1
|
Shilkin ES, Petrova DV, Novikova AA, Boldinova EO, Zharkov DO, Makarova AV. Methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases. DNA Repair (Amst) 2024; 141:103712. [PMID: 38959714 DOI: 10.1016/j.dnarep.2024.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Epigenetic cytosine methylation covers most of genomic CpG dinucleotides in human cells. In addition to common deamination-mediated mutagenesis at CpG sites, an alternative deamination-independent pathway associated with DNA polymerase activity was previously described. This mutagenesis is characterized by the TCG→TTG mutational signature and is believed to arise from dAMP misincorporation opposite 5-methylcytosine (mC) or its oxidized derivative 5-hydroxymethylcytosine (hmC) by B-family replicative DNA polymerases with disrupted proofreading 3→5'-exonuclease activity. In addition to being less stable and pro-mutagenic themselves, cytosine modifications also increase the risk of adjacent nucleotides damage, including the formation of 8-oxo-2'-deoxyguanosine (8-oxoG), a well-known mutagenic lesion. The effect of cytosine methylation on error-prone DNA polymerases lacking proofreading activity and involved in repair and DNA translesion synthesis remains unexplored. Here we analyze the efficiency and fidelity of translesion Y-family polymerases (Pol κ, Pol η, Pol ι and REV1) and primase-polymerase PrimPol opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that epigenetic cytosine modifications suppress Pol ι and REV1 activities and lead to increasing dAMP misincorporation by PrimPol, Pol κ and Pol ι in vitro. Cytosine methylation also increases misincorporation of dAMP opposite the adjacent 8-oxoG by PrimPol, decreases the TLS activity of Pol η opposite the lesion but increases dCMP incorporation opposite 8-oxoG by REV1. Altogether, these data suggest that methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases.
Collapse
Affiliation(s)
- Evgeniy S Shilkin
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria V Petrova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 63009, Russia
| | - Anna A Novikova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Elizaveta O Boldinova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 63009, Russia.
| | - Alena V Makarova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
2
|
Menck CFM, Galhardo RS, Quinet A. The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis. Mutat Res 2024; 828:111840. [PMID: 37984186 DOI: 10.1016/j.mrfmmm.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human xeroderma pigmentosum variant (XP-V) patients are mutated in the POLH gene, responsible for encoding the translesion synthesis (TLS) DNA polymerase eta (Pol eta). These patients suffer from a high frequency of skin tumors. Despite several decades of research, studies on Pol eta still offer an intriguing paradox: How does this error-prone polymerase suppress mutations? This review examines recent evidence suggesting that cyclobutane pyrimidine dimers (CPDs) are instructional for Pol eta. Consequently, it can accurately replicate these lesions, and the mutagenic effects induced by UV radiation stem from the deamination of C-containing CPDs. In this model, the deamination of C (forming a U) within CPDs leads to the correct insertion of an A opposite to the deaminated C (or U)-containing dimers. This intricate process results in C>T transitions, which represent the most prevalent mutations detected in skin cancers. Finally, the delayed replication in XP-V cells amplifies the process of C-deamination in CPDs and increases the burden of C>T mutations prevalent in XP-V tumors through the activity of backup TLS polymerases.
Collapse
Affiliation(s)
- C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - R S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - A Quinet
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Quintero-Ruiz N, Corradi C, Moreno NC, de Souza TA, Pereira Castro L, Rocha CRR, Menck CFM. Mutagenicity Profile Induced by UVB Light in Human Xeroderma Pigmentosum Group C Cells †. Photochem Photobiol 2021; 98:713-731. [PMID: 34516658 DOI: 10.1111/php.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
Nucleotide excision repair (NER) is one of the main pathways for genome protection against structural DNA damage caused by sunlight, which in turn is extensively related to skin cancer development. The mutation spectra induced by UVB were investigated by whole-exome sequencing of randomly selected clones of NER-proficient and XP-C-deficient human skin fibroblasts. As a model, a cell line unable to recognize and remove lesions (XP-C) was used and compared to the complemented isogenic control (COMP). As expected, a significant increase of mutagenesis was observed in irradiated XP-C cells, mainly C>T transitions, but also CC>TT and C>A base substitutions. Remarkably, the C>T mutations occur mainly at the second base of dipyrimidine sites in pyrimidine-rich sequence contexts, with 5'TC sequence the most mutated. Although T>N mutations were also significantly increased, they were not directly related to pyrimidine dimers. Moreover, the large-scale study of a single UVB irradiation on XP-C cells allowed recovering the typical mutation spectrum found in human skin cancer tumors. Eventually, the data may be used for comparison with the mutational profiles of skin tumors obtained from XP-C patients and may help to understand the mutational process in nonaffected individuals.
Collapse
Affiliation(s)
- Nathalia Quintero-Ruiz
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Corradi
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Natália Cestari Moreno
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago Antonio de Souza
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Tau GC Bioinformatics, São Paulo, Brazil
| | - Ligia Pereira Castro
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Clarissa Ribeiro Reily Rocha
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Drug resistance and mutagenesis Laboratory, Departmento de Oncologia Clínica e Experimental, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Shilkin ES, Petrova DV, Poltorachenko VA, Boldinova EO, Zharkov DO, Makarova AV. Template Properties of 5-Methyl-2'-Deoxycytidine and 5-Hydroxymethyl-2'-Deoxycytidine in Reactions with Human Translesion and Reparative DNA Polymerases. Mol Biol 2021. [DOI: 10.1134/s0026893321020138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Kim SI, Pfeifer GP. The epigenetic DNA modification 5-carboxylcytosine promotes high levels of cyclobutane pyrimidine dimer formation upon UVB irradiation. GENOME INSTABILITY & DISEASE 2021; 2:59-69. [PMID: 34485825 PMCID: PMC8415257 DOI: 10.1007/s42764-020-00030-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022]
Abstract
In mammals, DNA methyltransferases create 5-methylcytosines (5mC) predominantly at CpG dinucleotides. 5mC oxidases convert 5mC in three consecutive oxidation steps to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and then 5-carboxylcytosine (5caC). Upon irradiation with UV light, dipyrimidines containing C, 5mC and 5hmC are known to form cyclobutane pyrimidine dimers (CPDs) as major DNA photolesions. However, the photobiology of 5fC and 5caC has remained largely unexplored. Here, we tested a series of oligonucleotides with single or multiple positions carrying cytosine (C), 5mC, 5hmC, 5fC or 5caC and irradiated them with different sources of UV irradiation. While UVC radiation produced CPDs near dipyrimidines containing all types of modified cytosine bases, UVB radiation produced by far the highest levels of CPDs near 5caC-containing sequences. Dipyrimidines one or two nucleotide positions adjacent to 5caC but not always those involving this modified base directly were the major sites for these prominent UVB photoproducts. This selectivity did not depend on whether 5caC was present on one or both DNA strands at CpG sequences. We also observed a tendency of the 5caC-containing DNA strands to undergo apparent covalent crosslinking. This reaction occurred with UVB or UVC but not with UVA irradiation. Our data show that 5-carboxylcytosine, although generally a rare base in the genome, can nonetheless make a strong contribution to sequence-specific DNA damage perhaps by acting as a DNA-intrinsic photosensitizer.
Collapse
Affiliation(s)
- Sang-In Kim
- Beckman Research Institute of the City of Hope, Grand Rapids, MI, USA
| | - Gerd P. Pfeifer
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
6
|
Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene 2021; 40:6549-6565. [PMID: 34663880 PMCID: PMC8639439 DOI: 10.1038/s41388-021-02032-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Mutagenesis is a key hallmark and enabling characteristic of cancer cells, yet the diverse underlying mutagenic mechanisms that shape cancer genomes are not understood. This review will consider the emerging challenge of determining how DNA damage response pathways-both tolerance and repair-act upon specific forms of DNA damage to generate mutations characteristic of tumors. DNA polymerases are typically the ultimate mutagenic effectors of DNA repair pathways. Therefore, understanding the contributions of DNA polymerases is critical to develop a more comprehensive picture of mutagenic mechanisms in tumors. Selection of an appropriate DNA polymerase-whether error-free or error-prone-for a particular DNA template is critical to the maintenance of genome stability. We review different modes of DNA polymerase dysregulation including mutation, polymorphism, and over-expression of the polymerases themselves or their associated activators. Based upon recent findings connecting DNA polymerases with specific mechanisms of mutagenesis, we propose that compensation for DNA repair defects by error-prone polymerases may be a general paradigm molding the mutational landscape of cancer cells. Notably, we demonstrate that correlation of error-prone polymerase expression with mutation burden in a subset of patient tumors from The Cancer Genome Atlas can identify mechanistic hypotheses for further testing. We contrast experimental approaches from broad, genome-wide strategies to approaches with a narrower focus on a few hundred base pairs of DNA. In addition, we consider recent developments in computational annotation of patient tumor data to identify patterns of mutagenesis. Finally, we discuss the innovations and future experiments that will develop a more comprehensive portrait of mutagenic mechanisms in human tumors.
Collapse
|
7
|
Abstract
Ultraviolet (UV) irradiation causes various types of DNA damage, which leads to specific mutations and the emergence of skin cancer in humans, often decades after initial exposure. Different UV wavelengths cause the formation of prominent UV-induced DNA lesions. Most of these lesions are removed by the nucleotide excision repair pathway, which is defective in rare genetic skin disorders referred to as xeroderma pigmentosum. A major role in inducing sunlight-dependent skin cancer mutations is assigned to the cyclobutane pyrimidine dimers (CPDs). In this review, we discuss the mechanisms of UV damage induction, the genomic distribution of this damage, relevant DNA repair mechanisms, the proposed mechanisms of how UV-induced CPDs bring about DNA replication-dependent mutagenicity in mammalian cells, and the strong signature of UV damage and mutagenesis found in skin cancer genomes.
Collapse
|
8
|
cAMP-mediated regulation of melanocyte genomic instability: A melanoma-preventive strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:247-295. [PMID: 30798934 DOI: 10.1016/bs.apcsb.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant melanoma of the skin is the leading cause of death from skin cancer and ranks fifth in cancer incidence among all cancers in the United States. While melanoma mortality has remained steady for the past several decades, melanoma incidence has been increasing, particularly among fair-skinned individuals. According to the American Cancer Society, nearly 10,000 people in the United States will die from melanoma this year. Individuals with dark skin complexion are protected damage generated by UV-light due to the high content of UV-blocking melanin pigment in their epidermis as well as better capacity for melanocytes to cope with UV damage. There is now ample evidence that suggests that the melanocortin 1 receptor (MC1R) is a major melanoma risk factor. Inherited loss-of-function mutations in MC1R are common in melanoma-prone persons, correlating with a less melanized skin complexion and poorer recovery from mutagenic photodamage. We and others are interested in the MC1R signaling pathway in melanocytes, its mechanisms of enhancing genomic stability and pharmacologic opportunities to reduce melanoma risk based on those insights. In this chapter, we review melanoma risk factors, the MC1R signaling pathway, and the relationship between MC1R signaling and DNA repair.
Collapse
|
9
|
Ikehata H, Mori T, Douki T, Cadet J, Yamamoto M. Quantitative analysis of UV photolesions suggests that cyclobutane pyrimidine dimers produced in mouse skin by UVB are more mutagenic than those produced by UVC. Photochem Photobiol Sci 2018; 17:404-413. [PMID: 29464256 DOI: 10.1039/c7pp00348j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The amount of photolesions produced in DNA after exposure to physiological doses of ultraviolet radiation (UVR) can be estimated with high sensitivity and at low cost through an immunological assay, ELISA, which, however, provides only a relative estimate that cannot be used for comparisons between different photolesions such as cyclobutane pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone photoproduct (64PP) or for analysis of the genotoxicity of photolesions on a molecular basis. To solve this drawback of ELISA, we introduced a set of UVR-exposed, calibration DNA whose photolesion amounts were predetermined and estimated the absolute molecular amounts of CPDs and 64PPs produced in mouse skin exposed to UVC and UVB. We confirmed previously reported observations that UVC induced more photolesions in the skin than UVB at the same dose, and that both types of UVR produced more CPDs than 64PPs. The UVR protection abilities of the cornified and epidermal layers for the lower tissues were also evaluated quantitatively. We noticed that the values of absorbance obtained in ELISA were not always proportional to the molecular amounts of the lesion, especially for CPD, cautioning against the direct use of ELISA absorbance data for estimation of the photolesion amounts. We further estimated the mutagenicity of a CPD produced by UVC and UVB in the epidermis and dermis using the mutation data from our previous studies with mouse skin and found that CPDs produced in the epidermis by UVB were more than two-fold mutagenic than those by UVC, which suggests that the properties of CPDs produced by UVC and UVB might be different. The difference may originate from the wavelength-dependent methyl CpG preference of CPD formation. In addition, the mutagenicity of CPDs in the dermis was lower than that in the epidermis irrespective of the UVR source, suggesting a higher efficiency in the dermis to reduce the genotoxicity of CPDs produced within it. We also estimated the minimum amount of photolesions required to induce the mutation induction suppression (MIS) response in the epidermis to be around 15 64PPs or 100 CPDs per million bases in DNA as the mean estimate from UVC and UVB-induced MIS.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
10
|
Tomkova M, Schuster-Böckler B. DNA Modifications: Naturally More Error Prone? Trends Genet 2018; 34:627-638. [PMID: 29853204 DOI: 10.1016/j.tig.2018.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Epigenetic DNA modifications are essential for normal cell function in vertebrates, but they can also be hotspots of mutagenesis. Methylcytosine in particular has long been known to be less stable than other nucleotides and spontaneously deaminates to thymine. Beyond this well-established phenomenon, however, the influence of epigenetic marks on mutagenesis has recently become an active field of investigation. In this review, we summarize current knowledge of the interactions between different DNA modifications and other mutagenic processes. External mutagens, such as UV light or smoking carcinogens, affect modified cytosines differently from unmodified ones, and modified cytosine can in some cases be protective rather than mutagenic. Notably, cell-intrinsic processes, such as DNA replication, also appear to influence the mutagenesis of modified cytosines. Altogether, evidence is accumulating to show that epigenetic changes have a profound influence on tissue-specific mutation accumulation.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Benjamin Schuster-Böckler
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
11
|
Rogozin IB, Goncearenco A, Lada AG, De S, Yurchenko V, Nudelman G, Panchenko AR, Cooper DN, Pavlov YI. DNA polymerase η mutational signatures are found in a variety of different types of cancer. Cell Cycle 2018; 17:348-355. [PMID: 29139326 DOI: 10.1080/15384101.2017.1404208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.
Collapse
Affiliation(s)
- Igor B Rogozin
- a National Center for Biotechnology Information, National Library of Medicine , National Institutes of Health , Bethesda , MD , USA
| | - Alexander Goncearenco
- a National Center for Biotechnology Information, National Library of Medicine , National Institutes of Health , Bethesda , MD , USA
| | - Artem G Lada
- b Department Microbiology and Molecular Genetics , University of California , Davis , CA , USA
| | - Subhajyoti De
- c Rutgers Cancer Institute of New Jersey , Rutgers University , New Brunswick , NJ , USA
| | - Vyacheslav Yurchenko
- d Life Science Research Center , University of Ostrava, 71000 Ostrava , Czech Republic
| | - German Nudelman
- e Systems Biology Center , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , USA
| | - Anna R Panchenko
- a National Center for Biotechnology Information, National Library of Medicine , National Institutes of Health , Bethesda , MD , USA
| | - David N Cooper
- f Institute of Medical Genetics, School of Medicine , Cardiff University , UK
| | - Youri I Pavlov
- g Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE 68198, USA.,h Departments of Microbiology and Pathology , University of Nebraska Medical Center , Omaha , NE , USA.,i Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,j Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
12
|
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic Biol Med 2017; 107:110-124. [PMID: 28109890 DOI: 10.1016/j.freeradbiomed.2017.01.029] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97110-970 Santa Maria, RS, Brazil.
| | - Natália Cestari Moreno
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Natielen Jacques Schuch
- Departamento de Nutrição, Centro Universitário Franciscano, 97010-032 Santa Maria, RS, Brazil.
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
| |
Collapse
|
13
|
Shen J, Song R, Wan J, Huff C, Fang S, Lee JE, Zhao H. Global methylation of blood leukocyte DNA and risk of melanoma. Int J Cancer 2017; 140:1503-1509. [PMID: 28006848 DOI: 10.1002/ijc.30577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Global DNA methylation, possibly influenced by lifestyle and environmental factors, has been suggested to play an active role in carcinogenesis. However, its role in melanoma has rarely been explored. The aims of this study were to evaluate the relationship between melanoma risk and levels of 5-methylcytosine (5-mC), a marker for global DNA methylation, in blood leukocyte DNA, and to determine whether this 5-mC level is influenced by pigmentation and sun exposure. This case-control study included 540 melanoma cases and 540 healthy controls. Overall, melanoma cases had significantly lower levels of 5-mC% than healthy controls (median: 3.24 vs. 3.91, p < 0.001). The significant difference between two groups did not differ by pigmentation or sun exposure. Among healthy controls, however, those who had fair skin color (p = 0.041) or light or no tanning after prolonged sun exposure (p = 0.031) or used a sunlamp (p = 0.028) had lower levels of 5-mC% than their counterparts. In addition, those with an intermediate or high phenotypic index, an indicator of cutaneous cancer susceptibility, had 2.58-fold greater likelihood of having a low level of 5-mC% [odds ratio (OR): 2.58; 95% confidence interval (CI): 1.72, 3.96] than those with a low phenotypic index. Lower levels of 5-mC% were associated with a 1.25-fold greater risk of melanoma (OR: 1.25; 95% CI: 1.08, 1.37). A significant dose-response relationship was observed in quartile analysis (p = 0.001). Our results suggest that global hypomethylation in blood leukocyte DNA is associated with increased risk of melanoma and that the level of methylation is influenced by pigmentation and sun exposure.
Collapse
Affiliation(s)
- Jie Shen
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Renduo Song
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jie Wan
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Chad Huff
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Shenying Fang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jeffrey E Lee
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Hua Zhao
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
14
|
Sassa A, Kanemaru Y, Kamoshita N, Honma M, Yasui M. Mutagenic consequences of cytosine alterations site-specifically embedded in the human genome. Genes Environ 2016; 38:17. [PMID: 27588157 PMCID: PMC5007816 DOI: 10.1186/s41021-016-0045-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Cytosine residues in CpG dinucleotides often undergo various types of modification, such as methylation, deamination, and halogenation. These types of modifications can be pro-mutagenic and can contribute to the formation of mutational hotspots in cells. To analyze mutations induced by DNA modifications in the human genome, we recently developed a system for tracing DNA adducts in targeted mutagenesis (TATAM). In this system, a modified/damaged base is site-specifically introduced into intron 4 of thymidine kinase genes in human lymphoblastoid cells. To further the understanding of the mutagenesis of cytosine modification, we directly introduced different types of altered cytosine residues into the genome and investigated their genomic consequences using the TATAM system. FINDINGS In the genome, the pairing of thymine and 5-bromouracil with guanine, resulting from the deamination of 5-methylcytosine and 5-bromocytosine, respectively, was highly pro-mutagenic compared with the pairing of uracil with guanine, resulting from the deamination of cytosine residues. CONCLUSIONS The deamination of 5-methylcytosine and 5-bromocytosine rather than that of normal cytosine dramatically enhances the mutagenic potential in the human genome.
Collapse
Affiliation(s)
- Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan.,Present address: Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, 142-8555 Japan
| | - Nagisa Kamoshita
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| |
Collapse
|
15
|
Investigation of the mechanisms of photo-induced formation of cyclobutane dimers of cytosine and 2,4-diaminopyrimidine. J Mol Model 2016; 22:230. [PMID: 27572158 DOI: 10.1007/s00894-016-3087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
The mechanisms of the formation of cyclobutane dimers (CBD) of cytosine and 2,4-diaminopyrimidine were studied at the CC2 theoretical level and cc-pVDZ basis functions. Four orientations of the two monomers are explored: cys-syn, cis-anti, trans-syn, and trans-anti. The research revealed that in all cases the cyclobutane structures are formed along the (1)ππ* excited-state reaction paths of the stacked aggregates. We localized the S1/S0 conical intersections mediating those transformations. The results obtained agree well with the previously reported investigations on the cis-syn cyclodimer formations of other pyrimidines.
Collapse
|
16
|
Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome. Blood 2016; 127:3387-97. [PMID: 27121473 DOI: 10.1182/blood-2016-02-699843] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.
Collapse
|
17
|
Solano F. Photoprotectionversusphotodamage: updating an old but still unsolved controversy about melanin. POLYM INT 2016. [DOI: 10.1002/pi.5117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- F Solano
- Department of Biochemistry and Molecular Biology B and Research Group for Molecular Control of Cell Proliferation, School of Medicine and IMIB; University of Murcia; 30100 Murcia Spain
| |
Collapse
|
18
|
Ikehata H, Mori T, Yamamoto M. In Vivo Spectrum of UVC-induced Mutation in Mouse Skin Epidermis May Reflect the Cytosine Deamination Propensity of Cyclobutane Pyrimidine Dimers. Photochem Photobiol 2015; 91:1488-96. [PMID: 26335024 DOI: 10.1111/php.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/23/2015] [Indexed: 01/15/2023]
Abstract
Although ultraviolet radiation (UVR) has a genotoxicity for inducing skin cancers, the skin may tolerate UVC component because the epidermal layer prevents this short wavelength range from passing through. Here, UVC genotoxicity for mouse skin was evaluated in terms of DNA damage formation and mutagenicity. UVC induced UVR photolesions and mutations remarkably in the epidermis but poorly in the dermis, confirming the barrier ability of the epidermis against shorter UVR wavelengths. Moreover, the epidermis itself responded to UVC mutagenicity with mutation induction suppression, which suppressed the mutant frequencies to a remarkably low, constant level regardless of UVC dose. The mutation spectrum observed in UVC-exposed epidermis showed a predominance of UV-signature mutation, which occurred frequently in 5'-TCG-3', 5'-TCA-3' and 5'-CCA-3' contexts. Especially, for the former two contexts, the mutations recurred at several sites with more remarkable recurrences at the 5'-TCG-3' sites. Comparison of the UVC mutation spectrum with those observed in longer UVR wavelength ranges led us to a mechanism that explains why the sequence context preference of UV-signature mutation changes according to the wavelength, which is based on the difference in the mCpG preference of cyclobutane pyrimidine dimer (CPD) formation among UVR ranges and the sequence context-dependent cytosine deamination propensity of CPD.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshio Mori
- Radioisotope Research Center, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
Cannistraro VJ, Pondugula S, Song Q, Taylor JS. Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo. J Biol Chem 2015; 290:26597-609. [PMID: 26354431 DOI: 10.1074/jbc.m115.673301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
Sunlight-induced C to T mutation hot spots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C and 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by the DNA damage bypass polymerase η, thereby defining a probable mechanism for the origin of UV-induced C to T mutations. Deamination rates for T(m)CG CPDs have been found to vary 12-fold with rotational position in a nucleosome in vitro. To determine the influence of nucleosome structure on deamination rates in vivo, we determined the deamination rates of CPDs at TCG sites in a stably positioned nucleosome within the FOS promoter in HeLa cells. A procedure for in vivo hydroxyl radical footprinting with Fe-EDTA was developed, and, together with results from a cytosine methylation protection assay, we determined the translational and rotational positions of the TCG sites. Consistent with the in vitro observations, deamination was slower for one CPD located at an intermediate rotational position compared with two other sites located at outside positions, and all were much faster than for CPDs at non-TCG sites. Photoproduct formation was also highly suppressed at one site, possibly due to its interaction with a histone tail. Thus, it was shown that CPDs of TCG sites deaminate the fastest in vivo and that nucleosomes can modulate both their formation and deamination, which could contribute to the UV mutation hot spots and cold spots.
Collapse
Affiliation(s)
| | - Santhi Pondugula
- From the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Qian Song
- From the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - John-Stephen Taylor
- From the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
20
|
Temiz NA, Donohue DE, Bacolla A, Vasquez KM, Cooper DN, Mudunuri U, Ivanic J, Cer RZ, Yi M, Stephens RM, Collins JR, Luke BT. The somatic autosomal mutation matrix in cancer genomes. Hum Genet 2015; 134:851-64. [PMID: 26001532 PMCID: PMC4495249 DOI: 10.1007/s00439-015-1566-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/12/2015] [Indexed: 01/26/2023]
Abstract
DNA damage in somatic cells originates from both environmental and endogenous sources, giving rise to mutations through multiple mechanisms. When these mutations affect the function of critical genes, cancer may ensue. Although identifying genomic subsets of mutated genes may inform therapeutic options, a systematic survey of tumor mutational spectra is required to improve our understanding of the underlying mechanisms of mutagenesis involved in cancer etiology. Recent studies have presented genome-wide sets of somatic mutations as a 96-element vector, a procedure that only captures the immediate neighbors of the mutated nucleotide. Herein, we present a 32 × 12 mutation matrix that captures the nucleotide pattern two nucleotides upstream and downstream of the mutation. A somatic autosomal mutation matrix (SAMM) was constructed from tumor-specific mutations derived from each of 909 individual cancer genomes harboring a total of 10,681,843 single-base substitutions. In addition, mechanistic template mutation matrices (MTMMs) representing oxidative DNA damage, ultraviolet-induced DNA damage, (5m)CpG deamination, and APOBEC-mediated cytosine mutation, are presented. MTMMs were mapped to the individual tumor SAMMs to determine the maximum contribution of each mutational mechanism to the overall mutation pattern. A Manhattan distance across all SAMM elements between any two tumor genomes was used to determine their relative distance. Employing this metric, 89.5% of all tumor genomes were found to have a nearest neighbor from the same tissue of origin. When a distance-dependent 6-nearest neighbor classifier was used, 10.4% of the SAMMs had an Undetermined tissue of origin, and 92.2% of the remaining SAMMs were assigned to the correct tissue of origin. [corrected]. Thus, although tumors from different tissues may have similar mutation patterns, their SAMMs often display signatures that are characteristic of specific tissues.
Collapse
Affiliation(s)
- Nuri A. Temiz
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
- />Masonic Cancer Center, University of Minnesota, 2-120 CCRB, 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Duncan E. Donohue
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
- />US Army Medical Research and Material Command, 568 Doughten Dr., Fort Detrick, Frederick, MD 21702 USA
| | - Albino Bacolla
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
- />Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78723 USA
| | - Karen M. Vasquez
- />Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78723 USA
| | - David N. Cooper
- />Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN UK
| | - Uma Mudunuri
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
| | - Joseph Ivanic
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
| | - Regina Z. Cer
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
- />Naval Medical Research Center-Frederick, 8400 Research Plaza, Fort Detrick, Frederick, MD 21702 USA
| | - Ming Yi
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
| | - Robert M. Stephens
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
| | - Jack R. Collins
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
| | - Brian T. Luke
- />In Silico Research Centers of Excellence, Advanced Biomedical Computing Center, Information Systems Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., P.O. Box B, Frederick, MD 21702 USA
| |
Collapse
|
21
|
Jian Y, Lin G, Chomicz L, Li L. Reactivity of Damaged Pyrimidines: Formation of a Schiff Base Intermediate at the Glycosidic Bond of Saturated Dihydrouridine. J Am Chem Soc 2015; 137:3318-29. [DOI: 10.1021/ja512435j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yajun Jian
- Department
of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, United States
| | - Gengjie Lin
- Department
of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, United States
| | - Lidia Chomicz
- Department
of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Lei Li
- Department
of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, United States
- Department
of Biochemistry and Molecular Biology and Department of Dermatology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| |
Collapse
|
22
|
Giuliani C, Bacalini MG, Sazzini M, Pirazzini C, Franceschi C, Garagnani P, Luiselli D. The epigenetic side of human adaptation: hypotheses, evidences and theories. Ann Hum Biol 2014; 42:1-9. [PMID: 25413580 DOI: 10.3109/03014460.2014.961960] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CONTEXT Epigenetics represents a still unexplored research field in the understanding of micro- and macro-evolutionary mechanisms, as epigenetic changes create phenotypic diversity within both individuals and populations. OBJECTIVE The purpose of this review is to dissect the landscape of studies focused on DNA methylation, one of the most described epigenetic mechanisms, emphasizing the aspects that could be relevant in human adaptations. METHODS Theories and results here considered were collected from the most recent papers published. RESULTS The matter of DNA methylation inheritance is here described as well as the recent evolutionary theories regarding the role of DNA methylation-and epigenetics in a broader sense-in human evolution. The complex relation between (1) DNA methylation and genetic variability and (2) DNA methylation and the environmental stimuli crucial in shaping genetic and phenotypic variability through the human lineage-such as diet, climate and pathogens exposure-are described. Papers about population epigenetics are also illustrated due to their high relevance in this context. CONCLUSION Genetic, epigenetic and phenotypic variations of the species, together with cultural ones, are considerably shaped by a vast range of environmental stimuli, thus representing the foundation of all human bio-cultural adaptations.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological and Environmental Sciences, Laboratory of Molecular Anthropology and Centre for Genome Biology
| | | | | | | | | | | | | |
Collapse
|
23
|
Das D, Kaur I, Ali MJ, Biswas NK, Das S, Kumar S, Honavar SG, Maitra A, Chakrabarti S, Majumder PP. Exome sequencing reveals the likely involvement of SOX10 in uveal melanoma. Optom Vis Sci 2014; 91:e185-92. [PMID: 24927141 DOI: 10.1097/opx.0000000000000309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To identify the spectrum of somatic mutations in an Asian Indian patient with uveal melanoma (UM) without metastasis using exome sequencing. CASE REPORT A 49-year-old man from India was diagnosed as having cilio-choroidal (uveal) melanoma (UM), without metastasis, in his right eye with the help of magnetic resonance imaging. This was later confirmed by histopathological evaluation. Two individuals from India with non-neoplastic blind eyes were recruited as controls. The affected eyes from the UM patient and the two control individuals were enucleated, and uveal tissues were collected. DNA was extracted from uveal tissue, and the matched blood sample from each of the three individuals was followed by exome sequencing. Statistical and bioinformatic analyses were done to identify somatic mutations and their putative associations with UM. Thirty-one somatic mutations (25 amino acid altering) in protein-coding (exonic) regions were detected in the UM patient. Of the amino acid-altering somatic mutations, 16 mutations were predicted to be candidate mutations relevant to UM. Somatic mutations, putatively causal for UM, were identified in GNAQ, SF3B1, and SOX10. CONCLUSIONS Somatic mutations in GNAQ and SF3B1 genes were probable drivers of UM in the Indian patient; these were also reported earlier in some White patients. In addition, a frameshift deletion of 20 base pairs has been identified in SOX10 in the UM patient. Somatic mutations in SOX10, a transcription factor, which acts upstream of microphthalmia-associated transcription factor and synergizes with microphthalmia-associated transcription factor, was identified in some melanoma cell lines. The transcription factor SOX10 was found to have an essential role in melanocyte development and pigmentation. Our finding of the frameshift deletion (p.H387fs) in exon 4 of SOX10 in UM provides an important insight and complements earlier findings of mutations in GNAQ and SF3B1 on the genomic basis of UM.
Collapse
Affiliation(s)
- Debodipta Das
- *MSc †PhD ‡MD §MTech National Institute of Biomedical Genomics, Kalyani, India (DD, NKB, SD, SK, AM, PPM); Prof. Brien Holden Eye Research Centre (IK, SC), and Department of Orbits and Ocular Oncology (MJA, SGH), LV Prasad Eye Institute, Hyderabad, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Grebneva HA. Mechanisms of targeted frameshift mutations: Insertions arising during error-prone or SOS synthesis of DNA containing cis-syn cyclobutane thymine dimers. Mol Biol 2014. [DOI: 10.1134/s0026893314030066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Ikehata H, Chang Y, Yokoi M, Yamamoto M, Hanaoka F. Remarkable induction of UV-signature mutations at the 3'-cytosine of dipyrimidine sites except at 5'-TCG-3' in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair (Amst) 2014; 22:112-22. [PMID: 25128761 DOI: 10.1016/j.dnarep.2014.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
The human POLH gene is responsible for the variant form of xeroderma pigmentosum (XP-V), a genetic disease highly susceptible to cancer on sun-exposed skin areas, and encodes DNA polymerase η (polη), which is specialized for translesion DNA synthesis (TLS) of UV-induced DNA photolesions. We constructed polη-deficient mice transgenic with lacZ mutational reporter genes to study the effect of Polh null mutation (Polh(-/-)) on mutagenesis in the skin after UVB irradiation. UVB induced lacZ mutations with remarkably higher frequency in the Polh(-/-) epidermis and dermis than in the wild-type (Polh(+/+)) and heterozygote. DNA sequences of a hundred lacZ mutants isolated from the epidermis of four UVB-exposed Polh(-/-) mice were determined and compared with mutant sequences from irradiated Polh(+)(/)(+) mice. The spectra of the mutations in the two genotypes were both highly UV-specific and dominated by C→T transitions at dipyrimidines, namely UV-signature mutations. However, sequence preferences of the occurrence of UV-signature mutations were quite different between the two genotypes: the mutations occurred at a higher frequency preferentially at the 5'-TCG-3' sequence context than at the other dipyrimidine contexts in the Polh(+/+) epidermis, whereas the mutations were induced remarkably and exclusively at the 3'-cytosine of almost all dipyrimidine contexts with no preference for 5'-TCG-3' in the Polh(-/-) epidermis. In addition, in Polh(-/-) mice, a small but remarkable fraction of G→T transversions was also observed exclusively at the 3'-cytosine of dipyrimidine sites, strongly suggesting that these transversions resulted not from oxidative damage but from UV photolesions. These results would reflect the characteristics of the error-prone TLS functioning in the bypass of UV photolesions in the absence of polη, which would be mediated by mechanisms based on the two-step model of TLS. On the other hand, the deamination model would explain well the mutation spectrum in the Polh(+/+) genotype.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Yumin Chang
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Masayuki Yamamoto
- Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| |
Collapse
|
26
|
Nair-Shalliker V, Dhillon V, Clements M, Armstrong BK, Fenech M. The association between personal sun exposure, serum vitamin D and global methylation in human lymphocytes in a population of healthy adults in South Australia. Mutat Res 2014; 765:6-10. [PMID: 24727138 DOI: 10.1016/j.mrfmmm.2014.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND There is a positive association between solar UV exposure and micronucleus frequency in peripheral blood lymphocytes (PBL) and this association may be stronger when serum vitamin D (25(OH)D) levels are insufficient (<50 nmol/L). Micronucleus formation can result from global hypomethylation of DNA repeat sequences. The aim of this analysis was to evaluate the relationship between solar UV exposure and methylation pattern in LINE-1 repetitive elements in PBL DNA and to see if serum 25(OH)D levels modify it. METHOD Personal solar UV exposure was estimated from hours of outdoor exposure over 6 weeks recalled at the time of blood collection in 208 male and female participants living in South Australia. Methylation in LINE-1 repetitive elements was assessed in PBL using pyrosequencing. RESULTS Methylation in LINE-1 decreased with increasing solar UV exposure (% decrease = 0.5% per doubling of sUV; 95%CI: -0.7 to -0.2 p(value) = 0.00003). Although there was no correlation between LINE-1 methylation and micronucleus frequency, there was a 4.3% increase (95%CI: 0.6-8.1 p-value = 0.02) in nucleoplasmic bridges and a 4.3% increase in necrosis (CI: 1.9-6.8 p-value = 0.0005) for every 1% increase in LINE-1 methylation. Serum 25(OH)D was not associated with DNA methylation; or did it modify the association of solar UV with DNA methylation. CONCLUSION Exposure to solar UV radiation may reduce DNA methylation in circulating lymphocytes. This association does not appear to be influenced or mediated by vitamin D status.
Collapse
Affiliation(s)
| | | | - Mark Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden
| | | | | |
Collapse
|
27
|
Bastien N, Therrien JP, Drouin R. Cytosine containing dipyrimidine sites can be hotspots of cyclobutane pyrimidine dimer formation after UVB exposure. Photochem Photobiol Sci 2014; 12:1544-54. [PMID: 23877442 DOI: 10.1039/c3pp50099c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exposure to the UV component of sunlight is the principal factor leading to skin cancer development. Cyclobutane pyrimidine dimers (CPD) are considered to be the most important pre-mutagenic type of DNA damage involved in skin carcinogenesis. To better understand the biological mechanisms of UV carcinogenesis, it is critical to understand the CPD distribution between the four types of dipyrimidine sites. Most of our knowledge regarding CPD distribution comes from in vitro studies or from investigations using UVC, even though we are not naturally exposed to these UV wavelengths. We exposed normal human fibroblasts and purified DNA to UVB. Using ligation-mediated PCR, we quantified the CPD formation at 952 dipyrimidine sites among the PGK1 (phosphoglycerate kinase 1), JUN, HRAS, KRAS, NRAS and TP53 genes. In cellulo, we found a CPD distribution of 27 : 27 : 25 : 21 for TT : CC : TC : CT. This distribution is similar to that observed in vitro. In the analysed genes, we observed some extremely frequently damaged dipyrimidine sites and many of these occurred at potentially frequently mutated sites, i.e. at dipyrimidine sites containing cytosine. Also, most of the frequently damaged dipyrimidine sites in cellulo that are not frequently damaged in vitro are found on TP53 and NRAS. This indicates that many of the frequently damaged dipyrimidine sites in cellulo are on genes frequently mutated in skin cancer. All these results support the view that CPD are the main UVB-induced mutagenic photoproducts and provide evidence of the importance of CPD formation at sites containing cytosine.
Collapse
Affiliation(s)
- Nathalie Bastien
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | |
Collapse
|
28
|
Kim SI, Jin SG, Pfeifer GP. Formation of cyclobutane pyrimidine dimers at dipyrimidines containing 5-hydroxymethylcytosine. Photochem Photobiol Sci 2014; 12:1409-15. [PMID: 23677065 DOI: 10.1039/c3pp50037c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Much of the cancer-causing effects of ultraviolet radiation from the sun have been linked to the formation of dimerized DNA bases. These dimeric DNA photoproducts include the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine(6-4)pyrimidone photoproducts [(6-4)PPs]. CPDs are highly mutagenic and are produced in substantial quantities by UVB radiation. These dimers can form between any two adjacent pyrimidines and can involve thymine, cytosine, or 5-methylcytosine. Very recently, a sixth DNA base, 5-hydroxymethylcytosine (5hmC) has been identified and characterized as a normal component of mammalian DNA. Here, we investigated the formation of CPDs at different DNA sequences containing 5hmC following irradiation with UVA, UVB, or UVC light sources. We show that the formation of CPDs at dipyrimidines containing 5hmC occurs at different DNA sequences but is not enhanced relative to cytosine or 5-methylcytosines at the same sequence positions. In fact, in some sequence contexts, CPDs containing 5hmC are formed at very low levels. Nonetheless, CPD formation at 5hmC pyrimidines is expected to be biologically relevant since three types of human skin-derived cells, fibroblasts, keratinocytes and melanocytes, all contain detectable levels of this modified base.
Collapse
Affiliation(s)
- Sang-in Kim
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
29
|
Peyrane F, Clivio P. Sensitized photochemistry of di(4-tetrazolouracil) dinucleoside monophosphate as a route to dicytosine cyclobutane photoproduct precursors. Photochem Photobiol Sci 2014; 12:1366-74. [PMID: 23572020 DOI: 10.1039/c3pp25402j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DNA cis-syn cyclobutane photoproduct formed between two adjacent cytosine residues is highly mutagenic and responsible for the tandem CC to TT transition. However, its instability has prevented its in vitro study, so far. With a view to prepare oligodeoxynucleotides containing the CC cyclobutane lesion, we have synthesized in good yield a ditetrazolouracil cyclobutane dinucleotide photoproduct as a stable precursor of this photoproduct. Our approach also overcomes the low photochemical reactivity of the cytosine-cytosine deoxydinucleoside monophosphate.
Collapse
Affiliation(s)
- Frédéric Peyrane
- Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
30
|
Electronic Excitation Processes in Single-Strand and Double-Strand DNA: A Computational Approach. PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II 2014; 356:1-37. [DOI: 10.1007/128_2013_517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
|
32
|
Fujimo K, Konishi-Hiratsuka K, Sakamoto T. Quick, Selective and Reversible Photocrosslinking Reaction between 5-Methylcytosine and 3-Cyanovinylcarbazole in DNA Double Strand. Int J Mol Sci 2013; 14:5765-74. [PMID: 23481638 PMCID: PMC3634424 DOI: 10.3390/ijms14035765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/12/2013] [Accepted: 02/26/2013] [Indexed: 02/02/2023] Open
Abstract
Selective photocrosslinking reaction between 3-cyanovinylcarbazole nucleoside (CNVK) and 5-methylcytosine (mC), which is known as epigenetic modification in genomic DNA, was developed. The reaction was completely finished within 5 s of 366 nm irradiation, and the rate of this photocrosslinking reaction was ca. 30-fold higher than that in the case of unmodified normal cytosine. There were no significant differences in the thermodynamic parameters and the kinetics of hybrid formation of oligonucleotide (ODN) containing CNVK and its complementary ODN containing C or mC at the photocrosslinking site, and suggesting that the quick and selective photoreaction has potential for the selective detection of mC in the DNA strand via the photocrosslinking reaction.
Collapse
Affiliation(s)
- Kenzo Fujimo
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan; E-Mails: (K.K.-H.); (T.S.)
- Research Center for Bio-Architecture, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-761-51-1671
| | - Kaoru Konishi-Hiratsuka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan; E-Mails: (K.K.-H.); (T.S.)
| | - Takashi Sakamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan; E-Mails: (K.K.-H.); (T.S.)
| |
Collapse
|
33
|
Dou Y, Liu Z, Yuan S, Zhang W, Tang H, Zhao J, Fang W, Lo GV. Dynamics of laser-excited stacked adenines: Semiclassical simulations. Int J Biol Macromol 2013; 52:358-67. [DOI: 10.1016/j.ijbiomac.2012.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 11/16/2022]
|
34
|
Fladeby C, Vik ES, Laerdahl JK, Gran Neurauter C, Heggelund JE, Thorgaard E, Strøm-Andersen P, Bjørås M, Dalhus B, Alseth I. The human homolog of Escherichia coli endonuclease V is a nucleolar protein with affinity for branched DNA structures. PLoS One 2012; 7:e47466. [PMID: 23139746 PMCID: PMC3489907 DOI: 10.1371/journal.pone.0047466] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/11/2012] [Indexed: 12/19/2022] Open
Abstract
Loss of amino groups from adenines in DNA results in the formation of hypoxanthine (Hx) bases with miscoding properties. The primary enzyme in Escherichia coli for DNA repair initiation at deaminated adenine is endonuclease V (endoV), encoded by the nfi gene, which cleaves the second phosphodiester bond 3′ of an Hx lesion. Endonuclease V orthologs are widespread in nature and belong to a family of highly conserved proteins. Whereas prokaryotic endoV enzymes are well characterized, the function of the eukaryotic homologs remains obscure. Here we describe the human endoV ortholog and show with bioinformatics and experimental analysis that a large number of transcript variants exist for the human endonuclease V gene (ENDOV), many of which are unlikely to be translated into functional protein. Full-length ENDOV is encoded by 8 evolutionary conserved exons covering the core region of the enzyme, in addition to one or more 3′-exons encoding an unstructured and poorly conserved C-terminus. In contrast to the E. coli enzyme, we find recombinant ENDOV neither to incise nor bind Hx-containing DNA. While both enzymes have strong affinity for several branched DNA substrates, cleavage is observed only with E. coli endoV. We find that ENDOV is localized in the cytoplasm and nucleoli of human cells. As nucleoli harbor the rRNA genes, this may suggest a role for the protein in rRNA gene transactions such as DNA replication or RNA transcription.
Collapse
Affiliation(s)
- Cathrine Fladeby
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Erik Sebastian Vik
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Jon K. Laerdahl
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Christine Gran Neurauter
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Julie E. Heggelund
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Eirik Thorgaard
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Pernille Strøm-Andersen
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Bjørn Dalhus
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- * E-mail:
| |
Collapse
|
35
|
Cadet J, Mouret S, Ravanat JL, Douki T. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 2012; 88:1048-65. [PMID: 22780837 DOI: 10.1111/j.1751-1097.2012.01200.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E n°3, CEA/UJF, Institut Nanosciences et Cryogénie, CEA/Grenoble, Grenoble Cedex, France
| | | | | | | |
Collapse
|
36
|
Kuzuya A, Tanaka K, Katada H, Komiyama M. Enzyme treatment-free and ligation-independent cloning using caged primers in polymerase chain reactions. Molecules 2011; 17:328-40. [PMID: 22210171 PMCID: PMC6290560 DOI: 10.3390/molecules17010328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/26/2011] [Accepted: 12/27/2011] [Indexed: 11/29/2022] Open
Abstract
A new simple scheme for constructing recombinant vectors that does not require any restriction enzyme, ligase, or any other special enzyme treatment has been developed. By using caged primers in PCR, unnatural sticky-ends of any sequence, which are sufficiently long for ligation-independent cloning (LIC), are directly prepared on the product after a brief UVA irradiation. Target genes and vectors amplified by this light-assisted cohesive-ending (LACE) PCR join together in the desired arrangement in a simple mixture of them, tightly enough to be repaired and ligated in competent cells.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; (K.T.); (H.K.)
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
- Author to whom correspondence should be addressed; (A.K.); (M.K.); Tel.: +81-6-6368-0829 (A.K.); Fax: +81-6-6368-0829 (A.K.); Tel.: +81-3-5452-5200 (M.K.); Fax: +81-3-5452-5209 (M.K.)
| | - Keita Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; (K.T.); (H.K.)
| | - Hitoshi Katada
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; (K.T.); (H.K.)
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; (K.T.); (H.K.)
- Author to whom correspondence should be addressed; (A.K.); (M.K.); Tel.: +81-6-6368-0829 (A.K.); Fax: +81-6-6368-0829 (A.K.); Tel.: +81-3-5452-5200 (M.K.); Fax: +81-3-5452-5209 (M.K.)
| |
Collapse
|
37
|
Yuan S, Zhang W, Liu L, Dou Y, Fang W, Lo GV. Detailed mechanism for photoinduced cytosine dimerization: a semiclassical dynamics simulation. J Phys Chem A 2011; 115:13291-7. [PMID: 21988470 DOI: 10.1021/jp207550a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semiclassical dynamics simulation is used to study dimerization of two stacked cytosine molecules following excitation by ultrashort laser pulses (25 fs fwhm, Gaussian, 4.1 eV photon energy). The initial excited state was found to form an ultrashort exciton state, which eventually leads to the formation of an excimer state by charge transfer. When the interbase distance, defined as an average value of C(5)-C(5)' and C(6)-C(6)', becomes less than 3 Å, charge recombination occurs due to strong intermolecular interaction, eventually leading to an avoided crossing within 20-30 fs. Geometries at the avoided crossing, with average intermolecular distance of about 2.1 Å, are in accord with CASSCF/CASPT2 calculations. Results indicate that the C(2)-N(1)-C(6)-C(5) and C(2)'-N(1)'-C(6)'-C(5)' dihedral angles' bending vibrations play a significant role in the vibronic coupling between the HOMO and LUMO, which leads to a nonadiabatic transition to the electronic ground state.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Chemistry, Beijing Normal University, Beijing, China
| | | | | | | | | | | |
Collapse
|
38
|
Pfeifer GP, Besaratinia A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci 2011; 11:90-7. [PMID: 21804977 DOI: 10.1039/c1pp05144j] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ultraviolet (UV) irradiation from the sun has been epidemiologically and mechanistically linked to skin cancer, a spectrum of diseases of rising incidence in many human populations. Both non-melanoma and melanoma skin cancers are associated with sunlight exposure. In this review, we discuss the UV wavelength-dependent formation of the major UV-induced DNA damage products, their repair and mutagenicity and their potential involvement in sunlight-associated skin cancers. We emphasize the major role played by the cyclobutane pyrimidine dimers (CPDs) in skin cancer mutations relative to that of (6-4) photoproducts and oxidative DNA damage. Collectively, the data implicate the CPD as the DNA lesion most strongly involved in human cancers induced by sunlight.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | |
Collapse
|
39
|
Vollmer NL, Viricel A, Wilcox L, Katherine Moore M, Rosel PE. The occurrence of mtDNA heteroplasmy in multiple cetacean species. Curr Genet 2011; 57:115-31. [DOI: 10.1007/s00294-010-0331-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/30/2022]
|
40
|
Abstract
Ultraviolet (UV) light induces specific mutations in the cellular and skin genome such as UV-signature and triplet mutations, the mechanism of which has been thought to involve translesion DNA synthesis (TLS) over UV-induced DNA base damage. Two models have been proposed: "error-free" bypass of deaminated cytosine-containing cyclobutane pyrimidine dimers (CPDs) by DNA polymerase η, and error-prone bypass of CPDs and other UV-induced photolesions by combinations of TLS and replicative DNA polymerases--the latter model has also been known as the two-step model, in which the cooperation of two (or more) DNA polymerases as misinserters and (mis)extenders is assumed. Daylight UV induces a characteristic UV-specific mutation, a UV-signature mutation occurring preferentially at methyl-CpG sites, which is also observed frequently after exposure to either UVB or UVA, but not to UVC. The wavelengths relevant to the mutation are so consistent with the composition of daylight UV that the mutation is called solar-UV signature, highlighting the importance of this type of mutation for creatures with the cytosine-methylated genome that are exposed to the sun in the natural environment. UVA has also been suggested to induce oxidative types of mutation, which would be caused by oxidative DNA damage produced through the oxidative stress after the irradiation. Indeed, UVA produces oxidative DNA damage not only in cells but also in skin, which, however, does not seem sufficient to induce mutations in the normal skin genome. In contrast, it has been demonstrated that UVA exclusively induces the solar-UV signature mutations in vivo through CPD formation.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Division of Genome and Radiation Biology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
41
|
Song Q, Cannistraro VJ, Taylor JS. Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate. J Biol Chem 2010; 286:6329-35. [PMID: 21160086 DOI: 10.1074/jbc.m110.183178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. These mutations are proposed to arise from the insertion of A by DNA polymerase η opposite the T that results from deamination of the methylC ((m)C) within the CPD. Although the frequency of CPD formation and repair is modestly modulated by its rotational position within a nucleosome, the effect of position on the rate of (m)C deamination in a CPD has not been previously studied. We now report that deamination of a T(m)C CPD whose sugar phosphate backbone is positioned against the histone core surface decreases by a factor of 4.7, whereas that of a T(m)C CPD positioned away from the surface increases by a factor of 8.9 when compared with unbound DNA. Because the (m)Cs undergoing deamination are in similar steric environments, the difference in rate appears to be a consequence of a difference in the flexibility and compression of the two sites due to DNA bending. Considering that formation of the CPD positioned away from the surface is also enhanced by a factor of two, a T(m)CG site in this position might be expected to have up to an 84-fold higher probability of resulting in a UV-induced (m)C to T mutation than one positioned against the surface. These results indicate that rotational position may play an important role in the formation of UV-induced C to T mutation hotspots, as well as in the mutagenic mechanism of other DNA lesions.
Collapse
Affiliation(s)
- Qian Song
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
42
|
Acosta-Silva C, Branchadell V, Bertran J, Oliva A. Mutual relationship between stacking and hydrogen bonding in DNA. Theoretical study of guanine-cytosine, guanine-5-methylcytosine, and their dimers. J Phys Chem B 2010; 114:10217-27. [PMID: 20684646 DOI: 10.1021/jp103850h] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mutual relationship between stacking and hydrogen-bonding and the possible influence of stacking in the different behavior of cytosine (C) and 5-methylcytosine (C') in DNA have been studied through complete DFT optimization of different structures of G-C and G-C' dimers (i.e., G-C/C-G and G-C'/C'-G), using four different functionals. Our results show that stacking leads to an increase of the O(6)...H-N(4) hydrogen bond length and to a simultaneous decrease of the N(2)-H...O(2) one, in such a way that both lengths approach each other and, in some cases, an inversion occurs. These results suggest that stacking can be a factor to explain the disparity between theory and experiment on the relative strength of the two lateral hydrogen bonds. Regarding the difference between cytosine and 5-methylcytosine, we have shown that methylation enhances the stacking interactions, mainly due to the increase of polarizability. Methylation also favors the existence of slid structures which can produce local distortions of DNA.
Collapse
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193 Spain
| | | | | | | |
Collapse
|
43
|
González-Ramírez I, Roca-Sanjuán D, Climent T, Serrano-Pérez JJ, Merchán M, Serrano-Andrés L. On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0854-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Cannistraro VJ, Taylor JSA. Methyl CpG binding protein 2 (MeCP2) enhances photodimer formation at methyl-CpG sites but suppresses dimer deamination. Nucleic Acids Res 2010; 38:6943-55. [PMID: 20601406 PMCID: PMC2978359 DOI: 10.1093/nar/gkq582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spontaneous deamination of cytosine to uracil in DNA is a ubiquitous source of C→T mutations, but occurs with a half life of ∼50 000 years. In contrast, cytosine within sunlight induced cyclobutane dipyrimidine dimers (CPD's), deaminate within hours to days. Methylation of C increases the frequency of CPD formation at PyCG sites which correlate with C→T mutation hotspots in skin cancers. MeCP2 binds to mCG sites and acts as a transcriptional regulator and chromatin modifier affecting thousands of genes, but its effect on CPD formation and deamination is unknown. We report that the methyl CpG binding domain of MeCP2 (MBD) greatly enhances C=mC CPD formation at a TCmCG site in duplex DNA and binds with equal or better affinity to the CPD-containing duplex compared with the undamaged duplex. In comparison, MBD does not enhance T=mC CPD formation at a TTmCG site, but instead increases CPD formation at the adjacent TT site. MBD was also found to completely suppress deamination of the T=mCG CPD, suggesting that MeCP2 may have the capability to both suppress UV mutagenesis at PymCpG sites as well as enhance it.
Collapse
|
45
|
Su DGT, Taylor JSA, Gross ML. A new photoproduct of 5-methylcytosine and adenine characterized by high-performance liquid chromatography and mass spectrometry. Chem Res Toxicol 2010; 23:474-9. [PMID: 20158274 DOI: 10.1021/tx9003962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The UV portion of sunlight is mutagenic and can modify DNA by producing various photoproducts. UV photodamage often occurs at dipyrimidine sites, to give cyclobutane, pyrimidine-(6-4)-pyrimidone (6-4), and pyrimidine-(6-4)-Dewar pyrimidone (Dewar) photoproducts, and at TA and AA sites. There is no reported evidence, however, of UV photoproduct formation between C or 5-methylC ((m)C) and A. Irradiation of d(GTAT(m)CATGAGGTGC) with UVB light at physiological pH gives an unexpected photoproduct that undergoes fast thermal deamination but does not revert to its original structure under UVC irradiation. Evidence from nuclease P1 digestion coupled with electrospray ionization (ESI)-MS/MS is in accord with product formation between (m)C and A. HPLC analysis indicates that deamination gives a T<>A photoproduct that coelutes on reverse-phase chromatography with the well-known TA* photoproduct, formed from an initial [2 + 2] reaction between C5-C6 and C6-C5 of the adjacent thymine and adenine [as shown by Zhao , X. , et al. ( 1996 ) Nucleic Acids Res. 24 , 1554 - 1560 and Davies , R. J. , et al. ( 2007 ) Nucleic Acids Res. 35 , 1048 - 1053 ]. Furthermore, the deamination product of the unknown (m)C<>A photoproduct and the TA* photoproduct undergo nearly identical fragmentation in tandem MS. The evidence, taken together, indicates that the deamination product of the unknown (m)CA photoproduct has the same chemical structure as the TA* photoproduct. Therefore, the unknown photoproduct is referred to as the (m)CA* photoproduct, which, upon deamination, gives the TA* photoproduct.
Collapse
Affiliation(s)
- Dian G T Su
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63130, USA
| | | | | |
Collapse
|
46
|
Lacoste S, Rochette PJ, Drouin R. [Mapping DNA damage to understand somatic mutagenesis]. Med Sci (Paris) 2010; 26:193-200. [PMID: 20188052 DOI: 10.1051/medsci/2010262193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Somatic mutation theory explains how DNA damage can lead to the malignant transformation of cells. It therefore elucidates the connection between genotoxic agents and cancers. Mutational spectra, which tend to be characteristic of a cancer type, are available for certain genes like p53 which is frequently mutated in tumors. A mutational spectrum could therefore be the signature of the genotoxic agent(s) at the origin of the malignant transformation. Ligation-mediated PCR (LMPCR) is a genomic sequencing method that can be used for the mapping of DNA damage at nucleotide resolution. Such a mapping can then be compared to a mutational spectrum to test the hypothesis that implies one agent can cause mutations into one cancer type. LMPCR has been used this way to map DNA damage generated by different UV wavelengths. The frequently damaged sites following UVB irradiation correlate with the mutational spectrum of p53 in skin cancer. Similarly, BPDE, the activated form of the benzo[a]pyrene present in tobacco smoke, generates frequent adducts at sites corresponding to mutation hotspots of p53 in lung cancers. Still, the correlation between BPDE damage sites and p53 mutations is not perfect and this suggests a role of other genotoxic substances that are also present in tobacco smoke, such as the nitrosamine NNK. Finally, and beyond this objective of better understanding somatic mutagenesis, LMPCR is commonly used whenever DNA damage frequency and/or repair is to be investigated.
Collapse
Affiliation(s)
- Sandrine Lacoste
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4 Canada
| | | | | |
Collapse
|
47
|
Abstract
The role of ultraviolet radiation (UV) in the pathogenesis has been discussed controversially for many decades. Studies in mice (SCID, HGF/SF, SV40T) which develop malignant melanoma, show a role of UVB in melanomagenesis. In contrast to this, the role of UVA is less clear. We will review the recent in vitro and in vivo data in support of the hypothesis that UVA is also involved in the development of malignant melanoma. The role of UVA in p53 activation, apoptosis, cell cycle arrest and photoproduct formation is discussed.
Collapse
|
48
|
Cannistraro VJ, Taylor JS. Acceleration of 5-methylcytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots. J Mol Biol 2009; 392:1145-57. [PMID: 19631218 DOI: 10.1016/j.jmb.2009.07.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
Sunlight-induced C-->T mutation hotspots occur most frequently at methylated CpG sites in tumor suppressor genes and are thought to arise from translesion synthesis past deaminated cyclobutane pyrimidine dimers (CPDs). While it is known that methylation enhances CPD formation in sunlight, little is known about the effect of methylation and sequence context on the deamination of 5-methylcytosine ((m)C) and its contribution to mutagenesis at these hotspots. Using an enzymatic method, we have determined the yields and deamination rates of C and (m)C in CPDs and find that the frequency of UVB-induced CPDs correlates with the oxidation potential of the flanking bases. We also found that the deamination of T(m)C and (m)CT CPDs is about 25-fold faster when flanked by G's than by A's, C's or T's in duplex DNA and appears to involve catalysis by the O6 group of guanine. In contrast, the first deamination of either C or (m)C in AC(m)CG with a flanking G was much slower (t(1/2) >250 h) and rate limiting, while the second deamination was much faster. The observation that C(m)CG dimers deaminate very slowly but at the same time correlate with C-->T mutation hotspots suggests that their repair must be slow enough to allow sufficient time for deamination. There are, however, a greater number of single C-->T mutations than CC-->TT mutations at C(m)CG sites even though the second deamination is very fast, which could reflect faster repair of doubly deaminated dimers.
Collapse
|
49
|
Huang XX, Bernerd F, Halliday GM. Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1534-43. [PMID: 19264911 DOI: 10.2353/ajpath.2009.080318] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ultraviolet B (UVB) waveband within sunlight is an important carcinogen; however, UVA is also likely to be involved. By ascribing mutations to being either UVB or UVA induced, we have previously shown that human skin cancers contain similar numbers of UVB- and UVA-induced mutations, and, importantly, the UVA mutations were at the base of the epidermis of the tumors. To determine whether these mutations occurred in response to UV, we exposed engineered human skin (EHS) to UVA, UVB, or a mixture that resembled sunlight, and then detected mutations by both denaturing high-performance liquid chromatography and DNA sequencing. EHS resembles human skin, modeling differential waveband penetration to the basal, dividing keratinocytes. We administered only four low doses of UV exposure. Both UVA and UVB induced p53 mutations in irradiated EHS, suggesting that sunlight doses that are achievable during normal daily activities are mutagenic. UVA- but not UVB-induced mutations predominated in the basal epidermis that contains dividing keratinocytes and are thought to give rise to skin tumors. These studies indicate that both UVA and UVB at physiological doses are mutagenic to keratinocytes in EHS.
Collapse
Affiliation(s)
- Xiao Xuan Huang
- Discipline of Dermatology, Bosch Institute, Sydney Cancer Centre, The University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
50
|
Rochette PJ, Lacoste S, Therrien JP, Bastien N, Brash DE, Drouin R. Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA. Mutat Res 2009; 665:7-13. [PMID: 19427505 DOI: 10.1016/j.mrfmmm.2009.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/25/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
The ultraviolet (UV) component of sunlight is the main cause of skin cancer. More than 50% of all non-melanoma skin cancers and >90% of squamous cell carcinomas in the US carry a sunlight-induced mutation in the p53 tumor suppressor gene. These mutations have a strong tendency to occur at methylated cytosines. Ligation-mediated PCR (LMPCR) was used to compare at nucleotide resolution DNA photoproduct formation at dipyrimidine sites either containing or lacking a methylated cytosine. For this purpose, we exploited the fact that the X chromosome is methylated in females only on the inactive X chromosome, and that the FMR1 (fragile-X mental retardation 1) gene is methylated only in fragile-X syndrome male patients. Purified genomic DNA was irradiated with UVC (254nm), UVB (290-320nm) or monochromatic UVB (302 and 313nm) to determine the effect of different wavelengths on cyclobutane pyrimidine dimer (CPD) formation along the X-linked PGK1 (phosphoglycerate kinase 1) and FMR1 genes. We show that constitutive methylation of cytosine increases the frequency of UVB-induced CPD formation by 1.7-fold, confirming that methylation per se is influencing the probability of damage formation. This was true for both UVB sources used, either broadband or monochromatic, but not for UVC. Our data prove unequivocally that following UVB exposure methylated cytosines are significantly more susceptible to CPD formation compared with unmethylated cytosines.
Collapse
Affiliation(s)
- Patrick J Rochette
- Division of Pathology, Department of Medical Biology, Université Laval, Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|