1
|
Hur SK, Somerville TD, Wu XS, Maia-Silva D, Demerdash OE, Tuveson DA, Notta F, Vakoc CR. p73 activates transcriptional signatures of basal lineage identity and ciliogenesis in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537667. [PMID: 37131797 PMCID: PMC10153254 DOI: 10.1101/2023.04.20.537667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During the progression of pancreatic ductal adenocarcinoma (PDAC), tumor cells are known to acquire transcriptional and morphological properties of the basal (also known as squamous) epithelial lineage, which leads to more aggressive disease characteristics. Here, we show that a subset of basal-like PDAC tumors aberrantly express p73 (TA isoform), which is a known transcriptional activator of basal lineage identity, ciliogenesis, and tumor suppression in normal tissue development. Using gain- and loss- of function experiments, we show that p73 is necessary and sufficient to activate genes related to basal identity (e.g. KRT5), ciliogenesis (e.g. FOXJ1), and p53-like tumor suppression (e.g. CDKN1A) in human PDAC models. Owing to the paradoxical combination of oncogenic and tumor suppressive outputs of this transcription factor, we propose that PDAC cells express a low level of p73 that is optimal for promoting lineage plasticity without severe impairment of cell proliferation. Collectively, our study reinforces how PDAC cells exploit master regulators of the basal epithelial lineage during disease progression.
Collapse
Affiliation(s)
- Stella K. Hur
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | | | - Xiaoli S. Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | - Diogo Maia-Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | | | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Smith CJ, Parkinson EK, Yang J, Pratten J, O'Toole EA, Caley MP, Braun KM. Investigating wound healing characteristics of gingival and skin keratinocytes in organotypic cultures. J Dent 2022; 125:104251. [PMID: 35961474 DOI: 10.1016/j.jdent.2022.104251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
OBJECTIVES The gingiva heals at an accelerated rate with reduced scarring when compared to skin. Potential well-studied factors include immune cell number, angiogenesis disparities and fibroblast gene expression. Differential keratinocyte gene expression, however, remains relatively understudied. This study explored the contrasting healing efficiencies of gingival and skin keratinocytes, alongside their differential gene expression patterns. METHODS 3D organotypic culture models of human gingiva and skin were developed using temporarily immortalised primary keratinocytes. Models were wounded for visualisation of re-epithelialisation and analysis of keratinocyte migration to close the wound gap. Concurrently, differentially expressed genes between primary gingival and skin keratinocytes were identified, validated, and functionally assessed. RESULTS Characterisation of the 3D cultures of gingiva and skin showed differentiation markers that recapitulated organisation of the corresponding in vivo tissue. Upon wounding, gingival models displayed a significantly higher efficiency in re-epithelialisation and stratification versus skin, repopulating the wound gap within 24 hours. This difference was likely due to distinct patterns of migration, with gingival cells demonstrating a form of sheet migration, in contrast to skin, where the leading edge was typically 1-2 cells thick. A candidate approach was used to identify several genes that were differentially expressed between gingival and skin keratinocytes. Knockdown of PITX1 resulted in reduced migration capacity of gingival cells. CONCLUSION Gingival keratinocytes retain in vivo superior wound healing capabilities in in vitro 2D and 3D environments. Intrinsic gene expression differences could result in gingival cells being 'primed' for healing and play a role in faster wound resolution. CLINICAL SIGNIFICANCE STATEMENT The successful development of organotypic models, that recapitulate re-epithelialisation, will underpin further studies to analyse the oral response to wound stimuli, and potential therapeutic interventions, in an in vitro environment.
Collapse
Affiliation(s)
- Chris J Smith
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Eric K Parkinson
- Institute of Dentistry, Blizard Institute, Queen Mary University of London, London, E1 2AT
| | | | | | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Matthew P Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Kristin M Braun
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK.
| |
Collapse
|
3
|
Role of Dietary Antioxidants in p53-Mediated Cancer Chemoprevention and Tumor Suppression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9924328. [PMID: 34257824 PMCID: PMC8257365 DOI: 10.1155/2021/9924328] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer arises through a complex interplay between genetic, behavioral, metabolic, and environmental factors that combined trigger cellular changes that over time promote malignancy. In terms of cancer prevention, behavioral interventions such as diet can promote genetic programs that may facilitate tumor suppression; and one of the key tumor suppressors responsible for initiating such programs is p53. The p53 protein is activated by various cellular events such as DNA damage, hypoxia, heat shock, and overexpression of oncogenes. Due to its role in cell fate decisions after DNA damage, regulatory pathways controlled by p53 help to maintain genome stability and thus “guard the genome” against mutations that cause cancer. Dietary intake of flavonoids, a C15 group of polyphenols, is known to inhibit cancer progression and assist DNA repair through p53-mediated mechanisms in human cells via their antioxidant activities. For example, quercetin arrests human cervical cancer cell growth by blocking the G2/M phase cell cycle and inducing mitochondrial apoptosis through a p53-dependent mechanism. Other polyphenols such as resveratrol upregulate p53 expression in several cancer cell lines by promoting p53 stability, which in colon cancer cells results in the activation of p53-mediated apoptosis. Finally, among vitamins, folic acid seems to play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in patients with premalignant lesions by significantly increased expression of p53. In this review, we discuss the role of these and other dietary antioxidants in p53-mediated cell signaling in relation to cancer chemoprevention and tumor suppression in normal and cancer cells.
Collapse
|
4
|
Alonso A, Trujillo CM, Puelles L. Quail-chick grafting experiments corroborate that Tbr1-positive eminential prethalamic neurons migrate along three streams into hypothalamus, subpallium and septocommissural areas. Brain Struct Funct 2021; 226:759-785. [PMID: 33544184 PMCID: PMC7981335 DOI: 10.1007/s00429-020-02206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
The prethalamic eminence (PThE), a diencephalic caudal neighbor of the telencephalon and alar hypothalamus, is frequently described in mammals and birds as a transient embryonic structure, undetectable in the adult brain. Based on descriptive developmental analysis of Tbr1 gene brain expression in chick embryos, we previously reported that three migratory cellular streams exit the PThE rostralward, targeting multiple sites in the hypothalamus, subpallium and septocommissural area, where eminential cells form distinct nuclei or disperse populations. These conclusions needed experimental corroboration. In this work, we used the homotopic quail-chick chimeric grafting procedure at stages HH10/HH11 to demonstrate by fate-mapping the three predicted tangential migration streams. Some chimeric brains were processed for Tbr1 in situ hybridization, for correlation with our previous approach. Evidence supporting all three postulated migration streams is presented. The results suggested a slight heterochrony among the juxtapeduncular (first), the peripeduncular (next), and the eminentio-septal (last) streams, each of which followed differential routes. A possible effect of such heterochrony on the differential selection of medial to lateral habenular hodologic targets by the migrated neurons is discussed.
Collapse
Affiliation(s)
- Antonia Alonso
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, School of Medicine, University of Murcia, 30100, Murcia, Spain. .,Biomedical Research Laboratory (LAIB), Health Campus, Murcia Biomedical Research Institute (IMIB-Arrixaca), El Palmar, 30120, Murcia, Spain.
| | - Carmen María Trujillo
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Faculty of Sciences, School of Biology, University of La Laguna, 38200, La Laguna, Canary Islands, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Laboratory (LAIB), Health Campus, Murcia Biomedical Research Institute (IMIB-Arrixaca), El Palmar, 30120, Murcia, Spain
| |
Collapse
|
5
|
Ai Z, Udalova IA. Transcriptional regulation of neutrophil differentiation and function during inflammation. J Leukoc Biol 2020; 107:419-430. [PMID: 31951039 DOI: 10.1002/jlb.1ru1219-504rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in innate immunity where they elicit powerful effector functions to eliminate invading pathogens and modulate the adaptive as well as the innate immune response. Neutrophil function must be tightly regulated during inflammation and infection to avoid additional tissue damage. Increasing evidence suggests that transcription factors (TFs) function as key regulators to modulate transcriptional output, thereby controlling cell fate decision and the inflammatory responses. However, the molecular mechanisms underlying neutrophil differentiation and function during inflammation remain largely uncharacterized. Here, we provide a comprehensive overview of TFs known to be crucial for neutrophil maturation and in the signaling pathways that control neutrophil differentiation and activation. We also outline how emerging genomic and single-cell technologies may facilitate further discovery of neutrophil transcriptional regulators.
Collapse
Affiliation(s)
- Zhichao Ai
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Khan H, Reale M, Ullah H, Sureda A, Tejada S, Wang Y, Zhang ZJ, Xiao J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2020; 38:107385. [PMID: 31004736 DOI: 10.1016/j.biotechadv.2019.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The anticancer effects of polyphenols are ascribed to several signaling pathways including the tumor suppressor gene tumor protein 53 (p53). Expression of endogenous p53 is silent in various types of cancers. A number of polyphenols from a wide variety of dietary sources could upregulate p53 expression in several cancer cell lines through distinct mechanisms of action. The aim of this review is to focus the significance of p53 signaling pathways and to provide molecular intuitions of dietary polyphenols in chemoprevention by monitoring p53 expression that have a prominent role in tumor suppression.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Pakistan..
| | - Marcella Reale
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Scalo (CH), Italy
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, Palma de Mallorca, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, University of Balearic Islands, Ctra. Valldemossa Km 75, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Ying Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
7
|
He S, Carman CV, Lee JH, Lan B, Koehler S, Atia L, Park CY, Kim JH, Mitchel JA, Park JA, Butler JP, Lu Q, Fredberg JJ. The tumor suppressor p53 can promote collective cellular migration. PLoS One 2019; 14:e0202065. [PMID: 30707705 PMCID: PMC6358060 DOI: 10.1371/journal.pone.0202065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Loss of function of the tumor suppressor p53 is known to increase the rate of migration of cells transiting the narrow pores of the traditional Boyden chamber assay. Here by contrast we investigate how p53 impacts the rate of cellular migration within a 2D confluent cell layer and a 3D collagen-embedded multicellular spheroid. We use two human carcinoma cell lines, the bladder carcinoma EJ and the colorectal carcinoma HCT116. In the confluent 2-D cell layer, for both EJ and HCT cells the migratory speeds and effective diffusion coefficients for the p53 null cells were significantly smaller than in p53-expressing cells. Compared to p53 expressers, p53-null cells exhibited more organized cortical actin rings together with reduced front-rear cell polarity. Furthermore, loss of p53 caused cells to exert smaller traction forces upon their substrates, and reduced formation of cryptic lamellipodia. In the 3D multicellular spheroid, loss of p53 consistently reduced collective cellular migration into surrounding collagen matrix. As regards the role of p53 in cellular migration, extrapolation from the Boyden chamber assay to other cellular microenvironments is seen to be fraught even in terms of the sign of the effect. Together, these paradoxical results show that the effects of p53 on cellular migration are context-dependent.
Collapse
Affiliation(s)
- Shijie He
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Christopher V. Carman
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jung Hyun Lee
- Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United states of America
| | - Bo Lan
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Stephan Koehler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Lior Atia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Chan Young Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jae Hun Kim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jennifer A. Mitchel
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - James P. Butler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Quan Lu
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jeffrey J. Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| |
Collapse
|
8
|
Anticancer Applications of Nanostructured Silica-Based Materials Functionalized with Titanocene Derivatives: Induction of Cell Death Mechanism through TNFR1 Modulation. MATERIALS 2018; 11:ma11020224. [PMID: 29385103 PMCID: PMC5848921 DOI: 10.3390/ma11020224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 01/16/2023]
Abstract
A series of cytotoxic titanocene derivatives have been immobilized onto nanostructured silica-based materials using two different synthetic routes, namely, (i) a simple grafting protocol via protonolysis of the Ti–Cl bond; and (ii) a tethering method by elimination of ethanol using triethoxysilyl moieties of thiolato ligands attached to titanium. The resulting nanostructured systems have been characterized by different techniques such as XRD, XRF, DR-UV, BET, SEM, and TEM, observing the incorporation of the titanocene derivatives onto the nanostructured silica and slight changes in the textural features of the materials after functionalization with the metallodrugs. A complete biological study has been carried out using the synthesized materials exhibiting moderate cytotoxicity in vitro against three human hepatic carcinoma (HepG2, SK-Hep-1, Hep3B) and three human colon carcinomas (DLD-1, HT-29, COLO320) and very low cytotoxicity against normal cell lines. In addition, the cells’ metabolic activity was modified by a 24-h exposure in a dose-dependent manner. Despite not having a significant effect on TNFα or the proinflammatory interleukin 1α secretion, the materials strongly modulated tumor necrosis factor (TNF) signaling, even at sub-cytotoxic concentrations. This is achieved mainly by upregulation of the TNFR1 receptor production, something which has not previously been observed for these systems.
Collapse
|
9
|
p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression. Oncotarget 2017; 7:11785-802. [PMID: 26930720 PMCID: PMC4914248 DOI: 10.18632/oncotarget.7600] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma Multiforme is one of the most highly metastatic cancers and constitutes 70% of all gliomas. Despite aggressive treatments these tumours have an exceptionally bad prognosis, mainly due to therapy resistance and tumour recurrence. Here we show that the transcription factor p73 confers an invasive phenotype by directly activating expression of POSTN (periostin, HGNC:16953) in glioblastoma cells. Knock down of endogenous p73 reduces invasiveness and chemo-resistance, and promotes differentiation in vitro. Using chromatin immunoprecipitation and reporter assays we demonstrate that POSTN, an integrin binding protein that has recently been shown to play a major role in metastasis, is a transcriptional target of TAp73. We further show that POSTN overexpression is sufficient to rescue the invasive phenotype of glioblastoma cells after p73 knock down. Additionally, bioinformatics analysis revealed that an intact p73/POSTN axis, where POSTN and p73 expression is correlated, predicts bad prognosis in several cancer types. Taken together, our results support a novel role of TAp73 in controlling glioblastoma cell invasion by regulating the expression of the matricellular protein POSTN.
Collapse
|
10
|
Qvick A, Sorbe B, Helenius G, Karlsson MG, Lillsunde Larsson G. Does p53 codon 72 polymorphism have a prognostic value in carcinoma of the vulva and vagina? Med Oncol 2017; 34:36. [PMID: 28144815 PMCID: PMC5285412 DOI: 10.1007/s12032-017-0893-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/21/2022]
Abstract
Human papilloma virus (HPV) is considered to be responsible for a large part of vaginal and vulvar carcinomas, and the p53 codon 72 polymorphism has been implicated in susceptibility to cancer induced by this virus, but with contradicting results. In this study, we have investigated the prognostic value of the codon 72 polymorphism by real-time PCR (qPCR) in two cohorts of vaginal (n = 66) and vulvar (n = 123) carcinomas. In vaginal carcinoma, arginine homozygous patients were significantly associated with a higher primary cure rate (p = 0.023) but also associated with a higher recurrence rate (p = 0.073), significant at distant locations (p = 0.009). No significant differences were found in overall survival rate (p = 0.499) or cancer-specific survival rate (p = 0.222). A higher frequency of arginine homozygosity was noted in HPV-positive tumors (p = 0.190) in comparison with HPV-negative tumors. In vulvar carcinoma, the genotype homozygous for arginine was significantly associated with a larger tumor size at diagnosis in the entire cohort (p = 0.015) and a lower cancer-specific survival rate (p = 0.024) compared with heterozygous (arginine/proline) in HPV-negative tumors. Our results indicate that the relation between HPV and the p53 codon 72 polymorphism is complex and the significance and mechanisms responsible for this relationship need to be further elucidated.
Collapse
Affiliation(s)
- Alvida Qvick
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bengt Sorbe
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mats G Karlsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
11
|
Lee E, Choi SY, Bin BH, Kim NH, Kim KH, Choi DH, Han J, Choi H, Lee AY, Lee TR, Cho EG. Interferon-inducible T-cell alpha chemoattractant (ITAC) induces the melanocytic migration and hypopigmentation through destabilizing p53 via histone deacetylase 5: a possible role of ITAC in pigment-related disorders. Br J Dermatol 2016; 176:127-137. [PMID: 27436825 DOI: 10.1111/bjd.14878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cell migration plays a major role in the immune response and in tumorigenesis. Interferon-inducible T-cell alpha chemoattractant (ITAC) elicits a strong chemotactic response from immune cells. OBJECTIVES To examine the effect of ITAC on melanocyte migration and pigmentation and its involvement in related disorders, and to investigate potential key players in these processes. METHODS Human melanocytes or melanoma cells were treated with ITAC and a migration assay was carried out. Global gene expression analysis was performed to find genes regulated by ITAC treatment. The function of key players involved in ITAC-induced cellular processes was addressed using knockdown or overexpression experiments in combination with ITAC treatment. ITAC expression in the inflammation-associated hypopigmentary disorder, vitiligo, was examined. RESULTS Among CXCR3 ligands, only ITAC induced melanocyte migration. ITAC treatment upregulated the expression of histone deacetylase 5 (HDAC5) and downregulated that of p53, a known target of HDAC5. Through knockdown or overexpression of HDAC5 and p53, we confirmed that HDAC5 mediates ITAC-induced migration by decreasing levels of p53 via deacetylation. In addition, ITAC treatment could decrease pigmentation in a p53- and HDAC5-dependent manner. Finally, the increased migration of human melanoma cells by ITAC treatment and the increased ITAC expression in the epidermis of vitiligo skin were verified. CONCLUSIONS This study provides in vitro evidence for the migratory and hypopigmentation effects of ITAC on melanocytic cells, gives translational insights into the roles of ITAC in pathological conditions, and suggests that HDAC5 and its substrate p53 are potent targets for regulating ITAC-induced cellular processes.
Collapse
Affiliation(s)
- E Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - S-Y Choi
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - B-H Bin
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - N-H Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - K H Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - D-H Choi
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon-si, Gyeonggi-do, Republic of Korea
| | - J Han
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - H Choi
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - A-Y Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - T R Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - E-G Cho
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
12
|
Abstract
Unlike the rather stereotypic image by which it was portrayed until not too many years ago, p53 is now increasingly emerging as a multifaceted transcription factor that can sometimes exert opposing effects on biological processes. This includes pro-survival activities that seem to contradict p53's canonical proapoptotic features, as well as opposing effects on cell migration, metabolism, and differentiation. Such antagonistic bifunctionality (balancing both positive and negative signals) bestows p53 with an ideal attribute to govern homeostasis. The molecular mechanisms underpinning the paradoxical activities of p53 may be related to a protein conformational spectrum (from canonical wild-type to "pseudomutant"), diversity of DNA response elements, and/or higher-order chromatin configuration. Altogether, this functional flexibility positions p53 as a transcriptional "super hub" that dictates cell homeostasis, and ultimately cell fate, by governing a hierarchy of other functional hubs. Deciphering the mechanisms by which p53 determines which hubs to engage, and how one might modulate the preferences of p53, remains a major challenge for both basic science and translational cancer medicine.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Lipopolysaccharides-Induced Inflammatory Response in White Blood Cells Is Associated with Alterations in Senescence Mediators: Modulation by Metformin. Metab Syndr Relat Disord 2015; 13:278-85. [DOI: 10.1089/met.2014.0168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
14
|
Song D, Yue L, Wu G, Ma S, Yang H, Liu Q, Zhang D, Xia Z, Jia J, Wang J. Evaluation of promoter hypomethylation and expression of p73 as a diagnostic and prognostic biomarker in Wilms' tumour. J Clin Pathol 2015; 69:12-8. [PMID: 26184366 DOI: 10.1136/jclinpath-2015-203150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Abstract
AIMS A member of the p53 family, the p73 gene is essential for the maintenance of genomic stability, DNA repair and apoptosis regulation. This study was designed to evaluate the utility of expression and DNA methylation patterns of the p73 gene in the early diagnosis and prognosis of Wilms' tumour (WT). METHODS Methylation-specific PCR, semi-quantitative (sq-PCR), real-time quantitative PCR (qRT-PCR), receiver operating characteristic (ROC), and survival and hazard function curve analyses were utilised to measure the expression and DNA methylation patterns of p73 in WT tissue samples with a view to assessing diagnostic and prognostic value. RESULTS The relative expression of p73 mRNA was higher, while the promoter methylation level was lower in the WT than the control group (p<0.05) and closely associated with poor survival prognosis in children with WT (p<0.05). Increased expression and decreased methylation of p73 were correlated with increasing tumour size, clinical stage and unfavourable histological differentiation (p<0.05). ROC curve analysis showed areas under the curve of 0.544 for methylation and 0.939 for expression in WT venous blood, indicating the higher diagnostic yield of preoperative p73 expression. CONCLUSIONS Preoperative venous blood p73 level serves as an underlying biomarker for the early diagnosis of WT. p73 overexpression and concomitantly decreased promoter methylation are significantly associated with poor survival in children with WT.
Collapse
Affiliation(s)
- Dongjian Song
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lifang Yue
- Department of Ultrasonography, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gang Wu
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shanshan Ma
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Heying Yang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qiuliang Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Da Zhang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ziqiang Xia
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia Jia
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
15
|
DRAKULIC DANIJELA, VICENTIC JELENAMARJANOVIC, SCHWIRTLICH MARIJA, TOSIC JELENA, KRSTIC ALEKSANDAR, KLAJN ANDRIJANA, STEVANOVIC MILENA. The overexpression of SOX2 affects the migration of human teratocarcinoma cell line NT2/D1. ACTA ACUST UNITED AC 2015; 87:389-404. [DOI: 10.1590/0001-3765201520140352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022]
Abstract
The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.
Collapse
Affiliation(s)
| | | | | | - JELENA TOSIC
- University of Belgrade, Serbia; University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
16
|
Wu JX, Zhang DG, Zheng JN, Pei DS. Rap2a is a novel target gene of p53 and regulates cancer cell migration and invasion. Cell Signal 2015; 27:1198-207. [PMID: 25728512 DOI: 10.1016/j.cellsig.2015.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
The p53 transcription factor is a critical regulator of the cell cycle, DNA repair, and apoptosis. Recent evidences suggest that p53 may contribute to the regulation of cell invasion and migration. Rap2a, a member of the small GTPase superfamily, mediates diverse cellular events such as cell adhesion, migration and proliferation through various signaling pathways. In this study, we identify that Rap2a is a novel target of p53 and is induced upon DNA damage in a p53-dependent manner. Upon DNA damage, p53 directly binds to the promoter of Rap2a and activates its transcription. We show that Rap2a is significantly upregulated in many types of tumors. In addition, the ectopic expression of Rap2a enhances the migration and invasive ability of cancer cells and increases activities of matrix metalloproteinase MMP2 and MMP9. In contrast, the inactivation of Rap2a inhibits cell invasion and activities of MMP2 and MMP9. We also show that Rap2a regulates the phosphorylation level of Akt. Collectively, our results show that ectopic expression of Rap2a has a key role in enhancing migration, invasion and metastasis by upregulating p-Akt.
Collapse
Affiliation(s)
- Jin-Xia Wu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Ding-Guo Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China.
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China.
| |
Collapse
|
17
|
Zhang D, Wang Y, Liang Y, Zhang M, Wei J, Zheng X, Li F, Meng Y, Zhu NW, Li J, Wu XR, Huang C. Loss of p27 upregulates MnSOD in a STAT3-dependent manner, disrupts intracellular redox activity and enhances cell migration. J Cell Sci 2014; 127:2920-33. [PMID: 24727615 DOI: 10.1242/jcs.148130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cell migration is a dynamic process that is central to a variety of physiological functions as well as disease pathogenesis. The modulation of cell migration by p27 (officially known as CDKN1B) has been reported, but the exact mechanism(s) whereby p27 interacts with downstream effectors that control cell migration have not been elucidated. By systematically comparing p27(+/+) mouse embryonic fibroblasts (MEFs) with genetically ablated p27(-/-) MEFs using wound-healing, transwell and time-lapse microscopic analyses, we provide direct evidence that p27 inhibits both directional and random cell migration. Identical results were obtained with normal and cancer epithelial cells using complementary knockdown and overexpression approaches. Additional studies revealed that overexpression of manganese superoxide dismutase (MnSOD, officially known as SOD2) and reduced intracellular oxidation played a key role in increased cell migration in p27-deficient cells. Furthermore, we identified signal transducer and activator of transcription 3 (STAT3) as the transcription factor responsible for p27-regulated MnSOD expression, which was further mediated by ERK- and ATF1-dependent transactivation of the cAMP response element (CRE) within the Stat3 promoter. Collectively, our data strongly indicate that p27 plays a crucial negative role in cell migration by inhibiting MnSOD expression in a STAT3-dependent manner.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Yulei Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Yuguang Liang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Min Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Jinlong Wei
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Xiao Zheng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Fei Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Yan Meng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Nina Wu Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, and Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|
18
|
de la Cova C, Senoo-Matsuda N, Ziosi M, Wu DC, Bellosta P, Quinzii CM, Johnston LA. Supercompetitor status of Drosophila Myc cells requires p53 as a fitness sensor to reprogram metabolism and promote viability. Cell Metab 2014; 19:470-83. [PMID: 24561262 PMCID: PMC3970267 DOI: 10.1016/j.cmet.2014.01.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/04/2013] [Accepted: 01/03/2014] [Indexed: 11/28/2022]
Abstract
In growing tissues, cell fitness disparities can provoke interactions that promote stronger cells at the expense of the weaker in a process called cell competition. The mechanistic definition of cell fitness is not understood, nor is it understood how fitness differences are recognized. Drosophila cells with extra Myc activity acquire "supercompetitor" status upon confrontation with wild-type (WT) cells, prompting the latter's elimination via apoptosis. Here we show that such confrontation enhances glycolytic flux in Myc cells and promotes their fitness and proliferation in a p53-dependent manner. Whereas p53 loss in noncompeting Myc cells is inconsequential, its loss impairs metabolism, reduces viability, and prevents the killing activity of Myc supercompetitor cells. We propose that p53 acts as a general sensor of competitive confrontation to enhance the fitness of the "winner" population. Our findings suggest that the initial confrontation between precancerous and WT cells could enhance cancer cell fitness and promote tumor progression.
Collapse
Affiliation(s)
- Claire de la Cova
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | - Nanami Senoo-Matsuda
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA; Department of Life Science and Medical BioScience, School of Advanced Science and Engineering, Waseda University, 2-2 Waskamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Marcello Ziosi
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA; Department of Experimental Pathology, University of Bologna, 40126 Bologna, Italy
| | - D Christine Wu
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | - Paola Bellosta
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | - Catarina M Quinzii
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Laura A Johnston
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
19
|
Rodhe J, Kavanagh E, Joseph B. TAp73β-mediated suppression of cell migration requires p57Kip2 control of actin cytoskeleton dynamics. Oncotarget 2014; 4:289-97. [PMID: 23470527 PMCID: PMC3712574 DOI: 10.18632/oncotarget.833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The TP73 gene, a member of the p53 family, due to the use of different promoters and alternative splicing, is transcribed into different isoforms with contrasting attributes and which contribute to its functional diversity. Considerable efforts are made to identify the functional diversity of the p73 splicing variants during tumorigenesis.TAp73α and TAp73β isoforms have been shown to differentially regulate cell cycle progression, differentiation and apoptosis. Interestingly, a particular increase in expression of the TAp73 isoform, in favor of the α splicing variant, has been reported in multiple tumour types. Here, we report a distinctive role for TAp73β isoform in the control of cell migration and invasion. In fact, TAp73β-dependent induction of p57Kip2 expression accounted for inhibitory effects on the actin cytoskeleton dynamics and thereby cancer cell motility. In contrast, TAp73α is not able to induce p57Kip2 expression, and exhibits a positive effect on actin cytoskeleton dynamics as well as cell migration and invasion. In conclusion, the inhibitory effect on cell migration and invasion of TAp73β would qualify this distinct p73 isoform as tumor suppressor gene. In contrast, the promoting effect of TAp73α on cell motility and invasion strengthens the potential oncogenic activities of this p73 isoform.
Collapse
Affiliation(s)
- Johanna Rodhe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|
20
|
Avery-Kiejda KA, Morten B, Wong-Brown MW, Mathe A, Scott RJ. The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome. Carcinogenesis 2013; 35:586-96. [PMID: 24336193 DOI: 10.1093/carcin/bgt411] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutation of p53 is a common feature of cancer. Breast cancer is the most common malignancy that develops in women; however, somatic mutation of p53 is rare, suggesting that p53 becomes inactivated by other mechanisms. p53 is expressed as smaller isoforms, some of which inhibit wild-type p53. There are no studies that have examined the relative expression of all isoforms in this disease. We have analysed the relative messenger RNA expression of the p53 isoforms, Δ40, Δ133, β and γ in a panel of 6 breast cancer cell lines, 148 breast cancers specimens and 31 matched normal adjacent tissues by semi-quantitative real-time reverse transcription-PCR and analysed their relationship to clinical features and outcome. We have identified several important clinical associations, particularly with Δ40p53, which was expressed at levels that were ~50-fold higher than the least expressed isoform p53γ. Δ40p53 was significantly upregulated in tumour tissue when compared with the normal breast and was significantly associated with an aggressive breast cancer subtype-triple negative. Additionally, p53β expression was significantly negatively associated with tumour size and positively associated with disease-free survival, where high levels of p53β were protective, particularly in patients with a mutation in p53, suggesting p53β may counteract the damage inflicted by mutant p53. In conclusion, the relative expression of p53 isoforms is related to clinical features of breast cancer and outcome. These results have implications for the stratification of breast cancer based on p53 function and may provide an alternate explanation for deregulated p53 signalling in breast cancer.
Collapse
Affiliation(s)
- Kelly A Avery-Kiejda
- Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | | | | | | | | |
Collapse
|
21
|
Madenspacher JH, Azzam KM, Gowdy KM, Malcolm KC, Nick JA, Dixon D, Aloor JJ, Draper DW, Guardiola JJ, Shatz M, Menendez D, Lowe J, Lu J, Bushel P, Li L, Merrick BA, Resnick MA, Fessler MB. p53 Integrates host defense and cell fate during bacterial pneumonia. ACTA ACUST UNITED AC 2013; 210:891-904. [PMID: 23630228 PMCID: PMC3646498 DOI: 10.1084/jem.20121674] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
p53 deletion augments neutrophil-mediated bacterial clearance in the lung at the expense of tissue homeostasis, leading to increased mortality. Cancer and infection are predominant causes of human mortality and derive, respectively, from inadequate genomic and host defenses against environmental agents. The transcription factor p53 plays a central role in human tumor suppression. Despite its expression in immune cells and broad responsiveness to stressors, it is virtually unknown whether p53 regulates host defense against infection. We report that the lungs of naive p53−/− mice display genome-wide induction of NF-κB response element–enriched proinflammatory genes, suggestive of type 1 immune priming. p53-null and p53 inhibitor–treated mice clear Gram-negative and -positive bacteria more effectively than controls after intrapulmonary infection. This is caused, at least in part, by cytokines produced by an expanded population of apoptosis-resistant, TLR-hyperresponsive alveolar macrophages that enhance airway neutrophilia. p53−/− neutrophils, in turn, display heightened phagocytosis, Nox-dependent oxidant generation, degranulation, and bacterial killing. p53 inhibition boosts bacterial killing by mouse neutrophils and oxidant generation by human neutrophils. Despite enhanced bacterial clearance, infected p53−/− mice suffer increased mortality associated with aggravated lung injury. p53 thus modulates host defense through regulating microbicidal function and fate of phagocytes, revealing a fundamental link between defense of genome and host during environmental insult.
Collapse
Affiliation(s)
- Jennifer H Madenspacher
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schinwald A, Chernova T, Donaldson K. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 2012; 9:47. [PMID: 23199075 PMCID: PMC3546062 DOI: 10.1186/1743-8977-9-47] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/26/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The objective of this study was to examine the threshold fibre length for the onset of pulmonary inflammation after aspiration exposure in mice to four different lengths of silver nanowires (AgNW). We further examined the effect of fibre length on macrophage locomotion in an in vitro wound healing assay. We hypothesised that exposure to longer fibres causes both increased inflammation and restricted mobility leading to impaired clearance of long fibres from the lower respiratory tract to the mucociliary escalator in vivo. METHODS Nine week old female C57BL/6 strain mice were exposed to AgNW and controls via pharyngeal aspiration. The dose used in this study was equalised to fibre number and based on 50 μg/ mouse for AgNW(14). To examine macrophage migration in vitro a wound healing assay was used. An artificial wound was created in a confluent layer of bone marrow derived macrophages by scraping with a pipette tip and the number of cells migrating into the wound was monitored microscopically. The dose was equalised for fibre number and based on 2.5 μg/cm(2) for AgNW(14). RESULTS Aspiration of AgNW resulted in a length dependent inflammatory response in the lungs with threshold at a fibre length of 14 μm. Shorter fibres including 3, 5 and 10 μm elicited no significant inflammation. Macrophage locomotion was also restricted in a length dependent manner whereby AgNW in the length of ≥5 μm resulted in impaired motility in the wound closure assay. CONCLUSION We demonstrated a 14 μm cut-off length for fibre-induced pulmonary inflammation after aspiration exposure and an in vitro threshold for inhibition of macrophage locomotion of 5 μm. We previously reported a threshold length of 5 μm for fibre-induced pleural inflammation. This difference in pulmonary and pleural fibre- induced inflammation may be explained by differences in clearance mechanism of deposited fibres from the airspaces compared to the pleural space. Inhibition of macrophage migration at long fibre lengths could account for their well-documented long term retention in the lungs compared to short fibres. Knowledge of the threshold length for acute pulmonary inflammation contributes to hazard identification of nanofibres.
Collapse
Affiliation(s)
- Anja Schinwald
- MRC/University of Edinburgh, Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Tanya Chernova
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Ken Donaldson
- MRC/University of Edinburgh, Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
23
|
Schinwald A, Chernova T, Donaldson K. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 2012. [DOI: 10.4710.1186/1743-8977-9-47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
The objective of this study was to examine the threshold fibre length for the onset of pulmonary inflammation after aspiration exposure in mice to four different lengths of silver nanowires (AgNW). We further examined the effect of fibre length on macrophage locomotion in an in vitro wound healing assay. We hypothesised that exposure to longer fibres causes both increased inflammation and restricted mobility leading to impaired clearance of long fibres from the lower respiratory tract to the mucociliary escalator in vivo.
Methods
Nine week old female C57BL/6 strain mice were exposed to AgNW and controls via pharyngeal aspiration. The dose used in this study was equalised to fibre number and based on 50 μg/ mouse for AgNW14. To examine macrophage migration in vitro a wound healing assay was used. An artificial wound was created in a confluent layer of bone marrow derived macrophages by scraping with a pipette tip and the number of cells migrating into the wound was monitored microscopically. The dose was equalised for fibre number and based on 2.5 μg/cm2 for AgNW14.
Results
Aspiration of AgNW resulted in a length dependent inflammatory response in the lungs with threshold at a fibre length of 14 μm. Shorter fibres including 3, 5 and 10 μm elicited no significant inflammation. Macrophage locomotion was also restricted in a length dependent manner whereby AgNW in the length of ≥5 μm resulted in impaired motility in the wound closure assay.
Conclusion
We demonstrated a 14 μm cut-off length for fibre-induced pulmonary inflammation after aspiration exposure and an in vitro threshold for inhibition of macrophage locomotion of 5 μm. We previously reported a threshold length of 5 μm for fibre-induced pleural inflammation. This difference in pulmonary and pleural fibre- induced inflammation may be explained by differences in clearance mechanism of deposited fibres from the airspaces compared to the pleural space. Inhibition of macrophage migration at long fibre lengths could account for their well-documented long term retention in the lungs compared to short fibres. Knowledge of the threshold length for acute pulmonary inflammation contributes to hazard identification of nanofibres.
Collapse
|
24
|
Mullany LK, Liu Z, King ER, Wong KK, Richards JS. Wild-type tumor repressor protein 53 (Trp53) promotes ovarian cancer cell survival. Endocrinology 2012; 153:1638-48. [PMID: 22396451 PMCID: PMC3320246 DOI: 10.1210/en.2011-2131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss of Pten in the Kras(G12D);Amhr2-Cre mutant mice leads to the transformation of ovarian surface epithelial (OSE) cells and rapid development of low-grade, invasive serous adenocarcinomas. Tumors occur with 100% penetrance and express elevated levels of wild-type tumor repressor protein 53 (TRP53). To test the functions of TRP53 in the Pten;Kras (Trp53+) mice, we disrupted the Trp53 gene yielding Pten;Kras(Trp53-) mice. By comparing morphology and gene expression profiles in the Trp53+ and Trp53- OSE cells from these mice, we document that wild-type TRP53 acts as a major promoter of OSE cell survival and differentiation: cells lacking Trp53 are transformed yet are less adherent, migratory, and invasive and exhibit a gene expression profile more like normal OSE cells. These results provide a new paradigm: wild-type TRP53 does not preferentially induce apoptotic or senescent related genes in the Pten;Kras(Trp53+) cancer cells but rather increases genes regulating DNA repair, cell cycle progression, and proliferation and decreases putative tumor suppressor genes. However, if TRP53 activity is forced higher by exposure to nutlin-3a (a mouse double minute-2 antagonist), TRP53 suppresses DNA repair genes and induces the expression of genes that control cell cycle arrest and apoptosis. Thus, in the Pten;Kras(Trp53+) mutant mouse OSE cells and likely in human TP53+ low-grade ovarian cancer cells, wild-type TRP53 controls global molecular changes that are dependent on its activation status. These results suggest that activation of TP53 may provide a promising new therapy for managing low-grade ovarian cancer and other cancers in humans in which wild-type TP53 is expressed.
Collapse
Affiliation(s)
- Lisa K Mullany
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston Texas 77030, USA
| | | | | | | | | |
Collapse
|
25
|
Chen NH, Zhong JJ. p53 is important for the anti-invasion of ganoderic acid T in human carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:719-725. [PMID: 21353507 DOI: 10.1016/j.phymed.2011.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 11/24/2010] [Accepted: 01/15/2011] [Indexed: 05/30/2023]
Abstract
The function of p53 induced by ganoderic acids (GAs) in anti-invasion was unknown, although our previous work reported the inhibition of tumor invasion and metastasis by Ganoderic acid T (GA-T). This work indicated that GA-T promoted cell aggregation, inhibited cell adhesion and surpressed cell migration with a dose-dependent manner in human colon tumor cell lines of HCT-116 p53(+/+) and p53(-/-). Furthermore, comparing the ratios of HCT-116 p53(+/+) and p53(-/-) cells, p53 modified GA-T inhibition of migration and adhesion and GA-T promotion of cell aggregation, and p53 also modified GA-T inhibition of NF-κB nuclear translocation, IκBα degradation, and down-regulation of urokinase-type plaminogen activator (uPA), matrix metalloproteinase-2/9 (MMP-2/9), inducible nitric oxide synthase (iNOS/NOS2) protein expression and inducible nitric oxide (NO) production. The results indicated that p53 played an important role in anti-invasion of GA-T in human carcinoma cells. p53 may be an important target for GA-T inhibiting human carcinoma cells anti-invasion.
Collapse
Affiliation(s)
- Nian-Hong Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | | |
Collapse
|
26
|
Muller PAJ, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. ACTA ACUST UNITED AC 2011; 192:209-18. [PMID: 21263025 PMCID: PMC3172183 DOI: 10.1083/jcb.201009059] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In about half of all human cancers, the tumor suppressor p53 protein is either lost or mutated, frequently resulting in the expression of a transcriptionally inactive mutant p53 protein. Loss of p53 function is well known to influence cell cycle checkpoint controls and apoptosis. But it is now clear that p53 regulates other key stages of metastatic progression, such as cell migration and invasion. Moreover, recent data suggests that expression of mutant p53 is not the equivalent of p53 loss, and that mutant p53s can acquire new functions to drive cell migration, invasion, and metastasis, in part by interfering with p63 function.
Collapse
|
27
|
Zuchero JB, Coutts AS, Quinlan ME, Thangue NBL, Mullins RD. p53-cofactor JMY is a multifunctional actin nucleation factor. Nat Cell Biol 2009; 11:451-9. [PMID: 19287377 PMCID: PMC2763628 DOI: 10.1038/ncb1852] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/29/2009] [Indexed: 12/25/2022]
Abstract
Many cellular structures are assembled from networks of actin filaments, and the architecture of these networks depends on the mechanism by which the filaments are formed. Several classes of proteins are known to assemble new filaments, including the Arp2/3 complex, which creates branched filament networks, and Spire, which creates unbranched filaments. We find that JMY, a vertebrate protein first identified as a transcriptional co-activator of p53, combines these two nucleating activities by both activating Arp2/3 and assembling filaments directly using a Spire-like mechanism. Increased levels of JMY expression enhance motility, whereas loss of JMY slows cell migration. When slowly migrating HL-60 cells are differentiated into highly motile neutrophil-like cells, JMY moves from the nucleus to the cytoplasm and is concentrated at the leading edge. Thus, JMY represents a new class of multifunctional actin assembly factor whose activity is regulated, at least in part, by sequestration in the nucleus.
Collapse
|
28
|
Agapova LS, Chernyak BV, Domnina LV, Dugina VB, Efimenko AY, Fetisova EK, Ivanova OY, Kalinina NI, Khromova NV, Kopnin BP, Kopnin PB, Korotetskaya MV, Lichinitser MR, Lukashev AL, Pletjushkina OY, Popova EN, Skulachev MV, Shagieva GS, Stepanova EV, Titova EV, Tkachuk VA, Vasiliev JM, Skulachev VP. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. BIOCHEMISTRY (MOSCOW) 2009; 73:1300-16. [DOI: 10.1134/s0006297908120031] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Nishioka T, Miyai Y, Haga H, Kawabata K, Shirato H, Homma A, Shibata K, Yasuda M. Novel Function of Transcription Factor ATF5: Blockade of p53-dependent Apoptosis Induced by Ionizing Irradiation. Cell Struct Funct 2009; 34:17-22. [DOI: 10.1247/csf.08041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Takeshi Nishioka
- Department of Biomedical Sciences and Engineering, Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University
| | - Yusuke Miyai
- Division of Biological Sciences, Graduate School of Science, Hokkaido University
| | - Hisashi Haga
- Division of Biological Sciences, Graduate School of Science, Hokkaido University
| | - Kazushige Kawabata
- Division of Biological Sciences, Graduate School of Science, Hokkaido University
| | - Hiroki Shirato
- Department of Radiology, Graduate School of Medicine, Hokkaido University
| | - Akihiro Homma
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Hokkaido University
| | - Kenichiro Shibata
- Department of Oral Pathobiology, Graduate School of Dental Medicine, Hokkaido University
| | - Motoaki Yasuda
- Department of Oral Pathobiology, Graduate School of Dental Medicine, Hokkaido University
| |
Collapse
|
30
|
Baroni A, Perfetto B, Canozo N, Braca A, Farina E, Melito A, De Maria S, Cartenì M. Bombesin: a possible role in wound repair. Peptides 2008; 29:1157-66. [PMID: 18455266 DOI: 10.1016/j.peptides.2008.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 12/31/2022]
Abstract
During tissue regeneration and wound healing of the skin, migration, proliferation and differentiation of keratinocytes are important processes. Here we assessed the effect of a neuropeptide, bombesin, on keratinocytes during regeneration from scratch wounding. Bombesin purified from amphibian skin, is homologous of mammalian gastrin-releasing peptide and is active in mammals. Its pharmacological effects mediate various physiological activities: hypertensive action, stimulating action on gastric secretion, hyperglycemic effect or increased insulin secretion. In vitro it shows a hyperproliferative effect on different experimental models and is involved in skin repair. The aim of this study was to elucidate the effect of Bombesin in an in vitro experimental model on a mechanically injured human keratinocyte monolayer. We evaluated different mediators involved in wound repair such as IL-8, TGFbeta, IL-1, COX-2, VEGF and Toll-like receptors 2 and 4 (TLR2 and TLR4). We also studied the effects of bombesin on cell proliferation and motility and its direct effect on wound repair by observing the wound closure after mechanical injury. The involvement of the bombesin receptors neuromedin receptor (NMBR) and gastrin-releasing peptide receptor (GRP-R) was also evaluated. Our data suggest that bombesin may have an important role in skin repair by regulating the expression of healing markers. It enhanced the expression of IL-8, TGFbeta, COX-2 and VEGF. It also enhanced the expression of TLR2, while TLR4 was not expressed. Bombesin also increased cell growth and migration. In addition, we showed that NMBR was more involved in our experimental model compared to GRP-R.
Collapse
Affiliation(s)
- A Baroni
- Department of Dermatology, Faculty of Medicine and Surgery, Second University of Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Koshiba S, Ichimiya S, Nagashima T, Tonooka A, Kubo T, Kikuchi T, Himi T, Sato N. Tonsillar crypt epithelium of palmoplantar pustulosis secretes interleukin-6 to support B-cell development via p63/p73 transcription factors. J Pathol 2008; 214:75-84. [PMID: 17992659 DOI: 10.1002/path.2266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Palmoplantar pustulosis (PPP) is an autoimmune disease characterized by psoriasis-like erythematous lesions on palms and/or soles due to an abnormal humoral immune response. Tonsillectomy is effectively employed for the treatment of PPP; however, how tonsils are involved in the aetiology of PPP remains unclear. Here we analysed surgically resected palatine tonsils from 36 cases of PPP as well as usual recurrent tonsillitis (RT) as a control. Histological examination revealed that a unique lesion, with lymphoid follicles surrounded by reticular crypt epithelial cells, was more frequently observed in tonsils of patients with PPP than in those with RT (p < 0.0001; PPP vs RT). Interestingly, crypt epithelial cells in primary cultures derived from PPP tonsils showed marked production of interleukin-6 (IL-6). Moreover, these epithelial cells from PPP tonsils expressed p53-related transcription factors in their nuclei that were found to contribute to the up-regulation of IL-6 gene expression. These findings suggest that, at least in part, the specialized lymphoepithelial symbiosis of PPP tonsils, under the control of p53-related factors, may be relevant to the generation of the impaired micro-environment underlying the aberrant production of autoantibodies.
Collapse
Affiliation(s)
- S Koshiba
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rubtsova SN, Vasilev YM. Iron chelator deferoxamine induces epithelial transformation of tumor cells. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2006; 411:517-9. [PMID: 17425058 DOI: 10.1134/s0012496606060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- S N Rubtsova
- Belozerskii Institute of Physicochemical Biology, Moscow State University, Moscow, 119992 Russia
| | | |
Collapse
|
33
|
Alexandrova AY, Kopnin PB, Vasiliev JM, Kopnin BP. ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp Cell Res 2006; 312:2066-73. [PMID: 16624288 DOI: 10.1016/j.yexcr.2006.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 12/31/2022]
Abstract
Expression of activated Ras causes an increase in intracellular content of reactive oxygen species (ROS). To determine the role of ROS up-regulation in mediation of Ras-induced morphological transformation and increased cell motility, we studied the effects of hydrogen peroxide and antioxidant NAC on morphology of REF52 rat fibroblasts and their ability to migrate into the wound in vitro. Treatment with low dosages of hydrogen peroxide leading to 1.5- to 2-fold increase in intracellular ROS levels induced changes of cell shape, actin cytoskeleton organization, cell adhesions and migration resembling those in Ras-transformed cells. On the other hand, treatment with NAC attenuating ROS up-regulation in cells with conditional or constitutive expression of activated Ras led to partial reversion of morphological transformation and decreased cell motility. The effect of ROS on cell morphology and motility probably results from modulation of activity of Rac1, Rho, and cofilin proteins playing a key role in regulation of actin dynamics. The obtained data are consistent with the idea that ROS up-regulation mediates two key events in Ras-induced morphological transformation and cell motility: it is responsible for Rac1 activation and is necessary (though insufficient) for realization of Ras-induced cofilin dephosphorylation.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Institute of Carcinogenesis, Blokhin Memorial Russian Cancer Research Center, Kashirskoye shosse 24, 115478 Moscow, Russia
| | | | | | | |
Collapse
|
34
|
Sato M, Vaughan MB, Girard L, Peyton M, Lee W, Shames DS, Ramirez RD, Sunaga N, Gazdar AF, Shay JW, Minna JD. Multiple oncogenic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res 2006; 66:2116-28. [PMID: 16489012 DOI: 10.1158/0008-5472.can-05-2521] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We evaluated the contribution of three genetic alterations (p53 knockdown, K-RAS(V12), and mutant EGFR) to lung tumorigenesis using human bronchial epithelial cells (HBEC) immortalized with telomerase and Cdk4-mediated p16 bypass. RNA interference p53 knockdown or oncogenic K-RAS(V12) resulted in enhanced anchorage-independent growth and increased saturation density of HBECs. The combination of p53 knockdown and K-RAS(V12) further enhanced the tumorigenic phenotype with increased growth in soft agar and an invasive phenotype in three-dimensional organotypic cultures but failed to cause HBECs to form tumors in nude mice. Growth of HBECs was highly dependent on epidermal growth factor (EGF) and completely inhibited by EGF receptor (EGFR) tyrosine kinase inhibitors, which induced G1 arrest. Introduction of EGFR mutations E746-A750 del and L858R progressed HBECs toward malignancy as measured by soft agar growth, including EGF-independent growth, but failed to induce tumor formation. Mutant EGFRs were associated with higher levels of phospho-Akt, phospho-signal transducers and activators of transcription 3 [but not phospho-extracellular signal-regulated kinase (ERK) 1/2], and increased expression of DUSP6/MKP-3 phosphatase (an inhibitor of phospho-ERK1/2). These results indicate that (a) the HBEC model system is a powerful new approach to assess the contribution of individual and combinations of genetic alterations to lung cancer pathogenesis; (b) a combination of four genetic alterations, including human telomerase reverse transcriptase overexpression, bypass of p16/RB and p53 pathways, and mutant K-RAS(V12) or mutant EGFR, is still not sufficient for HBECs to completely transform to cancer; and (c) EGFR tyrosine kinase inhibitors inhibit the growth of preneoplastic HBEC cells, suggesting their potential for chemoprevention.
Collapse
Affiliation(s)
- Mitsuo Sato
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas 75390-8593, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tomasini R, Seux M, Nowak J, Bontemps C, Carrier A, Dagorn JC, Pébusque MJ, Iovanna JL, Dusetti NJ. TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity. Oncogene 2006; 24:8093-104. [PMID: 16044147 DOI: 10.1038/sj.onc.1208951] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TP53INP1 is an alternatively spliced gene encoding two nuclear protein isoforms (TP53INP1alpha and TP53INP1beta), whose transcription is activated by p53. When overexpressed, both isoforms induce cell cycle arrest in G1 and enhance p53-mediated apoptosis. TP53INP1s also interact with the p53 gene and regulate p53 transcriptional activity. We report here that TP53INP1 expression is induced during experimental acute pancreatitis in p53-/- mice and in cisplatin-treated p53-/- mouse embryo fibroblasts (MEFs). We demonstrate that ectopic expression of p73, a p53 homologue, leads to TP53INP1 induction in p53-deficient cells. In turn, TP53INP1s alters the transactivation capacity of p73 on several p53-target genes, including TP53INP1 itself, demonstrating a functional association between p73 and TP53INP1s. Also, when overexpressed in p53-deficient cells, TP53INP1s inhibit cell growth and promote cell death as assessed by cell cycle analysis and colony formation assays. Finally, we show that TP53INP1s potentiate the capacity of p73 to inhibit cell growth, that effect being prevented when the p53 mutant R175H is expressed or when p73 expression is blocked by a siRNA. These results suggest that TP53INP1s are functionally associated with p73 to regulate cell cycle progression and apoptosis, independently from p53.
Collapse
Affiliation(s)
- Richard Tomasini
- INSERM U624, Stress Cellulaire, IFR 137-Institut de Cancérologie et Immunologie de Marseille, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fang Z, Duthoit N, Wicher G, Källskog O, Ambartsumian N, Lukanidin E, Takenaga K, Kozlova EN. Intracellular calcium-binding protein S100A4 influences injury-induced migration of white matter astrocytes. Acta Neuropathol 2006; 111:213-9. [PMID: 16463066 DOI: 10.1007/s00401-005-0019-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 10/27/2005] [Accepted: 10/27/2005] [Indexed: 12/11/2022]
Abstract
Astrocytes play a crucial role in central nervous system (CNS) pathophysiology. White and gray matter astrocytes are regionally specialized, and likely to respond differently to CNS injury and in CNS disease. We previously showed that the calcium-binding protein S100A4 is exclusively expressed in white matter astrocytes and markedly up-regulated after injury. Furthermore, down-regulation of S100A4 in vitro significantly increases the migration capacity of white matter astrocytes, a property, which might influence their function in CNS tissue repair. Here, we performed a localized injury (scratch) in confluent cultures of white matter astrocytes, which strongly express S100A4, and in cultures of white matter astrocytes, in which S100A4 was down-regulated by transfection with short interference (si) S100A4 RNA. We found that S100A4-silenced astrocytes rapidly migrated into the injury gap, whereas S100A4-expressing astrocytes extended hypertrophied processes toward the gap, but without closing it. To explore the involvement of S100A4 in migration of astrocytes in vivo, we induced focal demyelination and transient glial cell elimination in the spinal cord white matter by ethidium bromide injection in S100A4 (-/-) and (+/+) mice. The results show that astrocyte migration into the demyelinated area is promoted in S100A4 (-/-) compared to (+/+) mice, in which a pronounced glial scar was formed. These data indicate that S100A4 reduces the migratory capacity of reactive white matter astrocytes in the injured CNS and is involved in glial scar formation after injury.
Collapse
Affiliation(s)
- Z Fang
- Department of Neuroscience, Biomedical Center, Uppsala University, 587, 751 23, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kopnin PB, Kravchenko IV, Furalyov VA, Pylev LN, Kopnin BP. Cell type-specific effects of asbestos on intracellular ROS levels, DNA oxidation and G1 cell cycle checkpoint. Oncogene 2005; 23:8834-40. [PMID: 15480427 DOI: 10.1038/sj.onc.1208108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exposure to asbestos fibers increases the risk of development of mesotheliomas and lung carcinomas, but not fibrosarcomas. We present data suggesting that resistance of fibroblasts to asbestos-induced carcinogenesis is likely to be connected with their lower ability to generate reactive oxygen species (ROS) in response to asbestos exposure and stricter control of proliferation of cells bearing asbestos/ROS-induced injuries. In fact, chrysotile (Mg6Si4O10(OH)8) asbestos exposure (5-10 microg/cm2) increased intracellular ROS and 8-oxo-guanine contents in rat pleural mesothelial cells, but not in lung fibroblasts. Simultaneously, moderate dosages of chrysotile and other agents increasing ROS levels (hydrogen peroxide, H2O2 and ethyl-methanesulfonate, EMS) inhibited cell cycle progression, in particular G1-to-S transition, in fibroblasts, but not in mesothelial cells. The arrested fibroblasts underwent cell death, while the majority of chrysotile-treated mesothelial cells survived. The differences in cell cycle response to asbestos/ROS-induced injuries correlated with distinct activity of p53-p21Cip1/Waf1 pathway in the two cell types. Chrysotile, H2O2 and EMS caused p53 upregulation in both cell types, but mesothelial cells, unlike fibroblasts, showed no accumulation of p21Cip1/Waf1. Of note, treatment with doxorubicin caused similar p53-dependent p21Cip1/Waf1 upregulation and cell cycle arrest in both cell types. This suggests differential response of fibroblasts and mesothelial cells specifically to asbestos/ROS exposure rather than to all DNA-damaging insults.
Collapse
Affiliation(s)
- Pavel B Kopnin
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Kashirskoye shosse 24, Moscow 115478, Russia.
| | | | | | | | | |
Collapse
|
38
|
Dupont S, Zacchigna L, Adorno M, Soligo S, Volpin D, Piccolo S, Cordenonsi M. Convergence of p53 and TGF-beta signaling networks. Cancer Lett 2004; 213:129-38. [PMID: 15327827 DOI: 10.1016/j.canlet.2004.06.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 06/03/2004] [Indexed: 11/21/2022]
Abstract
p53 is a protein with many talents. One of the most fundamental is the ability to act as essential growth checkpoint that protects cells against cellular transformation. p53 does so through the induction of genes leading to growth arrest or apoptosis. Most of the studies focusing on the mechanisms of p53 activity have been performed in cultured cells upon treatment with well-established p53-activating inputs, such as high doses of radiations, DNA-damaging drugs and activated oncogenes. However, how the tumor suppressive functions of p53 become concerted with the extracellular cues arriving at the cell surface during tissue homeostasis, remains largely unknown. Intriguingly, two recent papers have shed new light into this unexplored field, indicating that p53 plays a key role in TGF-beta-induced growth arrest and, unexpectedly, in the developmental effects of TGF-beta in early embryos. Here we review and comment on these findings and on their implications for cancer biology.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Histology Microbiology and Medical iotechnologies, Section of Histology and Embryology, University of Padua, viale Colombo 3, 35121, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Fan H, Harrell JR, Dipp S, Saifudeen Z, El-Dahr SS. A novel pathological role of p53 in kidney development revealed by gene-environment interactions. Am J Physiol Renal Physiol 2004; 288:F98-107. [PMID: 15383401 DOI: 10.1152/ajprenal.00246.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene-environment interactions are implicated in congenital human disorders. Accordingly, there is a pressing need to develop animal models of human disease, which are the product of defined gene-environment interactions. Previously, our laboratory demonstrated that gestational salt stress of bradykinin B(2) receptor (B(2)R)-null mice induces renal dysgenesis and early death of the offspring. In contrast, salt-stressed B(2)R +/+ or +/- littermates have normal development. The present study investigates the mechanisms underlying the susceptibility of B(2)R-null mice to renal dysgenesis. Proteomic and conventional Western blot screens identified E-cadherin among the differentially repressed proteins in B(2)R-/- kidneys, whereas the checkpoint kinase Chk1 and its substrate P-Ser(20) p53 were induced. We tested the hypothesis that p53 mediates repression of E-cadherin gene expression and is causally linked to the renal dysgenesis. Genetic crosses between B(2)R -/- and p53+/- mice revealed that germline reduction of p53 gene dosage rescues B(2)R-/- mice from renal dysgenesis and restores kidney E-cadherin gene expression. Furthermore, gamma-irradiation induces repression of E-cadherin gene expression in p53+/+ but not -/- cells. In transient transfection assays, p53 repressed human E-cadherin promoter-driven reporter activity, whereas a mutant p53, which cannot bind DNA, did not. Functional promoter analysis indicated the presence of a p53-responsive element in exon 1, which partially mediates p53-induced repression. Chromatin immunoprecipitation assays revealed that p53 inhibits histone acetylation of the E-cadherin promoter. Treatment with a histone deacetylase inhibitor reversed both p53-mediated promoter repression and deacetylation. In conclusion, this study demonstrates that gene-environment interactions cooperate to induce congenital defects through p53 activation.
Collapse
Affiliation(s)
- Hao Fan
- Department of Pediatrics, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
40
|
Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 2004; 4:21. [PMID: 15357872 PMCID: PMC521074 DOI: 10.1186/1472-6750-4-21] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 09/09/2004] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cell migration is a complex phenomenon that requires the coordination of numerous cellular processes. Investigation of cell migration and its underlying biology is of interest to basic scientists and those in search of therapeutics. Current migration assays for screening small molecules, siRNAs, or other perturbations are difficult to perform in parallel at the scale required to screen large libraries. RESULTS We have adapted the commonly used scratch wound healing assay of tissue-culture cell monolayers to a 384 well plate format. By mechanically scratching the cell substrate with a pin array, we are able to create characteristically sized wounds in all wells of a 384 well plate. Imaging of the healing wounds with an automated fluorescence microscope allows us to distinguish perturbations that affect cell migration, morphology, and division. Readout requires ~1 hr per plate but is high in information content i.e. high content. We compare readouts using different imaging technologies, automated microscopy, scanners and a fluorescence macroscope, and evaluate the trade-off between information content and data acquisition rate. CONCLUSIONS The adaptation of a wound healing assay to a 384 well format facilitates the study of aspects of cell migration, tissue reorganization, cell division, and other processes that underlie wound healing. This assay allows greater than 10,000 perturbations to be screened per day with a quantitative, high-content readout, and can also be used to characterize small numbers of perturbations in detail.
Collapse
Affiliation(s)
- Justin C Yarrow
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Institute of Chemistry and Cell Biology (ICCB), Harvard Medical School, Boston, MA 02115, USA
| | - Zachary E Perlman
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Institute of Chemistry and Cell Biology (ICCB), Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas J Westwood
- The Institute of Chemistry and Cell Biology (ICCB), Harvard Medical School, Boston, MA 02115, USA
- School of Chemistry and Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, UK
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Institute of Chemistry and Cell Biology (ICCB), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Guo F, Zheng Y. Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion. Oncogene 2004; 23:5577-85. [PMID: 15122327 DOI: 10.1038/sj.onc.1207752] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Rho family GTPases Rac1, RhoA and Cdc42 function as molecular switches that transduce intracellular signals regulating multiple cell functions including gene expression, adhesion, migration and invasion. p53 and its regulator p19Arf, on the other hand, are tumor suppressors that are critical in regulating cell cycle progression and apoptosis. Previously, we have demonstrated that the Rho proteins contribute to the cell proliferation, gene transcription and migration phenotypes unleashed by p19Arf or p53 deletion in primary mouse embryo fibroblasts (MEFs). To further investigate their functional interaction in the present study, we have examined the involvement of Rho signaling pathways in p53-mediated cell invasion. We found that in primary MEFs (1) p53 or p19Arf deficiency led to a marked increase in the number of focal adhesion plaques and fibronectin production, and RhoA, Rac1 and Cdc42 contribute to the p53- and p19Arf-mediated focal adhesion regulation, but not fibronectin synthesis; (2) although endogenous Rac1 activity was required for the p19Arf or p53 deficiency-induced migration phenotype, hyperactive Rho GTPases could not further enhance cell migration, rather they suppressed cell-cell adhesion of p53-/- MEFs; (3) expression of the active mutant of RhoA, Rac1 or Cdc42, but not Ras, promoted an invasion phenotype of p53-/-, not p19Arf-/-, cells; (4) although ROCK activation can partially recapitulate Rho-induced invasion phenotype, multiple pathways regulated by RhoA, in addition to ROCK, are required to fully cooperate with p53 deficiency to promote cell invasion; and (5) extracellular proteases produced by the active RhoA-transduced cells are also required for the invasion phenotype of p53-/- cells. Combined with our previous observations, these results strongly suggest that mitogenic activation of Rho family GTPases can cooperate with p53 deficiency to promote primary cell invasion as well as transformation and that multiple signaling components regulated by the Rho proteins are involved in these processes.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | | |
Collapse
|
42
|
Abstract
p53, p63 and p73 are related transcription factors involved in the regulation of cell proliferation, survival and differentiation. Here, we report the isolation and characterization of p73 from zebrafish. While for zebrafish p63 only N-terminally truncated isoforms (DeltaNp63) have been reported, p73 appears to be predominantly or exclusively present in transactivating isoforms (TAp73). p73 shows a very restricted expression pattern during zebrafish development. Transcripts are found in a subset of cells of the olfactory system, the telencephalon, the dorsal diencephalon, and the pronephric ducts. In addition, p73 is expressed in differentiating slow muscle cells of the somites, and in the pharyngeal endoderm. We carried out TAp73 gain- and loss-of-function experiments, injecting either TAp73alpha mRNA, or antisense morpholino oligonucleotides to suppress translation of TAp73 transcripts. The overexpression studies indicate that in contrast to p53, TAp73alpha has no pro-apoptotic effect in zebrafish embryos. However, TAp73 appears to be required for specific processes during the development of the olfactory system, the telencephalon and the pharyngeal arches. Together, our data point to both conserved and class-specific roles of p73 during vertebrate development.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Max-Planck-Institute for Immunobiology, Stuebeweg 51, D-79108, Freiburg, Germany
| | | | | |
Collapse
|