1
|
Fang W, Xu J, Wei Z, Wu J, Wu W, Wang Y, Chen S. Enhancing bactericidal activities of ciprofloxacin by targeting the trans-translation system that is involved in stress responses in Klebsiella pneumoniae. Arch Microbiol 2024; 206:154. [PMID: 38478112 DOI: 10.1007/s00203-024-03872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 04/16/2024]
Abstract
Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.
Collapse
Affiliation(s)
- Wendong Fang
- Department of Laboratory Medicine, The PLA 307 Clinical College, Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jie Xu
- Department of Laboratory Medicine, The PLA 307 Clinical College, Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zilan Wei
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jiahui Wu
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Weihui Wu
- Department of Microbiology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, China.
| | | | - Shuiping Chen
- Department of Laboratory Medicine, The PLA 307 Clinical College, Fifth Clinical Medical College of Anhui Medical University, Beijing, China.
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China.
- Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
2
|
Ren H, Zhang J, Zhou J, Xu C, Fan Z, Pan X, Li S, Liang Y, Chen S, Xu J, Wang P, Zhang Y, Zhu G, Liu H, Jin Y, Bai F, Cheng Z, Pletzer D, Wu W. Synergistic bactericidal activities of tobramycin with ciprofloxacin and azithromycin against Klebsiella pneumoniae. J Antibiot (Tokyo) 2021; 74:528-537. [PMID: 34050325 DOI: 10.1038/s41429-021-00427-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/09/2022]
Abstract
Trans-translation is a unique bacterial ribosome rescue system that plays important roles in the tolerance to environmental stresses. It is composed of an ssrA-encoded tmRNA and a protein SmpB. In this study, we examined the role of trans-translation in antibiotic tolerance in Klebsiella pneumoniae and explored whether the inhibition of this mechanism could enhance the bactericidal activities of antibiotics. We found that deletion of the ssrA gene reduced the survival of K. pneumoniae after treatment with kanamycin, tobramycin, azithromycin, and ciprofloxacin, indicating an important role of the trans-translation in bacterial antibiotic tolerance. By using a modified ssrA gene with a 6×His tag we demonstrated that tobramycin suppressed the azithromycin and ciprofloxacin-elicited activation of trans-translation. The results were further confirmed with a trans-translation reporter system that is composed of a normal mCherry gene and a gfp gene without the stop codon. Compared to each individual antibiotic, combination of tobramycin with azithromycin or ciprofloxacin synergistically enhanced the killing activities against planktonic K. pneumoniae cells and improved bacterial clearance in a murine cutaneous abscess infection model. In addition, the combination of tobramycin and ciprofloxacin increased the bactericidal activities against biofilm-associated cells. Overall, our results suggest that the combination of tobramycin with azithromycin or ciprofloxacin is a promising strategy in combating K. pneumoniae infections.
Collapse
Affiliation(s)
- Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingyi Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuying Liang
- Department of laboratory medicine, 5th medical center of PLA general hospital, Beijing, 100071, China
| | - Shuiping Chen
- Department of laboratory medicine, 5th medical center of PLA general hospital, Beijing, 100071, China
| | - Jun Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Diabetic foot Department, Tianjin Medical University Metabolic Disease Hospital & Chu Hsien-I Memorial Hospital, Tianjin, 300070, China
| | - Penghua Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Diabetic foot Department, Tianjin Medical University Metabolic Disease Hospital & Chu Hsien-I Memorial Hospital, Tianjin, 300070, China
| | - Yanhong Zhang
- Nankai University Affiliated Hospital (Tianjin Forth Hospital), Tianjin, 300222, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Daniel Pletzer
- Department of Microbiology & Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Ren H, Liu Y, Zhou J, Long Y, Liu C, Xia B, Shi J, Fan Z, Liang Y, Chen S, Xu J, Wang P, Zhang Y, Zhu G, Liu H, Jin Y, Bai F, Cheng Z, Jin S, Wu W. Combination of Azithromycin and Gentamicin for Efficient Treatment of Pseudomonas aeruginosa Infections. J Infect Dis 2020; 220:1667-1678. [PMID: 31419286 DOI: 10.1093/infdis/jiz341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/02/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Trans-translation is a ribosome rescue system that plays an important role in bacterial tolerance to environmental stresses. It is absent in animals, making it a potential treatment target. However, its role in antibiotic tolerance in Pseudomonas aeruginosa remains unknown. METHODS The role and activity of trans-translation during antibiotic treatment were examined with a trans-translation-deficient strain and a genetically modified trans-translation component gene, respectively. In vitro assays and murine infection models were used to examine the effects of suppression of trans-translation. RESULTS We found that the trans-translation system plays an essential role in P. aeruginosa tolerance to azithromycin and multiple aminoglycoside antibiotics. We further demonstrated that gentamicin could suppress the azithromycin-induced activation of trans-translation. Compared with each antibiotic individually, gentamicin and azithromycin combined increased the killing efficacy against planktonic and biofilm-associated P. aeruginosa cells, including a reference strain PA14 and its isogenic carbapenem-resistance oprD mutant, the mucoid strain FRD1, and multiple clinical isolates. Furthermore, the gentamicin-azithromycin resulted in improved bacterial clearance in murine acute pneumonia, biofilm implant, and cutaneous abscess infection models. CONCLUSIONS Combination treatment with gentamicin and azithromycin is a promising strategy in combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yiwei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingyi Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuqing Long
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuying Liang
- Department of Infection and Control, 307 hospital, Beijing, China
| | - Shuiping Chen
- Department of Infection and Control, 307 hospital, Beijing, China
| | - Jun Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, and Diabetic foot Department, Tianjin Medical University Metabolic Disease Hospital and Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Penghua Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, and Diabetic foot Department, Tianjin Medical University Metabolic Disease Hospital and Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Yanhong Zhang
- Nankai University Affiliated Hospital (Tianjin Forth Hospital), Tianjin, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Wang M, Wu B, Shah SN, Lu P, Lu Q. Aminoglycoside Enhances the Delivery of Antisense Morpholino Oligonucleotides In Vitro and in mdx Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:663-674. [PMID: 31121478 PMCID: PMC6529765 DOI: 10.1016/j.omtn.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023]
Abstract
Antisense oligonucleotide (AO) therapy has been the specific treatment for Duchenne muscular dystrophy, with ongoing clinical trials. However, therapeutic applications of AOs remain limited, particularly because of the lack of efficient cellular delivery methods imperative for achieving efficacy. In this study, we investigated a few aminoglycosides (AGs) for their potential to improve the delivery of antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. AGs had lower cytotoxicity compared with Endoporter, the currently most effective delivery reagent for PMO in vitro, and improved efficiency in PMO delivery 9- to 15-fold over PMO alone. Significant enhancement in systemic PMO-targeted dystrophin exon 23 skipping was observed in mdx mice, up to a 6-fold increase with AG3 (kanamycin) and AG7 (sisomicin) compared with PMO only. No muscle damage could be detected clearly with the test dosages. These results establish AGs as PMO delivery-enhancing agents for treating muscular dystrophy or other diseases.
Collapse
Affiliation(s)
- Mingxing Wang
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA.
| | - Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA
| | - Sapana N Shah
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA
| | - Peijuan Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA
| | - Qilong Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA
| |
Collapse
|
5
|
Freed NE, Bumann D, Silander OK. Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality. BMC Microbiol 2016; 16:203. [PMID: 27599549 PMCID: PMC5011829 DOI: 10.1186/s12866-016-0818-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Gene essentiality - whether or not a gene is necessary for cell growth - is a fundamental component of gene function. It is not well established how quickly gene essentiality can change, as few studies have compared empirical measures of essentiality between closely related organisms. RESULTS Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in the bacterial pathogen Shigella flexneri 2a 2457T on a genome-wide scale. Superficial analysis of this data suggested that 481 protein-coding genes in this Shigella strain are critical for robust cellular growth on rich media. Comparison of this set of genes with a gold-standard data set of essential genes in the closely related Escherichia coli K12 BW25113 revealed that an excessive number of genes appeared essential in Shigella but non-essential in E. coli. Importantly, and in converse to this comparison, we found no genes that were essential in E. coli and non-essential in Shigella, implying that many genes were artefactually inferred as essential in Shigella. Controlling for such artefacts resulted in a much smaller set of discrepant genes. Among these, we identified three sets of functionally related genes, two of which have previously been implicated as critical for Shigella growth, but which are dispensable for E. coli growth. CONCLUSIONS The data presented here highlight the small number of protein coding genes for which we have strong evidence that their essentiality status differs between the closely related bacterial taxa E. coli and Shigella. A set of genes involved in acetate utilization provides a canonical example. These results leave open the possibility of developing strain-specific antibiotic treatments targeting such differentially essential genes, but suggest that such opportunities may be rare in closely related bacteria.
Collapse
Affiliation(s)
- Nikki E Freed
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand.,Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Olin K Silander
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand. .,Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Sharma D, Kumar B, Lata M, Joshi B, Venkatesan K, Shukla S, Bisht D. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets. PLoS One 2015; 10:e0139414. [PMID: 26436944 PMCID: PMC4593609 DOI: 10.1371/journal.pone.0139414] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022] Open
Abstract
Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM.
Collapse
MESH Headings
- Amikacin/pharmacology
- Amino Acid Motifs
- Anti-Bacterial Agents/pharmacology
- Antitubercular Agents/pharmacology
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/physiology
- Cell Membrane/metabolism
- Conserved Sequence
- Drug Delivery Systems
- Drug Resistance, Microbial/genetics
- Drug Resistance, Microbial/physiology
- Electrophoresis, Gel, Two-Dimensional
- Humans
- Iron/physiology
- Kanamycin/pharmacology
- Kanamycin Resistance/genetics
- Kanamycin Resistance/physiology
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Models, Molecular
- Molecular Docking Simulation
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/isolation & purification
- Protein Conformation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Proteomics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tandem Mass Spectrometry
- Tuberculosis/microbiology
- Ubiquitins/metabolism
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Bhavnesh Kumar
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Manju Lata
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Beenu Joshi
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Krishnamurthy Venkatesan
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Sangeeta Shukla
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
- * E-mail:
| |
Collapse
|
7
|
Lata M, Sharma D, Deo N, Tiwari PK, Bisht D, Venkatesan K. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates. J Proteomics 2015; 127:114-21. [PMID: 26238929 DOI: 10.1016/j.jprot.2015.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/22/2023]
Abstract
Drug resistance particularly, multi drug resistance tuberculosis (MDR-TB) has emerged as a major problem in the chemotherapy of tuberculosis. Ofloxacin (OFX) has been used as second-line drug against MDR-TB. The principal target of the OFX is DNA gyrase encoded by gyrA and gyrB genes. Many explanations have been proposed for drug resistance to OFX but still some mechanisms are unknown. As proteins manifest most of the biological processes, these are attractive targets for developing drugs and diagnostics/therapeutics. We examined the OFX resistant Mycobacterium tuberculosis isolates by proteomic approach (2DE-MALDI-TOF-MS) and bioinformatic tools under OFX induced conditions. Our study showed fourteen proteins (Rv0685, Rv0363c, Rv2744c, Rv3803c, Rv2534c, Rv2140c, Rv1475c, Rv0440, Rv2245, Rv1436, Rv3551, Rv0148, Rv2882c and Rv0733) with increased intensities in OFX resistant and OFX induced as compared to susceptible isolates. Bioinformatic analysis of hypothetical proteins (Rv2744c, Rv2140c, Rv3551 and Rv0148) revealed the presence of conserved motifs and domains. Molecular docking showed proper interaction of OFX with residues of conserved motifs. These proteins might be involved in the OFX modulation/neutralization and act as novel resistance mechanisms as well as potential for diagnostics and drug targets against OFX resistance. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Manju Lata
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| | - Nirmala Deo
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| | | | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| | - Krishnamurthy Venkatesan
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| |
Collapse
|
8
|
Svetlanov A, Puri N, Mena P, Koller A, Karzai AW. Francisella tularensis tmRNA system mutants are vulnerable to stress, avirulent in mice, and provide effective immune protection. Mol Microbiol 2012; 85:122-41. [PMID: 22571636 PMCID: PMC3395464 DOI: 10.1111/j.1365-2958.2012.08093.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Through targeted inactivation of the ssrA and smpB genes, we establish that the trans-translation process is necessary for normal growth, adaptation to cellular stress and virulence by the bacterial pathogen Francisella tularensis. The mutant bacteria grow slower, have reduced resistance to heat and cold shocks, and are more sensitive to oxidative stress and sublethal concentrations of antibiotics. Modifications of the tmRNA tag and use of higher-resolution mass spectrometry approaches enabled the identification of a large number of native tmRNA substrates. Of particular significance to understanding the mechanism of trans-translation, we report the discovery of an extended tmRNA tag and extensive ladder-like pattern of endogenous protein-tagging events in F. tularensis that are likely to be a universal feature of tmRNA activity in eubacteria. Furthermore, the structural integrity and the proteolytic function of the tmRNA tag are both crucial for normal growth and virulence of F. tularensis. Significantly, trans-translation mutants of F. tularensis are impaired in replication within macrophages and are avirulent in mouse models of tularemia. By exploiting these attenuated phenotypes, we find that the mutant strains provide effective immune protection in mice against lethal intradermal, intraperitoneal and intranasal challenges with the fully virulent parental strain.
Collapse
Affiliation(s)
- Anton Svetlanov
- Center for Infectious Diseases and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794
| | - Neha Puri
- Center for Infectious Diseases and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794
| | - Patricio Mena
- Center for Infectious Diseases and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794
| | - Antonius Koller
- The Proteomic Center, Stony Brook University, Stony Brook, New York, 11794
| | - A. Wali Karzai
- Center for Infectious Diseases and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
9
|
Mathieson W, Kirkland S, Leonard R, Thomas GA. Antimicrobials and in vitro systems: antibiotics and antimycotics alter the proteome of MCF-7 cells in culture. J Cell Biochem 2011; 112:2170-8. [PMID: 21480367 DOI: 10.1002/jcb.23143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell culture is widely used to study gene or protein changes in response to experimental conditions. The value of such experiments depends on stringent control and understanding of the in vitro environment. Despite well-documented evidence describing toxic effects in the clinical setting, antibiotics and antimycotics are routinely used in cell culture without regard for their potential toxicity. We cultured MCF-7 breast cancer cells in the presence/absence of antibiotics (penicillin/streptomycin) and/or the antimycotic amphotericin B. Differential protein expression was assessed using 2D-DIGE and MALDI-MS/MS. Antibiotics caused 8/488 spots (1.3% of the protein) to be generally down-regulated. The affected proteins were principally chaperones and cytoskeletal. In marked contrast, amphotericin B induced a more dramatic response, with 33/488 spots (9.5% of the total protein) generally up-regulated. The proteins were mostly involved in chaperoning and protein turnover. Combining antibiotics and amphotericin B had little overall effect, with only one (unidentified) protein being up-regulated. As this study identifies differential protein expression attributable to antibiotics/antimycotics, we urge caution when comparing and interpreting proteomic results from different laboratories where antibiotics/antimycotics have been used. We conclude that as antibiotics and antimycotics alter the proteome of cultured cells in markedly different ways their use should be avoided where possible.
Collapse
Affiliation(s)
- William Mathieson
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, DuCane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|
10
|
Huthmacher C, Hoppe A, Bulik S, Holzhütter HG. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC SYSTEMS BIOLOGY 2010; 4:120. [PMID: 20807400 PMCID: PMC2941759 DOI: 10.1186/1752-0509-4-120] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 08/31/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. RESULTS Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte). Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. CONCLUSIONS The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.
Collapse
Affiliation(s)
- Carola Huthmacher
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | - Andreas Hoppe
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | - Sascha Bulik
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | | |
Collapse
|
11
|
Holberger LE, Hayes CS. Ribosomal protein S12 and aminoglycoside antibiotics modulate A-site mRNA cleavage and transfer-messenger RNA activity in Escherichia coli. J Biol Chem 2009; 284:32188-200. [PMID: 19776006 DOI: 10.1074/jbc.m109.062745] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translational pausing in Escherichia coli can lead to mRNA cleavage within the ribosomal A-site. A-site mRNA cleavage is thought to facilitate transfer-messenger RNA (tmRNA).SmpB- mediated recycling of stalled ribosome complexes. Here, we demonstrate that the aminoglycosides paromomycin and streptomycin inhibit A-site cleavage of stop codons during inefficient translation termination. Aminoglycosides also induced stop codon read-through, suggesting that these antibiotics alleviate ribosome pausing during termination. Streptomycin did not inhibit A-site cleavage in rpsL mutants, which express streptomycin-resistant variants of ribosomal protein S12. However, rpsL strains exhibited reduced A-site mRNA cleavage compared with rpsL(+) cells. Additionally, tmRNA.SmpB-mediated SsrA peptide tagging was significantly reduced in several rpsL strains but could be fully restored in a subset of mutants when treated with streptomycin. The streptomycin-dependent rpsL(P90K) mutant also showed significantly lower levels of A-site cleavage and tmRNA.SmpB activity. Mutations in rpsD (encoding ribosomal protein S4), which suppressed streptomycin dependence, were able to partially restore A-site cleavage to rpsL(P90K) cells but failed to increase tmRNA.SmpB activity. Taken together, these results show that perturbations to A-site structure and function modulate A-site mRNA cleavage and tmRNA.SmpB activity. We propose that tmRNA.SmpB binds to streptomycin-resistant rpsL ribosomes less efficiently, leading to a partial loss of ribosome rescue function in these mutants.
Collapse
Affiliation(s)
- Laura E Holberger
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-9610, USA
| | | |
Collapse
|
12
|
Chittapragada M, Roberts S, Ham YW. Aminoglycosides: molecular insights on the recognition of RNA and aminoglycoside mimics. PERSPECTIVES IN MEDICINAL CHEMISTRY 2009; 3:21-37. [PMID: 19812740 PMCID: PMC2754922 DOI: 10.4137/pmc.s2381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
RNA is increasingly recognized for its significant functions in biological systems and has recently become an important molecular target for therapeutics development. Aminoglycosides, a large class of clinically significant antibiotics, exert their biological functions by binding to prokaryotic ribosomal RNA (rRNA) and interfering with protein translation, resulting in bacterial cell death. They are also known to bind to viral mRNAs such as HIV-1 RRE and TAR. Consequently, aminoglycosides are accepted as the single most important model in understanding the principles that govern small molecule-RNA recognition, which is essential for the development of novel antibacterial, antiviral or even anti-oncogenic agents. This review outlines the chemical structures and mechanisms of molecular recognition and antibacterial activity of aminoglycosides and various aminoglycoside mimics that have recently been devised to improve biological efficacy, binding affinity and selectivity, or to circumvent bacterial resistance.
Collapse
Affiliation(s)
- Maruthi Chittapragada
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, U.S.A
| | | | | |
Collapse
|
13
|
Llewellyn NM, Spencer JB. Chemoenzymatic acylation of aminoglycoside antibiotics. Chem Commun (Camb) 2008:3786-8. [PMID: 18685777 DOI: 10.1039/b802248h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemoenzymatic installation of the clinically valuable (S)-4-amino-2-hydroxybutyryl side chain onto a number of 2-deoxystreptamine-containing aminoglycosides is described using the purified Bacillus circulans biosynthetic enzymes BtrH and BtrG in combination with a synthetic acyl-SNAC surrogate substrate.
Collapse
Affiliation(s)
- Nicholas M Llewellyn
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | | |
Collapse
|
14
|
Fatumo S, Plaimas K, Mallm JP, Schramm G, Adebiyi E, Oswald M, Eils R, König R. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. INFECTION GENETICS AND EVOLUTION 2008; 9:351-8. [PMID: 18313365 DOI: 10.1016/j.meegid.2008.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/21/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Biomedical research could enable treating the disease by effectively and specifically targeting essential enzymes of this parasite. However, the parasite has developed resistance to existing drugs making it indispensable to discover new drugs. We have established a simple computational tool which analyses the topology of the metabolic network of P. falciparum to identify essential enzymes as possible drug targets. We investigated the essentiality of a reaction in the metabolic network by deleting (knocking-out) such a reaction in silico. The algorithm selected neighbouring compounds of the investigated reaction that had to be produced by alternative biochemical pathways. Using breadth first searches, we tested qualitatively if these products could be generated by reactions that serve as potential deviations of the metabolic flux. With this we identified 70 essential reactions. Our results were compared with a comprehensive list of 38 targets of approved malaria drugs. When combining our approach with an in silico analysis performed recently [Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., 2004. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917-924] we could improve the precision of the prediction results. Finally we present a refined list of 22 new potential candidate targets for P. falciparum, half of which have reasonable evidence to be valid targets against micro-organisms and cancer.
Collapse
Affiliation(s)
- Segun Fatumo
- Computer and Information Sciences Department, Covenant University, Ota, Nigeria
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Felden B. RNA structure: experimental analysis. Curr Opin Microbiol 2007; 10:286-91. [PMID: 17532253 DOI: 10.1016/j.mib.2007.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/09/2007] [Accepted: 05/14/2007] [Indexed: 11/25/2022]
Abstract
Among all of the biological macromolecules, the functional versatility of RNAs is unique including encoding or transferring genetic information and performing catalysis. These biological functions are highly dependent upon RNA folding and structure. Since the discovery of catalytic RNAs in the early 1980s, a recent breakthrough came from the identification of a wealth of micro RNAs, small interfering RNAs and regulatory RNAs, all involved in modulation of gene expression. The structure of these novel RNAs, either free or in complex with specific ligands, can be analyzed using various experimental strategies, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance spectroscopy, structure-specific probes, with some that can be used in living cells, RNA engineering, thermal denaturation and mass spectrometry. Among these, X-ray crystallography has recently enabled determination of the structures of several large and complex RNAs, as well as of ribonucleoprotein complexes. The database of RNA structure has grown tremendously since the recent crystal structure analyses of the prokaryotic ribosome and its subunits. These methods are now widely applied to a variety of biologically relevant RNAs.
Collapse
Affiliation(s)
- Brice Felden
- Université de Rennes I, Upres JE2311, Inserm U835 Biochimie Pharmaceutique, 2 Avenue du Prof. Léon Bernard, 35043 Rennes, France.
| |
Collapse
|
16
|
Abstract
One of the major challenges in medicine today is the development of new antibiotics as well as effective antiviral agents. The well-known aminoglycosides interact and interfere with the function of several noncoding RNAs, among which ribosomal RNAs (rRNAs) are the best studied. Aminoglycosides are also known to interact with proteins such as ribonucleases. Here we review our current understanding of the interaction between aminoglycosides and RNA. Moreover, we discuss briefly mechanisms behind the inactivation of aminoglycosides, a major concern due to the increasing appearance of multiresistant bacterial strains. Taken together, the general knowledge about aminoglycoside and RNA interaction is of utmost importance in the process of identifying/developing the next generation or new classes of antibiotics. In this perspective, previously unrecognized as well as known noncoding RNAs, apart from rRNA, are promising targets to explore.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
17
|
|
18
|
Huang F, Haydock SF, Mironenko T, Spiteller D, Li Y, Spencer JB. The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: characterisation of an aminotransferase involved in the formation of 2-deoxystreptamine. Org Biomol Chem 2005; 3:1410-8. [PMID: 15827636 DOI: 10.1039/b501199j] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biosynthetic gene cluster of the 2-deoxystreptamine (DOS)-containing aminoglycoside antibiotic neomycin has been cloned for the first time by screening of a cosmid library of Streptomyces fradiae NCIMB 8233. Sequence analysis has identified 21 putative open reading frames (ORFs) in the neomycin gene cluster (neo) with significant protein sequence similarity to gene products involved in the biosynthesis of other DOS-containing aminoglycosides, namely butirosin (btr), gentamycin (gnt), tobramycin (tbm) and kanamycin (kan). Located at the 5'-end of the neo gene cluster is the previously-characterised neomycin phosphotransferase gene (apH). Three genes unique to the neo and btr clusters have been revealed by comparison of the neo cluster to btr, gnt, tbm and kan clusters. This suggests that these three genes may be involved in the transfer of a ribose moiety to the DOS ring during the antibiotic biosynthesis. The product of the neo-6 gene is characterised here as the L-glutamine : 2-deoxy-scyllo-inosose aminotransferase responsible for the first transamination in DOS biosynthesis, which supports the assignment of the gene cluster.
Collapse
Affiliation(s)
- Fanglu Huang
- University Chemical Laboratory, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
19
|
Konno T, Takahashi T, Kurita D, Muto A, Himeno H. A minimum structure of aminoglycosides that causes an initiation shift of trans-translation. Nucleic Acids Res 2004; 32:4119-26. [PMID: 15295039 PMCID: PMC514373 DOI: 10.1093/nar/gkh750] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trans-translation is an unusual translation in which transfer-messenger RNA plays a dual function--as a tRNA and an mRNA--to relieve the stalled translation on the ribosome. It has been shown that paromomycin, a typical member of a 4,5-disubstituted class of aminoglycosides, causes a shift of the translation-resuming point on the tmRNA by -1 during trans-translation. To address the molecular basis of this novel effect, we examined the effects of various aminoglycosides that can bind around the A site of the small subunit of the ribosome on trans-translation in vitro. Tobramycin and gentamicin, belonging to the 4,6-disubstituted class of aminoglycosides having rings I and II similar to those in the 4,5-disubstituted class, possess similar effects. Neamine, which has only rings I and II, a common structure shared by 4,5- and 4,6-disubstituted classes of aminoglycosides, was sufficient to cause an initiation shift of trans-translation. In contrast, streptomycin or hygromycin B, lacking ring I, did not cause an initiation shift. The effect of each aminoglycoside on trans-translation coincides with that on conformational change in the A site of the small subunit of the ribosome revealed by recent structural studies: paromomycin, tobramycin and geneticin which is categorized into the gentamicin subclass, but not streptomycin and hygromycin B, flip out two conserved adenine bases at 1492 and 1493 from the A site helix. The pattern of initiation shifts by paromomycin fluctuates with variation of mutations introduced into a region upstream of the initiation point.
Collapse
Affiliation(s)
- Takayuki Konno
- Department of Biochemistry and Biotechnology, Faculty of Agriculture and Life Science Hirosaki University, Hirosaki 036-8561, Japan
| | | | | | | | | |
Collapse
|
20
|
Fouace S, Gaudin C, Picard S, Corvaisier S, Renault J, Carboni B, Felden B. Polyamine derivatives as selective RNaseA mimics. Nucleic Acids Res 2004; 32:151-7. [PMID: 14704352 PMCID: PMC373269 DOI: 10.1093/nar/gkh157] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-selective scission of ribonucleic acids (RNAs) has attracted considerable interest, since RNA is an intermediate in gene expression and the genetic material of many pathogenic viruses. Polyamine-imidazole conjugates for site-selective RNA scission, without free imidazole, were synthesized and tested on yeast phenylalanine transfer RNA. These molecules catalyze RNA hydrolysis non-randomly. Within the polyamine chain, the location of the imidazole residue, the numbers of nitrogen atoms and their relative distances have notable influence on cleavage selectivity. A norspermine derivative reduces the cleavage sites to a unique location, in the anticodon loop of the tRNA, in the absence of complementary sequence. Experimental results are consistent with a cooperative participation of an ammonium group of the polyamine moiety, in addition to it's binding to the negatively charged ribose-phosphate backbone, as proton source, and the imidazole moiety as a base. There is correlation between the location of the magnesium binding sites and the RNA cleavage sites, suggesting that the protonated nitrogens of the polycationic chain compete with some of the magnesium ions for RNA binding. Therefore, the cleavage pattern is specific of the RNA structure. These compounds cleave at physiological pH, representing novel reactive groups for antisense oligonucleotide derivatives or to enhance ribozyme activity.
Collapse
MESH Headings
- Anticodon/genetics
- Base Sequence
- Binding Sites
- Escherichia coli/genetics
- Hydrogen-Ion Concentration
- Hydrolysis
- Imidazoles/metabolism
- Magnesium/metabolism
- Models, Molecular
- Molecular Mimicry
- Molecular Sequence Data
- Molecular Structure
- Nucleic Acid Conformation
- Polyamines/chemistry
- Polyamines/metabolism
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Ribonuclease, Pancreatic/chemistry
- Ribonuclease, Pancreatic/metabolism
- Spermine/analogs & derivatives
- Spermine/chemistry
- Spermine/metabolism
- Structure-Activity Relationship
- Substrate Specificity
- Yeasts/genetics
Collapse
Affiliation(s)
- Sandra Fouace
- SESO, UMR 6510 CNRS, Institut de Chimie, Université de Rennes 1, F-35042 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
MESH Headings
- Aminoglycosides/pharmacology
- Anti-Bacterial Agents/pharmacology
- Binding Sites
- Drug Delivery Systems
- Models, Molecular
- RNA/chemistry
- RNA/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/drug effects
- RNA, Ribosomal, 16S/metabolism
- Substrate Specificity
- Technology, Pharmaceutical
- Water/chemistry
Collapse
Affiliation(s)
- Quentin Vicens
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Modélisation et simulations des Acides Nucléiques, UPR 9002, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
22
|
Gutmann S, Haebel PW, Metzinger L, Sutter M, Felden B, Ban N. Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature 2003; 424:699-703. [PMID: 12904796 DOI: 10.1038/nature01831] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 05/23/2003] [Indexed: 11/09/2022]
Abstract
Accurate translation of genetic information into protein sequence depends on complete messenger RNA molecules. Truncated mRNAs cause synthesis of defective proteins, and arrest ribosomes at the end of their incomplete message. In bacteria, a hybrid RNA molecule that combines the functions of both transfer and messenger RNAs (called tmRNA) rescues stalled ribosomes, and targets aberrant, partially synthesized, proteins for proteolytic degradation. Here we report the 3.2-A-resolution structure of the tRNA-like domain of tmRNA (tmRNA(Delta)) in complex with small protein B (SmpB), a protein essential for biological functions of tmRNA. We find that the flexible RNA molecule adopts an open L-shaped conformation and SmpB binds to its elbow region, stabilizing the single-stranded D-loop in an extended conformation. The most striking feature of the structure of tmRNA(Delta) is a 90 degrees rotation of the TPsiC-arm around the helical axis. Owing to this unusual conformation, the SmpB-tmRNA(Delta) complex positioned into the A-site of the ribosome orients SmpB towards the small ribosomal subunit, and directs tmRNA towards the elongation-factor binding region of the ribosome. On the basis of this structure, we propose a model for the binding of tmRNA on the ribosome.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Binding Sites
- Crystallization
- Crystallography, X-Ray
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Sascha Gutmann
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg (ETH Zürich), HPK Gebäude, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Takahashi T, Konno T, Muto A, Himeno H. Various effects of paromomycin on tmRNA-directed trans-translation. J Biol Chem 2003; 278:27672-80. [PMID: 12754221 DOI: 10.1074/jbc.m211724200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
trans-Translation is an unusual translation in which tmRNA plays a dual function as a tRNA and an mRNA to relieve the stalled translation on the ribosome. In this study, we examined the effects of an aminoglycoside antibiotic, paromomycin, on several tmRNA-related events in vitro. The results of a chemical footprinting study indicated that paromomycin molecules bind tmRNA at G332/G333 in the tRNA domain and A316 in the middle of the long helix between tRNA and mRNA domains. Paromomycin bound at G332/G333 inhibited aminoacylation, and the inhibition was suppressed by the addition of SmpB, a tmRNA-binding protein. It was also found that paromomycin causes a shift of the translation resuming point on tmRNA by -1. The effect on initiation shift was canceled by a mutation at the paromomycin-binding site in 16 S rRNA but not by mutations in tmRNA. A high concentration of paromomycin inhibited trans-translation, whereas it enhanced the initiation-shifted trans-translation when SmpB was exogenously added or a mutation was introduced at 333. The effect of paromomycin on trans-translation differs substantially from that on canonical translation, in which it induces miscoding by modulating the A site of the decoding helix of the small subunit RNA of the ribosome.
Collapse
Affiliation(s)
- Toshiharu Takahashi
- Department of Biochemistry and Biotechnology, Faculty of Agriculture and Life Hirosaki University, Hirosaki 036-8561 Japan
| | | | | | | |
Collapse
|