1
|
Cabri W, Cantelmi P, Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, Mattellone A, Tolomelli A. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Front Mol Biosci 2021; 8:697586. [PMID: 34195230 PMCID: PMC8236712 DOI: 10.3389/fmolb.2021.697586] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Targeting protein-protein interactions (PPIs) has been recently recognized as an emerging therapeutic approach for several diseases. Up today, more than half a million PPI dysregulations have been found to be involved in pathological events. The dynamic nature of these processes and the involvement of large protein surfaces discouraged anyway the scientific community in considering them promising therapeutic targets. More recently peptide drugs received renewed attention since drug discovery has offered a broad range of structural diverse sequences, moving from traditionally endogenous peptides to sequences possessing improved pharmaceutical profiles. About 70 peptides are currently on the marked but several others are in clinical development. In this review we want to report the update on these novel APIs, focusing our attention on the molecules in clinical development, representing the direct consequence of the drug discovery process of the last 10 years. The comprehensive collection will be classified in function of the structural characteristics (native, analogous, heterologous) and on the basis of the therapeutic targets. The mechanism of interference on PPI will also be reported to offer useful information for novel peptide design.
Collapse
Affiliation(s)
- Walter Cabri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | - Alessandra Tolomelli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Ste.Marie EJ, Hondal RJ. 2,2'-Dipyridyl diselenide: A chemoselective tool for cysteine deprotection and disulfide bond formation. J Pept Sci 2020; 26:e3236. [PMID: 31856422 PMCID: PMC7509986 DOI: 10.1002/psc.3236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 11/05/2022]
Abstract
There are many examples of bioactive, disulfide-rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2'-dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys-protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys-S-SePy adducts at 37 °C and various incubation times. This novel Cys-S-SePy adduct is able to be chemoselectively reduced by five-fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine-free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys-S-SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys-S-SePy adducts. Thus, we have developed a one-pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.
Collapse
Affiliation(s)
- Emma J. Ste.Marie
- Department of Chemistry, Discovery Hall, University of Vermont, 82 University Place, Burlington, VT 05405, USA
- ESM was supported by National Institutes of Health Training Grant T32 HL07594 administered by Dr. Kenneth G. Mann and Dr. Robert J. Kelm
| | - Robert J. Hondal
- Department of Chemistry, Discovery Hall, University of Vermont, 82 University Place, Burlington, VT 05405, USA
- University of Vermont, Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, VT 05405, USA
| |
Collapse
|
3
|
Choi JS, Joo SH. Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol Ther (Seoul) 2020; 28:18-24. [PMID: 31597413 PMCID: PMC6939695 DOI: 10.4062/biomolther.2019.082] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.
Collapse
Affiliation(s)
- Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| |
Collapse
|
4
|
Dye FS, Larraufie P, Kay R, Darwish T, Rievaj J, Goldspink DA, Meek CL, Middleton SJ, Hardwick RH, Roberts GP, Percival-Alwyn JL, Vaughan T, Ferraro F, Challis BG, O'Rahilly S, Groves M, Gribble FM, Reimann F. Characterisation of proguanylin expressing cells in the intestine - evidence for constitutive luminal secretion. Sci Rep 2019; 9:15574. [PMID: 31666564 PMCID: PMC6821700 DOI: 10.1038/s41598-019-52049-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Guanylin, a peptide implicated in regulation of intestinal fluid secretion, is expressed in the mucosa, but the exact cellular origin remains controversial. In a new transgenic mouse model fluorescent reporter protein expression driven by the proguanylin promoter was observed throughout the small intestine and colon in goblet and Paneth(-like) cells and, except in duodenum, in mature enterocytes. In Ussing chamber experiments employing both human and mouse intestinal tissue, proguanylin was released predominantly in the luminal direction. Measurements of proguanylin expression and secretion in cell lines and organoids indicated that secretion is largely constitutive and requires ER to Golgi transport but was not acutely regulated by salt or other stimuli. Using a newly-developed proguanylin assay, we found plasma levels to be raised in humans after total gastrectomy or intestinal transplantation, but largely unresponsive to nutrient ingestion. By LC-MS/MS we identified processed forms in tissue and luminal extracts, but in plasma we only detected full-length proguanylin. Our transgenic approach provides information about the cellular origins of proguanylin, complementing previous immunohistochemical and in-situ hybridisation results. The identification of processed forms of proguanylin in the intestinal lumen but not in plasma supports the notion that the primary site of action is the gut itself.
Collapse
Affiliation(s)
- Florent Serge Dye
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Pierre Larraufie
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Richard Kay
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Tamana Darwish
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Juraj Rievaj
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Dosage Form Design & Development, AstraZeneca, Cambridge, UK
| | - Deborah A Goldspink
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Claire L Meek
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Stephen J Middleton
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Richard H Hardwick
- Barrett's Oesophagus and Oesophago-gastric Cancer, Gastroenterology Services, Addenbrooke's Hospital, Cambridge, UK
| | - Geoffrey P Roberts
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Tris Vaughan
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Franco Ferraro
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Benjamin G Challis
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Stephen O'Rahilly
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Maria Groves
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK.
| | - Fiona M Gribble
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Rappaport JA, Waldman SA. The Guanylate Cyclase C-cGMP Signaling Axis Opposes Intestinal Epithelial Injury and Neoplasia. Front Oncol 2018; 8:299. [PMID: 30131940 PMCID: PMC6091576 DOI: 10.3389/fonc.2018.00299] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Guanylate cyclase C (GUCY2C) is a transmembrane receptor expressed on the luminal aspect of the intestinal epithelium. Its ligands include bacterial heat-stable enterotoxins responsible for traveler's diarrhea, the endogenous peptide hormones uroguanylin and guanylin, and the synthetic agents, linaclotide, plecanatide, and dolcanatide. Ligand-activated GUCY2C catalyzes the synthesis of intracellular cyclic GMP (cGMP), initiating signaling cascades underlying homeostasis of the intestinal epithelium. Mouse models of GUCY2C ablation, and recently, human populations harboring GUCY2C mutations, have revealed the diverse contributions of this signaling axis to epithelial health, including regulating fluid secretion, microbiome composition, intestinal barrier integrity, epithelial renewal, cell cycle progression, responses to DNA damage, epithelial-mesenchymal cross-talk, cell migration, and cellular metabolic status. Because of these wide-ranging roles, dysregulation of the GUCY2C-cGMP signaling axis has been implicated in the pathogenesis of bowel transit disorders, inflammatory bowel disease, and colorectal cancer. This review explores the current understanding of cGMP signaling in the intestinal epithelium and mechanisms by which it opposes intestinal injury. Particular focus will be applied to its emerging role in tumor suppression. In colorectal tumors, endogenous GUCY2C ligand expression is lost by a yet undefined mechanism conserved in mice and humans. Further, reconstitution of GUCY2C signaling through genetic or oral ligand replacement opposes tumorigenesis in mice. Taken together, these findings suggest an intriguing hypothesis that colorectal cancer arises in a microenvironment of functional GUCY2C inactivation, which can be repaired by oral ligand replacement. Hence, the GUCY2C signaling axis represents a novel therapeutic target for preventing colorectal cancer.
Collapse
Affiliation(s)
- Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Izmailov SA, Podkorytov IS, Skrynnikov NR. Simple MD-based model for oxidative folding of peptides and proteins. Sci Rep 2017; 7:9293. [PMID: 28839177 PMCID: PMC5570944 DOI: 10.1038/s41598-017-09229-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/17/2017] [Indexed: 11/14/2022] Open
Abstract
Significant strides have been recently made to fold peptides and small proteins in silico using MD simulations. However, facilities are currently lacking to include disulfide bonding in the MD models of protein folding. To address this problem, we have developed a simple empirical protocol to model formation of disulfides, which is perturbation-free, retains the same speed as conventional MD simulations and allows one to control the reaction rate. The new protocol has been tested on 15-aminoacid peptide guanylin containing four cysteine residues; the net simulation time using Amber ff14SB force field was 61 μs. The resulting isomer distribution is in qualitative agreement with experiment, suggesting that oxidative folding of guanylin in vitro occurs under kinetic control. The highly stable conformation of the so-called isomer 2(B) has been obtained for full-length guanylin, which is significantly different from the poorly ordered structure of the truncated peptide PDB ID 1GNB. In addition, we have simulated oxidative folding of guanylin within the 94-aminoacid prohormone proguanylin. The obtained structure is in good agreement with the NMR coordinates 1O8R. The proposed modeling strategy can help to explore certain fundamental aspects of protein folding and is potentially relevant for manufacturing of synthetic peptides and recombinant proteins.
Collapse
Affiliation(s)
- Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Ivan S Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Pires ÁS, Porto WF, Castro PO, Franco OL, Alencar SA. Theoretical structural characterization of lymphoguanylin: A potential candidate for the development of drugs to treat gastrointestinal disorders. J Theor Biol 2017; 419:193-200. [PMID: 28214543 DOI: 10.1016/j.jtbi.2017.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Guanylin peptides (GPs) are small cysteine-rich peptide hormones involved in salt absorption, regulation of fluids and electrolyte homeostasis. This family presents four members: guanylin (GN), uroguanylin (UGN), lymphoguanylin (LGN) and renoguanylin (RGN). GPs have been used as templates for the development of drugs for the treatment of gastrointestinal disorders. Currently, LGN is the only GP with only one disulfide bridge, making it a remarkable member of this family and a potential drug template; however, there is no structural information about this peptide. In fact, LGN is predicted to be highly disordered and flexible, making it difficult to obtain structural information using in vitro methods. Therefore, this study applied a series of 1μs molecular dynamics simulations in order to understand the structural behavior of LGN, comparing it to the C115Y variant of GN, which shows the same Cys to Tyr modification. LGN showed to be more flexible than GN C115Y. While the negatively charged N-terminal, despite its repellent behavior, seems to be involved mainly in pH-dependent activity, the hydrophobic core showed to be the determinant factor in LGN's flexibility, which could be essential in its activity. These findings may be determinant in the development of new medicines to help in the treatment of gastrointestinal disorders. Moreover, our investigation of LGN structure clarified some issues in the structure-activity relationship of this peptide, providing new knowledge of guanylin peptides and clarifying the differences between GN C115Y and LGN.
Collapse
Affiliation(s)
- Állan S Pires
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - William F Porto
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Porto Reports, Brasília-DF, Brazil
| | - Pryscilla O Castro
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco,, Campo Grande, MS, Brazil
| | - Sérgio A Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|
8
|
Porto WF, Franco OL, Alencar SA. Computational analyses and prediction of guanylin deleterious SNPs. Peptides 2015; 69:92-102. [PMID: 25899674 DOI: 10.1016/j.peptides.2015.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 01/01/2023]
Abstract
Human guanylin, coded by the GUCA2A gene, is a member of a peptide family that activates intestinal membrane guanylate cyclase, regulating electrolyte and water transport in intestinal and renal epithelia. Deregulation of guanylin peptide activity has been associated with colon adenocarcinoma, adenoma and intestinal polyps. Besides, it is known that mutations on guanylin receptors could be involved in meconium ileus. However, there are no previous works regarding the alterations driven by single nucleotide polymorphisms in guanylin peptides. A comprehensive in silico analysis of missense SNPs present in the GUCA2A gene was performed taking into account 16 prediction tools in order to select the deleterious variations for further evaluation by molecular dynamics simulations (50 ns). Molecular dynamics data suggest that the three out of five variants (Cys104Arg, Cys112Ser and Cys115Tyr) have undergone structural modifications in terms of flexibility, volume and/or solvation. In addition, two nonsense SNPs were identified, both preventing the formation of disulfide bonds and resulting in the synthesis of truncated proteins. In summary the structural analysis of missense SNPs is important to decrease the number of potential mutations to be in vitro evaluated for associating them with some genetic diseases. In addition, data reported here could lead to a better understanding of structural and functional aspects of guanylin peptides.
Collapse
Affiliation(s)
- William F Porto
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; C S-Inova, Pos-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| | - Sérgio A Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|
9
|
Characterization of immunological cross-reactivity between enterotoxigenic Escherichia coli heat-stable toxin and human guanylin and uroguanylin. Infect Immun 2014; 82:2913-22. [PMID: 24778111 DOI: 10.1128/iai.01749-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) expressing the heat-stable toxin (ST) (human-type [STh] and porcine-type [STp] variants) is among the five most important enteric pathogens in young children living in low- and middle-income countries. ST mediates diarrheal disease through activation of the guanylate cyclase C (GC-C) receptor and is an attractive vaccine target with the potential to confer protection against a wide range of ETEC strains. However, immunological cross-reactivity to the endogenous GC-C ligands guanylin and uroguanylin is a major concern because of the similarities to ST in amino acid sequence, structure, and function. We have investigated the presence of similar epitopes on STh, STp, guanylin, and uroguanylin by analyzing these peptides in eight distinct competitive enzyme-linked immunosorbent assays (ELISAs). A fraction (27%) of a polyclonal anti-STh antibody and an anti-STh monoclonal antibody (MAb) cross-reacted with uroguanylin, the latter with a 73-fold-lower affinity. In contrast, none of the antibodies raised against STp, one polyclonal antibody and three MAbs, cross-reacted with the endogenous peptides. Antibodies raised against guanylin and uroguanylin showed partial cross-reactivity with the ST peptides. Our results demonstrate, for the first time, that immunological cross-reactions between ST and the endogenous peptides can occur. However, the partial nature and low affinity of the observed cross-reactions suggest that the risk of adverse effects from a future ST vaccine may be low. Furthermore, our results suggest that this risk may be reduced or eliminated by basing an ST immunogen on STp or a selectively mutated variant of STh.
Collapse
|
10
|
Weiglmeier PR, Berkner H, Seebahn A, Vogel N, Schreiber R, Wöhrl BM, Schwarzinger S, Rösch P. Prosequence switching: An effective strategy to produce biologically activeE. coliheat-stable enterotoxin STh. J Biomol Struct Dyn 2013; 32:1537-45. [DOI: 10.1080/07391102.2013.825758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
The guanylin peptide family and the proposed gastrointestinal-renal natriuretic signaling axis. Kidney Int 2013. [PMID: 23203021 DOI: 10.1038/ki.2012.344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
According to a proposed concept of a gastrointestinal-renal natriuretic signaling axis, natriuretic peptides are released from the intestine into the circulation in response to oral salt intake and act on the kidneys as hormones to increase sodium excretion. The peptides guanylin and uroguanylin and their precursors proguanylin and prouroguanylin, respectively, have been suggested to be the mediators of this axis. A study by Preston and co-workers, however, provides important data not supporting this putative concept.
Collapse
|
12
|
Lauber T, Tidten N, Matecko I, Zeeb M, Rösch P, Marx UC. Design and characterization of a soluble fragment of the extracellular ligand-binding domain of the peptide hormone receptor guanylyl cyclase-C. Protein Eng Des Sel 2008; 22:1-7. [PMID: 18987130 DOI: 10.1093/protein/gzn062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intestinal guanylyl cyclase-C (GC-C) was originally identified as an Escherichia coli heat-stable enterotoxin (STa) receptor. STa stimulates GC-C to much higher activity than the endogenous ligands guanylin and uroguanylin, causing severe diarrhea. To investigate the interactions of the endogenous and bacterial ligands with GC-C, we designed and characterized a soluble and properly folded fragment of the extracellular ligand-binding domain of GC-C. The membrane-bound guanylyl cyclases exhibit a single transmembrane spanning helix and a globularly folded extracellular ligand-binding domain that comprises about 410 of 1050 residues. Based on the crystal structure of the dimerized-binding domain of the guanylyl cyclase-coupled atrial natriuretic peptide receptor and a secondary structure-guided sequence alignment, we generated a model of the extracellular domain of GC-C comprised of two subdomains. Mapping of mutational and cross-link data onto this structural model restricts the ligand-binding region to the membrane proximal subdomain. We thus designed miniGC-C, a 197 amino acid fragment that mimics the ligand-binding membrane proximal subdomain. Cloning, expression and spectroscopic studies reveal miniGC-C to be a soluble and properly folded protein with a distinct secondary and tertiary structure. MiniGC-C binds STa with nanomolar affinity.
Collapse
Affiliation(s)
- T Lauber
- Lehrstuhl für Biopolymere and Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth 95440, Bayreuth
| | | | | | | | | | | |
Collapse
|
13
|
Vitzithum K, Lauber T, Kreutzmann P, Schulz A, Sommerhoff CP, Rösch P, Marx UC. LEKTI domain 15 is a functional Kazal-type proteinase inhibitor. Protein Expr Purif 2008; 57:45-56. [DOI: 10.1016/j.pep.2007.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/16/2007] [Accepted: 08/27/2007] [Indexed: 11/28/2022]
|
14
|
Hasegawa M, Shimonishi Y. Recognition and signal transduction mechanism of Escherichia coli heat-stable enterotoxin and its receptor, guanylate cyclase C. ACTA ACUST UNITED AC 2005; 65:261-71. [PMID: 15705168 DOI: 10.1111/j.1399-3011.2005.00218.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Guanylate cyclase C (GC-C), a member of the membrane-bound GC family, consists of an extracellular domain (ECD) and an intracellular domain, which are connected by a single-transmembrane region. GC-C is a receptor protein, i.e. specifically stimulated by the endogenous peptides guanylin, uroguanylin, lymphoguanylin, and the exogenous peptide heat-stable enterotoxin (ST(a)), secreted by pathogenic Escherichia coli and acting on the intestinal brush border membranes. The binding of these peptide ligands to the ECD of GC-C results in the synthesis of cyclic GMP in cells, which, in turn, regulates a variety of intracellular physiologic processes. As the cloning of GC-C, its physiologic functions of each domain have been vigorously investigated. The structural characterization of the ligand-binding domain of the receptor promises to provide important clues for better understanding of the mechanisms of receptor recognition and activation. Recently, structural data for each domain of membrane-bound GCs and related proteins has become available. Coupling information obtained from such work and validation of structure-function relationships of GC-C and its ligands should allow for three-dimensional mapping of their interaction site in detail. Our approach to this issue involved designing photoaffinity-labeling ST(a) analogs, capable of binding covalently to the ligand-binding region of the ECD of GC-C. The photoaffinity-labeling ligand was used to covalently label a soluble form of the recombinant ECD protein. Mass spectrometric analyses of an endoproteinase digest of the ECD revealed that the ligand specifically bound to a narrow region contained in the membrane-proximal subdomain of the ECD of GC-C. These results will enable us to identify the possible binding motifs within the ligand-binding domain by computer modeling. In this review, we summarize the available data on the recognition mechanism between ST(a) and GC-C at the molecular level.
Collapse
Affiliation(s)
- M Hasegawa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| | | |
Collapse
|
15
|
Buczek P, Buczek O, Bulaj G. Total chemical synthesis and oxidative folding of delta-conotoxin PVIA containing an N-terminal propeptide. Biopolymers 2005; 80:50-7. [PMID: 15641120 DOI: 10.1002/bip.20211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Small disulfide-rich peptides are translated as larger precursors typically containing an N-terminal prepro sequence. In this study, we investigated the role of a propeptide in the oxidative folding of an extremely hydrophobic delta-conotoxin, PVIA. delta-Conotoxin PVIA (delta-PVIA) is a 29-amino acid neurotoxin stabilized by three disulfide bridges. Previous folding studies on delta-conotoxins revealed that their poor folding properties resulted from their hydrophobicity. However, low folding yields of delta-PVIA could be improved by the presence of a nonionic detergent, which acted as a chemical chaperone. delta-PVIA provided an attractive model to investigate whether the hydrophilic propeptide region could function as an intramolecular chaperone. A 58-amino acid precursor for delta-PVIA (pro-PVIA), containing the N-terminal propeptide covalently attached to the mature conotoxin, was synthesized using native chemical ligation. Oxidative folding of pro-PVIA resulted in a very low accumulation of the correctly folded form, comparable to that for the mature conotoxin delta-PVIA. Our results are in accord with the relevant data previously observed for alpha- and omega-conotoxins, indicating that conotoxin prepro sequences are so-called class II propeptides, which are not directly involved in the oxidative folding. We hypothesize that these propeptide regions may be important for interactions with protein folding catalysts and sorting receptors during the secretory process.
Collapse
Affiliation(s)
- Pawel Buczek
- Cognetix, Inc., 421 Wakara Way Suite 201, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
16
|
Lauber T, Schulz A, Rösch P, Marx UC. Role of Disulfide Bonds for the Structure and Folding of Proguanylin. Biochemistry 2004; 43:10050-7. [PMID: 15287732 DOI: 10.1021/bi049667e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intestinal peptide hormone guanylin circulates mainly as its corresponding prohormone of 94 amino acids and is the first identified endogenous ligand of intestinal guanylyl cyclase C. While the prohormone is biologically inactive, it is processed to the fully functional form with 15 amino acid residues corresponding to the COOH terminus of the precursor protein. In addition to this inactivation of the hormone region, the prosequence makes an essential contribution to the disulfide-coupled folding of the hormone. On the basis of the recently determined solution structure of proguanylin, explanations for these functions of the prosequence were found, indicating that interstrand contacts between the NH2-terminal beta-hairpin of the prosequence and the COOH-terminal hormone region are crucial for formation of the correct disulfide bonds of guanylin. To further investigate the role of individual disulfide bonds upon stabilization of the overall three-dimensional structure of proguanylin and to test the assumption of a direct effect of the prosequence on the structure of the hormone region, we studied the cysteine double mutant proteins proguanylin-C48S/C61S and proguanylin-C86S/C94S. Disulfide determination as well as CD and NMR spectroscopy of proguanylin-C48S/C61S reveals an essential function of the Cys48-Cys61 disulfide bond for the stability of the hydrophobic core and thereby for the stability of the overall three-dimensional structure of proguanylin. Furthermore, sequence specific resonance assignment of the second disulfide deletion mutant, proguanylin-C86S/C94S, and comparison of the NMR spectra of this protein with those of the wild-type protein demonstrate that the rigid helical core structure of proguanylin is not affected by the mutation. Additionally, analysis of the interstrand contacts between the termini reveals a direct effect of the prosequence on the conformation of the hormone region. On the basis of these results, we propose a cooperative mechanism that leads to formation of the correct disulfide pattern of guanylin.
Collapse
Affiliation(s)
- Thomas Lauber
- Lehrstuhl für Biopolymere, Universität Bayreuth, Universitätstrasse 30, 95447 Bayreuth, Germany.
| | | | | | | |
Collapse
|
17
|
Qu Y, Guo JT, Olman V, Xu Y. Protein structure prediction using sparse dipolar coupling data. Nucleic Acids Res 2004; 32:551-61. [PMID: 14744980 PMCID: PMC373331 DOI: 10.1093/nar/gkh204] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 12/10/2003] [Accepted: 12/10/2003] [Indexed: 12/17/2022] Open
Abstract
Residual dipolar coupling (RDC) represents one of the most exciting emerging NMR techniques for protein structure studies. However, solving a protein structure using RDC data alone is still a highly challenging problem. We report here a computer program, RDC-PROSPECT, for protein structure prediction based on a structural homolog or analog of the target protein in the Protein Data Bank (PDB), which best aligns with the (15)N-(1)H RDC data of the protein recorded in a single ordering medium. Since RDC-PROSPECT uses only RDC data and predicted secondary structure information, its performance is virtually independent of sequence similarity between a target protein and its structural homolog/analog, making it applicable to protein targets beyond the scope of current protein threading techniques. We have tested RDC-PROSPECT on all (15)N-(1)H RDC data (representing 43 proteins) deposited in the BioMagResBank (BMRB) database. The program correctly identified structural folds for 83.7% of the target proteins, and achieved an average alignment accuracy of 98.1% residues within a four-residue shift.
Collapse
Affiliation(s)
- Youxing Qu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|