1
|
Murillo-López J, Zinovjev K, Pereira H, Caniuguir A, Garratt R, Babul J, Recabarren R, Alzate-Morales J, Caballero J, Tuñón I, Cabrera R. Studying the phosphoryl transfer mechanism of the E. coli phosphofructokinase-2: from X-ray structure to quantum mechanics/molecular mechanics simulations. Chem Sci 2019; 10:2882-2892. [PMID: 30996866 PMCID: PMC6429617 DOI: 10.1039/c9sc00094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Phosphofructokinases catalyze the ATP-dependent phosphorylation of fructose-6-phosphate and they are highly regulated.
Phosphofructokinases (Pfks) catalyze the ATP-dependent phosphorylation of fructose-6-phosphate (F6P) and they are regulated in a wide variety of organisms. Although numerous aspects of the kinetics and regulation have been characterized for Pfks, the knowledge about the mechanism of the phosphoryl transfer reaction and the transition state lags behind. In this work, we describe the X-ray crystal structure of the homodimeric Pfk-2 from E. coli, which contains products in one site and reactants in the other, as well as an additional ATP molecule in the inhibitory allosteric site adjacent to the reactants. This complex was previously predicted when studying the kinetic mechanism of ATP inhibition. After removing the allosteric ATP, molecular dynamic (MD) simulations revealed conformational changes related to domain packing, as well as stable interactions of Lys27 and Asp256 with donor (ATP) and acceptor (fructose-6-) groups, and of Asp166 with Mg2+. The phosphoryl transfer reaction mechanism catalyzed by Pfk-2 was investigated through Quantum Mechanics/Molecular Mechanics (QM/MM) simulations using a combination of the string method and a path-collective variable for the exploration of its free energy surface. The calculated activation free energies showed that a dissociative mechanism, occurring with a metaphosphate intermediate formation followed by a proton transfer to Asp256, is more favorable than an associative one. The structural analysis reveals the role of Asp256 acting as a catalytic base and Lys27 stabilizing the transition state of the dissociative mechanism.
Collapse
Affiliation(s)
- Juliana Murillo-López
- Centro de Bioinformática y Simulación Molecular (CBSM) , Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile .
| | - Kirill Zinovjev
- Departament de Química Física , Universitat de València , 46100 Burjassot , Spain .
| | - Humberto Pereira
- Instituto de Física de São Carlos , Universidade de São Paulo , São Paulo , Brazil
| | - Andres Caniuguir
- Departamento de Biología , Facultad de Ciencias , Universidad de Chile , Santiago , Chile .
| | - Richard Garratt
- Instituto de Física de São Carlos , Universidade de São Paulo , São Paulo , Brazil
| | - Jorge Babul
- Departamento de Biología , Facultad de Ciencias , Universidad de Chile , Santiago , Chile .
| | - Rodrigo Recabarren
- Centro de Bioinformática y Simulación Molecular (CBSM) , Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile .
| | - Jans Alzate-Morales
- Centro de Bioinformática y Simulación Molecular (CBSM) , Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile .
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM) , Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile .
| | - Iñaki Tuñón
- Departament de Química Física , Universitat de València , 46100 Burjassot , Spain .
| | - Ricardo Cabrera
- Departamento de Biología , Facultad de Ciencias , Universidad de Chile , Santiago , Chile .
| |
Collapse
|
2
|
Villalobos P, Soto F, Baez M, Babul J. Regulatory network of the allosteric ATP inhibition of E. coli phosphofructokinase-2 studied by hybrid dimers. Biochimie 2016; 128-129:209-16. [PMID: 27591700 DOI: 10.1016/j.biochi.2016.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 08/29/2016] [Indexed: 12/26/2022]
Abstract
We have proposed an allosteric ATP inhibition mechanism of Pfk-2 determining the structure of different forms of the enzyme together with a kinetic enzyme analysis. Here we complement the mechanism by using hybrid oligomers of the homodimeric enzyme to get insights about the allosteric communication pathways between the same sites or different ones located in different subunits. Kinetic analysis of the hybrid enzymes indicate that homotropic interactions between allosteric sites for ATP or between substrate sites for fructose-6-P have a minor effect on the enzymatic inhibition induced by ATP. In fact, the sigmoid response for fructose-6-P observed at elevated ATP concentrations can be eliminated even though the enzymatic inhibition is still operative. Nevertheless, leverage coupling analysis supports heterotropic interactions between the allosteric ATP and fructose-6-P binding occurring between and within each subunit.
Collapse
Affiliation(s)
- Pablo Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Soto
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Rivas-Pardo JA, Alegre-Cebollada J, Ramírez-Sarmiento CA, Fernandez JM, Guixé V. Identifying sequential substrate binding at the single-molecule level by enzyme mechanical stabilization. ACS NANO 2015; 9:3996-4005. [PMID: 25840594 PMCID: PMC4467879 DOI: 10.1021/nn507480v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Enzyme-substrate binding is a dynamic process intimately coupled to protein structural changes, which in turn changes the unfolding energy landscape. By the use of single-molecule force spectroscopy (SMFS), we characterize the open-to-closed conformational transition experienced by the hyperthermophilic adenine diphosphate (ADP)-dependent glucokinase from Thermococcus litoralis triggered by the sequential binding of substrates. In the absence of substrates, the mechanical unfolding of TlGK shows an intermediate 1, which is stabilized in the presence of Mg·ADP(-), the first substrate to bind to the enzyme. However, in the presence of this substrate, an additional unfolding event is observed, intermediate 1*. Finally, in the presence of both substrates, the unfolding force of intermediates 1 and 1* increases as a consequence of the domain closure. These results show that SMFS can be used as a powerful experimental tool to investigate binding mechanisms of different enzymes with more than one ligand, expanding the repertoire of protocols traditionally used in enzymology.
Collapse
Affiliation(s)
- Jaime Andrés Rivas-Pardo
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 550 West 120 Street, New York, New York 10027, USA
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Jorge Alegre-Cebollada
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 550 West 120 Street, New York, New York 10027, USA
| | - César A. Ramírez-Sarmiento
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Julio M. Fernandez
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 550 West 120 Street, New York, New York 10027, USA
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| |
Collapse
|
4
|
Substrate-induced change in the quaternary structure of type 2 isopentenyl diphosphate isomerase from Sulfolobus shibatae. J Bacteriol 2012; 194:3216-24. [PMID: 22505674 DOI: 10.1128/jb.00068-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 2 isopentenyl diphosphate isomerase catalyzes the interconversion between two active units for isoprenoid biosynthesis, i.e., isopentenyl diphosphate and dimethylallyl diphosphate, in almost all archaea and in some bacteria, including human pathogens. The enzyme is a good target for discovery of antibiotics because it is essential for the organisms that use only the mevalonate pathway to produce the active isoprene units and because humans possess a nonhomologous isozyme, type 1 isopentenyl diphosphate isomerase. However, type 2 enzymes were reportedly inhibited by mechanism-based drugs for the type 1 enzyme due to their surprisingly similar reaction mechanisms. Thus, a different approach is now required to develop new inhibitors specific to the type 2 enzyme. X-ray crystallography and gel filtration chromatography revealed that the enzyme from a thermoacidophilic archaeon, Sulfolobus shibatae, is in the octameric state at a high concentration. Interestingly, a part of the regions that are involved in the substrate binding in the previously reported tetrameric structures is integral to the formation of the tetramer-tetramer interface in the substrate-free octameric structure. Site-directed mutagenesis at such regions resulted in stabilization of the tetramer. Small-angle X-ray scattering, tryptophan fluorescence, and dynamic light scattering analyses showed that substrate binding causes the dissociation of an octamer into tetramers. This property, i.e., incompatibility between octamer formation and substrate binding, might provide clues to develop new specific inhibitors of the archaeal enzyme.
Collapse
|
5
|
Cabrera R, Baez M, Pereira HM, Caniuguir A, Garratt RC, Babul J. The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: kinetic and structural analysis of the allosteric ATP inhibition. J Biol Chem 2011; 286:5774-83. [PMID: 21147773 PMCID: PMC3037690 DOI: 10.1074/jbc.m110.163162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/15/2010] [Indexed: 11/06/2022] Open
Abstract
Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 Å. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K(0.5) for fructose-6-P and a decrease in the apparent k(cat) as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (n(H) of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.
Collapse
Affiliation(s)
- Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
6
|
Fischer H, de Oliveira Neto M, Napolitano HB, Polikarpov I, Craievich AF. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Crystallogr 2009. [DOI: 10.1107/s0021889809043076] [Citation(s) in RCA: 357] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This paper describes a new and simple method to determine the molecular weight of proteins in dilute solution, with an error smaller than ∼10%, by using the experimental data of a single small-angle X-ray scattering (SAXS) curve measured on a relative scale. This procedure does not require the measurement of SAXS intensity on an absolute scale and does not involve a comparison with another SAXS curve determined from a known standard protein. The proposed procedure can be applied to monodisperse systems of proteins in dilute solution, either in monomeric or multimeric state, and it has been successfully tested on SAXS data experimentally determined for proteins with known molecular weights. It is shown here that the molecular weights determined by this procedure deviate from the known values by less than 10% in each case and the average error for the test set of 21 proteins was 5.3%. Importantly, this method allows for an unambiguous determination of the multimeric state of proteins with known molecular weights.
Collapse
|
7
|
Baez M, Babul J. Reversible unfolding of dimeric phosphofructokinase-2 from Escherichia coli reveals a dominant role of inter-subunit contacts for stability. FEBS Lett 2009; 583:2054-60. [PMID: 19465020 DOI: 10.1016/j.febslet.2009.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/02/2009] [Accepted: 05/15/2009] [Indexed: 11/15/2022]
Abstract
Escherichia coli phosphofructokinase-2 (Pfk-2) is a homodimer whose subunits consist of a large domain and an additional beta-sheet that provides the interfacial contacts between the subunits, creating a beta-barrel flattened-like structure with the adjacent subunit's beta-sheet. To determine how the structural organization of Pfk-2 determines its stability, the reversible unfolding of the enzyme was characterized under equilibrium conditions by enzymatic activity, circular dichroism, fluorescence and hydrodynamic measurements. Pfk-2 undergoes a cooperative unfolding/dissociation process with the accumulation of an expanded and unstructured monomeric intermediate with a marginal stability and a large solvent accessibility with respect to the native dimer.
Collapse
Affiliation(s)
- Mauricio Baez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
8
|
Cabrera R, Ambrosio ALB, Garratt RC, Guixé V, Babul J. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition. J Mol Biol 2008; 383:588-602. [PMID: 18762190 DOI: 10.1016/j.jmb.2008.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 08/10/2008] [Accepted: 08/14/2008] [Indexed: 11/19/2022]
Abstract
Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli.
Collapse
Affiliation(s)
- Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | |
Collapse
|
9
|
Baez M, Merino F, Astorga G, Babul J. Uncoupling the MgATP-induced inhibition and aggregation of Escherichia coli phosphofructokinase-2 by C-terminal mutations. FEBS Lett 2008; 582:1907-12. [PMID: 18501195 DOI: 10.1016/j.febslet.2008.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/04/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
Binding of MgATP to an allosteric site of Escherichia coli phosphofructokinase-2 (Pfk-2) provoked inhibition and a dimer-tetramer (D-T) conversion of the enzyme. Successive deletions of up to 10 residues and point mutations at the C-terminal end led to mutants with elevated K(Mapp) values for MgATP which failed to show the D-T conversion, but were still inhibited by the nucleotide. Y306 was required for the quaternary packing involved in the D-T conversion and the next residue, L307, was crucial for the ternary packing necessary for the catalytic MgATP-binding site. These results show that the D-T conversion could be uncoupled from the conformational changes that lead to the MgATP-induced allosteric inhibition.
Collapse
Affiliation(s)
- Mauricio Baez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
10
|
Baez M, Cabrera R, Guixé V, Babul J. Unfolding pathway of the dimeric and tetrameric forms of phosphofructokinase-2 from Escherichia coli. Biochemistry 2007; 46:6141-8. [PMID: 17469854 DOI: 10.1021/bi7002247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli phosphofructokinase-2 (Pfk-2) is an oligomeric enzyme characterized by two kinds of interfaces: a monomer-monomer interface, critical for enzymatic activity, and a dimer-dimer interface formed upon tetramerization due to allosteric binding of MgATP. In this work, Pfk-2 was denatured by guanidine hydrochloride (GdnHCl) and the impact of ligand binding on the unfolding pathway of the dimeric and the tertrameric forms of the enzyme was examined. The unligated dimeric form unfolds and dissociates from 0.15 to 0.8 M GdnHCl without the accumulation of native monomers, as indicated by circular dichroism and size exclusion chromatography measurements. However, a monomeric intermediate with an expanded volume and residual secondary structure accumulates above 0.8 M GdnHCl. The dimeric fructose-6-P-enzyme complex shows a shift in the simultaneous dissociation and unfolding process to elevated GdnHCl concentrations (from 0.8 to 1.4 M) together with the expulsion of the ligand detected by intrinsic fluorescence measurements. The unfolding pathway of the tetrameric MgATP-enzyme complex shows the accumulation of a tetrameric intermediate with altered fluorescence properties at about 0.4 M GdnHCl. Above this concentration a sharp transition from tetramers to monomers, without the accumulation of either compact dimers or monomers, was detected by light scattering measurements. Indeed, the most populated species was a partially unfolded monomer about 0.7 M GdnHCl. On the basis of these results, we suggest that the subunit contacts are critical for the maintenance of the overall structure of Pfk-2 and for the binding of ligands, explaining the reported importance of the dimeric state for enzymatic activity.
Collapse
Affiliation(s)
- Mauricio Baez
- Departamento de Biología, Facultad de Ciencias Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | |
Collapse
|
11
|
Cabrera R, Caniuguir A, Ambrosio ALB, Guixé V, Garratt RC, Babul J. Crystallization and preliminary crystallographic analysis of the tetrameric form of phosphofructokinase-2 from Escherichia coli, a member of the ribokinase family. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:935-7. [PMID: 16946484 PMCID: PMC2242871 DOI: 10.1107/s1744309106032246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/14/2006] [Indexed: 11/10/2022]
Abstract
Escherichia coli contains two phosphofructokinases, Pfk-1 and Pfk-2, which belong to unrelated protein families. In addition to catalytic function, the enzymes have converged in showing substrate inhibition by the nucleotide MgATP. However, although both Pfk-1 and Pfk-2 have been extensively characterized biochemically, only the structure of the former has been solved by X-ray diffraction. In order to fully understand how the same function has evolved on different structural folds, Pfk-2 has been crystallized by the hanging-drop vapour-diffusion method using PEG 6000 as precipitant. Single crystals were grown in the presence of MgATP and diffracted to 1.98 A. The crystals belong to the orthorhombic system, space group P222(1), with unit-cell parameters a = 42.8, b = 86.8, c = 171.3 A. The calculated Matthews coefficient of 2.45 A(3) Da(-1) indicates the presence of two monomers in the asymmetric unit, corresponding to a solvent content of 49%. Structure determination is ongoing.
Collapse
Affiliation(s)
- Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Andrés Caniuguir
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Andre L. B. Ambrosio
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, CEP 13560-970, São Carlos, SP, Brazil
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Richard C. Garratt
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, CEP 13560-970, São Carlos, SP, Brazil
| | - Jorge Babul
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
- Correspondence e-mail:
| |
Collapse
|
12
|
Caniuguir A, Cabrera R, Báez M, Vásquez CC, Babul J, Guixé V. Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 fromEscherichia coli. FEBS Lett 2005; 579:2313-8. [PMID: 15848164 DOI: 10.1016/j.febslet.2005.02.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 01/20/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
In a previous work, chemical modification of Cys-238 of Escherichia coli Pfk-2 raised concerns on the importance of the dimeric state of Pfk-2 for enzyme activity, whereas modification of Cys-295 impaired the enzymatic activity and the MgATP-induced tetramerization of the enzyme. The results presented here demonstrate that the dimeric state of Pfk-2 is critical for the stability and the activity of the enzyme. The replacement of Cys-238 by either Ala or Phe shows no effect on the kinetic parameters, allosteric inhibition, dimer stability and oligomeric structure of Pfk-2. However, the mutation of Cys-295 by either Ala or Phe provokes a decrease in the k(cat) value and an increment in the K(m) values for both substrates. We suggest that the Cys-295 residue participates in intersubunit interactions in the tetramer since the Cys-295-Phe mutant exhibits higher tetramer stability, which in turn results in an increase in the fructose-6-P concentration required for the reversal of the MgATP inhibition relative to the wild type enzyme.
Collapse
Affiliation(s)
- Andrés Caniuguir
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
13
|
Baez M, Rodríguez PH, Babul J, Guixé V. Structural and functional roles of Cys-238 and Cys-295 in Escherichia coli phosphofructokinase-2. Biochem J 2003; 376:277-83. [PMID: 12927023 PMCID: PMC1223755 DOI: 10.1042/bj20030795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Revised: 08/14/2003] [Accepted: 08/20/2003] [Indexed: 11/17/2022]
Abstract
Modification of Escherichia coli phosphofructokinase-2 (Pfk-2) with pyrene maleimide (PM) results in a rapid inactivation of the enzyme. The loss of enzyme activity correlates with the incorporation of 2 mol of PM/mol of subunit and the concomitant dissociation of the dimeric enzyme. The two modified residues were identified as Cys-238 and Cys-295. In the presence of the negative allosteric effector, MgATP, Cys-238 was the only modified cysteine residue. Kinetic characterization of the Cys-238-labelled Pfk-2 indicates that the enzyme is fully active, with the kinetic constants ( K(m), kcat) being almost identical to the ones obtained for the native enzyme. The modified enzyme is a monomer in the absence of ligands and, like the native enzyme, behaves as a tetramer in the presence of the nucleotide. However, in the presence of fructose-6-phosphate (fru-6-P) and ATP(-4), the enzyme behaves as a dimer, suggesting that the monomers undergo re-association in the presence of the substrates and that the active species is a dimer. Modification of Pfk-2 with eosin-5-maleimide (EM) results in the labelling of Cys-295. This modified enzyme is inactive and is not able to bind to the allosteric effector, remaining as a dimer in its presence. Nonetheless, Cys-295-labelled Pfk-2 is able to bind to the substrate fru-6-P in an hyperbolic fashion with a K(d) value that is 6-fold higher than the one determined for the native enzyme. These are the first residues to be implicated in the activity and/or structure of the Pfk-2.
Collapse
Affiliation(s)
- Mauricio Baez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | |
Collapse
|