1
|
Teixeira Nunes M, Retailleau P, Raoux-Barbot D, Comisso M, Missinou AA, Velours C, Plancqueel S, Ladant D, Mechold U, Renault L. Functional and structural insights into the multi-step activation and catalytic mechanism of bacterial ExoY nucleotidyl cyclase toxins bound to actin-profilin. PLoS Pathog 2023; 19:e1011654. [PMID: 37747912 PMCID: PMC10553838 DOI: 10.1371/journal.ppat.1011654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/05/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
ExoY virulence factors are members of a family of bacterial nucleotidyl cyclases (NCs) that are activated by specific eukaryotic cofactors and overproduce cyclic purine and pyrimidine nucleotides in host cells. ExoYs act as actin-activated NC toxins. Here, we explore the Vibrio nigripulchritudo Multifunctional-Autoprocessing Repeats-in-ToXin (MARTX) ExoY effector domain (Vn-ExoY) as a model for ExoY-type members that interact with monomeric (G-actin) instead of filamentous (F-actin) actin. Vn-ExoY exhibits moderate binding affinity to free or profilin-bound G-actin but can capture the G-actin:profilin complex, preventing its spontaneous or VASP- or formin-mediated assembly at F-actin barbed ends in vitro. This mechanism may prolong the activated cofactor-bound state of Vn-ExoY at sites of active actin cytoskeleton remodelling. We present a series of high-resolution crystal structures of nucleotide-free, 3'-deoxy-ATP- or 3'-deoxy-CTP-bound Vn-ExoY, activated by free or profilin-bound G-actin-ATP/-ADP, revealing that the cofactor only partially stabilises the nucleotide-binding pocket (NBP) of NC toxins. Substrate binding induces a large, previously-unidentified, closure of their NBP, confining catalytically important residues and metal cofactors around the substrate, and facilitating the recruitment of two metal ions to tightly coordinate the triphosphate moiety of purine or pyrimidine nucleotide substrates. We validate critical residues for both the purinyl and pyrimidinyl cyclase activity of NC toxins in Vn-ExoY and its distantly-related ExoY from Pseudomonas aeruginosa, which specifically interacts with F-actin. The data conclusively demonstrate that NC toxins employ a similar two-metal-ion mechanism for catalysing the cyclisation of nucleotides of different sizes. These structural insights into the dynamics of the actin-binding interface of actin-activated ExoYs and the multi-step activation of all NC toxins offer new perspectives for the specific inhibition of class II bacterial NC enzymes.
Collapse
Affiliation(s)
- Magda Teixeira Nunes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascal Retailleau
- Université Paris Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Dorothée Raoux-Barbot
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Biochimie des Interactions macromoléculaires, Département de Biologie Structurale et Chimie, Paris, France
| | - Martine Comisso
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anani Amegan Missinou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christophe Velours
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Plancqueel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Daniel Ladant
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Biochimie des Interactions macromoléculaires, Département de Biologie Structurale et Chimie, Paris, France
| | - Undine Mechold
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Biochimie des Interactions macromoléculaires, Département de Biologie Structurale et Chimie, Paris, France
| | - Louis Renault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
2
|
Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L. Bacterial Nucleotidyl Cyclases Activated by Calmodulin or Actin in Host Cells: Enzyme Specificities and Cytotoxicity Mechanisms Identified to Date. Int J Mol Sci 2022; 23:ijms23126743. [PMID: 35743184 PMCID: PMC9223806 DOI: 10.3390/ijms23126743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Many pathogens manipulate host cell cAMP signaling pathways to promote their survival and proliferation. Bacterial Exoenzyme Y (ExoY) toxins belong to a family of invasive, structurally-related bacterial nucleotidyl cyclases (NC). Inactive in bacteria, they use proteins that are uniquely and abundantly present in eukaryotic cells to become potent, unregulated NC enzymes in host cells. Other well-known members of the family include Bacillus anthracis Edema Factor (EF) and Bordetella pertussis CyaA. Once bound to their eukaryotic protein cofactor, they can catalyze supra-physiological levels of various cyclic nucleotide monophosphates in infected cells. Originally identified in Pseudomonas aeruginosa, ExoY-related NC toxins appear now to be more widely distributed among various γ- and β-proteobacteria. ExoY-like toxins represent atypical, poorly characterized members within the NC toxin family. While the NC catalytic domains of EF and CyaA toxins use both calmodulin as cofactor, their counterparts in ExoY-like members from pathogens of the genus Pseudomonas or Vibrio use actin as a potent cofactor, in either its monomeric or polymerized form. This is an original subversion of actin for cytoskeleton-targeting toxins. Here, we review recent advances on the different members of the NC toxin family to highlight their common and distinct functional characteristics at the molecular, cytotoxic and enzymatic levels, and important aspects that need further characterizations.
Collapse
Affiliation(s)
- Magda Teixeira-Nunes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS-UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France;
| | - Martine Comisso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Vincent Deruelle
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Undine Mechold
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
- Correspondence:
| |
Collapse
|
3
|
Pitard I, Monet D, Goossens PL, Blondel A, Malliavin TE. Analyzing In Silico the Relationship Between the Activation of the Edema Factor and Its Interaction With Calmodulin. Front Mol Biosci 2020; 7:586544. [PMID: 33344505 PMCID: PMC7746812 DOI: 10.3389/fmolb.2020.586544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
Molecular dynamics (MD) simulations have been recorded on the complex between the edema factor (EF) of Bacilllus anthracis and calmodulin (CaM), starting from a structure with the orthosteric inhibitor adefovir bound in the EF catalytic site. The starting structure has been destabilized by alternately suppressing different co-factors, such as adefovir ligand or ions, revealing several long-distance correlations between the conformation of CaM, the geometry of the CaM/EF interface, the enzymatic site and the overall organization of the complex. An allosteric communication between CaM/EF interface and the EF catalytic site, highlighted by these correlations, was confirmed by several bioinformatics approaches from the literature. A network of hydrogen bonds and stacking interactions extending from the helix V of of CaM, and the residues of the switches A, B and C, and connecting to catalytic site residues, is a plausible candidate for the mediation of allosteric communication. The greatest variability in volume between the different MD conditions was also found for cavities present at the EF/CaM interface and in the EF catalytic site. The similarity between the predictions from literature and the volume variability might introduce the volume variability as new descriptor of allostery.
Collapse
Affiliation(s)
- Irène Pitard
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France.,Ecole Doctorale Université Paris Sorbonne, Paris, France
| | - Damien Monet
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France.,Ecole Doctorale Université Paris Sorbonne, Paris, France
| | | | - Arnaud Blondel
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France
| |
Collapse
|
4
|
Pitard I, Malliavin TE. Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Toxins (Basel) 2019; 11:toxins11060369. [PMID: 31238550 PMCID: PMC6628625 DOI: 10.3390/toxins11060369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the functions and mechanisms of biological systems is an outstanding challenge. One way to overcome it is to combine together several approaches such as molecular modeling and experimental structural biology techniques. Indeed, the interplay between structural and dynamical properties of the system is crucial to unravel the function of molecular machinery’s. In this review, we focus on how molecular simulations along with structural information can aid in interpreting biological data. Here, we examine two different cases: (i) the endosomal translocation toxins (diphtheria, tetanus, botulinum toxins) and (ii) the activation of adenylyl cyclase inside the cytoplasm (edema factor, CyA, ExoY).
Collapse
Affiliation(s)
- Irène Pitard
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
- Sorbonne Université, Collège Doctoral, Ecole Doctorale Complexité du Vivant, 75005 Paris, France.
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
| |
Collapse
|
5
|
Farcasanu M, Wang AG, Uchański T, Bailey LJ, Yue J, Chen Z, Wu X, Kossiakoff A, Tang WJ. Rapid Discovery and Characterization of Synthetic Neutralizing Antibodies against Anthrax Edema Toxin. Biochemistry 2019; 58:2996-3004. [PMID: 31243996 DOI: 10.1021/acs.biochem.9b00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Anthrax, a lethal, weaponizable disease caused by Bacillus anthracis, acts through exotoxins that are primary mediators of systemic toxicity and also targets for neutralization by passive immunotherapy. The ease of engineering B. anthracis strains resistant to established therapy and the historic use of the microbe in bioterrorism present a compelling test case for platforms that permit the rapid and modular development of neutralizing agents. In vitro antigen-binding fragment (Fab) selection offers the advantages of speed, sequence level molecular control, and engineering flexibility compared to traditional monoclonal antibody pipelines. By screening an unbiased, chemically synthetic phage Fab library and characterizing hits in cell-based assays, we identified two high-affinity neutralizing Fabs, A4 and B7, against anthrax edema factor (EF), a key mediator of anthrax pathogenesis. Engineered homodimers of these Fabs exhibited potency comparable to that of the best reported neutralizing monoclonal antibody against EF at preventing EF-induced cyclic AMP production. Using internalization assays in COS cells, B7 was found to block steps prior to EF internalization. This work demonstrates the efficacy of synthetic alternatives to traditional antibody therapeutics against anthrax while also demonstrating a broadly generalizable, rapid, and modular screening pipeline for neutralizing antibody generation.
Collapse
Affiliation(s)
- Mara Farcasanu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrew G Wang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Tomasz Uchański
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lucas J Bailey
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jiping Yue
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Zhaochun Chen
- National Institute of Allergy and Infection , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Xiaoyang Wu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Anthony Kossiakoff
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Wei-Jen Tang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
6
|
Affiliation(s)
- Megan Garland
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Sebastian Loscher
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Matthew Bogyo
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
7
|
Abstract
It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking's greatest impact over the next few years.
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
8
|
Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor. PLoS One 2015; 10:e0124017. [PMID: 25946093 PMCID: PMC4422518 DOI: 10.1371/journal.pone.0124017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP into the second messenger cAMP. Membranous AC1 (AC1) is involved in processes of memory and learning and in muscle pain. The AC toxin edema factor (EF) of Bacillus anthracis is involved in the development of anthrax. Both ACs are stimulated by the eukaryotic Ca2+-sensor calmodulin (CaM). The CaM-AC interaction could constitute a potential target to enhance or impair the AC activity of AC1 and EF to intervene in above (patho)physiological mechanisms. Thus, we analyzed the impact of 39 compounds including typical CaM-inhibitors, an anticonvulsant, an anticholinergic, antidepressants, antipsychotics and Ca2+-antagonists on CaM-stimulated catalytic activity of AC1 and EF. Compounds were tested at 10 μM, i.e., a concentration that can be reached therapeutically for certain antidepressants and antipsychotics. Calmidazolium chloride decreased CaM-stimulated AC1 activity moderately by about 30%. In contrast, CaM-stimulated EF activity was abrogated by calmidazolium chloride and additionally decreased by chlorpromazine, felodipine, penfluridol and trifluoperazine by about 20–40%. The activity of both ACs was decreased by calmidazolium chloride in the presence and absence of CaM. Thus, CaM-stimulated AC1 activity is more insensitive to inhibition by small molecules than CaM-stimulated EF activity. Inhibition of AC1 and EF by calmidazolium chloride is largely mediated via a CaM-independent allosteric mechanism.
Collapse
|
9
|
Maize KM, Zhang X, Amin EA. Statistical analysis, optimization, and prioritization of virtual screening parameters for zinc enzymes including the anthrax toxin lethal factor. Curr Top Med Chem 2014; 14:2105-14. [PMID: 25373478 DOI: 10.2174/1568026614666141106163011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 09/01/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
Abstract
The anthrax toxin lethal factor (LF) and matrix metalloproteinase-3 (MMP-3, stromelysin-1) are popular zinc metalloenzyme drug targets, with LF primarily responsible for anthrax-related toxicity and host death, while MMP-3 is involved in cancer- and rheumatic disease-related tissue remodeling. A number of in silico screening techniques, most notably docking and scoring, have proven useful for identifying new potential drug scaffolds targeting LF and MMP-3, as well as for optimizing lead compounds and investigating mechanisms of action. However, virtual screening outcomes can vary significantly depending on the specific docking parameters chosen, and systematic statistical significance analyses are needed to prioritize key parameters for screening small molecules against these zinc systems. In the current work, we present a series of chi-square statistical analyses of virtual screening outcomes for cocrystallized LF and MMP-3 inhibitors docked into their respective targets, evaluated by predicted enzyme-inhibitor dissociation constant and root-mean-square deviation (RMSD) between predicted and experimental bound configurations, and we present a series of preferred parameters for use with these systems in the industry-standard Surflex-Dock screening program, for use by researchers utilizing in silico techniques to discover and optimize new scaffolds.
Collapse
Affiliation(s)
| | | | - Elizabeth Ambrose Amin
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 717 Delaware St SE, Minneapolis, MN 55416 USA.
| |
Collapse
|
10
|
Abstract
INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- The Catholic University of America, Department of Biology , Washington, DC , USA +1 202 319 6723 ;
| | | |
Collapse
|
11
|
Dual myxovirus screen identifies a small-molecule agonist of the host antiviral response. J Virol 2013; 87:11076-87. [PMID: 23926334 DOI: 10.1128/jvi.01425-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
As we are confronted with an increasing number of emerging and reemerging viral pathogens, the identification of novel pathogen-specific and broad-spectrum antivirals has become a major developmental objective. Targeting of host factors required for virus replication presents a tangible approach toward obtaining novel hits with a broadened indication range. However, the identification of developable host-directed antiviral candidates remains challenging. We describe a novel screening protocol that interrogates the myxovirus host-pathogen interactome for broad-spectrum drug candidates and simultaneously probes for conventional, pathogen-directed hits. With resource efficiency and pan-myxovirus activity as the central developmental parameters, we explored coscreening against two distinct, independently traceable myxoviruses in a single-well setting. Having identified a pair of unrelated pathogenic myxoviruses (influenza A virus and measles virus) with comparable replication kinetics, we observed unimpaired coreplication of both viruses, generated suitable firefly and Renilla luciferase reporter constructs, respectively, and validated the protocol for up to a 384-well plate format. Combined with an independent counterscreen using a recombinant respiratory syncytial virus luciferase reporter, implementation of the protocol identified candidates with a broadened antimyxovirus profile, in addition to pathogen-specific hits. Mechanistic characterization revealed a newly discovered broad-spectrum lead that does not block viral entry but stimulates effector pathways of the innate cellular antiviral response. In summary, we provide proof of concept for the efficient discovery of broad-spectrum myxovirus inhibitors in parallel to para- and orthomyxovirus-specific hit candidates in a single screening campaign. The newly identified compound provides a basis for the development of a novel broad-spectrum small-molecule antiviral class.
Collapse
|
12
|
Seifert R, Dove S. Inhibitors of Bacillus anthracis edema factor. Pharmacol Ther 2013; 140:200-12. [PMID: 23850654 DOI: 10.1016/j.pharmthera.2013.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023]
Abstract
Edema factor (EF) is a calmodulin (CaM)-activated adenylyl cyclase (AC) toxin from Bacillus anthracis that contributes to anthrax pathogenesis. Anthrax is an important medical problem, but treatment of B. anthracis infections is still unsatisfying. Thus, selective EF inhibitors could be valuable drugs in the treatment of anthrax infection, most importantly shock. The catalytic site of EF, the EF/CaM interaction site and allosteric sites constitute potential drug targets. To this end, most efforts have been directed towards targeting the catalytic site. A major challenge in the field is to obtain compounds with high selectivity for AC toxins relative to mammalian membranous ACs (mACs). 3'-(N-methyl)anthraniloyl-2'-deoxyadenosine-5'-triphosphate is the most potent EF inhibitor known so far (Ki, 10nM), but selectivity relative to mACs needs to be improved (currently ~5-50-fold, depending on the specific mAC isoform considered). AC toxin inhibitors can be identified in virtual screening studies based on available EF crystal structures and examined in cellular test systems or at the level of purified toxin using classic radioisotopic or non-radioactive fluorescence assays. Binding of certain MANT-nucleotides to AC toxins elicits large direct fluorescence- or fluorescence resonance energy transfer signals upon interaction with CaM, and these signals can be used to identify toxin inhibitors in competition binding studies. Collectively, potent EF inhibitors are available, but before they can be used clinically, selectivity against mACs must be improved. However, several methodological approaches, complementing each other, are now available to direct the development of potent, selective, orally applicable and clinically useful EF inhibitors.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | |
Collapse
|
13
|
Laine É, Martínez L, Ladant D, Malliavin T, Blondel A. Molecular motions as a drug target: mechanistic simulations of anthrax toxin edema factor function led to the discovery of novel allosteric inhibitors. Toxins (Basel) 2012; 4:580-604. [PMID: 23012649 PMCID: PMC3446745 DOI: 10.3390/toxins4080580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/04/2012] [Accepted: 07/18/2012] [Indexed: 01/14/2023] Open
Abstract
Edema Factor (EF) is a component of Bacillus anthracis toxin essential for virulence. Its adenylyl cyclase activity is induced by complexation with the ubiquitous eukaryotic cellular protein, calmodulin (CaM). EF and its complexes with CaM, nucleotides and/or ions, have been extensively characterized by X-ray crystallography. Those structural data allowed molecular simulations analysis of various aspects of EF action mechanism, including the delineation of EF and CaM domains through their association energetics, the impact of calcium binding on CaM, and the role of catalytic site ions. Furthermore, a transition path connecting the free inactive form to the CaM-complexed active form of EF was built to model the activation mechanism in an attempt to define an inhibition strategy. The cavities at the surface of EF were determined for each path intermediate to identify potential sites where the binding of a ligand could block activation. A non-catalytic cavity (allosteric) was found to shrink rapidly at early stages of the path and was chosen to perform virtual screening. Amongst 18 compounds selected in silico and tested in an enzymatic assay, 6 thiophen ureidoacid derivatives formed a new family of EF allosteric inhibitors with IC50 as low as 2 micromolars.
Collapse
Affiliation(s)
- Élodie Laine
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, 61, avenue du Président Wilson, 94235 Cachan cedex, France;
| | - Leandro Martínez
- The Molecular Biotechnology Group, Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil;
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires and CNRS UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, 28, rue du Dr. Roux, 75724 Paris Cedex 15, France;
| | - Thérèse Malliavin
- Unité de Bioinformatique Structurale and CNRS UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France;
| | - Arnaud Blondel
- Unité de Bioinformatique Structurale and CNRS UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France;
| |
Collapse
|
14
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
15
|
Towards selective inhibitors of adenylyl cyclase toxin from Bordetella pertussis. Trends Microbiol 2012; 20:343-51. [PMID: 22578665 DOI: 10.1016/j.tim.2012.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 12/19/2022]
Abstract
Whooping cough is a very important medical problem that requires novel approaches for treatment. The disease is caused by Bordetella pertussis, with the calmodulin (CaM)-activated adenylyl cyclase (AC) toxin (also known as CyaA) being a major virulence factor. Hence, CyaA inhibitors could constitute novel therapeutics, but it has been difficult to develop potent drugs with high selectivity over mammalian membranous ACs (mACs). Recent studies have shown that bis-anthraniloyl-substituted nucleoside 5'-triphosphates are potent and selective CyaA inhibitors. In addition, the interaction of CyaA with CaM is very different from the interaction of membranous mAC1 with CaM. Accordingly, compounds that interfere with the CyaA-CaM interaction may constitute a novel class of drugs against whooping cough.
Collapse
|
16
|
Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012; 51:4024-45. [PMID: 22441768 DOI: 10.1002/anie.201104384] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Indexed: 12/18/2022]
Abstract
Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved.
Collapse
Affiliation(s)
- Mattias E Ivarsson
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, Zurich, Switzerland
| | | | | |
Collapse
|
17
|
|
18
|
Kelly JJ, Stevens T, Thompson WJ, Seifert R. Adenylyl and guanylyl cyclase assays. ACTA ACUST UNITED AC 2012; Chapter 2:Unit2.2. [PMID: 21953389 DOI: 10.1002/0471141755.ph0202s30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit presents two basic protocols to determine adenylyl cyclase and guanylyl cyclase activity in tissue and cell homogenates, permeabilized cells, or subcellular fractions. Each method is divided into two parts: the enzyme reaction that causes the formation of the labeled cyclic nucleotide, and the separation of cyclic nucleotide products from unreacted nucleotide triphosphates and metabolites using Dowex 50 resin and aluminum oxide chromatographies. In the case of guanylyl cyclase, alternative separation protocols are also provided. Additionally, protocols are provided that describe preparation of both the columns used in the assays and the tissue or cells to be assayed.
Collapse
Affiliation(s)
- John J Kelly
- College of Medicine, University of South Alabama, Mobile, AL, USA
| | | | | | | |
Collapse
|
19
|
Makiya M, Dolan M, Agulto L, Purcell R, Chen Z. Structural basis of anthrax edema factor neutralization by a neutralizing antibody. Biochem Biophys Res Commun 2012; 417:324-9. [PMID: 22155239 PMCID: PMC3293246 DOI: 10.1016/j.bbrc.2011.11.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/19/2011] [Indexed: 11/16/2022]
Abstract
Fine epitope mapping of EF13D, a highly potent neutralizing monoclonal antibody specific for the anthrax edema factor (EF), was accomplished through random mutagenesis and yeast surface display. A yeast-displayed library of single point mutants of an EF domain III (DIII), comprising amino acids 624-800, was constructed by random mutagenesis and screened for reduced binding to EF13D. With this method, residues Leu 667, Ser 668, Arg 671, and Arg 672 were identified as key residues important for EF13D binding. They form a contiguous patch on a solvent-exposed surface at one end of the four-helix bundle of DIII. Computational protein-protein docking experiments between anEF13D model and a crystal structure of EF indicate that the EF13D heavy chain complementarity-determining region 3 (HCDR3) is deeply buried within a hydrophobic cleft between two helices of DIII and interacts directly with residues Leu 667, Ser 668, Arg 671 and Arg 672, providing an explanation for the high binding affinity. In addition, they show that the HCDR3 binding site overlaps with the binding site of the N-terminal lobe of calmodulin (CaM), an EF enzymatic activator, consistent with a previous finding showing direct competition with CaM that results in neutralization of EF. Identifying the neutralization epitope of EF13D on EF improves our understanding of the neutralization mechanism and has implications for vaccine development.
Collapse
Affiliation(s)
- Michelle Makiya
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| | - Michael Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| | - Liane Agulto
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| | - Robert Purcell
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhaochun Chen
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
20
|
Abstract
The anthrax edema toxin (ET) of Bacillus anthracis is composed of the receptor-binding component protective antigen (PA) and of the adenylyl cyclase catalytic moiety, edema factor (EF). Uptake of ET into cells raises intracellular concentrations of the secondary messenger cyclic AMP, thereby impairing or activating host cell functions. We report here on a new consequence of ET action in vivo. We show that in mouse models of toxemia and infection, serum PA concentrations were significantly higher in the presence of enzymatically active EF. These higher concentrations were not caused by ET-induced inhibition of PA endocytosis; on the contrary, ET induced increased PA binding and uptake of the PA oligomer in vitro and in vivo through upregulation of the PA receptors TEM8 and CMG2 in both myeloid and nonmyeloid cells. ET effects on protein clearance from circulation appeared to be global and were not limited to PA. ET also impaired the clearance of ovalbumin, green fluorescent protein, and EF itself, as well as the small molecule biotin when these molecules were coinjected with the toxin. Effects on injected protein levels were not a result of general increase in protein concentrations due to fluid loss. Functional markers for liver and kidney were altered in response to ET. Concomitantly, ET caused phosphorylation and activation of the aquaporin-2 water channel present in the principal cells of the collecting ducts of the kidneys that are responsible for fluid homeostasis. Our data suggest that in vivo, ET alters circulatory protein and small molecule pharmacokinetics by an as-yet-undefined mechanism, thereby potentially allowing a prolonged circulation of anthrax virulence factors such as EF during infection.
Collapse
|
21
|
Mouse monoclonal antibodies to anthrax edema factor protect against infection. Infect Immun 2011; 79:4609-16. [PMID: 21911463 DOI: 10.1128/iai.05314-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis is the causative agent of anthrax, and the tripartite anthrax toxin is an essential element of its pathogenesis. Edema factor (EF), a potent adenylyl cyclase, is one of the toxin components. In this work, anti-EF monoclonal antibodies (MAb) were produced following immunization of mice, and four of the antibodies were fully characterized. MAb 3F2 has an affinity of 388 pM, was most effective for EF detection, and appears to be the first antibody reported to neutralize EF by binding to the catalytic C(B) domain. MAb 7F10 shows potent neutralization of edema toxin activity in vitro and in vivo; it targets the N-terminal protective antigen binding domain. The four MAb react with three different domains of edema factor, and all were able to detect purified edema factor in Western blot analysis. None of the four MAb cross-reacted with the lethal factor toxin component. Three of the four MAb protected mice in both a systemic edema toxin challenge model and a subcutaneous spore-induced foreleg edema model. A combination of three of the MAb also significantly delayed the time to death in a third subcutaneous spore challenge model. This appears to be the first direct evidence that monoclonal antibody-mediated neutralization of EF alone is sufficient to delay anthrax disease progression.
Collapse
|
22
|
A Bacillus anthracis strain deleted for six proteases serves as an effective host for production of recombinant proteins. Protein Expr Purif 2011; 80:80-90. [PMID: 21827967 DOI: 10.1016/j.pep.2011.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/23/2011] [Indexed: 12/25/2022]
Abstract
Bacillus anthracis produces a number of extracellular proteases that impact the integrity and yield of other proteins in the B. anthracis secretome. In this study we show that anthrolysin O (ALO) and the three anthrax toxin proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), produced from the B. anthracis Ames 35 strain (pXO1⁺, pXO2⁻), are completely degraded at the onset of stationary phase due to the action of proteases. An improved Cre-loxP gene knockout system was used to sequentially delete the genes encoding six proteases (InhA1, InhA2, camelysin, TasA, NprB, and MmpZ). The role of each protease in degradation of the B. anthracis toxin components and ALO was demonstrated. Levels of the anthrax toxin components and ALO in the supernatant of the sporulation defective, pXO1⁺ A35HMS mutant strain deleted for the six proteases were significantly increased and remained stable over 24 h. A pXO1-free variant of this six-protease mutant strain, designated BH460, provides an improved host strain for the preparation of recombinant proteins. As an example, BH460 was used to produce recombinant EF, which previously has been difficult to obtain from B. anthracis. The EF protein produced from BH460 had the highest in vivo potency of any EF previously purified from B. anthracis or Escherichia coli hosts. BH460 is recommended as an effective host strain for recombinant protein production, typically yielding greater than 10mg pure protein per liter of culture.
Collapse
|
23
|
MyD88-dependent signaling protects against anthrax lethal toxin-induced impairment of intestinal barrier function. Infect Immun 2010; 79:118-24. [PMID: 20974827 DOI: 10.1128/iai.00963-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MyD88-deficient mice were previously shown to have increased susceptibility to Bacillus anthracis infection relative to wild-type animals. To determine the mechanism by which MyD88 protects against B. anthracis infection, knockout mice were challenged with nonencapsulated, toxigenic B. anthracis or with anthrax toxins. MyD88-deficient mice had increased susceptibility to B. anthracis and anthrax lethal toxin but not to edema toxin. Lethal toxin alone induced marked multifocal intestinal ulcers in the knockout animals, compromising the intestinal epithelial barrier. The resulting enteric bacterial leakage in the knockout animals led to peritonitis and septicemia. Focal ulcers and erosion were also found in MyD88-heterozygous control mice but with far lower incidence and severity. B. anthracis infection also induced a similar enteric bacterial septicemia in MyD88-deficient mice but not in heterozygous controls. We show that lethal toxin and B. anthracis challenge induce bacteremia as a result of intestinal damage in MyD88-deficient mice. These results suggest that loss of the intestinal epithelial barrier and enteric bacterial septicemia may contribute to sensitizing MyD88-deficient mice to B. anthracis and that MyD88 plays a protective role against lethal toxin-induced impairment of intestinal barrier.
Collapse
|
24
|
Geduhn J, Dove S, Shen Y, Tang WJ, König B, Seifert R. Bis-halogen-anthraniloyl-substituted nucleoside 5'-triphosphates as potent and selective inhibitors of Bordetella pertussis adenylyl cyclase toxin. J Pharmacol Exp Ther 2010; 336:104-15. [PMID: 20962032 DOI: 10.1124/jpet.110.174219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whooping cough is caused by Bordetella pertussis and still constitutes one of the top five causes of death in young children, particularly in developing countries. The calmodulin-activated adenylyl cyclase (AC) toxin CyaA substantially contributes to disease development. Thus, potent and selective CyaA inhibitors would be valuable drugs for the treatment of whooping cough. However, it has been difficult to obtain potent CyaA inhibitors with selectivity relative to mammalian ACs. Selectivity is important for reducing potential toxic effects. In a previous study we serendipitously found that bis-methylanthraniloyl (bis-MANT)-IMP is a more potent CyaA inhibitor than MANT-IMP (Mol Pharmacol 72:526-535, 2007). These data prompted us to study the effects of a series of 32 bulky mono- and bis-anthraniloyl (ANT)-substituted nucleotides on CyaA and mammalian ACs. The novel nucleotides differentially inhibited CyaA and ACs 1, 2, and 5. Bis-ANT nucleotides inhibited CyaA competitively. Most strikingly, bis-Cl-ANT-ATP inhibited CyaA with a potency ≥100-fold higher than ACs 1, 2, and 5. In contrast to MANT-ATP, bis-MANT-ATP exhibited low intrinsic fluorescence, thereby substantially enhancing the signal-to noise ratio for the analysis of nucleotide binding to CyaA. The high sensitivity of the fluorescence assay revealed that bis-MANT-ATP binds to CyaA already in the absence of calmodulin. Molecular modeling showed that the catalytic site of CyaA is sufficiently spacious to accommodate both MANT substituents. Collectively, we have identified the first potent CyaA inhibitor with high selectivity relative to mammalian ACs. The fluorescence properties of bis-ANT nucleotides facilitate development of a high-throughput screening assay.
Collapse
Affiliation(s)
- Jens Geduhn
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Duverger A, Carré JM, Jee J, Leppla SH, Cormet-Boyaka E, Tang WJ, Tomé D, Boyaka PN. Contributions of edema factor and protective antigen to the induction of protective immunity by Bacillus anthracis edema toxin as an intranasal adjuvant. THE JOURNAL OF IMMUNOLOGY 2010; 185:5943-52. [PMID: 20952678 DOI: 10.4049/jimmunol.0902795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown that intranasal coapplication of Bacillus anthracis protective Ag (PA) together with a B. anthracis edema factor (EF) mutant having reduced adenylate cyclase activity (i.e., EF-S414N) enhances anti-PA Ab responses, but also acts as a mucosal adjuvant for coadministered unrelated Ags. To elucidate the role of edema toxin (EdTx) components in its adjuvanticity, we examined how a PA mutant lacking the ability to bind EF (PA-U7) or another mutant that allows the cellular uptake of EF, but fails to efficiently mediate its translocation into the cytosol (PA-dFF), would affect EdTx-induced adaptive immunity. Native EdTx promotes costimulatory molecule expression by macrophages and B lymphocytes, and a broad spectrum of cytokine responses by cervical lymph node cells in vitro. These effects were reduced or abrogated when cells were treated with EF plus PA-dFF, or PA-U7 instead of PA. We also intranasally immunized groups of mice with a recombinant fusion protein of Yersinia pestis F1 and LcrV Ags (F1-V) together with EdTx variants consisting of wild-type or mutants PA and EF. Analysis of serum and mucosal Ab responses against F1-V or EdTx components (i.e., PA and EF) revealed no adjuvant activity in mice that received PA-U7 instead of PA. In contrast, coimmunization with PA-dFF enhanced serum Ab responses. Finally, immunization with native PA and an EF mutant lacking adenylate cyclase activity (EF-K346R) failed to enhance Ab responses. In summary, a fully functional PA and a minimum of adenylate cyclase activity are needed for EdTx to act as a mucosal adjuvant.
Collapse
Affiliation(s)
- Alexandra Duverger
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lewis M, Weaver CD, McClain MS. Identification of Small Molecule Inhibitors of Clostridium perfringens ε-Toxin Cytotoxicity Using a Cell-Based High-Throughput Screen. Toxins (Basel) 2010; 2:1825-1847. [PMID: 20721308 PMCID: PMC2922765 DOI: 10.3390/toxins2071825] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Clostridium perfringens epsilon toxin, a select agent, is responsible for a severe, often fatal enterotoxemia characterized by edema in the heart, lungs, kidney, and brain. The toxin is believed to be an oligomeric pore-forming toxin. Currently, there is no effective therapy for countering the cytotoxic activity of the toxin in exposed individuals. Using a robust cell-based high-throughput screening (HTS) assay, we screened a 151,616-compound library for the ability to inhibit ε-toxin-induced cytotoxicity. Survival of MDCK cells exposed to the toxin was assessed by addition of resazurin to detect metabolic activity in surviving cells. The hit rate for this screen was 0.6%. Following a secondary screen of each hit in triplicate and assays to eliminate false positives, we focused on three structurally-distinct compounds: an N-cycloalkylbenzamide, a furo[2,3-b]quinoline, and a 6H-anthra[1,9-cd]isoxazol. None of the three compounds appeared to inhibit toxin binding to cells or the ability of the toxin to form oligomeric complexes. Additional assays demonstrated that two of the inhibitory compounds inhibited ε-toxin-induced permeabilization of MDCK cells to propidium iodide. Furthermore, the two compounds exhibited inhibitory effects on cells pre-treated with toxin. Structural analogs of one of the inhibitors identified through the high-throughput screen were analyzed and provided initial structure-activity data. These compounds should serve as the basis for further structure-activity refinement that may lead to the development of effective anti-ε-toxin therapeutics.
Collapse
Affiliation(s)
- Michelle Lewis
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Charles David Weaver
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-615-322-2035; Fax: +1-615-343-6160
| |
Collapse
|
27
|
Bouzianas DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010; 53:4305-31. [PMID: 20102155 DOI: 10.1021/jm901024b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dimitrios G Bouzianas
- Laboratory of Molecular Endocrinology, Division of Endocrinology and Metabolism, AHEPA University Hospital, 1 S. Kyriakidi Street, P.C. 54636, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
28
|
Carlsson J, Yoo L, Gao ZG, Irwin JJ, Shoichet BK, Jacobson KA. Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 2010; 53:3748-55. [PMID: 20405927 PMCID: PMC2865168 DOI: 10.1021/jm100240h] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The recent determination of X-ray structures of pharmacologically relevant GPCRs has made these targets accessible to structure-based ligand discovery. Here we explore whether novel chemotypes may be discovered for the A2A adenosine receptor, based on complementarity to its recently determined structure. The A2A adenosine receptor signals in the periphery and the CNS, with agonists explored as anti-inflammatory drugs and antagonists explored for neurodegenerative diseases. We used molecular docking to screen a 1.4 million compound database against the X-ray structure computationally and tested 20 high-ranking, previously unknown molecules experimentally. Of these 35% showed substantial activity with affinities between 200 nM and 9 μM. For the most potent of these new inhibitors, over 50-fold specificity was observed for the A2A versus the related A1 and A3 subtypes. These high hit rates and affinities at least partly reflect the bias of commercial libraries toward GPCR-like chemotypes, an issue that we attempt to investigate quantitatively. Despite this bias, many of the most potent new ligands were novel, dissimilar from known ligands, providing new lead structures for modulation of this medically important target.
Collapse
Affiliation(s)
- Jens Carlsson
- Department of Pharmaceutical Chemistry, University of California, 1700 4th Street, Box 2550, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
29
|
Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor. Proc Natl Acad Sci U S A 2010; 107:11277-82. [PMID: 20534570 DOI: 10.1073/pnas.0914611107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Allostery plays a key role in the regulation of the activity and function of many biomolecules. And although many ligands act through allostery, no systematic use is made of it in drug design strategies. Here we describe a procedure for identifying the regions of a protein that can be used to control its activity through allostery. This procedure is based on the construction of a plausible conformational path, which describes protein transition between known active and inactive conformations. The path is calculated by using a framework approach that steers and markedly improves the conjugate peak refinement method. The evolution of conformations along this path was used to identify a putative allosteric site that could regulate activation of Bacillus anthracis adenylyl cyclase toxin (EF) by calmodulin. Conformations of the allosteric site at different steps along the path from the inactive (free) to the active (bound to calmodulin) forms of EF were used to perform virtual screenings and propose candidate EF inhibitors. Several candidates then proved to inhibit calmodulin-induced activation in an in vitro assay. The most potent compound fully inhibited EF at a concentration of 10 microM. The compounds also inhibited the related adenylyl cyclase toxin from Bordetella pertussis (CyaA). The specific homology between the putative allosteric sites in both toxins supports that these pockets are the actual binding sites of the selected inhibitors.
Collapse
|
30
|
Comparison of three anthrax toxin neutralization assays. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:895-903. [PMID: 20375243 DOI: 10.1128/cvi.00513-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Different types of anthrax toxin neutralization assays have been utilized to measure the antibody levels elicited by anthrax vaccines in both nonclinical and clinical studies. In the present study, we sought to determine whether three commonly used toxin neutralization assays-J774A.1 cell-, RAW 264.7 cell-, and CHO cell-based assays-yield comparable estimates of neutralization activities for sera obtained after vaccination with anthrax vaccines composed of recombinant protective antigen (rPA). In order to compare the assays, sera were assayed alongside a common reference serum sample and the neutralization titers were expressed relative to the titer for the reference sample in each assay. Analysis of sera from rabbits immunized with multiple doses of the rPA vaccine showed that for later bleeds, the quantitative agreement between the assays was good; however, for early bleeds, some heterogeneity in relative neutralization estimates was observed. Analysis of serum samples from rabbits, nonhuman primates, and humans immunized with the rPA vaccine showed that the relative neutralization estimates obtained in the different assays agreed to various extents, depending on the species of origin of the sera examined. We identified differences in the magnitudes of the Fc receptor-mediated neutralization associated with the J774A.1 cell- and RAW 264.7 cell-based assays, which may account for some of the species dependence of the assays. The differences in the relative neutralization estimates among the assays were relatively small and were always less than 2.5-fold. However, because toxin neutralization assays will likely be used to establish the efficacies of new anthrax vaccines, our findings should be considered when assay outputs are interpreted.
Collapse
|
31
|
Sun GQ, Liu QX, Jin Z, Chakraborty A, Li BL. Influence of infection rate and migration on extinction of disease in spatial epidemics. J Theor Biol 2010; 264:95-103. [PMID: 20085769 DOI: 10.1016/j.jtbi.2010.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 11/29/2022]
Abstract
Extinction of disease can be explained by the patterns of epidemic spreading, yet the underlying causes of extinction are far from being well understood. To reveal a mechanism of disease extinction, a cellular automata model with both birth, death rate and migration is presented. We find that, in single patch, when the infection rate is small or large enough, the disease will disappear for a long time. When the invasion form is in the coexistence of stable spiral and turbulent wave state, the disease will persist. Also, we find that the migration has dual effects on the epidemic spreading. On one hand, in the extinction region of single patch, if the migration rate is large enough, there is a phase transition from the disease free to endemic state in two patches. On the other hand, migration will induce extinction in the regime, which can ensure the persistence of the disease in single patch, due to emergence of anti-phase synchrony. The results obtained well reveal the effect of infection rate and migration on the extinction of the disease, which enriches the finding in the filed of epidemiology and may provide some new ideas to control the disease in the real world.
Collapse
Affiliation(s)
- Gui-Quan Sun
- Department of Mathematics, North University of China, Taiyuan, Shan'xi 030051, People's Republic of China.
| | | | | | | | | |
Collapse
|
32
|
Tang WJ, Guo Q. The adenylyl cyclase activity of anthrax edema factor. Mol Aspects Med 2009; 30:423-30. [PMID: 19560485 DOI: 10.1016/j.mam.2009.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 02/08/2023]
Abstract
Bacillus anthracis, the etiologic agent for anthrax, secretes edema factor (EF) to disrupt intracellular signaling pathways. Upon translocation into host cells and association with a calcium sensor, calmodulin (CaM), EF becomes a highly active adenylyl cyclase (AC) that raises the intracellular concentration of cyclic AMP (cAMP). Growing evidence shows that EF plays a key role in anthrax pathogenesis by affecting cellular functions vital for host defense. This strategy is also used by Bordetella pertussis, a bacterium that causes whooping cough. Pertussis bacteria secrete the bifunctional toxin CyaA which raises the intracellular cAMP. Here, we discuss recent advances from structural analyses that reveal the molecular basis of the conserved mechanism of activation and catalysis of EF and CyaA by CaM even though these two toxins use the completely different sequences to bind CaM. Comparison of the biochemical and structural characteristics of these two AC toxins with host ACs reveal that they have diverse strategies of catalytic activation, yet use the same two-metal-ion catalytic mechanism.
Collapse
Affiliation(s)
- Wei-Jen Tang
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W434, Chicago, IL 60637, USA.
| | | |
Collapse
|
33
|
Abstract
Inhalation anthrax results in high-grade bacteremia and is accompanied by a delay in the rise of the peripheral polymorphonuclear neutrophil (PMN) count and a paucity of PMNs in the infected pleural fluid and mediastinum. Edema toxin (ET) is one of the major Bacillus anthracis virulence factors and consists of the adenylate cyclase edema factor (EF) and protective antigen (PA). Relatively low concentrations of ET (100 to 500 ng/ml of PA and EF) significantly impair human PMN chemokinesis, chemotaxis, and ability to polarize. These changes are accompanied by a reduction in chemoattractant-stimulated PMN actin assembly. ET also causes a significant decrease in Listeria monocytogenes intracellular actin-based motility within HeLa cells. These defects in actin assembly are accompanied by a >50-fold increase in intracellular cyclic AMP and a >4-fold increase in the phosphorylation of protein kinase A. We have previously shown that anthrax lethal toxin (LT) also impairs neutrophil actin-based motility (R. L. During, W. Li, B. Hao, J. M. Koenig, D. S. Stephens, C. P. Quinn, and F. S. Southwick, J. Infect. Dis. 192:837-845, 2005), and we now find that LT combined with ET causes an additive inhibition of PMN chemokinesis, polarization, chemotaxis, and FMLP (N-formyl-met-leu-phe)-induced actin assembly. We conclude that ET alone or combined with LT impairs PMN actin assembly, resulting in paralysis of PMN chemotaxis.
Collapse
|
34
|
Chen D, Misra M, Sower L, Peterson JW, Kellogg GE, Schein CH. Novel inhibitors of anthrax edema factor. Bioorg Med Chem 2008; 16:7225-33. [PMID: 18620864 DOI: 10.1016/j.bmc.2008.06.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 01/13/2023]
Abstract
Several pathogenic bacteria produce adenylyl cyclase toxins, such as the edema factor (EF) of Bacillus anthracis. These disturb cellular metabolism by catalyzing production of excessive amounts of the regulatory molecule cAMP. Here, a structure-based method, where a 3D-pharmacophore that fit the active site of EF was constructed from fragments, was used to identify non-nucleotide inhibitors of EF. A library of small molecule fragments was docked to the EF-active site in existing crystal structures, and those with the highest HINT scores were assembled into a 3D-pharmacophore. About 10,000 compounds, from over 2.7 million compounds in the ZINC database, had a similar molecular framework. These were ranked according to their docking scores, using methodology that was shown to achieve maximum accuracy (i.e., how well the docked position matched the experimentally determined site for ATP analogues in crystal structures of the complex). Finally, 19 diverse compounds with the best AutoDock binding/docking scores were assayed in a cell-based assay for their ability to reduce cAMP secretion induced by EF. Four of the test compounds, from different structural groups, inhibited in the low micromolar range. One of these has a core structure common to phosphatase inhibitors previously identified by high-throughput assays of a diversity library. Thus, the fragment-based pharmacophore identified a small number of diverse compounds for assay, and greatly enhanced the selection process of advanced lead compounds for combinatorial design.
Collapse
Affiliation(s)
- Deliang Chen
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0857, USA
| | | | | | | | | | | |
Collapse
|
35
|
Warren JT, Guo Q, Tang WJ. A 1.3-A structure of zinc-bound N-terminal domain of calmodulin elucidates potential early ion-binding step. J Mol Biol 2007; 374:517-27. [PMID: 17942116 PMCID: PMC2128742 DOI: 10.1016/j.jmb.2007.09.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 09/13/2007] [Accepted: 09/18/2007] [Indexed: 01/07/2023]
Abstract
Calmodulin (CaM) is a 16.8-kDa calcium-binding protein involved in calcium-signal transduction. It is the canonical member of the EF-hand family of proteins, which are characterized by a helix-loop-helix calcium-binding motif. CaM is composed of N- and C-terminal globular domains (N-CaM and C-CaM), and within each domain there are two EF-hand motifs. Upon binding calcium, CaM undergoes a significant, global conformational change involving reorientation of the four helix bundles in each of its two domains. This conformational change upon ion binding is a key component of the signal transduction and regulatory roles of CaM, yet the precise nature of this transition is still unclear. Here, we present a 1.3-A structure of zinc-bound N-terminal calmodulin (N-CaM) solved by single-wavelength anomalous diffraction phasing of a selenomethionyl N-CaM. Our zinc-bound N-CaM structure differs from previously reported CaM structures and resembles calcium-free apo-calmodulin (apo-CaM), despite the zinc binding to both EF-hand motifs. Structural comparison with calcium-free apo-CaM, calcium-loaded CaM, and a cross-linked calcium-loaded CaM suggests that our zinc-bound N-CaM reveals an intermediate step in the initiation of metal ion binding at the first EF-hand motif. Our data also suggest that metal ion coordination by two key residues in the first metal-binding site represents an initial step in the conformational transition induced by metal binding. This is followed by reordering of the N-terminal region of the helix exiting from this first binding loop. This conformational switch should be incorporated into models of either stepwise conformational transition or flexible, dynamic energetic state sampling-based transition.
Collapse
Affiliation(s)
- Julia T. Warren
- Biological Sciences Collegial Division, The University of Chicago
| | - Qing Guo
- Ben-May Department for Cancer Research, The University of Chicago
| | - Wei-Jen Tang
- Biological Sciences Collegial Division, The University of Chicago, Ben-May Department for Cancer Research, The University of Chicago, Corresponding author; Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th street, Chicago, IL 60637, Tel: 773-702-4331,
| |
Collapse
|
36
|
Chen D, Menche G, Power TD, Sower L, Peterson JW, Schein CH. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins 2007; 67:593-605. [PMID: 17311351 DOI: 10.1002/prot.21249] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The adenylyl cyclase toxins produced by bacteria (such as the edema factor (EF) of Bacillus anthracis and CyaA of Bordetella pertussis) are important virulence factors in anthrax and whooping cough. Co-crystal structures of these proteins differ in the number and positioning of metal ions in the active site. Metal ions bound only to the ligands in the crystal structures are not included during the docking. To determine what effect these "missing" metals have on docking results, the AutoDock, LigandFit/Cerius2, and FlexX programs were compared for their ability to correctly place substrate analogues and inhibitors into the active sites of the crystal structures of EF, CyaA, and mammalian adenylate cyclase. Protonating the phosphates of substrate analogues improved the accuracy of docking into the active site of CyaA, where the grid did not account for one of the three Mg2+ ions in the crystal structure. The AutoDock ranking (based on docking energies) of a test group of compounds was relatively unaffected by protonation of carboxyl groups. However, the ranking by FlexX-ChemScore varied significantly, especially for docking to CyaA, suggesting that alternate protonation states should be tested when screening compound libraries with this program. When the charges on the bound metal were set correctly, AutoDock was the most reliable program of the three tested with respect to positioning substrate analogues and ranking compounds according to their experimentally determined ability to inhibit EF.
Collapse
Affiliation(s)
- Deliang Chen
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0857, USA
| | | | | | | | | | | |
Collapse
|
37
|
Li Y, Sherer K, Cui X, Eichacker PQ. New insights into the pathogenesis and treatment of anthrax toxin-induced shock. Expert Opin Biol Ther 2007; 7:843-54. [PMID: 17555370 DOI: 10.1517/14712598.7.6.843] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inhalational Bacillus anthracis infection is a leading bioterrorist health threat in the US today. Lethal (LeTx) and edema toxin production are key to the virulent effects of this lethal bacteria. Recent insights into the structure and function of these toxins have increased the understanding of both the pathogenesis and treatment of anthrax. These are binary type toxins comprised of protective antigen necessary for their cellular uptake and either lethal or edema factors, the toxigenic moieties. Primary cellular receptors for protective antigen have been identified and the processing of the completed toxins clarified. Consistent with the ability of lethal factor to cleave mitogen activated protein kinase kinases, the evidence indicates that an excessive inflammatory response does not contribute to shock with LeTx. Rather, the immunosuppressive effects of LeTx could promote infection; however, direct endothelial dysfunction may have an important role in shock due to LeTx. Recent studies show that edema factor, a potent adenyl cyclase, may have a major role in shock during anthrax and that it may also be immunosuppresive. Therapies under development which target several steps in the cellular uptake and function of these two toxins have been effective in both in vitro and in vivo systems. Understanding how best to apply these agents in combination with conventional treatments should be a goal of future research.
Collapse
MESH Headings
- Adenylyl Cyclases/immunology
- Adenylyl Cyclases/metabolism
- Animals
- Anthrax/complications
- Anthrax/drug therapy
- Anthrax/metabolism
- Anthrax Vaccines/therapeutic use
- Antibodies, Monoclonal/therapeutic use
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacillus anthracis/immunology
- Bacillus anthracis/metabolism
- Bacillus anthracis/pathogenicity
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Endothelium, Vascular/microbiology
- Endothelium, Vascular/physiopathology
- Humans
- Receptors, Peptide/metabolism
- Shock, Septic/drug therapy
- Shock, Septic/metabolism
- Shock, Septic/microbiology
- Shock, Septic/physiopathology
- Virulence
Collapse
Affiliation(s)
- Yan Li
- National Institutes of Health, Critical Care Medicine Department, Clinical Center, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
38
|
Göttle M, Dove S, Steindel P, Shen Y, Tang WJ, Geduhn J, König B, Seifert R. Molecular analysis of the interaction of Bordetella pertussis adenylyl cyclase with fluorescent nucleotides. Mol Pharmacol 2007; 72:526-35. [PMID: 17553924 DOI: 10.1124/mol.107.034413] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The calmodulin (CaM)-dependent adenylyl cyclase (AC) toxin from Bordetella pertussis (CyaA) substantially contributes to the pathogenesis of whooping cough. Thus, potent and selective CyaA inhibitors may be valuable drugs for prophylaxis of this disease. We examined the interactions of fluorescent 2',3'-N-methylanthraniloyl (MANT)-, anthraniloyl- and trinitrophenyl (TNP)-substituted nucleotides with CyaA. Compared with mammalian AC isoforms and Bacillus anthracis AC toxin edema factor, nucleotides inhibited catalysis by CyaA less potently. Introduction of the MANT substituent resulted in 5- to 170-fold increased potency of nucleotides. K(i) values of 3'MANT-2'd-ATP and 2'MANT-3'd-ATP in the AC activity assay using Mn(2+) were 220 and 340 nM, respectively. Natural nucleoside 5'-triphosphates, guanine-, hypoxanthine- and pyrimidine-MANT- and TNP nucleotides and di-MANT nucleotides inhibited CyaA, too. MANT nucleotide binding to CyaA generated fluorescence resonance energy transfer (FRET) from tryptophans Trp69 and Trp242 and multiple tyrosine residues, yielding K(d) values of 300 nM for 3'MANT-2'd-ATP and 400 nM for 2'MANT-3'd-ATP. Fluorescence experiments and docking approaches indicate that the MANT- and TNP groups interact with Phe306. Increases of FRET and direct fluorescence with MANT nucleotides were strictly CaM-dependent, whereas TNP nucleotide fluorescence upon binding to CyaA increased in the absence of CaM and was actually reduced by CaM. In contrast to low-affinity MANT nucleotides, even low-affinity TNP nucleotides generated strong fluorescence increases upon binding to CyaA. We conclude that the catalytic site of CyaA possesses substantial conformational freedom to accommodate structurally diverse ligands and that certain ligands bind to CyaA even in the absence of CaM, facilitating future inhibitor design.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Watson LE, Kuo SR, Katki K, Dang T, Park SK, Dostal DE, Tang WJ, Leppla SH, Frankel AE. Anthrax toxins induce shock in rats by depressed cardiac ventricular function. PLoS One 2007; 2:e466. [PMID: 17520025 PMCID: PMC1867860 DOI: 10.1371/journal.pone.0000466] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/01/2007] [Indexed: 12/05/2022] Open
Abstract
Anthrax infections are frequently associated with severe and often irreversible hypotensive shock. The isolated toxic proteins of Bacillus anthracis produce a non-cytokine-mediated hypotension in rats by unknown mechanisms. These observations suggest the anthrax toxins have direct cardiovascular effects. Here, we characterize these effects. As a first step, we administered systemically anthrax lethal toxin (LeTx) and edema toxin (EdTx) to cohorts of three to twelve rats at different doses and determined the time of onset, degree of hypotension and mortality. We measured serum concentrations of the protective antigen (PA) toxin component at various time points after infusion. Peak serum levels of PA were in the µg/mL range with half-lives of 10–20 minutes. With doses that produced hypotension with delayed lethality, we then gave bolus intravenous infusions of toxins to groups of four to six instrumented rats and continuously monitored blood pressure by telemetry. Finally, the same doses used in the telemetry experiments were given to additional groups of four rats, and echocardiography was performed pretreatment and one, two, three and twenty-four hours post-treatment. LeTx and EdTx each produced hypotension. We observed a doubling of the velocity of propagation and 20% increases in left ventricular diastolic and systolic areas in LeTx-treated rats, but not in EdTx-treated rats. EdTx-but not LeTx-treated rats showed a significant increase in heart rate. These results indicate that LeTx reduced left ventricular systolic function and EdTx reduced preload. Uptake of toxins occurs readily into tissues with biological effects occurring within minutes to hours of serum toxin concentrations in the µg/mL range. LeTx and EdTx yield an irreversible shock with subsequent death. These findings should provide a basis for the rational design of drug interventions to reduce the dismal prognosis of systemic anthrax infections.
Collapse
Affiliation(s)
- Linley E. Watson
- Division of Cardiology, Scott and White Memorial Hospital, Scott, Sherwood and Brindley Foundation, Temple, Texas, United States of America
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
- Division of Molecular Cardiology, Texas A&M University System, Health Science Center College of Medicine, and Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Shu-ru Kuo
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
| | - Khurshed Katki
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
| | - Tongyun Dang
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
| | - Seong Kyu Park
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
| | - David E. Dostal
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
- Division of Molecular Cardiology, Texas A&M University System, Health Science Center College of Medicine, and Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Wei-Jen Tang
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Arthur E. Frankel
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Hong J, Doebele RC, Lingen MW, Quilliam LA, Tang WJ, Rosner MR. Anthrax edema toxin inhibits endothelial cell chemotaxis via Epac and Rap1. J Biol Chem 2007; 282:19781-7. [PMID: 17491018 DOI: 10.1074/jbc.m700128200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis involves the assembly of endothelial cells into capillaries from a pre-existing vasculature. Because abnormal angiogenesis is a hallmark of many cancers, it is critical to find factors that control this process. Endothelial cells are enriched in the anthrax receptor; we therefore determined the effect of anthrax edema toxin (ET), an adenylyl cyclase, on chemotaxis. cAMP generated by ET does not block proliferation or survival but causes cytoskeletal changes and inhibits chemotaxis by primary human microvascular endothelial cells (HMVECs). These effects are due to the action of a downstream cAMP effector, Epac, a guanine nucleotide exchange-activating protein for Rap1 (RAP1-GEF). ET induces transcription of Epac-related activators of Rap1, Epac2 (RapGEF4), and MR-GEF/RapGEF5. Similar to ET, activated Epac or Rap1 induces cytoskeletal changes and blocks chemotaxis in human endothelial cells. These results identify Epac and Rap1 as key regulators of signaling cascades leading to endothelial cell chemotaxis.
Collapse
Affiliation(s)
- Jia Hong
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
41
|
Firoved AM, Moayeri M, Wiggins JF, Shen Y, Tang WJ, Leppla SH. Anthrax edema toxin sensitizes DBA/2J mice to lethal toxin. Infect Immun 2007; 75:2120-5. [PMID: 17339348 PMCID: PMC1865792 DOI: 10.1128/iai.01781-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthrax toxin is made up of three separate protein components: the receptor-binding protective antigen (PA), the adenylyl cyclase edema factor (EF), and the metalloproteinase lethal factor (LF). EF and PA constitute edema toxin (ET), which causes edema when injected subcutaneously. At higher doses, ET causes severe pathologies and death in BALB/cJ mice (A. M. Firoved et al., Am. J. Pathol. 167:1309-1320, 2005). A striking effect of ET at lethal doses is adrenal necrosis. Here we show that low doses of ET (10 microg) that produce no overt signs of illness in mice still cause substantial adrenal lesions. These lesions are not associated with reduced corticosterone production; instead, ET-treated mice have increased corticosterone production. Because the resistance of mice to the other component of anthrax toxin, lethal toxin (LT; LF plus PA), has been shown to be overcome by the perturbation of the endocrine system, we hypothesized that sublethal doses of ET might sensitize LT-resistant DBA/2J mice to LT-mediated lethality. We report that a low dose of ET (5 microg) is sufficient to sensitize DBA/2J mice when given concurrently with LT. Higher doses of ET (e.g., 15 microg) given to male and female DBA/2J mice 18 h prior to LT challenge also sensitize them to LT. This study using highly purified ET and LT demonstrates how the components of anthrax toxin can work together to increase lethality.
Collapse
Affiliation(s)
- Aaron M Firoved
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, 30 Convent Dr., Building 30, Room 303, Bethesda, MD 20892-4349, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Computational and experimental high-throughput screening are frequently used to discover new leads for drug design. Although novel ligands have been identified by these methods, it has become clear that screening hit lists are plagued by false positives. These nuisance compounds are ultimately found to be developmental dead-ends and are abandoned, often after considerable effort has been invested in them. Much work over the last decade has been devoted to exploring the origins of false-positive screening hits, and ligand promiscuity has emerged as one such cause. Well-known mechanisms of promiscuity include reactive species and privileged substructures. More recently, it has been found that some nonspecific screening hits form aggregates of 30–1000 nm in diameter. It has been proposed that these aggregate particles are responsible for the promiscuous behavior of many false positives and that aggregate-forming compounds may be widespread among screening hits. This chapter will review the known mechanisms of ligand promiscuity with an emphasis on the recently described model of aggregation. Experimental and computational methods for identifying promiscuous compounds will be described, and some outstanding questions in the field will be considered.
Collapse
|
43
|
Sherer K, Li Y, Cui X, Eichacker PQ. Lethal and edema toxins in the pathogenesis of Bacillus anthracis septic shock: implications for therapy. Am J Respir Crit Care Med 2006; 175:211-21. [PMID: 17095744 PMCID: PMC2176088 DOI: 10.1164/rccm.200608-1239cp] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent research regarding the structure and function of Bacillus anthracis lethal (LeTx) and edema (ETx) toxins provides growing insights into the pathophysiology and treatment of shock with this lethal bacteria. These are both binary-type toxins composed of protective antigen necessary for their cellular uptake and either lethal or edema factors, the toxigenic moieties. The primary cellular receptors for protective antigen have been identified and constructed and key steps in the extracellular processing and internalization of the toxins clarified. Consistent with the lethal factor's primary action as an intracellular endopeptidase targeting mitogen-activated protein kinase kinases, growing evidence indicates that shock with this toxin does not result from an excessive inflammatory response. In fact, the potent immunosuppressive effects of LeTx may actually contribute to the establishment and persistence of infection. Instead, shock with LeTx may be related to the direct injurious effects of lethal factor on endothelial cell function. Despite the importance of LeTx, very recent studies show that edema factor, a potent adenyl cyclase, has the ability to make a substantial contribution to shock caused by B. anthracis and works additively with LeTx. Furthermore, ETx may contribute to the immunosuppressive effects of LeTx. Therapies under development that target several different steps in the cellular uptake and function of these two toxins have been effective in in vitro and in vivo systems. Understanding how best to apply these agents clinically and how they interact with conventional treatments should be goals for future research.
Collapse
Affiliation(s)
- Kevin Sherer
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
44
|
Abstract
In spite of recent improvements in docking and scoring methods, high false-positive rates remain a common issue in structure-based virtual screening. In this study, the distinctive features of false positives in kinase virtual screens were investigated. A series of retrospective virtual screens on kinase targets was performed on specifically designed test sets, each combining true ligands and experimentally confirmed inactive compounds. A systematic analysis of the docking poses generated for the top-ranking compounds highlighted key aspects differentiating true hits from false positives. The most recurring feature in the poses of false positives was the absence of certain key interactions known to be required for kinase binding. A systematic analysis of 444 crystal structures of ligand-bound kinases showed that at least two hydrogen bonds between the ligand and the backbone protein atoms in the kinase hinge region are present in 90% of the complexes, with very little variability across targets. Closer inspection showed that when the two hydrogen bonds are present, one of three preferred hinge-binding motifs is involved in 96.5% of the cases. Less than 10% of the false positives satisfied these two criteria in the minimized docking poses generated by our standard protocol. Ligand conformational artifacts were also shown to contribute to the occurrence of false positives in a number of cases. Application of this knowledge in the form of docking constraints and post-processing filters provided consistent improvements in virtual screening performance on all systems. The false-positive rates were significantly reduced and the enrichment factors increased by an average of twofold. On the basis of these results, a generalized two-step protocol for virtual screening on kinase targets is suggested.
Collapse
Affiliation(s)
- Emanuele Perola
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
45
|
Rester U. Dock around the Clock – Current Status of Small Molecule Docking and Scoring. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/qsar.200510183] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Barker JJ. Antibacterial drug discovery and structure-based design. Drug Discov Today 2006; 11:391-404. [PMID: 16635801 DOI: 10.1016/j.drudis.2006.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/06/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Bacterial resistance continues to develop and pose a significant threat, both in hospitals and, more recently, in the community. A focus on other therapeutic areas by the larger pharmaceutical companies has left a shortfall in the pipeline of novel antibacterials. Recently, many new structures have been studied by structure-genomics initiatives, delivering a wealth of targets to consider. Using the tools of structure-based design, antibacterial discovery must exploit these targets to accelerate the process of drug discovery.
Collapse
Affiliation(s)
- John J Barker
- Evotec UK, 111 Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK.
| |
Collapse
|
47
|
deCathelineau A, Bokoch G. Peptide inhibitors MAP the way towards fighting anthrax pathogenesis. Biochem J 2006; 395:e1-3. [PMID: 16541485 PMCID: PMC1409691 DOI: 10.1042/bj20060245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pathogenesis of anthrax is such that unless antibiotic treatment is initiated at an early stage in the disease, it is ineffective against the bacteria-induced toxaemia that subverts the immune response, inflicts massive tissue damage and is ultimately the major factor contributing to death during anthrax infection. As current events have demonstrated the feasibility of the use of anthrax as a bioterrorism agent, and exemplified the difficulty of treating the ensuing infection, inhibition of anthrax toxin has become a major focus of research for the design of antitoxin therapeutics. In this issue of Biochemical Journal, Bracci and co-workers describe the discovery by competitive screening of a phage-display library of a peptide inhibitor of anthrax toxin assembly that shows great promise towards the treatment of anthrax.
Collapse
Affiliation(s)
| | - Gary M. Bokoch
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Firoved AM, Miller GF, Moayeri M, Kakkar R, Shen Y, Wiggins JF, McNally EM, Tang WJ, Leppla SH. Bacillus anthracis edema toxin causes extensive tissue lesions and rapid lethality in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1309-20. [PMID: 16251415 PMCID: PMC1603774 DOI: 10.1016/s0002-9440(10)61218-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacillus anthracis edema toxin (ET), an adenylyl cyclase, is an important virulence factor that contributes to anthrax disease. The role of ET in anthrax pathogenesis is, however, poorly understood. Previous studies using crude toxin preparations associated ET with subcutaneous edema, and ET-deficient strains of B. anthracis showed a reduction in virulence. We report the first comprehensive study of ET-induced pathology in an animal model. Highly purified ET caused death in BALB/cJ mice at lower doses and more rapidly than previously seen with the other major B. anthracis virulence factor, lethal toxin. Observations of gross pathology showed intestinal intralumenal fluid accumulation followed by focal hemorrhaging of the ileum and adrenal glands. Histopathological analyses of timed tissue harvests revealed lesions in several tissues including adrenal glands, lymphoid organs, bone, bone marrow, gastrointestinal mucosa, heart, and kidneys. Concomitant blood chemistry analyses supported the induction of tissue damage. Several cytokines increased after ET administration, including granulocyte colony-stimulating factor, eotaxin, keratinocyte-derived cytokine, MCP-1/JE, interleukin-6, interleukin-10, and interleukin-1beta. Physiological measurements also revealed a concurrent hypotension and bradycardia. These studies detail the extensive pathological lesions caused by ET and suggest that it causes death due to multiorgan failure.
Collapse
Affiliation(s)
- Aaron M Firoved
- National Institute of Allergy and Infectious Diseases, Office of Research Services, National Institutes of Health, 30 Convent Dr., Building 30, Room 303, Bethesda, MD 20892-4349, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hong J, Beeler J, Zhukovskaya NL, He W, Tang WJ, Rosner MR. Anthrax edema factor potency depends on mode of cell entry. Biochem Biophys Res Commun 2005; 335:850-7. [PMID: 16099427 DOI: 10.1016/j.bbrc.2005.07.132] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/20/2022]
Abstract
Anthrax edema factor (EF) is a highly active calmodulin-dependent adenylyl cyclase toxin that can potently raise intracellular cAMP levels causing a broad range of tissue damage. EF needs anthrax protective antigen (PA) to enter into the host cell and together they form edema toxin. Here, we examine factors that are critical for edema toxin cell entry and potency. In Y1, 293T and mouse embryonic fibroblast cells, EF causes cell rounding, aggregation, and sometimes detachment via protein kinase A but not Epac. The rate-limiting step for these EF-mediated effects is cellular entry via the anthrax toxin receptor. Finally, EF potency is also enhanced if the EF adenylyl cyclase domain is transfected into host cells, even in the absence of the anthrax PA-binding domain. These results indicate that the effects of EF in cells can differ dependent upon the mode of cellular entry of the adenylyl cyclase.
Collapse
Affiliation(s)
- Jia Hong
- Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Ligand flexibility is an important problem in molecular docking and virtual screening. To address this challenge, we investigate a hierarchical pre-organization of multiple conformations of small molecules. Such organization of pre-calculated conformations removes the exploration of ligand conformational space from the docking calculation and allows for concise representation of what can be thousands of conformations. The hierarchy also recognizes and prunes incompatible conformations early in the calculation, eliminating redundant calculations of fit. We investigate the method by docking the MDL Drug Data Report (MDDR), an annotated database of 100,000 molecules, into apo and holo forms of seven unrelated targets. This annotated database allows us to track the ranking of tens to hundreds of annotated ligands in each of the docking systems. The binding sites and database are prepared in an automated fashion in an attempt to remove some human bias from the calculations. Many thousands of explicit and implicit ligand conformations may be docked in calculations not much longer than required for single conformer docking. As long as internal energies are not considered, recombination with the hierarchy is additive as the number of degrees of freedom is increased. Molecules with even millions of conformations can be docked in a few minutes on a single desktop computer.
Collapse
Affiliation(s)
| | - Brian K. Shoichet
- *Address correspondence to this author at the University of California San Francisco, Dept. of Pharmaceutical Chemistry, 1700 4 Street, QB3 Building Room 508D, San Francisco, CA 94143-2550; Tel: 415-514-4126; Fax: 415-514-4260; E-mail:
| |
Collapse
|