1
|
Dasgupta S. Thinking Beyond Disease Silos: Dysregulated Genes Common in Tuberculosis and Lung Cancer as Identified by Systems Biology and Machine Learning. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:347-356. [PMID: 38856681 DOI: 10.1089/omi.2024.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The traditional way of thinking about human diseases across clinical and narrow phenomics silos often masks the underlying shared molecular substrates across human diseases. One Health and planetary health fields particularly address such complexities and invite us to think across the conventional disease nosologies. For example, tuberculosis (TB) and lung cancer (LC) are major pulmonary diseases with significant planetary health implications. Despite distinct etiologies, they can coexist in a given community or patient. This is both a challenge and an opportunity for preventive medicine, diagnostics, and therapeutics innovation. This study reports a bioinformatics analysis of publicly available gene expression data, identifying overlapping dysregulated genes, downstream regulators, and pathways in TB and LC. Analysis of NCBI-GEO datasets (GSE83456 and GSE103888) unveiled differential expression of CEACAM6, MUC1, ADM, DYSF, PLOD2, and GAS6 genes in both diseases, with pathway analysis indicating association with lysine degradation pathway. Random forest, a machine-learning-based classification, achieved accuracies of 84% for distinguishing TB from controls and 83% for discriminating LC from controls using these specific genes. Additionally, potential drug targets were identified, with molecular docking confirming the binding affinity of warfarin to GAS6. Taken together, the present study speaks of the pressing need to rethink clinical diagnostic categories of human diseases and that TB and LC might potentially share molecular substrates. Going forward, planetary health and One Health scholarship are poised to cultivate new ways of thinking about diseases not only across medicine and ecology but also across traditional diagnostic conventions.
Collapse
|
2
|
Tanabe T, Mitome H, Miyamoto K, Akira K, Tsujibo H, Tomoo K, Nagaoka K, Funahashi T. Analysis of the vibrioferrin biosynthetic pathway of Vibrio parahaemolyticus. Biometals 2024; 37:507-517. [PMID: 38133869 DOI: 10.1007/s10534-023-00566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Siderophores are small-molecule iron chelators produced by many microorganisms that capture and uptake iron from the natural environment and host. Their biosynthesis in microorganisms is generally performed using non-ribosomal peptide synthetase (NRPS) or NRPS-independent siderophore (NIS) enzymes. Vibrio parahaemolyticus secretes its cognate siderophore vibrioferrin under iron-starvation conditions. Vibrioferrin is a dehydrated condensate composed of α-ketoglutarate, L-alanine, aminoethanol, and citrate, and pvsA (the gene encoding the ATP-grasp enzyme), pvsB (the gene encoding the NIS enzyme), pvsD (the gene encoding the NIS enzyme), and pvsE (the gene encoding decarboxylase) are engaged in its biosynthesis. Here, we elucidated the biosynthetic pathway of vibrioferrin through in vitro enzymatic reactions using recombinant PvsA, PvsB, PvsD, and PvsE proteins. We also found that PvsD condenses L-serine and citrate to generate O-citrylserine, and that PvsE decarboxylates O-citrylserine to form O-citrylaminoethanol. In addition, we showed that O-citrylaminoethanol is converted to alanyl-O-citrylaminoethanol by amidification with L-Ala by PvsA and that alanyl-O-citrylaminoethanol is then converted to vibrioferrin by amidification with α-ketoglutarate by PvsB.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| | - Hidemichi Mitome
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kazuki Akira
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Koji Tomoo
- Department of Physical Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| |
Collapse
|
3
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
4
|
Brody SI, Buonomo JA, Orimoloye MO, Jia Z, Sharma S, Brown CD, Baughn AD, Aldrich CC. A Nucleophilic Activity-Based Probe Enables Profiling of PLP-Dependent Enzymes. Chembiochem 2023; 24:e202200669. [PMID: 36652345 DOI: 10.1002/cbic.202200669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
PLP-dependent enzymes represent an important class of highly "druggable" enzymes that perform a wide array of critical reactions to support all organisms. Inhibition of individual members of this family of enzymes has been validated as a therapeutic target for pathologies ranging from infection with Mycobacterium tuberculosis to epilepsy. Given the broad nature of the activities within this family of enzymes, we envisioned a universally acting probe to characterize existing and putative members of the family that also includes the necessary chemical moieties to enable activity-based protein profiling experiments. Hence, we developed a probe that contains an N-hydroxyalanine warhead that acts as a covalent inhibitor of PLP-dependent enzymes, a linear diazirine for UV crosslinking, and an alkyne moiety to enable enrichment of crosslinked proteins. Our molecule was used to study PLP-dependent enzymes in vitro as well as look at whole-cell lysates of M. tuberculosis and assess inhibitory activity. The probe was able to enrich and identify LysA, a PLP-dependent enzyme crucial for lysine biosynthesis, through mass spectrometry. Overall, our study shows the utility of this trifunctional first-generation probe. We anticipate further optimization of probes for PLP-dependent enzymes will enable the characterization of rationally designed covalent inhibitors of PLP-dependent enzymes, which will expedite the preclinical characterization of these important therapeutic targets.
Collapse
Affiliation(s)
- Scott I Brody
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Joseph A Buonomo
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Ziyi Jia
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Christopher D Brown
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Crystal structure of BtrK, a decarboxylase involved in the (S)-4-amino-2-hydroxybutyrate (AHBA) formation during butirosin biosynthesis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
In Silico Drug Discovery Strategies Identified ADMET Properties of Decoquinate RMB041 and Its Potential Drug Targets against Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0231521. [PMID: 35352998 PMCID: PMC9045315 DOI: 10.1128/spectrum.02315-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The highly adaptive cellular response of Mycobacterium tuberculosis to various antibiotics and the high costs for clinical trials, hampers the development of novel antimicrobial agents with improved efficacy and safety. Subsequently, in silico drug screening methods are more commonly being used for the discovery and development of drugs, and have been proven useful for predicting the pharmacokinetics, toxicities, and targets, of prospective new antimicrobial agents. In this investigation we used a reversed target fishing approach to determine potential hit targets and their possible interactions between M. tuberculosis and decoquinate RMB041, a propitious new antituberculosis compound. Two of the 13 identified targets, Cyp130 and BlaI, were strongly proposed as optimal drug-targets for dormant M. tuberculosis, of which the first showed the highest comparative binding affinity to decoquinate RMB041. The metabolic pathways associated with the selected target proteins were compared to previously published molecular mechanisms of decoquinate RMB041 against M. tuberculosis, whereby we confirmed disrupted metabolism of proteins, cell wall components, and DNA. We also described the steps within these pathways that are inhibited and elaborated on decoquinate RMB041’s activity against dormant M. tuberculosis. This compound has previously showed promising in vitro safety and good oral bioavailability, which were both supported by this in silico study. The pharmacokinetic properties and toxicity of this compound were predicted and investigated using the online tools pkCSM and SwissADME, and Discovery Studio software, which furthermore supports previous safety and bioavailability characteristics of decoquinate RMB041 for use as an antimycobacterial medication. IMPORTANCE This article elaborates on the mechanism of action of a novel antibiotic compound against both, active and dormant Mycobacterium tuberculosis and describes its pharmacokinetics (including oral bioavailability and toxicity). Information provided in this article serves useful during the search for drugs that shorten the treatment regimen for Tuberculosis and cause minimal adverse effects.
Collapse
|
7
|
Christoff RM, Soares da Costa TP, Bayat S, Holien JK, Perugini MA, Abbott BM. Synthesis and structure-activity relationship studies of 2,4-thiazolidinediones and analogous heterocycles as inhibitors of dihydrodipicolinate synthase. Bioorg Med Chem 2021; 52:116518. [PMID: 34826680 DOI: 10.1016/j.bmc.2021.116518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS), responsible for the first committed step of the diaminopimelate pathway for lysine biosynthesis, has become an attractive target for the development of new antibacterial and herbicidal agents. Herein, we report the discovery and exploration of the first inhibitors of E. coli DHDPS which have been identified from screening lead and are not based on substrates from the lysine biosynthesis pathway. Over 50 thiazolidinediones and related analogues have been prepared in order to thoroughly evaluate the structure-activity relationships against this enzyme of significant interest.
Collapse
Affiliation(s)
- Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Saadi Bayat
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
8
|
Marjanovic A, Ramírez-Palacios CJ, Masman MF, Drenth J, Otzen M, Marrink SJ, Janssen DB. Thermostable D-amino acid decarboxylases derived from Thermotoga maritima diaminopimelate decarboxylase. Protein Eng Des Sel 2021; 34:gzab016. [PMID: 34258615 PMCID: PMC8277567 DOI: 10.1093/protein/gzab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Diaminopimelate decarboxylases (DAPDCs) are highly selective enzymes that catalyze the common final step in different lysine biosynthetic pathways, i.e. the conversion of meso-diaminopimelate (DAP) to L-lysine. We examined the modification of the substrate specificity of the thermostable decarboxylase from Thermotoga maritima with the aim to introduce activity with 2-aminopimelic acid (2-APA) since its decarboxylation leads to 6-aminocaproic acid (6-ACA), a building block for the synthesis of nylon-6. Structure-based mutagenesis of the distal carboxylate binding site resulted in a set of enzyme variants with new activities toward different D-amino acids. One of the mutants (E315T) had lost most of its activity toward DAP and primarily acted as a 2-APA decarboxylase. We next used computational modeling to explain the observed shift in catalytic activities of the mutants. The results suggest that predictive computational protocols can support the redesign of the catalytic properties of this class of decarboxylating PLP-dependent enzymes.
Collapse
Affiliation(s)
- Antonija Marjanovic
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Carlos J Ramírez-Palacios
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marcelo F Masman
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jeroen Drenth
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Otzen
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert-Jan Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Weatherhead AW, Crowther JM, Horne CR, Meng Y, Coombes D, Currie MJ, Watkin SAJ, Adams LE, Parthasarathy A, Dobson RCJ, Hudson AO. Structure-Function Studies of the Antibiotic Target l,l-Diaminopimelate Aminotransferase from Verrucomicrobium spinosum Reveal an Unusual Oligomeric Structure. Biochemistry 2020; 59:2274-2288. [PMID: 32478518 DOI: 10.1021/acs.biochem.0c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While humans lack the biosynthetic pathways for meso-diaminopimelate and l-lysine, they are essential for bacterial survival and are therefore attractive targets for antibiotics. It was recently discovered that members of the Chlamydia family utilize a rare aminotransferase route of the l-lysine biosynthetic pathway, thus offering a new enzymatic drug target. Here we characterize diaminopimelate aminotransferase from Verrucomicrobium spinosum (VsDapL), a nonpathogenic model bacterium for Chlamydia trachomatis. Complementation experiments verify that the V. spinosum dapL gene encodes a bona fide diaminopimelate aminotransferase, because the gene rescues an Escherichia coli strain that is auxotrophic for meso-diaminopimelate. Kinetic studies show that VsDapL follows a Michaelis-Menten mechanism, with a KMapp of 4.0 mM toward its substrate l,l-diaminopimelate. The kcat (0.46 s-1) and the kcat/KM (115 s-1 M-1) are somewhat lower than values for other diaminopimelate aminotransferases. Moreover, whereas other studied DapL orthologs are dimeric, sedimentation velocity experiments demonstrate that VsDapL exists in a monomer-dimer self-association, with a KD2-1 of 7.4 μM. The 2.25 Å resolution crystal structure presents the canonical dimer of chalice-shaped monomers, and small-angle X-ray scattering experiments confirm the dimer in solution. Sequence and structural alignments reveal that active site residues important for activity are conserved in VsDapL, despite the lower activity compared to those of other DapL homologues. Although the dimer interface buries 18% of the total surface area, several loops that contribute to the interface and active site, notably the L1, L2, and L5 loops, are highly mobile, perhaps explaining the unstable dimer and lower catalytic activity. Our kinetic, biophysical, and structural characterization can be used to inform the development of antibiotics.
Collapse
Affiliation(s)
- Anthony W Weatherhead
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Jennifer M Crowther
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Yanxiang Meng
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - David Coombes
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Serena A J Watkin
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Lily E Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| | - Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand.,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| |
Collapse
|
10
|
Dahal GP, Launder D, McKeone KMM, Hunter JP, Conti HR, Viola RE. Aspartate semialdehyde dehydrogenase inhibition suppresses the growth of the pathogenic fungus Candida albicans. Drug Dev Res 2020; 81:736-744. [PMID: 32383780 DOI: 10.1002/ddr.21682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/27/2022]
Abstract
Potent inhibitors of an essential microbial enzyme have been shown to be effective growth inhibitors of Candida albicans, a pathogenic fungus. C. albicans is the main cause of oropharyngeal candidiasis, and also causes invasive fungal infections, including systemic sepsis, leading to serious complications in immunocompromised patients. As the rates of drug-resistant fungal infections continue to rise novel antifungal treatments are desperately needed. The enzyme aspartate semialdehyde dehydrogenase (ASADH) is critical for the functioning of the aspartate biosynthetic pathway in microbes and plants. Because the aspartate pathway is absent in humans, ASADH has the potential to be a promising new target for antifungal research. Deleting the asd gene encoding for ASADH significantly decreases the survival of C. albicans, establishing this enzyme as essential for this organism. Previously developed ASADH inhibitors were tested against several strains of C. albicans to measure their possible therapeutic impact. The more potent inhibitors show a good correlation between enzyme inhibitor potency and fungal growth inhibition. Growth curves generated by incubating different C. albicans strains with varying enzyme inhibitor levels show significant slowing of fungal growth by these inhibitors against each of these strains, similar to the effect observed with a clinical antifungal drug. The most effective inhibitors also demonstrated relatively low cytotoxicity against a human epithelial cell line. Taken together, these results establish that the ASADH enzyme is a promising new target for further development as a novel antifungal treatment against C. albicans and related fungal species.
Collapse
Affiliation(s)
- Gopal P Dahal
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | | | - Joseph P Hunter
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
11
|
Deng G, Ji N, Shi X, Zhang W, Qin Y, Sha S, Yang S, Ma Y. Effects of Mycobacterium tuberculosis Rv1096 on mycobacterial cell division and modulation on macrophages. Microb Pathog 2020; 141:103991. [DOI: 10.1016/j.micpath.2020.103991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
|
12
|
Bie P, Yang X, Zhang C, Wu Q. Identification of Small-Molecule Inhibitors of Brucella Diaminopimelate Decarboxylase by Using a High-Throughput Screening Assay. Front Microbiol 2020; 10:2936. [PMID: 32038511 PMCID: PMC6986272 DOI: 10.3389/fmicb.2019.02936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/06/2019] [Indexed: 11/13/2022] Open
Abstract
Brucellosis, caused by intracellular gram-negative pathogens of the genus Brucella, continues to be one of the most pandemic zoonotic diseases in most countries. At present, the therapeutic treatment of brucellosis relies on a combination of multiple antibiotics that involves a long course of treatment, easy relapse, and high side effects from the use of certain antibiotics (such as streptomycin). Thus, the need to identify novel drugs or targets to control this disease is urgent. Diaminopimelate decarboxylase (DAPDC), a key enzyme involved in the bacterial diaminopimelate (DAP) biosynthetic pathway, was suggested to be a promising anti-Brucella target in our previous study. In this work, the biological activity of Brucella melitensis DAPDC was characterized, and a library of 1,591 compounds was screened for inhibitors of DAPDC. The results of a high-throughput screening (HTS) assay showed that 24 compounds inhibited DAPDC activity. In a further in vitro bacterial inhibition experiment, five compounds exhibited anti-Brucella activity (SID3, SID4, SID14, SID15, and SID20). These results suggested that the identified compounds can be used as potent molecules against brucellosis and that the application ranges of these approved drugs can be expanded in the future.
Collapse
Affiliation(s)
- Pengfei Bie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaowen Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cunrui Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingmin Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Crowther JM, Cross PJ, Oliver MR, Leeman MM, Bartl AJ, Weatherhead AW, North RA, Donovan KA, Griffin MDW, Suzuki H, Hudson AO, Kasanmascheff M, Dobson RCJ. Structure-function analyses of two plant meso-diaminopimelate decarboxylase isoforms reveal that active-site gating provides stereochemical control. J Biol Chem 2019; 294:8505-8515. [PMID: 30962284 DOI: 10.1074/jbc.ra118.006825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
meso-Diaminopimelate decarboxylase catalyzes the decarboxylation of meso-diaminopimelate, the final reaction in the diaminopimelate l-lysine biosynthetic pathway. It is the only known pyridoxal-5-phosphate-dependent decarboxylase that catalyzes the removal of a carboxyl group from a d-stereocenter. Currently, only prokaryotic orthologs have been kinetically and structurally characterized. Here, using complementation and kinetic analyses of enzymes recombinantly expressed in Escherichia coli, we have functionally tested two putative eukaryotic meso-diaminopimelate decarboxylase isoforms from the plant species Arabidopsis thaliana We confirm they are both functional meso-diaminopimelate decarboxylases, although with lower activities than those previously reported for bacterial orthologs. We also report in-depth X-ray crystallographic structural analyses of each isoform at 1.9 and 2.4 Å resolution. We have captured the enzyme structure of one isoform in an asymmetric configuration, with one ligand-bound monomer and the other in an apo-form. Analytical ultracentrifugation and small-angle X-ray scattering solution studies reveal that A. thaliana meso-diaminopimelate decarboxylase adopts a homodimeric assembly. On the basis of our structural analyses, we suggest a mechanism whereby molecular interactions within the active site transduce conformational changes to the active-site loop. These conformational differences are likely to influence catalytic activity in a way that could allow for d-stereocenter selectivity of the substrate meso-diaminopimelate to facilitate the synthesis of l-lysine. In summary, the A. thaliana gene loci At3g14390 and At5g11880 encode functional. meso-diaminopimelate decarboxylase enzymes whose structures provide clues to the stereochemical control of the decarboxylation reaction catalyzed by these eukaryotic proteins.
Collapse
Affiliation(s)
- Jennifer M Crowther
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Penelope J Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Michael R Oliver
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Mary M Leeman
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York 14623
| | - Austin J Bartl
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York 14623
| | - Anthony W Weatherhead
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hironori Suzuki
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York 14623.
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, D-44227 Dortmund, Germany.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
14
|
Alam M, Srivastava A, Dutta A, Sau AK. Biochemical and biophysical studies ofHelicobacter pyloriarginine decarboxylase, an enzyme important for acid adaptation in host. IUBMB Life 2018; 70:658-669. [DOI: 10.1002/iub.1754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/26/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mashkoor Alam
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi Delhi India
| | - Abhishek Srivastava
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi Delhi India
| | - Ankita Dutta
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi Delhi India
| | - Apurba Kumar Sau
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi Delhi India
| |
Collapse
|
15
|
The Biological Properties and Potential Interacting Proteins of d-Alanyl-d-alanine Ligase A from Mycobacterium tuberculosis. Molecules 2018; 23:molecules23020324. [PMID: 29401644 PMCID: PMC6017538 DOI: 10.3390/molecules23020324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
(1) Background: d-alanine-d-alanine ligase (DdlA), an effective target for drug development to combat against Mycobacterium tuberculosis (Mtb), which threatens human health globally, supplies a substrate of d-alanyl-d-alanine for peptidoglycan crosslinking by catalyzing the dimerization of two d-alanines. To obtain a better understanding of DdlA profiles and develop a colorimetric assay for high-throughput inhibitor screening, we focused on explicating and characterizing Tb-DdlA. (2) Methods and Results: Rv2981c (ddlA) was expressed in Escherichia coli, and the purified Tb-DdlA was identified using (anti)-polyhistidine antibody followed by DdlA activity confirmation by measuring the released orthophosphate via colorimetric assay and the yielded d-alanyl-d-alanine through high performance thin layer chromatography (HP-TLC). The kinetic assays on Tb-DdlA indicated that Tb-DdlA exhibited a higher affinity to ATP (KmATP: 50.327 ± 4.652 μmol/L) than alanine (KmAla: 1.011 ± 0.094 mmol/L). A colorimetric assay for Tb-DdlA activity was developed for high-throughput screening of DdlA inhibitors in this study. In addition, we presented an analysis on Tb-DdlA interaction partners by pull-down assay and MS/MS. Eight putative interaction partners of Tb-DdlA were identified. (3) Conclusions: Our dataset provided a valuable resource for exploring Tb-DdlA biology, and developed an easy colorimetric assay for screening of Tb-DdlA inhibitors.
Collapse
|
16
|
Son HF, Kim KJ. Structural basis for substrate specificity of meso-diaminopimelic acid decarboxylase from Corynebacterium glutamicum. Biochem Biophys Res Commun 2018; 495:1815-1821. [DOI: 10.1016/j.bbrc.2017.11.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
|
17
|
Molecular modeling of drug-pathophysiological Mtb protein targets: Synthesis of some 2-thioxo-1, 3-thiazolidin-4-one derivatives as anti-tubercular agents. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Evolution of biosynthetic diversity. Biochem J 2017; 474:2277-2299. [DOI: 10.1042/bcj20160823] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Since the emergence of the last common ancestor from which all extant life evolved, the metabolite repertoire of cells has increased and diversified. Not only has the metabolite cosmos expanded, but the ways in which the same metabolites are made have diversified. Enzymes catalyzing the same reaction have evolved independently from different protein folds; the same protein fold can produce enzymes recognizing different substrates, and enzymes performing different chemistries. Genes encoding useful enzymes can be transferred between organisms and even between the major domains of life. Organisms that live in metabolite-rich environments sometimes lose the pathways that produce those same metabolites. Fusion of different protein domains results in enzymes with novel properties. This review will consider the major evolutionary mechanisms that generate biosynthetic diversity: gene duplication (and gene loss), horizontal and endosymbiotic gene transfer, and gene fusion. It will also discuss mechanisms that lead to convergence as well as divergence. To illustrate these mechanisms, one of the original metabolisms present in the last universal common ancestor will be employed: polyamine metabolism, which is essential for the growth and cell proliferation of archaea and eukaryotes, and many bacteria.
Collapse
|
19
|
Shrivastava P, Navratna V, Silla Y, Dewangan RP, Pramanik A, Chaudhary S, Rayasam G, Kumar A, Gopal B, Ramachandran S. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues. Sci Rep 2016; 6:30827. [PMID: 27501775 PMCID: PMC4977564 DOI: 10.1038/srep30827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å(2) are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA.
Collapse
Affiliation(s)
- Priyanka Shrivastava
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi 110025, India
| | - Vikas Navratna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Yumnam Silla
- Biotechnology Group (BIF center), Biological Science & Technology Division (BSTD), CSIR-North-East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Rikeshwer P. Dewangan
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
| | - Atreyi Pramanik
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
| | - Sarika Chaudhary
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
| | - GeethaVani Rayasam
- Open Source Drug Discovery Unit (OSDD), CSIR-IGIB, New Delhi, 110001, India
| | - Anuradha Kumar
- Open Source Drug Discovery Unit (OSDD), CSIR-IGIB, New Delhi, 110001, India
| | | | - Srinivasan Ramachandran
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi 110025, India
| |
Collapse
|
20
|
Peverelli MG, Soares da Costa TP, Kirby N, Perugini MA. Dimerization of Bacterial Diaminopimelate Decarboxylase Is Essential for Catalysis. J Biol Chem 2016; 291:9785-95. [PMID: 26921318 DOI: 10.1074/jbc.m115.696591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Diaminopimelate decarboxylase (DAPDC) catalyzes the final step in the diaminopimelate biosynthesis pathway of bacteria. The product of the reaction is the essential amino acid l-lysine, which is an important precursor for the synthesis of the peptidoglycan cell wall, housekeeping proteins, and virulence factors of bacteria. Accordingly, the enzyme is a promising antibacterial target. Previous structural studies demonstrate that DAPDC exists as monomers, dimers, and tetramers in the crystal state. However, the active oligomeric form has not yet been determined. We show using analytical ultracentrifugation, small angle x-ray scattering, and enzyme kinetic analyses in solution that the active form of DAPDC from Bacillus anthracis, Escherichia coli, Mycobacterium tuberculosis, and Vibrio cholerae is a dimer. The importance of dimerization was probed further by generating dimerization interface mutants (N381A and R385A) of V. cholerae DAPDC. Our studies indicate that N381A and R385A are significantly attenuated in catalytic activity, thus confirming that dimerization of DAPDC is essential for function. These findings provide scope for the development of new antibacterial agents that prevent DAPDC dimerization.
Collapse
Affiliation(s)
- Martin G Peverelli
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, and
| | - Tatiana P Soares da Costa
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Nigel Kirby
- the The Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Matthew A Perugini
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, and
| |
Collapse
|
21
|
Peverelli MG, Perugini MA. An optimized coupled assay for quantifying diaminopimelate decarboxylase activity. Biochimie 2015; 115:78-85. [PMID: 25986217 DOI: 10.1016/j.biochi.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Diaminopimelate decarboxylase (DAPDC) catalyzes the conversion of meso-DAP to lysine and carbon dioxide in the final step of the diaminopimelate (DAP) pathway in plants and bacteria. Given its absence in humans, DAPDC is a promising antibacterial target, particularly considering the rise in drug-resistant strains from pathogens such as Escherichia coli and Mycobacterium tuberculosis. Here, we report the optimization of a simple quantitative assay for measuring DAPDC catalytic activity using saccharopine dehydrogenase (SDH) as the coupling enzyme. Our results show that SDH has optimal activity at 37 °C, pH 8.0, and in Tris buffer. These conditions were subsequently employed to quantitate the enzyme kinetic properties of DAPDC from three bacterial species. We show that DAPDC from E. coli and M. tuberculosis have [Formula: see text] of 0.97 mM and 1.62 mM and a kcat of 55 s(-1) and 28 s(-1), respectively, which agree well with previous studies using more labor-intensive assays. We subsequently employed the optimized coupled assay to show for the first time that DAPDC from Bacillus anthracis possesses a [Formula: see text] of 0.68 mM and a kcat of 58 s(-1). This optimized coupled assay offers excellent scope to be employed in high throughput drug discovery screens targeting DAPDC from bacterial pathogens.
Collapse
Affiliation(s)
- Martin G Peverelli
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew A Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
22
|
Tape CJ, Norrie IC, Worboys JD, Lim L, Lauffenburger DA, Jørgensen C. Cell-specific labeling enzymes for analysis of cell-cell communication in continuous co-culture. Mol Cell Proteomics 2014; 13:1866-76. [PMID: 24820872 DOI: 10.1074/mcp.o113.037119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDC(M.tub-KDEL)) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (Lyr(M37-KDEL)) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDC(M.tub-KDEL) and Lyr(M37-KDEL) facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell-cell phospho-signaling experiments, we propose DDC(M.tub-KDEL) and Lyr(M37-KDEL) as excellent enzymes for cell-specific labeling with amino acid precursors.
Collapse
Affiliation(s)
- Christopher J Tape
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK; §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Ida C Norrie
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Jonathan D Worboys
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Lindsay Lim
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Douglas A Lauffenburger
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Claus Jørgensen
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK;
| |
Collapse
|
23
|
Oliver MR, Crowther JM, Leeman MM, Kessans SA, North RA, Donovan KA, Griffin MDW, Suzuki H, Hudson AO, Kasanmascheff M, Dobson RCJ. The purification, crystallization and preliminary X-ray diffraction analysis of two isoforms of meso-diaminopimelate decarboxylase from Arabidopsis thaliana. Acta Crystallogr F Struct Biol Commun 2014; 70:663-8. [PMID: 24817733 PMCID: PMC4014342 DOI: 10.1107/s2053230x14007699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/07/2014] [Indexed: 11/10/2022] Open
Abstract
Diaminopimelate decarboxylase catalyses the last step in the diaminopimelate-biosynthetic pathway leading to S-lysine: the decarboxylation of meso-diaminopimelate to form S-lysine. Lysine biosynthesis occurs only in microorganisms and plants, and lysine is essential for the growth and development of animals. Thus, the diaminopimelate pathway represents an attractive target for antimicrobial and herbicide treatments and has received considerable attention from both a mechanistic and a structural viewpoint. Diaminopimelate decarboxylase has only been characterized in prokaryotic species. This communication describes the first structural studies of two diaminopimelate decarboxylase isoforms from a plant. The Arabidopsis thaliana diaminopimelate decarboxylase cDNAs At3g14390 (encoding DapDc1) and At5g11880 (encoding DapDc2) were cloned from genomic DNA and the recombinant proteins were expressed and purified from Escherichia coli Rosetta (DE3) cells. The crystals of DapDc1 and DapDc2 diffracted to beyond 2.00 and 2.27 Å resolution, respectively. Understanding the structural biology of diaminopimelate decarboxylase from a eukaryotic species will provide insights for the development of future herbicide treatments, in particular.
Collapse
Affiliation(s)
- Michael R. Oliver
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Jennifer M. Crowther
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Mary M. Leeman
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Sarah A. Kessans
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Rachel A. North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Katherine A. Donovan
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Hironori Suzuki
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - André O. Hudson
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Müge Kasanmascheff
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Jordan F, Patel H. Catalysis in Enzymatic Decarboxylations: Comparison of Selected Cofactor-dependent and Cofactor-independent Examples. ACS Catal 2013; 3:1601-1617. [PMID: 23914308 DOI: 10.1021/cs400272x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review is focused on three types of enzymes decarboxylating very different substrates: (1) Thiamin diphosphate (ThDP)-dependent enzymes reacting with 2-oxo acids; (2) Pyridoxal phosphate (PLP)-dependent enzymes reacting with α-amino acids; and (3) An enzyme with no known co-factors, orotidine 5'-monophosphate decarboxylase (OMPDC). While the first two classes have been much studied for many years, during the past decade studies of both classes have revealed novel mechanistic insight challenging accepted understanding. The enzyme OMPDC has posed a challenge to the enzymologist attempting to explain a 1017-fold rate acceleration in the absence of cofactors or even metal ions. A comparison of the available evidence on the three types of decarboxylases underlines some common features and more differences. The field of decarboxylases remains an interesting and challenging one for the mechanistic enzymologist notwithstanding the large amount of information already available.
Collapse
Affiliation(s)
- Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, 73 Warren Street, Newark,
New Jersey 07102, United States
| | - Hetalben Patel
- Department of Chemistry, Rutgers, The State University of New Jersey, 73 Warren Street, Newark,
New Jersey 07102, United States
| |
Collapse
|
25
|
Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci U S A 2011; 108:14733-40. [PMID: 21873199 DOI: 10.1073/pnas.1111678108] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila is a bacterial pathogen of amoebae and humans. Intracellular growth requires a type IVB secretion system that translocates at least 200 different proteins into host cells. To distinguish between proteins necessary for growth in culture and those specifically required for intracellular replication, a screen was performed to identify genes necessary for optimal growth in nutrient-rich medium. Mapping of these genes revealed that the L. pneumophila chromosome has a modular architecture consisting of several large genomic islands that are dispensable for growth in bacteriological culture. Strains lacking six of these regions, and thus 18.5% of the genome, were viable but required secondary point mutations for optimal growth. The simultaneous deletion of five of these genomic loci had no adverse effect on growth of the bacterium in nutrient-rich media. Remarkably, this minimal genome strain, which lacked 31% of the known substrates of the type IVB system, caused only marginal defects in intracellular growth within mouse macrophages. In contrast, deletion of single regions reduced growth within amoebae. The importance of individual islands, however, differed among amoebal species. The host-specific requirements of these genomic islands support a model in which the acquisition of foreign DNA has broadened the L. pneumophila host range.
Collapse
|
26
|
Fogle EJ, Toney MD. Analysis of catalytic determinants of diaminopimelate and ornithine decarboxylases using alternate substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1113-9. [PMID: 21640851 DOI: 10.1016/j.bbapap.2011.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Diaminopimelate decarboxylase (DAPDC) and ornithine decarboxylase (ODC) are pyridoxal 5'-phosphate dependent enzymes that are critical to microbial growth and pathogenicity. The latter is the target of drugs that cure African sleeping sickness, while the former is an attractive target for antibacterials. These two enzymes share the (β/α)(8) (i.e., TIM barrel) fold with alanine racemase, another pyridoxal 5'-phosphate dependent enzyme critical to bacterial survival. The active site structural homology between DAPDC and ODC is striking even though DAPDC catalyzes the decarboxylation of a D stereocenter with inversion of configuration and ODC catalyzes the decarboxylation of an L stereocenter with retention of configuration. Here, the structural and mechanistic bases of these interesting properties are explored using reactions of alternate substrates with both enzymes. It is concluded that simple binding determinants do not control the observed stereochemical specificities for decarboxylation, and a concerted decarboxylation/proton transfer at Cα of the D stereocenter of diaminopimelate is a possible mechanism for the observed specificity with DAPDC.
Collapse
Affiliation(s)
- Emily J Fogle
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | | |
Collapse
|
27
|
Discovery and characterization of d-phenylserine deaminase from Arthrobacter sp. TKS1. Appl Microbiol Biotechnol 2010; 90:159-72. [DOI: 10.1007/s00253-010-3028-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
28
|
Viola RE, Faehnle CR, Blanco J, Moore RA, Liu X, Arachea BT, Pavlovsky AG. The catalytic machinery of a key enzyme in amino Acid biosynthesis. JOURNAL OF AMINO ACIDS 2010; 2011:352538. [PMID: 22332000 PMCID: PMC3276109 DOI: 10.4061/2011/352538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 11/07/2010] [Indexed: 11/20/2022]
Abstract
The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes.
Collapse
Affiliation(s)
- Ronald E Viola
- Department of Chemistry, University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Burrell M, Hanfrey CC, Murray EJ, Stanley-Wall NR, Michael AJ. Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. J Biol Chem 2010; 285:39224-38. [PMID: 20876533 DOI: 10.1074/jbc.m110.163154] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Arginine decarboxylases (ADCs; EC 4.1.1.19) from four different protein fold families are important for polyamine biosynthesis in bacteria, archaea, and plants. Biosynthetic alanine racemase fold (AR-fold) ADC is widespread in bacteria and plants. We report the discovery and characterization of an ancestral form of the AR-fold ADC in the bacterial Chloroflexi and Bacteroidetes phyla. The ancestral AR-fold ADC lacks a large insertion found in Escherichia coli and plant AR-fold ADC and is more similar to the lysine biosynthetic enzyme meso-diaminopimelate decarboxylase, from which it has evolved. An E. coli acid-inducible ADC belonging to the aspartate aminotransferase fold (AAT-fold) is involved in acid resistance but not polyamine biosynthesis. We report here that the acid-inducible AAT-fold ADC has evolved from a shorter, ancestral biosynthetic AAT-fold ADC by fusion of a response regulator receiver domain protein to the N terminus. Ancestral biosynthetic AAT-fold ADC appears to be limited to firmicute bacteria. The phylogenetic distribution of different forms of ADC distinguishes bacteria from archaea, euryarchaeota from crenarchaeota, double-membraned from single-membraned bacteria, and firmicutes from actinobacteria. Our findings extend to eight the different enzyme forms carrying out the activity described by EC 4.1.1.19. ADC gene clustering reveals that polyamine biosynthesis employs diverse and exchangeable synthetic modules. We show that in Bacillus subtilis, ADC and polyamines are essential for biofilm formation, and this appears to be an ancient, evolutionarily conserved function of polyamines in bacteria. Also of relevance to human health, we found that arginine decarboxylation is the dominant pathway for polyamine biosynthesis in human gut microbiota.
Collapse
Affiliation(s)
- Matthew Burrell
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Deng X, Lee J, Michael AJ, Tomchick DR, Goldsmith EJ, Phillips MA. Evolution of substrate specificity within a diverse family of beta/alpha-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for L-arginine and carboxynorspermidine. J Biol Chem 2010; 285:25708-19. [PMID: 20534592 DOI: 10.1074/jbc.m110.121137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent basic amino acid decarboxylases from the beta/alpha-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-A resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the beta/alpha-barrel domain of one subunit and the beta-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the beta-barrel domain we refer to as the "specificity helix." Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu(314), which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5'-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.
Collapse
Affiliation(s)
- Xiaoyi Deng
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
31
|
The three-dimensional structure of diaminopimelate decarboxylase from Mycobacterium tuberculosis reveals a tetrameric enzyme organisation. ACTA ACUST UNITED AC 2009; 10:209-17. [PMID: 19543810 DOI: 10.1007/s10969-009-9065-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
Abstract
The three-dimensional structure of the enzyme diaminopimelate decarboxylase from Mycobacterium tuberculosis has been determined in a new crystal form and refined to a resolution of 2.33 A. The monoclinic crystals contain one tetramer exhibiting D(2)-symmetry in the asymmetric unit. The tetramer exhibits a donut-like structure with a hollow interior. All four active sites are accessible only from the interior of the tetrameric assembly. Small-angle X-ray scattering indicates that in solution the predominant oligomeric species of the protein is a dimer, but also that higher oligomers exist at higher protein concentrations. The observed scattering data are best explained by assuming a dimer-tetramer equilibrium with about 7% tetramers present in solution. Consequently, at the elevated protein concentrations in the crowded environment inside the cell the observed tetramer may constitute the biologically relevant functional unit of the enzyme.
Collapse
|
32
|
Pandey J, Sharma A, Tiwari VK, Dube D, Ramachandran R, Chaturvedi V, Sinha SK, Mishra NN, Shukla PK, Tripathi RP. Solution-Phase Synthesis of a Library of Carbapeptide Analogues Based on Glycosylamino Acid Scaffolds and Their In Silico Screening and Antimicrobial Evaluation. ACTA ACUST UNITED AC 2009; 11:422-7. [DOI: 10.1021/cc800206m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jyoti Pandey
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| | - Anindra Sharma
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| | - Vinod K. Tiwari
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| | - Divya Dube
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| | - Ravishankar Ramachandran
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| | - Vinita Chaturvedi
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| | - Sudhir K. Sinha
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| | - Nripendra N. Mishra
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| | - Praveen K. Shukla
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| | - Rama P. Tripathi
- Divisions of Medicinal and Process Chemistry, Molecular and Structural Biology, Drug Target Discovery and Development, and Fermentation Technology, Central Drug Research Institute, Lucknow-226001, India
| |
Collapse
|
33
|
Raman K, Yeturu K, Chandra N. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC SYSTEMS BIOLOGY 2008; 2:109. [PMID: 19099550 PMCID: PMC2651862 DOI: 10.1186/1752-0509-2-109] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 12/19/2008] [Indexed: 01/19/2023]
Abstract
Background Tuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs. Identification and validation of appropriate targets for designing drugs are critical steps in drug discovery, which are at present major bottle-necks. A majority of drugs in current clinical use for many diseases have been designed without the knowledge of the targets, perhaps because standard methodologies to identify such targets in a high-throughput fashion do not really exist. With different kinds of 'omics' data that are now available, computational approaches can be powerful means of obtaining short-lists of possible targets for further experimental validation. Results We report a comprehensive in silico target identification pipeline, targetTB, for Mycobacterium tuberculosis. The pipeline incorporates a network analysis of the protein-protein interactome, a flux balance analysis of the reactome, experimentally derived phenotype essentiality data, sequence analyses and a structural assessment of targetability, using novel algorithms recently developed by us. Using flux balance analysis and network analysis, proteins critical for survival of M. tuberculosis are first identified, followed by comparative genomics with the host, finally incorporating a novel structural analysis of the binding sites to assess the feasibility of a protein as a target. Further analyses include correlation with expression data and non-similarity to gut flora proteins as well as 'anti-targets' in the host, leading to the identification of 451 high-confidence targets. Through phylogenetic profiling against 228 pathogen genomes, shortlisted targets have been further explored to identify broad-spectrum antibiotic targets, while also identifying those specific to tuberculosis. Targets that address mycobacterial persistence and drug resistance mechanisms are also analysed. Conclusion The pipeline developed provides rational schema for drug target identification that are likely to have high rates of success, which is expected to save enormous amounts of money, resources and time in the drug discovery process. A thorough comparison with previously suggested targets in the literature demonstrates the usefulness of the integrated approach used in our study, highlighting the importance of systems-level analyses in particular. The method has the potential to be used as a general strategy for target identification and validation and hence significantly impact most drug discovery programmes.
Collapse
Affiliation(s)
- Karthik Raman
- Supercomputer Education and Research Centre and Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012, India.
| | | | | |
Collapse
|
34
|
Hu T, Wu D, Chen J, Ding J, Jiang H, Shen X. The catalytic intermediate stabilized by a "down" active site loop for diaminopimelate decarboxylase from Helicobacter pylori. Enzymatic characterization with crystal structure analysis. J Biol Chem 2008; 283:21284-93. [PMID: 18508763 PMCID: PMC3258949 DOI: 10.1074/jbc.m801823200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/22/2008] [Indexed: 11/06/2022] Open
Abstract
The meso-diaminopimelate decarboxylase (DAPDC, EC 4.1.1.20) catalyzes the final step of L-lysine biosynthesis in bacteria and is regarded as a target for the discovery of antibiotics. Here we report the 2.3A crystal structure of DAPDC from Helicobacter pylori (HpDAPDC). The structure, in which the product L-lysine forms a Schiff base with the cofactor pyridoxal 5'-phosphate, provides structural insight into the substrate specificity and catalytic mechanism of the enzyme, and implies that the carboxyl to be cleaved locates at the si face of the cofactor. To our knowledge, this might be the first reported external aldimine of DAPDC. Moreover, the active site loop of HpDAPDC is in a "down" conformation and shields the ligand from solvent. Mutations of Ile(148) from the loop greatly impaired the catalytic efficiency. Combining the structural analysis of the I148L mutant, we hypothesize that HpDAPDC adopts an induced-fit catalytic mechanism in which this loop cycles through "down" and "up" conformations to stabilize intermediates and release product, respectively. Our work is expected to provide clues for designing specific inhibitors of DAPDC.
Collapse
Affiliation(s)
- Tiancen Hu
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dalei Wu
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Chen
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianping Ding
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hualiang Jiang
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu Shen
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
35
|
Sonnet PE, Mascavage LM, Dalton DR. The first steps. The attack on the carbonyl carbon of pyridoxal cofactor in pyridoxal-dependent enzymes. Bioorg Med Chem Lett 2008; 18:744-8. [DOI: 10.1016/j.bmcl.2007.11.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
|
36
|
Tomioka H. Development of new antituberculous agents based on new drug targets and structure–activity relationship. Expert Opin Drug Discov 2007; 3:21-49. [DOI: 10.1517/17460441.3.1.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJE. Convergent Evolution of Enzyme Active Sites Is not a Rare Phenomenon. J Mol Biol 2007; 372:817-45. [PMID: 17681532 DOI: 10.1016/j.jmb.2007.06.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 05/14/2007] [Accepted: 06/08/2007] [Indexed: 02/03/2023]
Abstract
Since convergent evolution of enzyme active sites was first identified in serine proteases, other individual instances of this phenomenon have been documented. However, a systematic analysis assessing the frequency of this phenomenon across enzyme space is still lacking. This work uses the Query3d structural comparison algorithm to integrate for the first time detailed knowledge about catalytic residues, available through the Catalytic Site Atlas (CSA), with the evolutionary information provided by the Structural Classification of Proteins (SCOP) database. This study considers two modes of convergent evolution: (i) mechanistic analogues which are enzymes that use the same mechanism to perform related, but possibly different, reactions (considered here as sharing the first three digits of the EC number); and (ii) transformational analogues which catalyse exactly the same reaction (identical EC numbers), but may use different mechanisms. Mechanistic analogues were identified in 15% (26 out of 169) of the three-digit EC groups considered, showing that this phenomenon is not rare. Furthermore 11 of these groups also contain transformational analogues. The catalytic triad is the most widespread active site; the results of the structural comparison show that this mechanism, or variations thereof, is present in 23 superfamilies. Transformational analogues were identified for 45 of the 951 four-digit EC numbers present within the CSA and about half of these were also mechanistic analogues exhibiting convergence of their active sites. This analysis has also been extended to the whole Protein Data Bank to provide a complete and manually curated list of the all the transformational analogues whose structure is classified in SCOP. The results of this work show that the phenomenon of convergent evolution is not rare, especially when considering large enzymatic families.
Collapse
Affiliation(s)
- Pier Federico Gherardini
- Biochemistry Building, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
38
|
Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA. Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases. J Biol Chem 2007; 282:27115-27125. [PMID: 17626020 DOI: 10.1074/jbc.m704066200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta/alpha-barrel fold type basic amino acid decarboxylases include eukaryotic ornithine decarboxylases (ODC) and bacterial and plant enzymes with activity on L-arginine and meso-diaminopimelate. These enzymes catalyze essential steps in polyamine and lysine biosynthesis. Phylogenetic analysis suggests that diverse bacterial species also contain ODC-like enzymes from this fold type. However, in comparison with the eukaryotic ODCs, amino acid differences were identified in the sequence of the 3(10)-helix that forms a key specificity element in the active site, suggesting they might function on novel substrates. Putative decarboxylases from a phylogenetically diverse range of bacteria were characterized to determine their substrate preference. Enzymes from species within Methanosarcina, Pseudomonas, Bartonella, Nitrosomonas, Thermotoga, and Aquifex showed a strong preference for L-ornithine, whereas the enzyme from Vibrio vulnificus (VvL/ODC) had dual specificity functioning well on both L-ornithine and L-lysine. The x-ray structure of VvL/ODC was solved in the presence of the reaction products putrescine and cadaverine to 1.7 and 2.15A, respectively. The overall structure is similar to eukaryotic ODC; however, reorientation of the 3(10)-helix enlarging the substrate binding pocket allows L-lysine to be accommodated. The structure of the putrescine-bound enzyme suggests that a bridging water molecule between the shorter L-ornithine and key active site residues provides the structural basis for VvL/ODC to also function on this substrate. Our data demonstrate that there is greater structural and functional diversity in bacterial polyamine biosynthetic decarboxylases than previously suspected.
Collapse
Affiliation(s)
- Jeongmi Lee
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Anthony J Michael
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Dariusz Martynowski
- Departments of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 and the
| | - Elizabeth J Goldsmith
- Departments of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 and the
| | - Margaret A Phillips
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041.
| |
Collapse
|
39
|
Dufe V, Ingner D, Heby O, Khomutov A, Persson L, Al-Karadaghi S. A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 1-amino-oxy-3-aminopropane. Biochem J 2007; 405:261-8. [PMID: 17407445 PMCID: PMC1904517 DOI: 10.1042/bj20070188] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical role of polyamines in key processes such as cell growth, differentiation and macromolecular synthesis makes the enzymes involved in their synthesis potential targets in the treatment of certain types of cancer and parasitic diseases. Here we present a study on the inhibition of human and Leishmania donovani ODC (ornithine decarboxylase), the first committed enzyme in the polyamine biosynthesis pathway, by APA (1-amino-oxy-3-aminopropane). The present study shows APA to be a potent inhibitor of both human and L. donovani ODC with a K(i) value of around 1.0 nM. We also show that L. donovani ODC binds the substrate, the co-enzyme pyridoxal 5'-phosphate and the irreversible inhibitor alpha-difluoromethylornithine (a curative agent of West African sleeping sickness) with less affinity than human ODC. We have also determined the three-dimensional structure of human ODC in complex with APA, which revealed the mode of the inhibitor binding to the enzyme. In contrast with earlier reports, the structure showed no indication of oxime formation between APA and PLP (pyridoxal 5'-phosphate). Homology modelling suggests a similar mode of binding of APA to L. donovani ODC. A comparison of the ODC-APA-PLP structure with earlier ODC structures also shows that the protease-sensitive loop (residues 158-168) undergoes a large conformational change and covers the active site of the protein. The understanding of the structural mode of APA binding may constitute the basis for the development of more specific inhibitors of L. donovani ODC.
Collapse
Affiliation(s)
- Veronica T. Dufe
- *Department of Molecular Biophysics, Lund University, S-221 00 Lund, Sweden
| | - Daniel Ingner
- *Department of Molecular Biophysics, Lund University, S-221 00 Lund, Sweden
| | - Olle Heby
- †Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Alex R. Khomutov
- ‡Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Lo Persson
- §Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden
- Correspondence may be addressed to either of these authors (email or )
| | - Salam Al-Karadaghi
- *Department of Molecular Biophysics, Lund University, S-221 00 Lund, Sweden
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
40
|
Hutton CA, Perugini MA, Gerrard JA. Inhibition of lysine biosynthesis: an evolving antibiotic strategy. MOLECULAR BIOSYSTEMS 2007; 3:458-65. [PMID: 17579770 DOI: 10.1039/b705624a] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial biosynthesis of lysine has come under increased scrutiny as a target for novel antibacterial agents as it provides lysine for protein synthesis and both lysine and meso-diaminopimelate for construction of the bacterial peptidoglycan cell wall. In this Highlight article we review recent advances in the validation of antibiotic targets, studies of the enzymes of the lysine biosynthetic pathway and development of inhibitors of these enzymes.
Collapse
Affiliation(s)
- Craig A Hutton
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | |
Collapse
|
41
|
Shah R, Akella R, Goldsmith EJ, Phillips MA. X-ray structure of Paramecium bursaria Chlorella virus arginine decarboxylase: insight into the structural basis for substrate specificity. Biochemistry 2007; 46:2831-41. [PMID: 17305368 PMCID: PMC2518046 DOI: 10.1021/bi6023447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The group IV pyridoxal-5'-phosphate (PLP)-dependent decarboxylases belong to the beta/alpha barrel structural family, and include enzymes with substrate specificity for a range of basic amino acids. A unique homolog of this family, the Paramecium bursaria Chlorella virus arginine decarboxylase (cvADC), shares about 40% amino acid sequence identity with the eukaryotic ornithine decarboxylases (ODCs). The X-ray structure of cvADC has been solved to 1.95 and 1.8 A resolution for the free and agmatine (product)-bound enzymes. The global structural differences between cvADC and eukaryotic ODC are minimal (rmsd of 1.2-1.4 A); however, the active site has significant structural rearrangements. The key "specificity element," is identified as the 310-helix that contains and positions substrate-binding residues such as E296 cvADC (D332 in T. brucei ODC). In comparison to the ODC structures, the 310-helix in cvADC is shifted over 2 A away from the PLP cofactor, thus accommodating the larger arginine substrate. Within the context of this conserved fold, the protein is designed to be flexible in the positioning and amino acid sequence of the 310-helix, providing a mechanism to evolve different substrate preferences within the family without large structural rearrangements. Also, in the structure, the "K148-loop" (homologous to the "K169-loop" of ODC) is observed in a closed, substrate-bound conformation for the first time. Apparently the K148 loop is a mobile loop, analogous to those observed in triose phosphate isomerase and tryptophan synthetase. In conjunction with prior structural studies these data predict that this loop adopts different conformations throughout the catalytic cycle, and that loop movement may be kinetically linked to the rate-limiting step of product release.
Collapse
Affiliation(s)
- Rahul Shah
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Radha Akella
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Elizabeth J. Goldsmith
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
- *Author to whom all correspondence should be addressed. Tel: (214) 645-6164. Fax: (214) 645-6166., e-mail:
| |
Collapse
|
42
|
Marri PR, Bannantine JP, Golding GB. Comparative genomics of metabolic pathways in Mycobacterium species: gene duplication, gene decay and lateral gene transfer. FEMS Microbiol Rev 2006; 30:906-25. [PMID: 17064286 DOI: 10.1111/j.1574-6976.2006.00041.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The genus Mycobacterium comprises significant pathogenic species that infect both humans and animals. One species within this genus, Mycobacterium tuberculosis, is the primary killer of humans resulting from bacterial infections. Five mycobacterial genomes belonging to four different species (M. tuberculosis, Mycobacterium bovis, Mycobacterium leprae and Mycobacterium avium ssp. paratuberculosis) have been sequenced to date and another 14 mycobacterial genomes are at various stages of completion. A comparative analysis of the gene products of key metabolic pathways revealed that the major differences among these species are in the gene products constituting the cell wall and the gene families encoding the acidic glycine-rich (PE/PPE/PGRS) proteins. Mycobacterium leprae has evolved by retaining a minimal gene set for most of the gene families, whereas M. avium ssp. paratuberculosis has acquired some of the virulence factors by lateral gene transfer.
Collapse
|
43
|
Hasan S, Daugelat S, Rao PSS, Schreiber M. Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS Comput Biol 2006; 2:e61. [PMID: 16789813 PMCID: PMC1475714 DOI: 10.1371/journal.pcbi.0020061] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 04/21/2006] [Indexed: 11/18/2022] Open
Abstract
We have developed a software program that weights and integrates specific properties on the genes in a pathogen so that they may be ranked as drug targets. We applied this software to produce three prioritized drug target lists for Mycobacterium tuberculosis, the causative agent of tuberculosis, a disease for which a new drug is desperately needed. Each list is based on an individual criterion. The first list prioritizes metabolic drug targets by the uniqueness of their roles in the M. tuberculosis metabolome (“metabolic chokepoints”) and their similarity to known “druggable” protein classes (i.e., classes whose activity has previously been shown to be modulated by binding a small molecule). The second list prioritizes targets that would specifically impair M. tuberculosis, by weighting heavily those that are closely conserved within the Actinobacteria class but lack close homology to the host and gut flora. M. tuberculosis can survive asymptomatically in its host for many years by adapting to a dormant state referred to as “persistence.” The final list aims to prioritize potential targets involved in maintaining persistence in M. tuberculosis. The rankings of current, candidate, and proposed drug targets are highlighted with respect to these lists. Some features were found to be more accurate than others in prioritizing studied targets. It can also be shown that targets can be prioritized by using evolutionary programming to optimize the weights of each desired property. We demonstrate this approach in prioritizing persistence targets. The search for drugs to prevent or treat infections remains an urgent focus in infectious disease research. A new software program has been developed by the authors of this article that can be used to rank genes as potential drug targets in pathogens. Traditional prioritization approaches to drug target identification, such as searching the literature and trying to mentally integrate varied criteria, can quickly become overwhelming for the drug discovery researcher. Alternatively, one can computationally integrate different criteria to create a ranking function that can help to identify targets. The authors demonstrate the applicability of this approach on the genome of Mycobacterium tuberculosis, the organism that causes tuberculosis (TB), a disease for which new drug treatments are especially needed because of emerging drug-resistant strains. The experiences gained from this work will be useful for both wet-lab and informatics scientists working in infectious disease research; first, it demonstrates that ample public data already exist on the M. tuberculosis genome that can be tuned effectively for prioritizing drug targets. Second, the output from numerous freely available bioinformatics tools can be pushed to achieve these goals. Third, the methodology can easily be extended to other pathogens of interest. Currently studied TB targets are also highlighted in terms of the authors' ranking system, which should be useful for researchers focusing on TB drug discovery.
Collapse
Affiliation(s)
- Samiul Hasan
- Novartis Institute for Tropical Diseases (NITD), Chromos, Singapore
| | - Sabine Daugelat
- Novartis Institute for Tropical Diseases (NITD), Chromos, Singapore
| | | | - Mark Schreiber
- Novartis Institute for Tropical Diseases (NITD), Chromos, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Azevedo RA, Lancien M, Lea PJ. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 2006; 30:143-62. [PMID: 16525757 DOI: 10.1007/s00726-005-0245-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 06/20/2005] [Indexed: 10/24/2022]
Abstract
Aspartate is the common precursor of the essential amino acids lysine, threonine, methionine and isoleucine in higher plants. In addition, aspartate may also be converted to asparagine, in a potentially competing reaction. The latest information on the properties of the enzymes involved in the pathways and the genes that encode them is described. An understanding of the overall regulatory control of the flux through the pathways is undisputedly of great interest, since the nutritive value of all cereal and legume crops is reduced due to low concentrations of at least one of the aspartate-derived amino acids. We have reviewed the recent literature and discussed in this paper possible methods by which the concentrations of the limiting amino acids may be increased in the seeds.
Collapse
Affiliation(s)
- R A Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil.
| | | | | |
Collapse
|
45
|
Kim JS. Diaminopimelate Decarboxylase from Arabidopsis Contains Motifs for Pyridoxal-5`-phosphate and Substrate. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/ajps.2006.260.265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Alexeev D, Baxter RL, Campopiano DJ, Kerbarh O, Sawyer L, Tomczyk N, Watt R, Webster SP. Suicide inhibition of α-oxamine synthases: structures of the covalent adducts of 8-amino-7-oxononanoate synthase with trifluoroalanine. Org Biomol Chem 2006; 4:1209-12. [PMID: 16557306 DOI: 10.1039/b517922j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The irreversible inhibition of 8-amino-7-oxononanoate synthase by trifluoroalanine involves decarboxylative defluorination of the inhibitor-PLP aldimine followed by attack of the conjugated imine by the amino group of the active site lysine to afford a covalently bound difluorinated intermediate which can subsequently undergo further HF losses and hydrolysis to afford a 2-(pyridoximine phosphate) acetoyl protein adduct.
Collapse
Affiliation(s)
- Dmitriy Alexeev
- School of Biology, Swann Building, University of Edinburgh, Mayfield Road, Edinburgh, UKEH9 3JR
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Arcus VL, Lott JS, Johnston JM, Baker EN. The potential impact of structural genomics on tuberculosis drug discovery. Drug Discov Today 2006; 11:28-34. [PMID: 16478688 DOI: 10.1016/s1359-6446(05)03667-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB) in humans, is a devastating infectious organism that kills approximately two million people annually. The current suite of antibiotics used to treat TB faces two main difficulties: (i) the emergence of multidrug-resistant (MDR) strains of M. tuberculosis, and (ii) the persistent state of the bacterium, which is less susceptible to antibiotics and causes very long antibiotic treatment regimes. The complete genome sequences of a laboratory strain (H37Rv) and a clinical strain (CDC1551) of M. tuberculosis and the concurrent identification of all the open reading frames that encode proteins within this organism, present structural biologists with a wide array of protein targets for structure determination. Comparative genomics of the species that make up the M. tuberculosis complex has also added an array of genomic information to our understanding of these organisms. In response to this, structural genomics consortia have been established for targeting proteins from M. tuberculosis. This review looks at the progress of these major initiatives and the potential impact of large scale structure determination efforts on the development of inhibitors to many proteins. Increasing sophistication in structure-based drug design approaches, in combination with increasing numbers of protein structures and inhibitors for TB proteins, will have a significant impact on the downstream development of TB antibiotics.
Collapse
Affiliation(s)
- Vickery L Arcus
- AgResearch Structural Biology Laboratory, School of Biological Sciences, University of Auckland, Private Bag 92-019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
48
|
Jantaro S, Kidron H, Chesnel D, Incharoensakdi A, Mulo P, Salminen T, Mäenpää P. Structural modeling and environmental regulation of arginine decarboxylase in Synechocystis sp. PCC 6803. Arch Microbiol 2005; 184:397-406. [PMID: 16362287 DOI: 10.1007/s00203-005-0064-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 10/31/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
Arginine decarboxylase (ADC) is the first enzyme in the alternative route to putrescine in the polyamine biosynthesis pathway in bacteria and plants. In this study, we have focused on the effects of various types of short-term stresses on the transcript amount and specific activity of Synechocystis sp. PCC 6803 ADC. Our results reveal that the steady-state transcript accumulation and enzyme activity are not connected in a simple manner, since only photoheterotrophy and synergistic salt and high-light stress affected both parameters similarly. Changes in the steady-state ADC mRNA accumulation under the other short-term stress conditions studied had only a small impact on enzyme activity, suggesting post-translational regulation. Based on structural modeling, Synechocystis ADCs have a putative extra domain, which might be involved in the post-translational regulation of ADC activity in Synechocystis. In addition, two symmetric inter-subunit disulfide bonds seem to stabilize the dimeric structure of ADCs. There are two genes coding for ADC and agmatinase, another polyamine pathway enzyme, in Synechocystis genome, while the genes coding for ornithine decarboxylase and for some other enzymes in the polyamine pathway were not identified with homology searches.
Collapse
Affiliation(s)
- Saowarath Jantaro
- Department of Biology, Laboratory of Plant Physiology and Molecular Biology, University of Turku, 20014, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
49
|
Kefala G, Perry LJ, Weiss MS. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of LysA (Rv1293) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:782-4. [PMID: 16511157 PMCID: PMC1952341 DOI: 10.1107/s1744309105022839] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 07/18/2005] [Indexed: 11/10/2022]
Abstract
Diaminopimelate decarboxylase from Mycobacterium tuberculosis (LysA, DAPDC, Rv1293) has been cloned and heterologously expressed in Escherichia coli, purified using standard chromatographic techniques and crystallized. Preliminary diffraction data analysis suggests the presence of a homotetramer in the asymmetric unit.
Collapse
Affiliation(s)
- Georgia Kefala
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - L. Jeanne Perry
- UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, 206 Boyer Hall, Box 951570, Los Angeles, CA 90095-1570, USA
| | - Manfred S. Weiss
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| |
Collapse
|
50
|
Hall PR, Zheng R, Antony L, Pusztai-Carey M, Carey PR, Yee VC. Transcarboxylase 5S structures: assembly and catalytic mechanism of a multienzyme complex subunit. EMBO J 2004; 23:3621-31. [PMID: 15329673 PMCID: PMC517613 DOI: 10.1038/sj.emboj.7600373] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 07/27/2004] [Indexed: 11/08/2022] Open
Abstract
Transcarboxylase is a 1.2 million Dalton (Da) multienzyme complex from Propionibacterium shermanii that couples two carboxylation reactions, transferring CO(2)(-) from methylmalonyl-CoA to pyruvate to yield propionyl-CoA and oxaloacetate. Crystal structures of the 5S metalloenzyme subunit, which catalyzes the second carboxylation reaction, have been solved in free form and bound to its substrate pyruvate, product oxaloacetate, or inhibitor 2-ketobutyrate. The structure reveals a dimer of beta(8)alpha(8) barrels with an active site cobalt ion coordinated by a carbamylated lysine, except in the oxaloacetate complex in which the product's carboxylate group serves as a ligand instead. 5S and human pyruvate carboxylase (PC), an enzyme crucial to gluconeogenesis, catalyze similar reactions. A 5S-based homology model of the PC carboxyltransferase domain indicates a conserved mechanism and explains the molecular basis of mutations in lactic acidemia. PC disease mutations reproduced in 5S result in a similar decrease in carboxyltransferase activity and crystal structures with altered active sites.
Collapse
Affiliation(s)
- Pamela R Hall
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Run Zheng
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Lizamma Antony
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Paul R Carey
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Vivien C Yee
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|