Site, Berlin, Germany (M.H.R., M.G.)
| |
Collapse
|
16
|
Resolving titin's lifecycle and the spatial organization of protein turnover in mouse cardiomyocytes. Proc Natl Acad Sci U S A 2019; 116:25126-25136. [PMID: 31757849 DOI: 10.1073/pnas.1904385116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiac protein homeostasis, sarcomere assembly, and integration of titin as the sarcomeric backbone are tightly regulated to facilitate adaptation and repair. Very little is known on how the >3-MDa titin protein is synthesized, moved, inserted into sarcomeres, detached, and degraded. Here, we generated a bifluorescently labeled knockin mouse to simultaneously visualize both ends of the molecule and follow titin's life cycle in vivo. We find titin mRNA, protein synthesis and degradation compartmentalized toward the Z-disk in adult, but not embryonic cardiomyocytes. Originating at the Z-disk, titin contributes to a soluble protein pool (>15% of total titin) before it is integrated into the sarcomere lattice. Titin integration, disintegration, and reintegration are stochastic and do not proceed sequentially from Z-disk to M-band, as suggested previously. Exchange between soluble and integrated titin depends on titin protein composition and differs between individual cardiomyocytes. Thus, titin dynamics facilitate embryonic vs. adult sarcomere remodeling with implications for cardiac development and disease.
Collapse
|
17
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
18
|
Kellermayer D, Smith JE, Granzier H. Titin mutations and muscle disease. Pflugers Arch 2019; 471:673-682. [PMID: 30919088 DOI: 10.1007/s00424-019-02272-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
The introduction of next-generation sequencing technology has revealed that mutations in the gene that encodes titin (TTN) are linked to multiple skeletal and cardiac myopathies. The most prominent of these myopathies is dilated cardiomyopathy (DCM). Over 60 genes are linked to the etiology of DCM, but by far, the leading cause of DCM is mutations in TTN with truncating variants in TTN (TTNtvs) associated with familial DCM in ∼ 20% of the cases. Titin is a large (3-4 MDa) and abundant protein that forms the third myofilament type of striated muscle where it spans half the sarcomere, from the Z-disk to the M-line. The underlying mechanisms by which titin mutations induce disease are poorly understood and targeted therapies are not available. Here, we review what is known about TTN mutations in muscle disease, with a major focus on DCM. We highlight that exon skipping might provide a possible therapeutic avenue to address diseases that arise from TTNtvs.
Collapse
Affiliation(s)
- Dalma Kellermayer
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA. .,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
19
|
Nowak M, Suenkel B, Porras P, Migotti R, Schmidt F, Kny M, Zhu X, Wanker EE, Dittmar G, Fielitz J, Sommer T. DCAF8, a novel MuRF1 interaction partner, promotes muscle atrophy. J Cell Sci 2019; 132:jcs.233395. [DOI: 10.1242/jcs.233395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
The muscle-specific RING-finger protein MuRF1 constitutes a bona fide ubiquitin ligase that routes proteins like Myosin heavy chain (MyHC) to proteasomal degradation during muscle atrophy. In two unbiased screens we identified DCAF8 as a new MuRF1 binding partner. MuRF1 physically interacts with DCAF8 and both proteins localize to overlapping structures in muscle cells. Noteworthy, similar to MuRF1, DCAF8 levels increase during atrophy and the down-regulation of either protein substantially impedes muscle wasting and MyHC degradation in C2C12 myotubes, a model system for muscle differentiation and atrophy. DCAF proteins typically serve as substrate receptors in Cullin 4-type (Cul4) ubiquitin ligases (CRL) and we demonstrate that DCAF8 and MuRF1 associate with the subunits of such a protein complex. Because genetic downregulation of DCAF8 and inhibition of Cullin activity also impair myotube atrophy in C2C12 cells, our data imply that the DCAF8 promotes muscle wasting by targeting proteins like MyHC as an integral substrate receptor of a CRL4A ubiquitin ligase.
Collapse
Affiliation(s)
- Marcel Nowak
- Intracellular Proteolysis, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, MDC, Lindenberger Weg 80, 13125 Berlin-Buch, Germany
- Present address: DUNN Labortechnik GmbH, Thelenberg 6, 53567, Asbach, Germany
| | - Benjamin Suenkel
- Intracellular Proteolysis, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | - Pablo Porras
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, MDC, USA
- Present address: European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Rebekka Migotti
- Mass Spectrometric Core Unit, MDC, USA
- Present address: ProPharma Group, Siemensdamm 62, 13627 Berlin, Germany
| | - Franziska Schmidt
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, MDC, Lindenberger Weg 80, 13125 Berlin-Buch, Germany
- Present address: BCRT Flow and Mass Cytometry Lab, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, MDC, Lindenberger Weg 80, 13125 Berlin-Buch, Germany
| | - Xiaoxi Zhu
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, MDC, Lindenberger Weg 80, 13125 Berlin-Buch, Germany
| | - Erich E. Wanker
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, MDC, USA
| | - Gunnar Dittmar
- Mass Spectrometric Core Unit, MDC, USA
- Present address: Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1a Rue Thomas Edison, L-1445 Strassen, Luxembourg, Europe
| | - Jens Fielitz
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, MDC, Lindenberger Weg 80, 13125 Berlin-Buch, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Fleischmann Strasse 41, 17475 Greifswald, Germany
| | - Thomas Sommer
- Intracellular Proteolysis, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
- Institute of Biology, Humboldt-University Berlin, Invalidenstrasse 43, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Oudenarder Straße 16, 13347 Berlin, Germany
| |
Collapse
|
20
|
Chen Z, Maimaiti R, Zhu C, Cai H, Stern A, Mozdziak P, Ge Y, Ford SP, Nathanielsz PW, Guo W. Z-band and M-band titin splicing and regulation by RNA binding motif 20 in striated muscles. J Cell Biochem 2018; 119:9986-9996. [PMID: 30133019 PMCID: PMC6218289 DOI: 10.1002/jcb.27328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Titin (TTN) has multifunctional roles in sarcomere assembly, mechanosignaling transduction, and muscle stiffness. TTN splicing generates variable protein sizes with different functions. Therefore, understanding TTN splicing is important to develop a novel treatment for TTN-based diseases. The I-band TTN splicing regulated by RNA binding motif 20 (RBM20) has been extensively studied. However, the Z- and M-band splicing and regulation remain poorly understood. Herein, we aimed to define the Z- and M-band splicing in striated muscles and determined whether RBM20 regulates the Z- and M-band splicing. We discovered four new Z-band TTN splicing variants, and one of them dominates in mouse, rat, sheep, and human hearts. But only one form can be detected in frog and chicken hearts. In skeletal muscles, three new Z repeats (Zr) were detected, and Zr4 to 6 exclusion dominates in the fast muscles, whereas Zr4 skipping dominates in the slow muscle. No developmental changes were detected in the Z-band. In the M-band, two new variants were discovered with alternative 3' splice site in exon363 (Mex5) and alternative 5' splice site in intron 362. However, only the sheep heart expresses two new variants rather than other species. Skeletal muscles express three M-band variants with altered ratios of Mex5 inclusion to Mex5 exclusion. Finally, we revealed that RBM20 does not regulate the Z- and M-band splicing in the heart, but does in skeletal muscles. Taken together, we characterized the Z- and M-band splicing and provided the first evidence of the role of RBM20 in the Z- and M-band TTN splicing.
Collapse
Affiliation(s)
- Zhilong Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Rexiati Maimaiti
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Chaoqun Zhu
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Hanfang Cai
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Allysa Stern
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| | - Ying Ge
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin, Madison, Wisconsin
- Department of Chemistry, Human Proteomics Program, University of Wisconsin, Madison, Wisconsin
| | - Stephen P Ford
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | | | - Wei Guo
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
21
|
van der Pijl R, Strom J, Conijn S, Lindqvist J, Labeit S, Granzier H, Ottenheijm C. Titin-based mechanosensing modulates muscle hypertrophy. J Cachexia Sarcopenia Muscle 2018; 9:947-961. [PMID: 29978560 PMCID: PMC6204599 DOI: 10.1002/jcsm.12319] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Titin is an elastic sarcomeric filament that has been proposed to play a key role in mechanosensing and trophicity of muscle. However, evidence for this proposal is scarce due to the lack of appropriate experimental models to directly test the role of titin in mechanosensing. METHODS We used unilateral diaphragm denervation (UDD) in mice, an in vivo model in which the denervated hemidiaphragm is passively stretched by the contralateral, innervated hemidiaphragm and hypertrophy rapidly occurs. RESULTS In wildtype mice, the denervated hemidiaphragm mass increased 48 ± 3% after 6 days of UDD, due to the addition of both sarcomeres in series and in parallel. To test whether titin stiffness modulates the hypertrophy response, RBM20ΔRRM and TtnΔIAjxn mouse models were used, with decreased and increased titin stiffness, respectively. RBM20ΔRRM mice (reduced stiffness) showed a 20 ± 6% attenuated hypertrophy response, whereas the TtnΔIAjxn mice (increased stiffness) showed an 18 ± 8% exaggerated response after UDD. Thus, muscle hypertrophy scales with titin stiffness. Protein expression analysis revealed that titin-binding proteins implicated previously in muscle trophicity were induced during UDD, MARP1 & 2, FHL1, and MuRF1. CONCLUSIONS Titin functions as a mechanosensor that regulates muscle trophicity.
Collapse
Affiliation(s)
- Robbert van der Pijl
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | - Joshua Strom
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Stefan Conijn
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | - Johan Lindqvist
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Siegfried Labeit
- Department of Integrative PathophysiologyMedical Faculty MannheimMannheimGermany
- Myomedix GmbHNeckargemuendGermany
| | - Henk Granzier
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Coen Ottenheijm
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
22
|
Ye L, Su L, Wang C, Loo S, Tee G, Tan S, Khin SW, Ko S, Su B, Cook SA. Truncations of the titin Z-disc predispose to a heart failure with preserved ejection phenotype in the context of pressure overload. PLoS One 2018; 13:e0201498. [PMID: 30063764 PMCID: PMC6067738 DOI: 10.1371/journal.pone.0201498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/15/2018] [Indexed: 01/02/2023] Open
Abstract
Titin (TTN) Truncating variants (TTNtv) in the A-band of TTN predispose the mouse heart to systolic dysfunction when subjected to pressure-loading. However, the effects of TTNtv of the Z-disc are largely unexplored. A rat model of pressure-loaded heart is developed by trans-aortic constriction (TAC). Rats with TTNtv of the Z-disc were randomly assigned to TAC (Z-TAC) or sham-surgery (Z-Sham) and wildtype (WT) littermates served as controls (WT-TAC or WT-Sham). Left ventricular (LV) function was assessed by echocardiography. Pressure volume (PV) loops, histology and molecular profiling were performed eight months after surgery. Pressure-load by TAC increased LV mass in all cases when compared with Sham animals. Notably, systolic function was preserved in TAC animals throughout the study period, which was confirmed by terminal PV loops. Diastolic function was impaired in Z-disc TTNtv rats at baseline as compared to WT and became impaired further after TAC (dp/dtmin, mmHg/s): Z-TAC = -3435±763, WT-TAC = -6497±1299 (p<0.01). Z-TAC animals had greater cardiac fibrosis, with elevated collagen content and decreased vascular density as compared to WT-TAC animals associated with enhanced apoptosis of myocyte and non-myocyte populations. In the context of pressure overload, Z-disc TTNtv is associated with cardiac fibrosis, diastolic dysfunction, and capillary rarefaction in the absence of overt systolic dysfunction.
Collapse
Affiliation(s)
- Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- * E-mail:
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Chenxu Wang
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Szejie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Guizhen Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Shihua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sandar Win Khin
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Shijie Ko
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Boyang Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
23
|
Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing Role of Titin Mutations in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:293-308. [PMID: 27854229 PMCID: PMC5123623 DOI: 10.3233/jnd-160158] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The TTN gene with 363 coding exons encodes titin, a giant muscle protein spanning from the Z-disk to the M-band within the sarcomere. Mutations in the TTN gene have been associated with different genetic disorders, including hypertrophic and dilated cardiomyopathy and several skeletal muscle diseases. Before the introduction of next generation sequencing (NGS) methods, the molecular analysis of TTN has been laborious, expensive and not widely used, resulting in a limited number of mutations identified. Recent studies however, based on the use of NGS strategies, give evidence of an increasing number of rare and unique TTN variants. The interpretation of these rare variants of uncertain significance (VOUS) represents a challenge for clinicians and researchers. The main aim of this review is to describe the wide spectrum of muscle diseases caused by TTN mutations so far determined, summarizing the molecular findings as well as the clinical data, and to highlight the importance of joint efforts to respond to the challenges arising from the use of NGS. An international collaboration through a clinical and research consortium and the development of a single accessible database listing variants in the TTN gene, identified by high throughput approaches, may be the key to a better assessment of titinopathies and to systematic genotype– phenotype correlation studies.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Albert Einstein College of Medicine, Departments of Medicine- Endocrinology and Molecular Pharmacology, Bronx, NY, USA
| | - Anna Vihola
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Chopra A, Kutys ML, Zhang K, Polacheck WJ, Sheng CC, Luu RJ, Eyckmans J, Hinson JT, Seidman JG, Seidman CE, Chen CS. Force Generation via β-Cardiac Myosin, Titin, and α-Actinin Drives Cardiac Sarcomere Assembly from Cell-Matrix Adhesions. Dev Cell 2018; 44:87-96.e5. [PMID: 29316444 DOI: 10.1016/j.devcel.2017.12.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/16/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
Truncating mutations in the sarcomere protein titin cause dilated cardiomyopathy due to sarcomere insufficiency. However, it remains mechanistically unclear how these mutations decrease sarcomere content in cardiomyocytes. Utilizing human induced pluripotent stem cell-derived cardiomyocytes, CRISPR/Cas9, and live microscopy, we characterize the fundamental mechanisms of human cardiac sarcomere formation. We observe that sarcomerogenesis initiates at protocostameres, sites of cell-extracellular matrix adhesion, where nucleation and centripetal assembly of α-actinin-2-containing fibers provide a template for the fusion of Z-disk precursors, Z bodies, and subsequent striation. We identify that β-cardiac myosin-titin-protocostamere form an essential mechanical connection that transmits forces required to direct α-actinin-2 centripetal fiber assembly and sarcomere formation. Titin propagates diastolic traction stresses from β-cardiac myosin, but not α-cardiac myosin or non-muscle myosin II, to protocostameres during sarcomerogenesis. Ablating protocostameres or decoupling titin from protocostameres abolishes sarcomere assembly. Together these results identify the mechanical and molecular components critical for human cardiac sarcomerogenesis.
Collapse
Affiliation(s)
- Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Matthew L Kutys
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Kehan Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - William J Polacheck
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Calvin C Sheng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rebeccah J Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Ushijima T, Fujimoto N, Matsuyama S, Kan-O M, Kiyonari H, Shioi G, Kage Y, Yamasaki S, Takeya R, Sumimoto H. The actin-organizing formin protein Fhod3 is required for postnatal development and functional maintenance of the adult heart in mice. J Biol Chem 2017; 293:148-162. [PMID: 29158260 DOI: 10.1074/jbc.m117.813931] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/16/2017] [Indexed: 01/22/2023] Open
Abstract
Cardiac development and function require actin-myosin interactions in the sarcomere, a highly organized contractile structure. Sarcomere assembly mediated by formin homology 2 domain-containing 3 (Fhod3), a member of formins that directs formation of straight actin filaments, is essential for embryonic cardiogenesis. However, the role of Fhod3 in the neonatal and adult stages has remained unknown. Here, we generated floxed Fhod3 mice to bypass the embryonic lethality of an Fhod3 knockout (KO). Perinatal KO of Fhod3 in the heart caused juvenile lethality at around day 10 after birth with enlarged hearts composed of severely impaired myofibrils, indicating that Fhod3 is crucial for postnatal heart development. Tamoxifen-induced conditional KO of Fhod3 in the adult heart neither led to lethal effects nor did it affect sarcomere structure and localization of sarcomere components. However, adult Fhod3-deleted mice exhibited a slight cardiomegaly and mild impairment of cardiac function, conditions that were sustained over 1 year without compensation during aging. In addition to these age-related changes, systemic stimulation with the α1-adrenergic receptor agonist phenylephrine, which induces sustained hypertension and hypertrophy development, induced expression of fetal cardiac genes that was more pronounced in adult Fhod3-deleted mice than in the control mice, suggesting that Fhod3 modulates hypertrophic changes in the adult heart. We conclude that Fhod3 plays a crucial role in both postnatal cardiac development and functional maintenance of the adult heart.
Collapse
Affiliation(s)
- Tomoki Ushijima
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Noriko Fujimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Sho Matsuyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692
| | - Meikun Kan-O
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, Kobe 650-0047; Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047
| | - Yohko Kage
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryu Takeya
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692.
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582.
| |
Collapse
|
26
|
Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy. Biophys Rev 2017; 9:207-223. [PMID: 28510119 PMCID: PMC5498329 DOI: 10.1007/s12551-017-0265-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome defined by the inability of the heart to pump enough blood to meet the body's metabolic demands. Major causes of HF are cardiomyopathies (diseases of the myocardium associated with mechanical and/or electrical dysfunction), among which the most common form is dilated cardiomyopathy (DCM). DCM is defined by ventricular chamber enlargement and systolic dysfunction with normal left ventricular wall thickness, which leads to progressive HF. Over 60 genes are linked to the etiology of DCM. Titin (TTN) is the largest known protein in biology, spanning half the cardiac sarcomere and, as such, is a basic structural and functional unit of striated muscles. It is essential for heart development as well as mechanical and regulatory functions of the sarcomere. Next-generation sequencing (NGS) in clinical DCM cohorts implicated truncating variants in titin (TTNtv) as major disease alleles, accounting for more than 25% of familial DCM cases, but these variants have also been identified in 2-3% of the general population, where these TTNtv blur diagnostic and clinical utility. Taking into account the published TTNtv and their association to DCM, it becomes clear that TTNtv harm the heart with position-dependent occurrence, being more harmful when present in the A-band TTN, presumably with dominant negative/gain-of-function mechanisms. However, these insights are challenged by the depiction of position-independent toxicity of TTNtv acting via haploinsufficient alleles, which are sufficient to induce cardiac pathology upon stress. In the current review, we provide an overview of TTN and discuss studies investigating various TTN mutations. We also present an overview of different mechanisms postulated or experimentally validated in the pathogenicity of TTNtv. DCM-causing genes are also discussed with respect to non-truncating mutations in the etiology of DCM. One way of understanding pathogenic variants is probably to understand the context in which they may or may not affect protein-protein interactions, changes in cell signaling, and substrate specificity. In this regard, we also provide a brief overview of TTN interactions in situ. Quantitative models in the risk assessment of TTNtv are also discussed. In summary, we highlight the importance of gene-environment interactions in the etiology of DCM and further mechanistic studies used to delineate the pathways which could be targeted in the management of DCM.
Collapse
|
27
|
Hanashima A, Hashimoto K, Ujihara Y, Honda T, Yobimoto T, Kodama A, Mohri S. Complete primary structure of the I-band region of connectin at which mechanical property is modulated in zebrafish heart and skeletal muscle. Gene 2017; 596:19-26. [PMID: 27725266 DOI: 10.1016/j.gene.2016.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Connectin, also called titin, is the largest protein with a critical function as a molecular spring during contraction and relaxation of striated muscle; its mutation leads to severe myopathy and cardiomyopathy. To uncover the cause of this pathogenesis, zebrafish have recently been used as disease models because they are easier to genetically modify than mice. Although the gene structures and putative primary structures of zebrafish connectin have been determined, the actual primary structures of zebrafish connectin in heart and skeletal muscles remain unclear because of its large size and the PCR amplification-associated difficulties. In this research, using RT-PCR amplification from zebrafish heart and skeletal muscles, we determined the complete primary structures of zebrafish connectin in the I-band region at which mechanical property is modulated by alternative splicing. Our results showed that the domain structures of zebrafish connectins were largely similar to those of human connectins; however, the splicing pathways in the middle-Ig segment and the PEVK segment were highly diverse in every isoform. We also found that a set of 10 Ig domains in the middle-Ig segment of zebrafish connectin had been triplicated in human connectin. Because these triplicate regions are expressed in human leg and diaphragm, our findings may provide insight into the establishment of walking with limbs and lung respiration during tetrapod evolution.
Collapse
Affiliation(s)
- Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | - Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yoshihiro Ujihara
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Takeshi Honda
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Tomoko Yobimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
28
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
29
|
Deo RC. Alternative Splicing, Internal Promoter, Nonsense-Mediated Decay, or All Three: Explaining the Distribution of Truncation Variants in Titin. ACTA ACUST UNITED AC 2016; 9:419-425. [PMID: 27625338 PMCID: PMC5068190 DOI: 10.1161/circgenetics.116.001513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/12/2016] [Indexed: 12/01/2022]
Abstract
Supplemental Digital Content is available in the text. Background— Truncating mutations in the giant sarcomeric gene Titin are the most common type of genetic alteration in dilated cardiomyopathy. Detailed studies have amassed a wealth of information about truncating variant position in cases and controls. Nonetheless, considerable confusion exists as to how to interpret the pathogenicity of these variants, hindering our ability to make useful recommendations to patients. Methods and Results— Building on our recent discovery of a conserved internal promoter within the Titin gene, we sought to develop an integrative statistical model to explain the observed pattern of Titin truncation variants in patients with dilated cardiomyopathy and population controls. We amassed Titin truncation mutation information from 1714 human dilated cardiomyopathy cases and >69 000 controls and found 3 factors explaining the distribution of Titin mutations: (1) alternative splicing, (2) whether the internal promoter Cronos isoform was disrupted, and (3) whether the distal C terminus was targeted (in keeping with the observation that truncation variants in this region escape nonsense-mediated decay and continue to be incorporated in the sarcomere). A model using these 3 factors had strong predictive performance with an area under the receiver operating characteristic curve of 0.81. Accordingly, individuals with either the most severe form of dilated cardiomyopathy or whose mutations demonstrated clear family segregation experienced the highest risk profile across all 3 components. Conclusions— We conclude that quantitative models derived from large-scale human genetic and phenotypic data can be applied to help overcome the ever-growing challenges of genetic data interpretation. Results of our approach can be found at http://cvri.ucsf.edu/~deo/TTNtruncationvariant.html.
Collapse
Affiliation(s)
- Rahul C Deo
- From the Department of Medicine, Institute for Human Genetics, California Institute for Quantitative Biosciences and Cardiovascular Research Institute, University of California, San Francisco.
| |
Collapse
|
30
|
Evidence for the mechanosensor function of filamin in tissue development. Sci Rep 2016; 6:32798. [PMID: 27597179 PMCID: PMC5011733 DOI: 10.1038/srep32798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Cells integrate mechanical properties of their surroundings to form multicellular, three-dimensional tissues of appropriate size and spatial organisation. Actin cytoskeleton-linked proteins such as talin, vinculin and filamin function as mechanosensors in cells, but it has yet to be tested whether the mechanosensitivity is important for their function in intact tissues. Here we tested, how filamin mechanosensing contributes to oogenesis in Drosophila. Mutations that require more or less force to open the mechanosensor region demonstrate that filamin mechanosensitivity is important for the maturation of actin-rich ring canals that are essential for Drosophila egg development. The open mutant was more tightly bound to the ring canal structure while the closed mutant dissociated more frequently. Thus, our results show that an appropriate level of mechanical sensitivity is required for filamins’ function and dynamics during Drosophila egg growth and support the structure-based model in which the opening and closing of the mechanosensor region regulates filamin binding to cellular components.
Collapse
|
31
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
32
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as Amyotrophic Lateral Sclerosis, peripheral neuropathies such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "Quality of life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
Affiliation(s)
- Robert W Burgess
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Kevin L Seburn
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
33
|
Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:163564. [PMID: 26504781 PMCID: PMC4609346 DOI: 10.1155/2015/163564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/16/2015] [Indexed: 11/17/2022]
Abstract
Mutations in the giant sarcomeric protein titin (TTN) are a major cause for inherited forms of dilated cardiomyopathy (DCM). We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC) in heterozygous (Het) Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p < 0.05), while wild-type (WT) TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure.
Collapse
|
34
|
Shamseldin HE, Tulbah M, Kurdi W, Nemer M, Alsahan N, Al Mardawi E, Khalifa O, Hashem A, Kurdi A, Babay Z, Bubshait DK, Ibrahim N, Abdulwahab F, Rahbeeni Z, Hashem M, Alkuraya FS. Identification of embryonic lethal genes in humans by autozygosity mapping and exome sequencing in consanguineous families. Genome Biol 2015; 16:116. [PMID: 26036949 PMCID: PMC4491988 DOI: 10.1186/s13059-015-0681-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/21/2015] [Indexed: 01/23/2023] Open
Abstract
Background Identifying genetic variants that lead to discernible phenotypes is the core of Mendelian genetics. An approach that considers embryonic lethality as a bona fide Mendelian phenotype has the potential to reveal novel genetic causes, which will further our understanding of early human development at a molecular level. Consanguineous families in which embryonic lethality segregates as a recessive Mendelian phenotype offer a unique opportunity for high throughput novel gene discovery as has been established for other recessive postnatal phenotypes. Results We have studied 24 eligible families using autozygosity mapping and whole-exome sequencing. In addition to revealing mutations in genes previously linked to embryonic lethality in severe cases, our approach revealed seven novel candidate genes (THSD1, PIGC, UBN1, MYOM1, DNAH14, GALNT14, and FZD6). A founder mutation in one of these genes, THSD1, which has been linked to vascular permeability, accounted for embryonic lethality in three of the study families. Unlike the other six candidate genes, we were able to identify a second mutation in THSD1 in a family with a less severe phenotype consisting of hydrops fetalis and persistent postnatal edema, which provides further support for the proposed link between this gene and embryonic lethality. Conclusions Our study represents an important step towards the systematic analysis of “embryonic lethal genes” in humans. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0681-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Maha Tulbah
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Maha Nemer
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Nada Alsahan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Elham Al Mardawi
- Department of Obstetrics and Gynecology, Security Forces Hospital, Riyadh, Saudi Arabia.
| | - Ola Khalifa
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Amal Hashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Ahmed Kurdi
- Department of Obstetrics and Gynecology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Zainab Babay
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Dalal K Bubshait
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Pediatrics, King Fahd Hospital of the University, University of Dammam, Dammam, Saudi Arabia.
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
35
|
Neiva-Sousa M, Almeida-Coelho J, Falcão-Pires I, Leite-Moreira AF. Titin mutations: the fall of Goliath. Heart Fail Rev 2015; 20:579-88. [DOI: 10.1007/s10741-015-9495-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Xiao S, Gräter F. Molecular basis of the mechanical hierarchy in myomesin dimers for sarcomere integrity. Biophys J 2015; 107:965-73. [PMID: 25140432 PMCID: PMC4142248 DOI: 10.1016/j.bpj.2014.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2014] [Accepted: 06/16/2014] [Indexed: 01/08/2023] Open
Abstract
Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunoglobulin (Ig) domains, and the dimer interface at myomesin's 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼ 15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.
Collapse
Affiliation(s)
- Senbo Xiao
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Chinese Academy of Sciences-Max-Planck-Society Partner Institute and Key Laboratory for Computational Biology, Shanghai, China; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
37
|
Abstract
The giant sarcomeric protein titin is a key determinant of myocardial passive stiffness and stress-sensitive signaling. Titin stiffness is modulated by isoform variation, phosphorylation by protein kinases, and, possibly, oxidative stress through disulfide bond formation. Titin has also emerged as an important human disease gene. Early studies in patients with dilated cardiomyopathy (DCM) revealed shifts toward more compliant isoforms, an adaptation that offsets increases in passive stiffness based on the extracellular matrix. Similar shifts are observed in heart failure with preserved ejection fraction. In contrast, hypophosphorylation of PKA/G sites contributes to a net increase in cardiomyocyte resting tension in heart failure with preserved ejection fraction. More recently, titin mutations have been recognized as the most common etiology of inherited DCM. In addition, some DCM-causing mutations affect RBM20, a titin splice factor. Titin mutations are a rare cause of hypertrophic cardiomyopathy and also underlie some cases of arrhythmogenic right ventricular dysplasia. Finally, mutations of genes encoding proteins that interact with and/or bind to titin are responsible for both DCM and hypertrophic cardiomyopathy. Targeting titin as a therapeutic strategy is in its infancy, but it could potentially involve manipulation of isoforms, posttranslational modifications, and upregulation of normal protein in patients with disease-causing mutations.
Collapse
|
38
|
Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum Mutat 2014; 35:1046-59. [PMID: 24980681 DOI: 10.1002/humu.22611] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/20/2014] [Indexed: 01/10/2023]
Abstract
The 364 exon TTN gene encodes titin (TTN), the largest known protein, which plays key structural, developmental, mechanical, and regulatory roles in cardiac and skeletal muscles. Prior to next-generation sequencing (NGS), routine analysis of the whole TTN gene was impossible due to its giant size and complexity. Thus, only a few TTN mutations had been reported and the general incidence and spectrum of titinopathies was significantly underestimated. In the last months, due to the widespread use of NGS, TTN is emerging as a major gene in human-inherited disease. So far, 127 TTN disease-causing mutations have been reported in patients with at least 10 different conditions, including isolated cardiomyopathies, purely skeletal muscle phenotypes, or infantile diseases affecting both types of striated muscles. However, the identification of TTN variants in virtually every individual from control populations, as well as the multiplicity of TTN isoforms and reference sequences used, stress the difficulties in assessing the relevance, inheritance, and correlation with the phenotype of TTN sequence changes. In this review, we provide the first comprehensive update of the TTN mutations reported and discuss their distribution, molecular mechanisms, associated phenotypes, transmission pattern, and phenotype-genotype correlations, alongside with their implications for basic research and for human health.
Collapse
Affiliation(s)
- Claire Chauveau
- Inserm, U787 Myology Group, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; UPMC, UMR787, Paris, France
| | | | | |
Collapse
|
39
|
Güth R, Pinch M, Unguez GA. Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2014; 216:2469-77. [PMID: 23761472 DOI: 10.1242/jeb.082404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animals perform a remarkable diversity of movements through the coordinated mechanical contraction of skeletal muscle. This capacity for a wide range of movements is due to the presence of muscle cells with a very plastic phenotype that display many different biochemical, physiological and morphological properties. What factors influence the maintenance and plasticity of differentiated muscle fibers is a fundamental question in muscle biology. We have exploited the remarkable potential of skeletal muscle cells of the gymnotiform electric fish Sternopygus macrurus to trans-differentiate into electrocytes, the non-contractile electrogenic cells of the electric organ (EO), to investigate the mechanisms that regulate the skeletal muscle phenotype. In S. macrurus, mature electrocytes possess a phenotype that is intermediate between muscle and non-muscle cells. How some genes coding for muscle-specific proteins are downregulated while others are maintained, and novel genes are upregulated, is an intriguing problem in the control of skeletal muscle and EO phenotype. To date, the intracellular and extracellular factors that generate and maintain distinct patterns of gene expression in muscle and EO have not been defined. Expression studies in S. macrurus have started to shed light on the role that transcriptional and post-transcriptional events play in regulating specific muscle protein systems and the muscle phenotype of the EO. In addition, these findings also represent an important step toward identifying mechanisms that affect the maintenance and plasticity of the muscle cell phenotype for the evolution of highly specialized non-contractile tissues.
Collapse
Affiliation(s)
- Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|
40
|
Skeletal muscle, autophagy, and physical activity: the ménage à trois of metabolic regulation in health and disease. J Mol Med (Berl) 2013; 92:127-37. [PMID: 24271008 DOI: 10.1007/s00109-013-1096-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/10/2013] [Accepted: 10/23/2013] [Indexed: 01/07/2023]
Abstract
Metabolic homeostasis is essential for cellular survival and proper tissue function. Multi-systemic metabolic regulation is therefore vital for good health. A number of tissues have the task of maintaining appropriate metabolism, and skeletal muscle is the most abundant of them. Muscle possesses a remarkable plasticity and is able to rapidly adapt to changes in energetic demands by fine-tuning the balance between catabolic and anabolic processes. Autophagy is a catabolic process responsible for the degradation of protein aggregates and damaged organelles, through the autophagosome-lysosome system. Proper regulation of autophagy flux is fundamental for organism homeostasis under physiological conditions and even more in response to metabolic stress, such as during physical activity and nutritional deficits. Both deficient and excessive autophagy are harmful for health and have devastating consequences in a myriad of pathologies. The regulation of autophagy flux in various tissues, and in particular in skeletal muscle, is of great importance for health and tissue homeostasis and represents a feasible mechanism by which physical exercise exerts its beneficial effects on muscle and whole body metabolism. This review is focused on the key molecular mechanisms regulating macromolecule and organelle turnover in muscle during alterations in nutrient availability and energetic demands, as well as their involvement in disease pathogenesis.
Collapse
|
41
|
|
42
|
Akimoto T, Okuhira K, Aizawa K, Wada S, Honda H, Fukubayashi T, Ushida T. Skeletal muscle adaptation in response to mechanical stress in p130cas−/− mice. Am J Physiol Cell Physiol 2013; 304:C541-7. [DOI: 10.1152/ajpcell.00243.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian skeletal muscles undergo adaptation in response to changes in the functional demands upon them, involving mechanical-stress-induced cellular signaling called “mechanotransduction.” We hypothesized that p130Cas, which is reported to act as a mechanosensor that transduces mechanical extension into cellular signaling, plays an important role in maintaining and promoting skeletal muscle adaptation in response to mechanical stress via the p38 MAPK signaling pathway. We demonstrate that muscle-specific p130Cas−/− mice express the contractile proteins normally in skeletal muscle. Furthermore, muscle-specific p130Cas−/− mice show normal mechanical-stress-induced muscle adaptation, including exercise-induced IIb-to-IIa muscle fiber type transformation and hypertrophy. Finally, we provide evidence that exercise-induced p38 MAPK signaling is not impaired by the muscle-specific deletion of p130Cas. We conclude that p130Cas plays a limited role in mechanical-stress-induced skeletal muscle adaptation.
Collapse
Affiliation(s)
- Takayuki Akimoto
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Kanako Okuhira
- Faculty of Sports Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan; and
| | - Katsuji Aizawa
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Shogo Wada
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Hiroaki Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Toru Fukubayashi
- Faculty of Sports Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan; and
| | - Takashi Ushida
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| |
Collapse
|
43
|
Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:204-17. [PMID: 22910434 DOI: 10.1016/j.pbiomolbio.2012.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 01/08/2023]
Abstract
The passive stiffness of cardiac muscle plays a critical role in ventricular filling during diastole and is determined by the extracellular matrix and the sarcomeric protein titin. Titin spans from the Z-disk to the M-band of the sarcomere and also contains a large extensible region that acts as a molecular spring and develops passive force during sarcomere stretch. This extensible segment is titin's I-band region, and its force-generating mechanical properties determine titin-based passive tension. The properties of titin's I-band region can be modulated by isoform splicing and post-translational modification and are intimately linked to diastolic function. This review discusses the physical origin of titin-based passive tension, the mechanisms that alter titin stiffness, and titin's role in stress-sensing signaling pathways.
Collapse
|
44
|
Xu J, Gao J, Li J, Xue L, Clark KJ, Ekker SC, Du SJ. Functional analysis of slow myosin heavy chain 1 and myomesin-3 in sarcomere organization in zebrafish embryonic slow muscles. J Genet Genomics 2012; 39:69-80. [PMID: 22361506 DOI: 10.1016/j.jgg.2012.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/27/2022]
Abstract
Myofibrillogenesis, the process of sarcomere formation, requires close interactions of sarcomeric proteins and various components of sarcomere structures. The myosin thick filaments and M-lines are two key components of the sarcomere. It has been suggested that myomesin proteins of M-lines interact with myosin and titin proteins and keep the thick and titin filaments in order. However, the function of myomesin in myofibrillogenesis and sarcomere organization remained largely enigmatic. No knockout or knockdown animal models have been reported to elucidate the role of myomesin in sarcomere organization in vivo. In this study, by using the gene-specific knockdown approach in zebrafish embryos, we carried out a loss-of-function analysis of myomesin-3 and slow myosin heavy chain 1 (smyhc1) expressed specifically in slow muscles. We demonstrated that knockdown of smyhc1 abolished the sarcomeric localization of myomesin-3 in slow muscles. In contrast, loss of myomesin-3 had no effect on the sarcomeric organization of thick and thin filaments as well as M- and Z-line structures. Together, these studies indicate that myosin thick filaments are required for M-line organization and M-line localization of myomesin-3. In contrast, myomesin-3 is dispensable for sarcomere organization in slow muscles.
Collapse
Affiliation(s)
- Jin Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
da Silva Lopes K, Pietas A, Radke MH, Gotthardt M. Titin visualization in real time reveals an unexpected level of mobility within and between sarcomeres. ACTA ACUST UNITED AC 2011; 193:785-98. [PMID: 21555460 PMCID: PMC3166869 DOI: 10.1083/jcb.201010099] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Contrary to prior models in which titin serves as a stable scaffold in sarcomeres, sarcomeric and soluble titin exchange dynamically in myofibers when calcium levels are low. The giant muscle protein titin is an essential structural component of the sarcomere. It forms a continuous periodic backbone along the myofiber that provides resistance to mechanical strain. Thus, the titin filament has been regarded as a blueprint for sarcomere assembly and a prerequisite for stability. Here, a novel titin-eGFP knockin mouse provided evidence that sarcomeric titin is more dynamic than previously suggested. To study the mobility of titin in embryonic and neonatal cardiomyocytes, we used fluorescence recovery after photobleaching and investigated the contribution of protein synthesis, contractility, and calcium load to titin motility. Overall, the kinetics of lateral and longitudinal movement of titin-eGFP were similar. Whereas protein synthesis and developmental stage did not alter titin dynamics, there was a strong, inhibitory effect of calcium on titin mobility. Our results suggest a model in which the largely unrestricted movement of titin within and between sarcomeres primarily depends on calcium, suggesting that fortification of the titin filament system is activity dependent.
Collapse
Affiliation(s)
- Katharina da Silva Lopes
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine (MDC), D-13122 Berlin-Buch, Germany
| | | | | | | |
Collapse
|
46
|
Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T, Wang DZ, Xiao X, Zhang Y. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 2011; 25:263-74. [PMID: 21289070 DOI: 10.1101/gad.2018511] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Histone methylation plays an important role in regulating gene expression. One such methylation occurs at Lys 79 of histone H3 (H3K79) and is catalyzed by the yeast DOT1 (disruptor of telomeric silencing) and its mammalian homolog, DOT1L. Previous studies have demonstrated that germline disruption of Dot1L in mice resulted in embryonic lethality. Here we report that cardiac-specific knockout of Dot1L results in increased mortality rate with chamber dilation, increased cardiomyocyte cell death, systolic dysfunction, and conduction abnormalities. These phenotypes mimic those exhibited in patients with dilated cardiomyopathy (DCM). Mechanistic studies reveal that DOT1L performs its function in cardiomyocytes through regulating Dystrophin (Dmd) transcription and, consequently, stability of the Dystrophin-glycoprotein complex important for cardiomyocyte viability. Importantly, expression of a miniDmd can largely rescue the DCM phenotypes, indicating that Dmd is a major target mediating DOT1L function in cardiomyocytes. Interestingly, analysis of available gene expression data sets indicates that DOT1L is down-regulated in idiopathic DCM patient samples compared with normal controls. Therefore, our study not only establishes a critical role for DOT1L-mediated H3K79 methylation in cardiomyocyte function, but also reveals the mechanism underlying the role of DOT1L in DCM. In addition, our study may open new avenues for the diagnosis and treatment of human heart disease.
Collapse
Affiliation(s)
- Anh T Nguyen
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ottenheijm CAC, van Hees HWH, Heunks LMA, Granzier H. Titin-based mechanosensing and signaling: role in diaphragm atrophy during unloading? Am J Physiol Lung Cell Mol Physiol 2010; 300:L161-6. [PMID: 21075826 DOI: 10.1152/ajplung.00288.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The diaphragm, the main muscle of inspiration, is constantly subjected to mechanical loading. One of the very few occasions during which diaphragm loading is arrested is during controlled mechanical ventilation in the intensive care unit. Recent animal studies indicate that the diaphragm is extremely sensitive to unloading, causing rapid muscle fiber atrophy: unloading-induced diaphragm atrophy and the concomitant diaphragm weakness has been suggested to contribute to the difficulties in weaning patients from ventilatory support. Little is known about the molecular triggers that initiate the rapid unloading atrophy of the diaphragm, although proteolytic pathways and oxidative signaling have been shown to be involved. Mechanical stress is known to play an important role in the maintenance of muscle mass. Within the muscle's sarcomere titin is considered to play an important role in the stress-response machinery. Titin is the largest protein known to date and acts as a mechanosensor that regulates muscle protein expression in a sarcomere strain-dependent fashion. Thus, titin is an attractive candidate for sensing the sudden mechanical arrest of the diaphragm when patients are mechanically ventilated, leading to changes in muscle protein expression. Here, we provide a novel perspective on how titin, and its biomechanical sensing and signaling, might be involved in the development of mechanical unloading-induced diaphragm weakness.
Collapse
Affiliation(s)
- Coen A C Ottenheijm
- Laboratory for Physiology, Institute for Cardiovascular Research, VU Univ. Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Charton K, Danièle N, Vihola A, Roudaut C, Gicquel E, Monjaret F, Tarrade A, Sarparanta J, Udd B, Richard I. Removal of the calpain 3 protease reverses the myopathology in a mouse model for titinopathies. Hum Mol Genet 2010; 19:4608-24. [PMID: 20855473 DOI: 10.1093/hmg/ddq388] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dominant tibial muscular dystrophy (TMD) and recessive limb-girdle muscular dystrophy 2J are allelic disorders caused by mutations in the C-terminus of titin, a giant sarcomeric protein. Both clinical presentations were initially identified in a large Finnish family and linked to a founder mutation (FINmaj). To further understand the physiopathology of these two diseases, we generated a mouse model carrying the FINmaj mutation. In heterozygous mice, dystrophic myopathology appears late at 9 months of age in few distal muscles. In homozygous (HO) mice, the first signs appear in the Soleus at 1 month of age and extend to most muscles at 6 months of age. Interestingly, the heart is also severely affected in HO mice. The mutation leads to the loss of the very C-terminal end of titin and to a secondary deficiency of calpain 3, a partner of titin. By crossing the FINmaj model with a calpain 3-deficient model, the TMD phenotype was corrected, demonstrating a participation of calpain 3 in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Karine Charton
- Genethon, CNRS UMR8587 LAMBE, 1 rue de l’Internationale, Evry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
We review some of the problems in determining how myofibrils may be assembled and just as importantly how this contractile structure may be renewed by sarcomeric proteins moving between the sarcomere and the cytoplasm. We also address in this personal review the recent evidence that indicates that the assembly and dynamics of myofibrils are conserved whether the cells are analyzed in situ or in tissue culture conditions. We suggest that myofibrillogenesis is a fundamentally conserved process, comparable to protein synthesis, mitosis, or cytokinesis, whether examined in situ or in vitro.
Collapse
|
50
|
Affiliation(s)
- Martin M LeWinter
- Cardiology Unit, Fletcher Allen Health Care, 111 Colchester Ave, Burlington, VT 05401, USA.
| | | |
Collapse
|