1
|
Kholmanskikh S, Singh S, Ross ME. Activation of RhoC by regulatory ubiquitination is mediated by LNX1 and suppressed by LIS1. Sci Rep 2022; 12:16493. [PMID: 36192543 PMCID: PMC9529947 DOI: 10.1038/s41598-022-19740-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Regulation of Rho GTPases remains a topic of active investigation as they are essential participants in cell biology and the pathophysiology of many human diseases. Non-degrading ubiquitination (NDU) is a critical regulator of the Ras superfamily, but its relevance to Rho proteins remains unknown. We show that RhoC, but not RhoA, is a target of NDU by E3 ubiquitin ligase, LNX1. Furthermore, LNX1 ubiquitination of RhoC is negatively regulated by LIS1 (aka, PAFAH1B1). Despite multiple reports of functional interaction between LIS1 and activity of Rho proteins, a robust mechanism linking the two has been lacking. Here, LIS1 inhibition of LNX1 effects on RhoGDI-RhoC interaction provides a molecular mechanism underpinning the enhanced activity of Rho proteins observed upon reduction in LIS1 protein levels. Since LNX1 and RhoC are only found in vertebrates, the LIS1-LNX1-RhoC module represents an evolutionarily acquired function of the highly conserved LIS1. While these nearly identical proteins have several distinct RhoA and RhoC downstream effectors, our data provide a rare example of Rho-isoform specific, upstream regulation that opens new therapeutic opportunities.
Collapse
Affiliation(s)
- Stanislav Kholmanskikh
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th St, Box 240, New York, NY, 10021, USA.
| | - Shawn Singh
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th St, Box 240, New York, NY, 10021, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th St, Box 240, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Structural Consequence of Non-Synonymous Single-Nucleotide Variants in the N-Terminal Domain of LIS1. Int J Mol Sci 2022; 23:ijms23063109. [PMID: 35328531 PMCID: PMC8955593 DOI: 10.3390/ijms23063109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Disruptive neuronal migration during early brain development causes severe brain malformation. Characterized by mislocalization of cortical neurons, this condition is a result of the loss of function of migration regulating genes. One known neuronal migration disorder is lissencephaly (LIS), which is caused by deletions or mutations of the LIS1 (PAFAH1B1) gene that has been implicated in regulating the microtubule motor protein cytoplasmic dynein. Although this class of diseases has recently received considerable attention, the roles of non-synonymous polymorphisms (nsSNPs) in LIS1 on lissencephaly progression remain elusive. Therefore, the present study employed combined bioinformatics and molecular modeling approach to identify potential damaging nsSNPs in the LIS1 gene and provide atomic insight into their roles in LIS1 loss of function. Using this approach, we identified three high-risk nsSNPs, including rs121434486 (F31S), rs587784254 (W55R), and rs757993270 (W55L) in the LIS1 gene, which are located on the N-terminal domain of LIS1. Molecular dynamics simulation highlighted that all variants decreased helical conformation, increased the intermonomeric distance, and thus disrupted intermonomeric contacts in the LIS1 dimer. Furthermore, the presence of variants also caused a loss of positive electrostatic potential and reduced dimer binding potential. Since self-dimerization is an essential aspect of LIS1 to recruit interacting partners, thus these variants are associated with the loss of LIS1 functions. As a corollary, these findings may further provide critical insights on the roles of LIS1 variants in brain malformation.
Collapse
|
3
|
Arora V, Pal S, Kulshreshtha S, Verma IC. A Further Case of Larsen's Syndrome: Clinical and Genotypic Challenges in Diagnosis. J Pediatr Genet 2020; 11:298-303. [DOI: 10.1055/s-0040-1718540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
AbstractLarsen's syndrome is characterized by dislocation of multiple large joints, digital anomalies, craniofacial dysmorphism, and short stature. In this paper, we describe a case of a 5-month-old boy with a triad of cardinal features in association with other signs. The diagnosis was confirmed by exome sequencing, which led to the identification of a novel missense variant NM_001457.4:c.4928C > G (p.Ala1643Gly) in the FLNB gene. We describe the role of protein modelling for the establishment of pathogenicity of this variant. We also outline the challenges in genetic diagnosis due to variable expressivity of the variant and discuss the clinicogenetic profile of previously reported patients with Larsen's syndrome in India.
Collapse
Affiliation(s)
- Veronica Arora
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Swasti Pal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Samarth Kulshreshtha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar C. Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
4
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
5
|
Chhatre A, Sanghavi P, Mallik R. Lis1 co-localizes with actin in the phagocytic cup and regulates phagocytosis. Cytoskeleton (Hoboken) 2020; 77:249-260. [PMID: 32524725 DOI: 10.1002/cm.21621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/09/2020] [Accepted: 06/07/2020] [Indexed: 12/24/2022]
Abstract
Phagocytosis, the ingestion of solid particles by cells is essential for nutrient uptake, innate immune response, antigen presentation and organelle homeostasis. Here we show that Lissencephaly-1 (Lis1), a well-known regulator of the microtubule motor dynein, co-localizes with actin at the phagocytic cup in the early stages of phagocytosis. Both knockdown and overexpression of Lis1 perturb phagocytosis, suggesting that Lis1 levels may be regulated during particle engulfment to facilitate remodeling of actin filaments within the phagocytic cup. This requirement of Lis1 is replicated in mouse macrophage cells as well as in the amoeba Dictyostelium, indicating an evolutionarily conserved role for Lis1 in phagocytosis. In support of these findings, Dictyostelium cells overexpressing Lis1 show defects in migration possibly caused by dysregulated actin. Taken together, Lis1 localizes to the phagocytic cup and influences the actin cytoskeleton in a manner that appears important for the uptake of solid particles into cells.
Collapse
Affiliation(s)
- Aditya Chhatre
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Paulomi Sanghavi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Roop Mallik
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
6
|
De Vita D, Mei D, Rutigliano D, Bartalucci N, Cinnante CM, Parrini E, Dilena R, Guerrini R. Familial dominant epilepsy and mild pachygyria associated with a constitutional LIS1
mutation. Am J Med Genet A 2018; 176:2808-2812. [DOI: 10.1002/ajmg.a.40503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Dalila De Vita
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A. Meyer Children's Hospital, University of Florence; Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A. Meyer Children's Hospital, University of Florence; Italy
| | - Domenico Rutigliano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A. Meyer Children's Hospital, University of Florence; Italy
| | - Niccolò Bartalucci
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative; Azienda Ospedaliera Universitaria Careggi; Florence Italy
| | | | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A. Meyer Children's Hospital, University of Florence; Italy
| | - Robertino Dilena
- UOC Neurophysiology, Fondazione IRCCS Ca' Granda Osp. Maggiore Policlinico; Milan Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A. Meyer Children's Hospital, University of Florence; Italy
- IRCCS Stella Maris Foundation; Pisa Italy
| |
Collapse
|
7
|
Gutierrez PA, Ackermann BE, Vershinin M, McKenney RJ. Differential effects of the dynein-regulatory factor Lissencephaly-1 on processive dynein-dynactin motility. J Biol Chem 2017; 292:12245-12255. [PMID: 28576829 DOI: 10.1074/jbc.m117.790048] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/01/2017] [Indexed: 02/02/2023] Open
Abstract
Cytoplasmic dynein is the primary minus-end-directed microtubule motor protein in animal cells, performing a wide range of motile activities, including transport of vesicular cargos, mRNAs, viruses, and proteins. Lissencephaly-1 (LIS1) is a highly conserved dynein-regulatory factor that binds directly to the dynein motor domain, uncoupling the enzymatic and mechanical cycles of the motor and stalling dynein on the microtubule track. Dynactin, another ubiquitous dynein-regulatory factor, releases dynein from an autoinhibited state, leading to a dramatic increase in fast, processive dynein motility. How these opposing activities are integrated to control dynein motility is unknown. Here, we used fluorescence single-molecule microscopy to study the interaction of LIS1 with the processive dynein-dynactin-BicD2N (DDB) complex. Surprisingly, in contrast to the prevailing model for LIS1 function established in the context of dynein alone, we found that binding of LIS1 to DDB does not strongly disrupt processive motility. Motile DDB complexes bound up to two LIS1 dimers, and mutational analysis suggested that LIS1 binds directly to the dynein motor domains during DDB movement. Interestingly, LIS1 enhanced DDB velocity in a concentration-dependent manner, in contrast to observations of the effect of LIS1 on the motility of isolated dynein. Thus, LIS1 exerts concentration-dependent effects on dynein motility and can synergize with dynactin to enhance processive dynein movement. Our results suggest that the effect of LIS1 on dynein motility depends on both LIS1 concentration and the presence of other regulatory factors such as dynactin and may provide new insights into the mechanism of LIS1 haploinsufficiency in the neurodevelopmental disorder lissencephaly.
Collapse
Affiliation(s)
- Pedro A Gutierrez
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616
| | - Bryce E Ackermann
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616
| | - Michael Vershinin
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112; Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616.
| |
Collapse
|
8
|
Philbert M, Maillard C, Cavallin M, Goldenberg A, Masson C, Boddaert N, El Morjani A, Steffann J, Chelly J, Gerard X, Bahi-Buisson N. A novel recurrent LIS1 splice site mutation in classic lissencephaly. Am J Med Genet A 2016; 173:561-564. [PMID: 27891766 DOI: 10.1002/ajmg.a.38041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/23/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Marion Philbert
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France
| | - Camille Maillard
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France
| | - Mara Cavallin
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France
| | - Alice Goldenberg
- Service de Génétique, CHU de Rouen et Inserm U1079, Centre Normand de Génomique Médicale et Médecine Personnalisée, Université de Rouen, Rouen, France
| | - Cecile Masson
- Plateforme Bioinformatique, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, University René Descartes, PRES Sorbonne Paris Cité, Paris, France.,INSERM U1000 and UMR 1163, Brain Imaging Laboratory "Image at Imagine" Institut Imagine, Paris, France
| | - Adrienne El Morjani
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Genetic Department, Hôpital Necker-Enfants Malades, Paris, France
| | - Julie Steffann
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Genetic Department, Hôpital Necker-Enfants Malades, Paris, France
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Xavier Gerard
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Laboratory of Genetics in Ophthalmology, Paris, France
| | - Nadia Bahi-Buisson
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France.,Pediatric Neurology, Necker Enfants Malades University Hospital, AP-HP, University René Descartes, PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
9
|
A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability. Eur J Hum Genet 2014; 23:331-6. [PMID: 24569606 DOI: 10.1038/ejhg.2014.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/12/2014] [Accepted: 01/16/2014] [Indexed: 12/29/2022] Open
Abstract
In the context of a comprehensive research project, investigating novel autosomal recessive intellectual disability (ARID) genes, linkage analysis based on autozygosity mapping helped identify an intellectual disability locus on Chr.12q24, in an Iranian family (LOD score = 3.7). Next-generation sequencing (NGS) following exon enrichment in this novel interval, detected a nonsense mutation (p.Q1010*) in the CLIP1 gene. CLIP1 encodes a member of microtubule (MT) plus-end tracking proteins, which specifically associates with the ends of growing MTs. These proteins regulate MT dynamic behavior and are important for MT-mediated transport over the length of axons and dendrites. As such, CLIP1 may have a role in neuronal development. We studied lymphoblastoid and skin fibroblast cell lines established from healthy and affected patients. RT-PCR and western blot analyses showed the absence of CLIP1 transcript and protein in lymphoblastoid cells derived from affected patients. Furthermore, immunofluorescence analyses showed MT plus-end staining only in fibroblasts containing the wild-type (and not the mutant) CLIP1 protein. Collectively, our data suggest that defects in CLIP1 may lead to ARID.
Collapse
|
10
|
Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 gene mutation. Orphanet J Rare Dis 2013; 8:178. [PMID: 24228726 PMCID: PMC4225825 DOI: 10.1186/1750-1172-8-178] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
Background Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disease with severe microcephaly at birth due to a pronounced reduction in brain volume and intellectual disability. Biallelic mutations in the WD repeat-containing protein 62 gene WDR62 are the genetic cause of MCPH2. However, the exact underlying pathomechanism of MCPH2 remains to be clarified. Methods/results We characterized the clinical, radiological, and cellular features that add to the human MCPH2 phenotype. Exome sequencing followed by Sanger sequencing in a German family with two affected daughters with primary microcephaly revealed in the index patient the compound heterozygous mutations c.1313G>A (p.R438H) / c.2864-2867delACAG (p.D955Afs*112) of WDR62, the second of which is novel. Radiological examination displayed small frontal lobes, corpus callosum hypoplasia, simplified hippocampal gyration, and cerebellar hypoplasia. We investigated the cellular phenotype in patient-derived lymphoblastoid cells and compared it with that of healthy female controls. WDR62 expression in the patient’s immortalized lymphocytes was deranged, and mitotic spindle defects as well as abnormal centrosomal protein localization were apparent. Conclusion We propose that a disruption of centrosome integrity and/or spindle organization may play an important role in the development of microcephaly in MCPH2.
Collapse
|
11
|
Nicholas AK, Khurshid M, Désir J, Carvalho OP, Cox JJ, Thornton G, Kausar R, Ansar M, Ahmad W, Verloes A, Passemard S, Misson JP, Lindsay S, Gergely F, Dobyns WB, Roberts E, Abramowicz M, Woods CG. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet 2010; 42:1010-4. [PMID: 20890279 DOI: 10.1038/ng.682] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/10/2010] [Indexed: 01/19/2023]
Abstract
Autosomal recessive primary microcephaly (MCPH) is a disorder of neurodevelopment resulting in a small brain. We identified WDR62 as the second most common cause of MCPH after finding homozygous missense and frame-shifting mutations in seven MCPH families. In human cell lines, we found that WDR62 is a spindle pole protein, as are ASPM and STIL, the MCPH7 and MCHP7 proteins. Mutant WDR62 proteins failed to localize to the mitotic spindle pole. In human and mouse embryonic brain, we found that WDR62 expression was restricted to neural precursors undergoing mitosis. These data lend support to the hypothesis that the exquisite control of the cleavage furrow orientation in mammalian neural precursor cell mitosis, controlled in great part by the centrosomes and spindle poles, is critical both in causing MCPH when perturbed and, when modulated, generating the evolutionarily enlarged human brain.
Collapse
Affiliation(s)
- Adeline K Nicholas
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bechler ME, Doody AM, Racoosin E, Lin L, Lee KH, Brown WJ. The phospholipase complex PAFAH Ib regulates the functional organization of the Golgi complex. ACTA ACUST UNITED AC 2010; 190:45-53. [PMID: 20624900 PMCID: PMC2911670 DOI: 10.1083/jcb.200908105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report that platelet-activating factor acetylhydrolase (PAFAH) Ib, comprised of two phospholipase A(2) (PLA(2)) subunits, alpha1 and alpha2, and a third subunit, the dynein regulator lissencephaly 1 (LIS1), mediates the structure and function of the Golgi complex. Both alpha1 and alpha2 partially localize on Golgi membranes, and purified catalytically active, but not inactive alpha1 and alpha2 induce Golgi membrane tubule formation in a reconstitution system. Overexpression of wild-type or mutant alpha1 or alpha2 revealed that both PLA(2) activity and LIS1 are important for maintaining Golgi structure. Knockdown of PAFAH Ib subunits fragments the Golgi complex, inhibits tubule-mediated reassembly of intact Golgi ribbons, and slows secretion of cargo. Our results demonstrate a cooperative interplay between the PLA(2) activity of alpha1 and alpha2 with LIS1 to facilitate the functional organization of the Golgi complex, thereby suggesting a model that links phospholipid remodeling and membrane tubulation to dynein-dependent transport.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
13
|
Ahluwalia JK, Hariharan M, Bargaje R, Pillai B, Brahmachari V. Incomplete penetrance and variable expressivity: is there a microRNA connection? Bioessays 2009; 31:981-92. [PMID: 19642110 DOI: 10.1002/bies.200900066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Incomplete penetrance and variable expressivity are non-Mendelian phenomena resulting in the lack of correlation between genotype and phenotype. Not withstanding the diversity in mechanisms, differential expression of homologous alleles within cells manifests as variations in penetrance and expressivity of mutations between individuals of the same genotype. These phenomena are seen most often in dominantly inherited diseases, implying that they are sensitive to concentration of the gene product. In this framework and the advances in understanding the role of microRNA (miRNA) in fine-tuning gene expression at translational level, we propose miRNA-mediated regulation as a mechanism for incomplete penetrance and variable expressivity. The presence of miRNA binding sites at 3' UTR, co-expression of target gene-miRNA pairs for genes showing incomplete penetrance and variable expressivity derived from available data lend support to our hypothesis. Single nucleotide polymorphisms in the miRNA target site facilitate the implied differential targeting of the transcripts from homologous alleles.
Collapse
Affiliation(s)
- Jasmine K Ahluwalia
- Dr. B. R. Ambedkar Centre for Biomedical Research, Delhi University, Delhi, India
| | | | | | | | | |
Collapse
|
14
|
Heritability and transmission analysis of necrotizing meningoencephalitis in the Pug. Res Vet Sci 2009; 86:438-42. [DOI: 10.1016/j.rvsc.2008.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/08/2008] [Accepted: 10/02/2008] [Indexed: 11/19/2022]
|
15
|
Lissencephaly type I. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0072-9752(07)87013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Elias RC, Galera MF, Schnabel B, Briones MRS, Borri ML, Lipay M, Carvalheira G, Brunoni D, Melaragno MI. Deletion of 17p13 and LIS1 gene mutation in isolated lissencephaly sequence. Pediatr Neurol 2006; 35:42-6. [PMID: 16814084 DOI: 10.1016/j.pediatrneurol.2005.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 12/06/2005] [Indexed: 10/24/2022]
Abstract
Classical lissencephaly is a neuroblast migration disorder that occurs either as isolated lissencephaly sequence or in association with malformation syndromes, such as the Miller-Dieker syndrome. In this work, alterations of the LIS1 gene in patients diagnosed as having isolated lissencephaly sequence were investigated. Ten patients were evaluated for the following aspects: classical cytogenetics by karyotyping using solid staining and G-banding; molecular cytogenetics using fluorescent in situ hybridization with a specific probe for the critical region of isolated lissencephaly sequence; and molecular analysis using deoxyribonucleic acid sequencing. Classical cytogenetic analysis indicated apparently normal karyotypes in all patients, but fluorescent in situ hybridization revealed a 17p13.3 microdeletion in one. In another patient, deoxyribonucleic acid sequencing disclosed a 1 base pair insertion in exon 4 within a sequence of eight consecutive adenine residues (162-163insA), a mutation that predicts a truncated protein. Two different polymorphisms were also detected: a T>C substitution in intron 6 (c.568 + 27bp T>C) and a C>T substitution in the nontranslated region of exon 11 (1250 C>T). These results indicate that cytogenetic analysis and molecular investigation of the LIS1 gene are not always sufficient to determine the disease etiology. These findings are consistent with previous studies and suggest the involvement of other genes in cortical malformation.
Collapse
Affiliation(s)
- Renata C Elias
- Disciplina de Genética, Departamento de Morfologia, Universidade Federal de São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Leventer RJ. Genotype-phenotype correlation in lissencephaly and subcortical band heterotopia: the key questions answered. J Child Neurol 2005; 20:307-12. [PMID: 15921231 DOI: 10.1177/08830738050200040701] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lissencephaly and subcortical band heterotopia are closely related cortical malformations and are true disorders of neuronal migration. The genetic basis of approximately 70% of classic lissencephaly and 80% of typical subcortical band heterotopia is known. Most are due to abnormalities within the LIS1 or DCX genes, with abnormalities ranging from single basepair substitutions to contiguous gene deletions. Understanding the genetic basis of these disorders has led to the elucidation of the molecular and developmental mechanisms that are adversely affected. There is a robust correlation between many of the clinical aspects of lissencephaly or subcortical band heterotopia and the type and location of mutations in the affected gene. Using this knowledge, the clinician can predict with some accuracy which gene is likely to be affected based on the clinical and imaging features. This review answers some of the key questions regarding the genotype-phenotype correlation for lissencephaly and subcortical band heterotopia.
Collapse
Affiliation(s)
- Richard Jacob Leventer
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute, University of Melbourne, Australia.
| |
Collapse
|
18
|
Rehberg M, Kleylein-Sohn J, Faix J, Ho TH, Schulz I, Gräf R. Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Mol Biol Cell 2005; 16:2759-71. [PMID: 15800059 PMCID: PMC1142422 DOI: 10.1091/mbc.e05-01-0069] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The widespread LIS1-proteins were originally identified as the target for sporadic mutations causing lissencephaly in humans. Dictyostelium LIS1 (DdLIS1) is a microtubule-associated protein exhibiting 53% identity to human LIS1. It colocalizes with dynein at isolated, microtubule-free centrosomes, suggesting that both are integral centrosomal components. Replacement of the DdLIS1 gene by the hypomorphic D327H allele or overexpression of an MBP-DdLIS1 fusion disrupted various dynein-associated functions. Microtubules lost contact with the cell cortex and were dragged behind an unusually motile centrosome. Previously, this phenotype was observed in cells overexpressing fragments of dynein or the XMAP215-homologue DdCP224. DdLIS1 was coprecipitated with DdCP224, suggesting that both act together in dynein-mediated cortical attachment of microtubules. Furthermore, DdLIS1-D327H mutants showed Golgi dispersal and reduced centrosome/nucleus association. Defects in DdLIS1 function also altered actin dynamics characterized by traveling waves of actin polymerization correlated with a reduced F-actin content. DdLIS1 could be involved in actin dynamics through Rho-GTPases, because DdLIS1 interacted directly with Rac1A in vitro. Our results show that DdLIS1 is required for maintenance of the microtubule cytoskeleton, Golgi apparatus and nucleus/centrosome association, and they suggest that LIS1-dependent alterations of actin dynamics could also contribute to defects in neuronal migration in lissencephaly patients.
Collapse
Affiliation(s)
- Markus Rehberg
- A.-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Tarricone C, Perrina F, Monzani S, Massimiliano L, Kim MH, Derewenda ZS, Knapp S, Tsai LH, Musacchio A. Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 2005; 44:809-21. [PMID: 15572112 DOI: 10.1016/j.neuron.2004.11.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 10/01/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
Mutations in the LIS1 gene cause lissencephaly, a human neuronal migration disorder. LIS1 binds dynein and the dynein-associated proteins Nde1 (formerly known as NudE), Ndel1 (formerly known as NUDEL), and CLIP-170, as well as the catalytic alpha dimers of brain cytosolic platelet activating factor acetylhydrolase (PAF-AH). The mechanism coupling the two diverse regulatory pathways remains unknown. We report the structure of LIS1 in complex with the alpha2/alpha2 PAF-AH homodimer. One LIS1 homodimer binds symmetrically to one alpha2/alpha2 homodimer via the highly conserved top faces of the LIS1 beta propellers. The same surface of LIS1 contains sites of mutations causing lissencephaly and overlaps with a putative dynein binding surface. Ndel1 competes with the alpha2/alpha2 homodimer for LIS1, but the interaction is complex and requires both the N- and C-terminal domains of LIS1. Our data suggest that the LIS1 molecule undergoes major conformational rearrangement when switching from a complex with the acetylhydrolase to the one with Ndel1.
Collapse
Affiliation(s)
- Cataldo Tarricone
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cockell MM, Baumer K, Gönczy P. lis-1is required for dynein-dependent cell division processes inC. elegansembryos. J Cell Sci 2004; 117:4571-82. [PMID: 15331665 DOI: 10.1242/jcs.01344] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the role of the evolutionarily conserved protein Lis1 in cell division processes of Caenorhabditis elegans embryos. We identified apparent null alleles of lis-1, which result in defects identical to those observed after inactivation of the dynein heavy chain dhc-1, including defects in centrosome separation and spindle assembly. We raised antibodies against LIS-1 and generated transgenic animals expressing functional GFP–LIS-1. Using indirect immunofluorescence and spinning-disk confocal microscopy, we found that LIS-1 is present throughout the cytoplasm and is enriched in discrete subcellular locations, including the cell cortex, the vicinity of microtubule asters, the nuclear periphery and kinetochores. We established that lis-1 contributes to, but is not essential for, DHC-1 enrichment at specific subcellular locations. Conversely, we found that dhc-1, as well as the dynactin components dnc-1 (p150Glued) and dnc-2 (p50/dynamitin), are essential for LIS-1 targeting to the nuclear periphery, but not to the cell cortex nor to kinetochores. These results suggest that dynein and Lis1, albeit functioning in identical processes, are targeted partially independently of one another.
Collapse
Affiliation(s)
- Moira M Cockell
- Swiss Institute for Experimental Cancer Research (ISREC), Ch. des Boveresses 155, 1066 Epalinges/Lausanne, Switzerland
| | | | | |
Collapse
|
21
|
Kim MH, Cooper DR, Oleksy A, Devedjiev Y, Derewenda U, Reiner O, Otlewski J, Derewenda ZS. The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. Structure 2004; 12:987-98. [PMID: 15274919 DOI: 10.1016/j.str.2004.03.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 02/26/2004] [Accepted: 03/05/2004] [Indexed: 11/16/2022]
Abstract
Mutations in the Lis1 gene result in lissencephaly (smooth brain), a debilitating developmental syndrome caused by the impaired ability of postmitotic neurons to migrate to their correct destination in the cerebral cortex. Sequence similarities suggest that the LIS1 protein contains a C-terminal seven-blade beta-propeller domain, while the structure of the N-terminal fragment includes the LisH (Lis-homology) motif, a pattern found in over 100 eukaryotic proteins with a hitherto unknown function. We present the 1.75 A resolution crystal structure of the N-terminal domain of mouse LIS1, and we show that the LisH motif is a novel, thermodynamically very stable dimerization domain. The structure explains the molecular basis of a low severity form of lissencephaly.
Collapse
Affiliation(s)
- Myung Hee Kim
- Department of Molecular Physiology and Biological Physics and Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Williams SN, Locke CJ, Braden AL, Caldwell KA, Caldwell GA. Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans. Hum Mol Genet 2004; 13:2043-59. [PMID: 15254012 DOI: 10.1093/hmg/ddh209] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cortical malformations are a collection of disorders affecting brain development. Mutations in the LIS1 gene lead to a disorganized and smooth cerebral cortex caused by failure in neuronal migration. Among the clinical consequences of lissencephaly are mental retardation and intractable epilepsy. It remains unclear whether the seizures result from aberrant neuronal placement, disruption of intrinsic properties of neurons, or both. The nematode Caenorhabditis elegans offers an opportunity to study such convulsions in a simple animal with a defined nervous system. Here we show that convulsions mimicking epilepsy can be induced by a mutation in a C. elegans lis-1 allele (pnm-1), in combination with a chemical antagonist of gamma-aminobutyric acid (GABA) neurotransmitter signaling. Identical convulsions were obtained using C. elegans mutants defective in GABA transmission, whereas none of these mutants or the antagonist alone caused convulsions, indicating a threshold was exceeded in response to this combination. Crosses between pnm-1 and fluorescent marker strains designed to exclusively illuminate either the processes of GABAergic neurons or synaptic vesicles surprisingly showed no deviations in neuronal architecture. Instead, presynaptic defects in GABAergic vesicle distribution were clearly evident and could be phenocopied by RNAi directed against cytoplasmic dynein, a known LIS1 interactor. Furthermore, mutations in UNC-104, a neuronal-specific kinesin, and SNB-1, a synaptic vesicle-associated protein termed synaptobrevin, exhibit similar convulsion phenotypes following chemical induction. Taken together, these studies establish C. elegans as a system to investigate subtle cytoskeletal mechanisms regulating intrinsic neuronal activity and suggest that it may be possible to dissociate the epileptic consequences of lissencephaly from the more phenotypically overt cortical defects associated with neuronal migration.
Collapse
Affiliation(s)
- Shelli N Williams
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | | | | | | | | |
Collapse
|
23
|
Tanaka T, Serneo FF, Higgins C, Gambello MJ, Wynshaw-Boris A, Gleeson JG. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. ACTA ACUST UNITED AC 2004; 165:709-21. [PMID: 15173193 PMCID: PMC2172383 DOI: 10.1083/jcb.200309025] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Humans with mutations in either DCX or LIS1 display nearly identical neuronal migration defects, known as lissencephaly. To define subcellular mechanisms, we have combined in vitro neuronal migration assays with retroviral transduction. Overexpression of wild-type Dcx or Lis1, but not patient-related mutant versions, increased migration rates. Dcx overexpression rescued the migration defect in Lis1+/− neurons. Lis1 localized predominantly to the centrosome, and after disruption of microtubules, redistributed to the perinuclear region. Dcx outlined microtubules extending from the perinuclear “cage” to the centrosome. Lis1+/− neurons displayed increased and more variable separation between the nucleus and the preceding centrosome during migration. Dynein inhibition resulted in similar defects in both nucleus–centrosome (N-C) coupling and neuronal migration. These N-C coupling defects were rescued by Dcx overexpression, and Dcx was found to complex with dynein. These data indicate Lis1 and Dcx function with dynein to mediate N-C coupling during migration, and suggest defects in this coupling may contribute to migration defects in lissencephaly.
Collapse
Affiliation(s)
- Teruyuki Tanaka
- Department of Neurosciences, University of California, San Diego, La Jolla 92093-0624, USA
| | | | | | | | | | | |
Collapse
|