1
|
Gewering T, Waghray D, Parey K, Jung H, Tran NNB, Zapata J, Zhao P, Chen H, Januliene D, Hummer G, Urbatsch I, Moeller A, Zhang Q. Tracing the substrate translocation mechanism in P-glycoprotein. eLife 2024; 12:RP90174. [PMID: 38259172 PMCID: PMC10945689 DOI: 10.7554/elife.90174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system.
Collapse
Affiliation(s)
- Theresa Gewering
- Osnabrück University, Department of Biology/Chemistry, Structural Biology SectionOsnabrückGermany
- Department of Structural Biology, Max Planck Institute of BiophysicsFrankfurtGermany
| | - Deepali Waghray
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Kristian Parey
- Osnabrück University, Department of Biology/Chemistry, Structural Biology SectionOsnabrückGermany
- Department of Structural Biology, Max Planck Institute of BiophysicsFrankfurtGermany
- Osnabrück University, Center of Cellular Nanoanalytic Osnabrück (CellNanOs)OsnabrückGermany
| | - Hendrik Jung
- Department of Theoretical Biophysics, Max Planck Institute of BiophysicsFrankfurtGermany
| | - Nghi NB Tran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Joel Zapata
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of TechnologyNewarkUnited States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of TechnologyNewarkUnited States
| | - Dovile Januliene
- Osnabrück University, Department of Biology/Chemistry, Structural Biology SectionOsnabrückGermany
- Department of Structural Biology, Max Planck Institute of BiophysicsFrankfurtGermany
- Osnabrück University, Center of Cellular Nanoanalytic Osnabrück (CellNanOs)OsnabrückGermany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of BiophysicsFrankfurtGermany
- Institute for Biophysics, Goethe University FrankfurtFrankfurtGermany
| | - Ina Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Arne Moeller
- Osnabrück University, Department of Biology/Chemistry, Structural Biology SectionOsnabrückGermany
- Department of Structural Biology, Max Planck Institute of BiophysicsFrankfurtGermany
- Osnabrück University, Center of Cellular Nanoanalytic Osnabrück (CellNanOs)OsnabrückGermany
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
2
|
Burguera S, Frontera A, Bauzá A. Biological noncovalent N/O⋯V interactions: insights from theory and protein data bank analyses. Phys Chem Chem Phys 2023; 25:30040-30048. [PMID: 37905702 DOI: 10.1039/d3cp04571d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Computations at the PBE0-D3/def2-TZVP level of theory in conjunction with a Protein Data Bank (PDB) survey have provided first time evidence of favorable noncovalent interactions between ADP metavanadate (VO4) and ADP orthovanadate (VO5) and electron rich atoms. These involve a σ-hole present in the V atom and the lone pairs belonging to (i) protein residues (e.g., serine (SER), glutamate (GLU) or histidine (HIS)), (ii) backbone carbonyl groups and (iii) water molecules. A computational study has been carried out to rationalize the physical nature and directionality of the interaction in addition to its plausible biological role. The results reported herein are expected to have an impact in the fields of medicinal chemistry, bioinorganic chemistry and chemical biology.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain.
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain.
| |
Collapse
|
3
|
Wasef AK, Wahdan SA, Saeed NM, El-Demerdash E. Effects of aged garlic and ginkgo biloba extracts on the pharmacokinetics of sofosbuvir in rats. Biopharm Drug Dispos 2022; 43:152-162. [PMID: 35975782 DOI: 10.1002/bdd.2326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022]
Abstract
Sofosbuvir is a direct acting antiviral (DAA) approved for the treatment of hepatitis C virus (HCV). Sofosbuvir is a substrate of P-glycoprotein (P-gp). For this reason, inhibitors, or inducers of intestinal P-gp may alter plasma concentration of sofosbuvir and increase or decrease its efficacy causing a significant change in its pharmacokinetic parameters. The purpose of study was to evaluate the pharmacokinetic interaction between either aged garlic or ginkgo biloba extracts with sofosbuvir through targeting P-gp as well as the possible toxicities in rats. Rats were divided into four groups and treated for 14 days with saline, verapamil (15 mg/kg, PO), aged garlic extract (120 mg/kg, PO) or ginkgo biloba extract (25 mg/kg, PO) followed by a single oral dose of sofosbuvir (40 mg/kg). Validated LC-MS/MS was used to determine sofosbuvir and its metabolite GS-331007 in rat plasma. Aged garlic extract caused a significant decrease of sofosbuvir AUC(0-t) by 36% while ginkgo biloba extract caused a significant increase of sofosbuvir AUC(0-t) by 11%. Ginkgo biloba extract exhibited significant increase of sofosbuvir t1/2 by 60%, while aged garlic extract significantly increased sofosbuvir clearance by 63%. The pharmacokinetic parameters of GS-331007 were not affected. The inhibitory action of ginkgo biloba on P-gp and the subsequent increase in sofosbuvir plasma concentration did not show a significant risk of renal or hepatic toxicity. Conversely, although aged garlic extracts increased intestinal P-gp expression, they did not alter Cmax and Tmax of sofosbuvir and did not induce significant hepatic or renal toxicities. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Abanoub K Wasef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University (Kantara campus), Ismailia, Egypt
| | - Sara A Wahdan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha M Saeed
- Pharmacology and Toxicology department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Lacabanne D, Wiegand T, Di Cesare M, Orelle C, Ernst M, Jault JM, Meier BH, Böckmann A. Solid-State NMR Reveals Asymmetric ATP Hydrolysis in the Multidrug ABC Transporter BmrA. J Am Chem Soc 2022; 144:12431-12442. [PMID: 35776907 PMCID: PMC9284561 DOI: 10.1021/jacs.2c04287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The detailed mechanism
of ATP hydrolysis in ATP-binding cassette
(ABC) transporters is still not fully understood. Here, we employed 31P solid-state NMR to probe the conformational changes and
dynamics during the catalytic cycle by locking the multidrug ABC transporter
BmrA in prehydrolytic, transition, and posthydrolytic states, using
a combination of mutants and ATP analogues. The 31P spectra
reveal that ATP binds strongly in the prehydrolytic state to both
ATP-binding sites as inferred from the analysis of the nonhydrolytic
E504A mutant. In the transition state of wild-type BmrA, the symmetry
of the dimer is broken and only a single site is tightly bound to
ADP:Mg2+:vanadate, while the second site is more ‘open’
allowing exchange with the nucleotides in the solvent. In the posthydrolytic
state, weak binding, as characterized by chemical exchange with free
ADP and by asymmetric 31P–31P two-dimensional
(2D) correlation spectra, is observed for both sites. Revisiting the 13C spectra in light of these findings confirms the conformational
nonequivalence of the two nucleotide-binding sites in the transition
state. Our results show that following ATP binding, the symmetry of
the ATP-binding sites of BmrA is lost in the ATP-hydrolysis step,
but is then recovered in the posthydrolytic ADP-bound state.
Collapse
Affiliation(s)
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Margot Di Cesare
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| |
Collapse
|
5
|
Clouser AF, Atkins WM. Long Range Communication between the Drug-Binding Sites and Nucleotide Binding Domains of the Efflux Transporter ABCB1. Biochemistry 2022; 61:730-740. [PMID: 35384651 PMCID: PMC9022228 DOI: 10.1021/acs.biochem.2c00056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The ABC efflux pump
P-glycoprotein (P-gp) transports a wide variety
of drugs and is inhibited by others. Some drugs stimulate ATP hydrolysis
at the nucleotide binding domains (NBDs) and are transported, others
uncouple ATP hydrolysis and transport, and others inhibit ATP hydrolysis.
The molecular basis for the different behavior of these drugs is not
well understood despite the availability of several structural models
of P-gp complexes with ligands bound. Hypothetically, ligands differentially
alter the conformational dynamics of peptide segments that mediate
the coupling between the drug binding sites and the NBDs. Here, we
explore by hydrogen-deuterium exchange mass spectrometry the dynamic
consequences of a classic substrate and inhibitor, vinblastine and
zosuquidar, binding to mouse P-gp (mdr1a) in lipid nanodiscs. The
dynamics of P-gp in nucleotide-free, pre-hydrolysis, and post-hydrolysis
states in the presence of each drug reveal distinct mechanisms of
ATPase stimulation and implications for transport. For both drugs,
there are common regions affected in a similar manner, suggesting
that particular networks are the key to stimulating ATP hydrolysis.
However, drug binding effects diverge in the post-hydrolysis state,
particularly in the intracellular helices (ICHs 3 and 4) and neighboring
transmembrane helices. The local dynamics and conformational equilibria
in this region are critical for the coupling of drug binding and ATP
hydrolysis and are differentially modulated in the catalytic cycle.
Collapse
Affiliation(s)
- Amanda F Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| |
Collapse
|
6
|
Inhibitor Resistant Mutants Give Important Insights into Candida albicans ABC Transporter Cdr1 Substrate Specificity and Help Elucidate Efflux Pump Inhibition. Antimicrob Agents Chemother 2021; 66:e0174821. [PMID: 34780272 PMCID: PMC8765293 DOI: 10.1128/aac.01748-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a major cause of drug resistance in fungal pathogens. Milbemycins, enniatin B, beauvericin and FK506 are promising leads for broad-spectrum fungal multidrug efflux pump inhibitors. The characterization of naturally generated inhibitor resistant mutants is a powerful tool to elucidate structure-activity relationships in ABC transporters. We isolated twenty Saccharomyces cerevisiae mutants overexpressing Candida albicans ABC pump Cdr1 variants resistant to fluconazole efflux inhibition by milbemycin α25 (eight mutants), enniatin B (eight) or beauvericin (four). The twenty mutations were in just nine residues at the centres of transmembrane segment 1 (TMS1) (six mutations), TMS4 (four), TMS5 (four), TMS8 (one) and TMS11 (two) and in A713P (three), a previously reported FK506-resistant 'hotspot 1' mutation in extracellular loop 3. Six Cdr1-G521S/C/V/R (TMS1) variants were resistant to all four inhibitors, four Cdr1-M639I (TMS4) isolates were resistant to milbemycin α25 and enniatin B, and two Cdr1-V668I/D (TMS5) variants were resistant to enniatin B and beauvericin. The eight milbemycin α25 resistant mutants were altered in four amino acids: G521R, M639I, A713P and T1355N. These four Cdr1 variants responded differently to various types of inhibitors, and each exhibited altered substrate specificity and kinetic properties. The data infer an entry gate function for Cdr1-G521 and a role for Cdr1-A713 in the constitutively high Cdr1 ATPase activity. Cdr1-M639I and -T1355N (TMS11) possibly cause inhibitor-resistance by altering TMS-contacts near the substrate/inhibitor-binding pocket. Models for the interactions of substrates and different types of inhibitors with Cdr1 at various stages of the transport cycle are presented.
Collapse
|
7
|
Pearson SA, Wachnowsky C, Cowan JA. Defining the mechanism of the mitochondrial Atm1p [2Fe-2S] cluster exporter. Metallomics 2021; 12:902-915. [PMID: 32337520 DOI: 10.1039/c9mt00286c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron-sulfur cluster proteins play key roles in a multitude of physiological processes; including gene expression, nitrogen and oxygen sensing, electron transfer, and DNA repair. Biosynthesis of iron-sulfur clusters occurs in mitochondria on iron-sulfur cluster scaffold proteins in the form of [2Fe-2S] cores that are then transferred to apo targets within metabolic or respiratory pathways. The mechanism by which cytosolic Fe-S cluster proteins mature to their holo forms remains controversial. The mitochondrial inner membrane protein Atm1p can transport glutathione-coordinated iron-sulfur clusters, which may connect the mitochondrial and cytosolic iron-sulfur cluster assembly systems. Herein we describe experiments on the yeast Atm1p/ABCB7 exporter that provide additional support for a glutathione-complexed cluster as the natural physiological substrate and a reflection of the endosymbiotic model of mitochondrial evolution. These studies provide insight on the mechanism of cluster transport and the molecular basis of human disease conditions related to ABCB7. Recruitment of MgATP following cluster binding promotes a structural transition from closed to open conformations that is mediated by coupling helices, with MgATP hydrolysis facilitating the return to the closed state.
Collapse
Affiliation(s)
- Stephen A Pearson
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, USA43210.
| | - Christine Wachnowsky
- The Ohio State University Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, USA43210
| | - J A Cowan
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, USA43210. and The Ohio State University Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, USA43210 and Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, USA43210
| |
Collapse
|
8
|
Callaghan R, Gelissen IC, George AM, Hartz AMS. Mamma Mia, P-glycoprotein binds again. FEBS Lett 2020; 594:4076-4084. [PMID: 33022784 PMCID: PMC8731231 DOI: 10.1002/1873-3468.13951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
The levels of amyloid peptides in the brain are regulated by a clearance pathway from neurons to the blood-brain barrier. The first step is thought to involve diffusion from the plasma membrane to the interstitium. However, amyloid peptides are hydrophobic and avidly intercalate within membranes. The ABC transporter P-glycoprotein is implicated in the clearance of amyloid peptides across the blood-brain, but its role at neurons is undetermined. We here propose that P-glycoprotein mediates 'exit' of amyloid peptides from neurons. Indeed, amyloid peptides have physicochemical similarities to substrates of P-glycoprotein, but their larger size represents a conundrum. This review probes the plausibility of a mechanism for amyloid peptide transport by P-glycoprotein exploiting evolving biochemical and structural models.
Collapse
Affiliation(s)
- Richard Callaghan
- Research School of Biology, and the Medical School, Australian National University, Canberra, ACT, Australia
| | - Ingrid C Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
Goda K, Dönmez-Cakil Y, Tarapcsák S, Szalóki G, Szöllősi D, Parveen Z, Türk D, Szakács G, Chiba P, Stockner T. Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion. PLoS Genet 2020; 16:e1009016. [PMID: 33031417 PMCID: PMC7544095 DOI: 10.1371/journal.pgen.1009016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/29/2020] [Indexed: 11/28/2022] Open
Abstract
Several ABC exporters carry a degenerate nucleotide binding site (NBS) that is unable to hydrolyze ATP at a rate sufficient for sustaining transport activity. A hallmark of a degenerate NBS is the lack of the catalytic glutamate in the Walker B motif in the nucleotide binding domain (NBD). The multidrug resistance transporter ABCB1 (P-glycoprotein) has two canonical NBSs, and mutation of the catalytic glutamate E556 in NBS1 renders ABCB1 transport-incompetent. In contrast, the closely related bile salt export pump ABCB11 (BSEP), which shares 49% sequence identity with ABCB1, naturally contains a methionine in place of the catalytic glutamate. The NBD-NBD interfaces of ABCB1 and ABCB11 differ only in four residues, all within NBS1. Mutation of the catalytic glutamate in ABCB1 results in the occlusion of ATP in NBS1, leading to the arrest of the transport cycle. Here we show that despite the catalytic glutamate mutation (E556M), ABCB1 regains its ATP-dependent transport activity, when three additional diverging residues are also replaced. Molecular dynamics simulations revealed that the rescue of ATPase activity is due to the modified geometry of NBS1, resulting in a weaker interaction with ATP, which allows the quadruple mutant to evade the conformationally locked pre-hydrolytic state to proceed to ATP-driven transport. In summary, we show that ABCB1 can be transformed into an active transporter with only one functional catalytic site by preventing the formation of the ATP-locked pre-hydrolytic state in the non-canonical site. ABC transporters are one of the largest membrane protein superfamilies, present in all organisms from archaea to humans. They transport a wide range of molecules including amino acids, sugars, vitamins, nucleotides, peptides, lipids, metabolites, antibiotics, and xenobiotics. ABC transporters energize substrate transport by hydrolyzing ATP in two symmetrically arranged nucleotide binding sites (NBSs). The human multidrug resistance transporter ABCB1 has two active NBSs, and it is generally believed that integrity and cooperation of both sites are needed for transport. Several human ABC transporters, such as the bile salt transporter ABCB11, have one degenerate NBS, which has significantly reduced ATPase activity. Interestingly, unilateral mutations affecting one of the two NBSs completely abolish the function of symmetrical ABC transporters. Here we engineered an ABCB1 variant with a degenerate, ABCB11-like NBS1, which can nevertheless transport substrates. Our results indicate that ABCB1 can mediate active transport with a single active site, questioning the validity of models assuming strictly alternating catalysis.
Collapse
Affiliation(s)
- Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Yaprak Dönmez-Cakil
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Maltepe, Istanbul, Turkey
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Gábor Szalóki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
| | - Zahida Parveen
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Dóra Türk
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| |
Collapse
|
10
|
Songkiatisak P, Ding F, Cherukuri PK, Xu XHN. Size-Dependent Inhibitory Effects of Antibiotic Nanocarriers on Filamentation of E. coli. NANOSCALE ADVANCES 2020; 2:2135-2145. [PMID: 33791510 PMCID: PMC8009294 DOI: 10.1039/c9na00697d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/30/2020] [Indexed: 06/12/2023]
Abstract
Multidrug membrane transporters exist in both prokaryotic and eukaryotic cells, which causes multidrug resistance (MDR) and urgent need of new and more effective therapeutic agencies. In this study, we used three different sized antibiotic nanocarriers to study their mode of actions and their size-dependent inhibitory effects against Escherichia coli (E. coli). The antibiotic nanocarriers (AgMUNH-Oflx NPs) with 8.6×102, 9.4×103 and 6.5×105 Oflx molecules per nanoparticle (NP) were prepared by functionalizing the Ag NPs (2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm) with a monolayer of 11-amino-1-undecanethiol (MUNH2) and covalently linking ofloxacin (Oflx) with the amine group of AgMUNH2 NPs, respectively. We designed a modified cell culture medium for nanocarriers to be stable (non-aggregated) over 18 h of cell culture, which enables us to quantitatively study their size and dose dependent inhibitory effects against E. coli. We found that inhibitory effects of Oflx against E. coli highly depend upon dose of Oflx and size of nanocarriers, showing that the equal amount of Oflx delivered by the largest nanocarriers (92.6 ± 4.4 nm) were the most potent with the lowest minimum inhibitory concentration (MIC50) and created the longest and highest percentage of filamentous cells, while the smallest nanocarriers (2.4 ± 0.7) were the least potent with the highest MIC50 and produced the shortest and lowest percentage of filamentous cells. Interestingly, the same amount of Oflx on 2.4 ± 0.7 nm nanocarriers showed the 2x higher MIC and created the 2x shorter filamentous cells than free Oflx, while the Oflx on 13.0 ± 3.1 and 92.6 ± 4.4 nm nanocarriers exhibited 2x and 6x lower MICs, and produced 2x and 3x longer filamentous cell than free Oflx, respectively. Notably, three sized AgMUNH2 NPs (absence of Oflx) showed negligible inhibitory effects and did not create filamentous cells. The results show that the filamentation of E. coli highly depends upon the sizes of nanocarriers, which leads to the size-dependent inhibitory effects of nanocarriers against E. coli.
Collapse
Affiliation(s)
- Preeyaporn Songkiatisak
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| | - Feng Ding
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| | - Pavan Kumar Cherukuri
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| | - Xiao-Hong Nancy Xu
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| |
Collapse
|
11
|
Futamata R, Ogasawara F, Ichikawa T, Kodan A, Kimura Y, Kioka N, Ueda K. In vivo FRET analyses reveal a role of ATP hydrolysis-associated conformational changes in human P-glycoprotein. J Biol Chem 2020; 295:5002-5011. [PMID: 32111736 DOI: 10.1074/jbc.ra119.012042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/27/2020] [Indexed: 12/29/2022] Open
Abstract
P-glycoprotein (P-gp; also known as MDR1 or ABCB1) is an ATP-driven multidrug transporter that extrudes various hydrophobic toxic compounds to the extracellular space. P-gp consists of two transmembrane domains (TMDs) that form the substrate translocation pathway and two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. At least two P-gp states are required for transport. In the inward-facing (pre-drug transport) conformation, the two NBDs are separated, and the two TMDs are open to the intracellular side; in the outward-facing (post-drug transport) conformation, the NBDs are dimerized, and the TMDs are slightly open to the extracellular side. ATP binding and hydrolysis cause conformational changes between the inward-facing and the outward-facing conformations, and these changes help translocate substrates across the membrane. However, how ATP hydrolysis is coupled to these conformational changes remains unclear. In this study, we used a new FRET sensor that detects conformational changes in P-gp to investigate the role of ATP binding and hydrolysis during the conformational changes of human P-gp in living HEK293 cells. We show that ATP binding causes the conformational change to the outward-facing state and that ATP hydrolysis and subsequent release of γ-phosphate from both NBDs allow the outward-facing state to return to the original inward-facing state. The findings of our study underscore the utility of using FRET analysis in living cells to elucidate the function of membrane proteins such as multidrug transporters.
Collapse
Affiliation(s)
- Ryota Futamata
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Fumihiko Ogasawara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Kyoto 606-8501, Japan
| | - Takafumi Ichikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Kodan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhisa Kimura
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Kioka
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Efficiency of Target Larvicides Is Conditioned by ABC-Mediated Transport in the Zoonotic Nematode Anisakis pegreffii. Antimicrob Agents Chemother 2018; 62:AAC.00916-18. [PMID: 29987147 DOI: 10.1128/aac.00916-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022] Open
Abstract
Anisakiasis is among the most significant emerging foodborne parasitoses contracted through consumption of thermally unprocessed seafood harboring infective Anisakis species larvae. The efficacy of the currently applied anthelminthic therapy in humans and in model organisms has not proven sufficient, so alternative solutions employing natural compounds combined with chemical inhibitors should be explored. By testing toxicity of the natural monoterpenes nerolidol and farnesol and the conventional anthelminthics abamectin and levamisole in the presence/absence of MK-571 and Valspodar, which inhibit the ABC transporter proteins multidrug resistance protein (MRP-like) and P-glycoprotein (P-gp), we determined the preliminary traits of Anisakis detoxifying mechanisms. We found that Anisakis P-gp and MRP-like transporters have a role in the efflux of the tested compounds, which could be useful in the design of novel anthelminthic strategies. As expected, transporter activation and efflux fluctuated over time; they were synchronously active very early postexposure, whereas the activity of one transporter dominated over the other in a time-dependent manner. MRP-like transporters dominated in the efflux of farnesol, and P-gp dominated in efflux of nerolidol, while both were active in effluxing levamisole. The highest toxicity was exerted by abamectin, a P-gp inhibitor per se, which also elicited the highest oxidative stress in treated Anisakis larvae. We suggest that β-tubulin, observed for the first time as a core element in Anisakis cuticle, might represent an important target for the tested compounds.
Collapse
|
13
|
Single-molecule fluorescence studies on the conformational change of the ABC transporter MsbA. BIOPHYSICS REPORTS 2018. [DOI: 10.1007/s41048-018-0057-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
14
|
Li MJ, Guttman M, Atkins WM. Conformational dynamics of P-glycoprotein in lipid nanodiscs and detergent micelles reveal complex motions on a wide time scale. J Biol Chem 2018; 293:6297-6307. [PMID: 29511086 DOI: 10.1074/jbc.ra118.002190] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is a highly substrate-promiscuous efflux transporter that plays a critical role in drug disposition. P-gp utilizes ATP hydrolysis by nucleotide-binding domains (NBDs) to drive transitions between inward-facing (IF) conformations that bind drugs and outward-facing (OF) conformations that release them to the extracellular solution. However, the details of the protein dynamics within either macroscopic IF or OF conformation remain uncharacterized, and the functional role of local dynamics has not been determined. In this work we measured the local dynamics of the IF state of P-gp in lipid nanodiscs and in detergent solution by hydrogen-deuterium (H/D) exchange MS. We observed "EX1 exchange kinetics," or bimodal kinetics, for several peptides distributed in both NBDs, particularly for P-gp in the lipid nanodiscs. Remarkably, the EX1 kinetics occurred on several time scales, ranging from seconds to hours, suggesting highly complex, and correlated, motions. The results indicate at least three distinct conformational states in the ligand-free P-gp and suggest a rough conformational landscape. Addition of excess ATP and vanadate, to favor the OF conformations, caused a generalized, but modest, decrease in H/D exchange throughout the NBDs and slowed the EX1 kinetic transitions of several peptides. The functional implications of the results are consistent with the possibility that conformational selection provides a source of substrate promiscuity.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - Miklos Guttman
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - William M Atkins
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| |
Collapse
|
15
|
Szöllősi D, Rose-Sperling D, Hellmich UA, Stockner T. Comparison of mechanistic transport cycle models of ABC exporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:818-832. [PMID: 29097275 PMCID: PMC7610611 DOI: 10.1016/j.bbamem.2017.10.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. “This article is part of a Special Issue entitled: Beyond the Structure Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.”
Collapse
Affiliation(s)
- Dániel Szöllősi
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria
| | - Dania Rose-Sperling
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ute A Hellmich
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thomas Stockner
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria.
| |
Collapse
|
16
|
Zoghbi ME, Mok L, Swartz DJ, Singh A, Fendley GA, Urbatsch IL, Altenberg GA. Substrate-induced conformational changes in the nucleotide-binding domains of lipid bilayer-associated P-glycoprotein during ATP hydrolysis. J Biol Chem 2017; 292:20412-20424. [PMID: 29018094 DOI: 10.1074/jbc.m117.814186] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/25/2017] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp) is an efflux pump important in multidrug resistance of cancer cells and in determining drug pharmacokinetics. Pgp is a prototype ATP-binding cassette transporter with two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. Conformational changes at the NBDs (the Pgp engines) lead to changes across Pgp transmembrane domains that result in substrate translocation. According to current alternating access models (substrate-binding pocket accessible only to one side of the membrane at a time), binding of ATP promotes NBD dimerization, resulting in external accessibility of the drug-binding site (outward-facing, closed NBD conformation), and ATP hydrolysis leads to dissociation of the NBDs with the subsequent return of the accessibility of the binding site to the cytoplasmic side (inward-facing, open NBD conformation). However, previous work has not investigated these events under near-physiological conditions in a lipid bilayer and in the presence of transport substrate. Here, we used luminescence resonance energy transfer (LRET) to measure the distances between the two Pgp NBDs. Pgp was labeled with LRET probes, reconstituted in lipid nanodiscs, and the distance between the NBDs was measured at 37 °C. In the presence of verapamil, a substrate that activates ATP hydrolysis, the NBDs of Pgp reconstituted in nanodiscs were never far apart during the hydrolysis cycle, and we never observed the NBD-NBD distances of tens of Å that have previously been reported. However, we found two main conformations that coexist in a dynamic equilibrium under all conditions studied. Our observations highlight the importance of performing studies of efflux pumps under near-physiological conditions, in a lipid bilayer, at 37 °C, and during substrate-stimulated hydrolysis.
Collapse
Affiliation(s)
- Maria E Zoghbi
- From the Department of Cell Physiology and Molecular Biophysics
| | - Leo Mok
- Department of Cell Biology and Biochemistry, and
| | | | | | | | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, and .,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Guillermo A Altenberg
- From the Department of Cell Physiology and Molecular Biophysics, .,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
17
|
Li MJ, Nath A, Atkins WM. Differential Coupling of Binding, ATP Hydrolysis, and Transport of Fluorescent Probes with P-Glycoprotein in Lipid Nanodiscs. Biochemistry 2017; 56:2506-2517. [PMID: 28441502 DOI: 10.1021/acs.biochem.6b01245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ATP binding cassette transporter P-glycoprotein (ABCB1 or P-gp) plays a major role in cellular resistance to drugs and drug interactions. Experimental studies support a mechanism with nucleotide-dependent fluctuation between inward-facing and outward-facing conformations, which are coupled to nucleotide hydrolysis. However, detailed insight into drug-dependent modulation of these conformational ensembles is lacking. Different drugs likely occupy partially overlapping but distinct sites and are therefore variably coupled to nucleotide binding and hydrolysis. Many fluorescent drug analogues are used in cell-based transport models; however, their specific interactions with P-gp have not been studied, and this limits interpretation of transport assays in terms of molecular models. Here we monitor binding of the fluorescent probe substrates BODIPY-verapamil, BODIPY-vinblastine, and Flutax-2 at low occupancy to murine P-gp in lipid nanodiscs via fluorescence correlation spectroscopy, in variable nucleotide-bound states. Changes in affinity for the different nucleotide-dependent conformations are probe-dependent. For BODIPY-verapamil and BODIPY-vinblastine, there are 2-10-fold increases in KD in the nucleotide-bound or vanadate-trapped state, compared to that in the nucleotide-free state. In contrast, the affinity of Flutax-2 is unaffected by nucleotide or vanadate trapping. In further contrast to BODIPY-verapamil and BODIPY-vinblastine, Flutax-2 does not cause stimulation of ATP hydrolysis despite the fact that it is transported in vesicle-based transport assays. Whereas the established substrates verapamil, paclitaxel, and vinblastine displace BODIPY-verapamil or BODIPY-vinblastine from their high-affinity sites, the transport substrate Flutax-2 is not displaced by any of these substrates. The results demonstrate a unique binding site for Flutax-2 that allows for transport without stimulation of ATP hydrolysis.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| |
Collapse
|
18
|
Meng Z, Ellens H, Bentz J. Extrapolation of Elementary Rate Constants of P-glycoprotein-Mediated Transport from MDCKII-hMDR1-NKI to Caco-2 Cells. Drug Metab Dispos 2016; 45:190-197. [PMID: 27856526 DOI: 10.1124/dmd.116.072140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
The best parameters for incorporation into mechanistic physiologically based pharmacokinetic models for transporters are system-independent kinetic parameters and active (not total) transporter levels. Previously, we determined the elementary rate constants for P-glycoprotein (P-gp)-mediated transport (on- and off-rate constants from membrane to P-gp binding pocket and efflux rate constant into the apical chamber) using the structural mass action kinetic model in confluent MDCKII-hMDR1-NKI cell monolayers. In the present work, we extended the kinetic analysis to Caco-2 cells for the first time and showed that the elementary rate constants are very similar compared with MDCKII-hMDR1-NKI cells, suggesting they primarily depend on the interaction of the compound with P-gp and are therefore mostly independent of the in vitro system used. The level of efflux active (not total) P-gp is also fitted by our model. The estimated level of efflux active P-gp was 5.0 ± 1.4-fold lower in Caco-2 cells than in MDCKII-hMDR1-NKI cells. We also kinetically identified the involvement of a basolateral uptake transporter for both digoxin and loperamide in Caco-2 cells, as found previously in MDCKII-hMDR1-NKI cells, due to their low passive permeability. This demonstrates the value of our P-gp structural model as a diagnostic tool in detecting the importance of other transporters, which cannot be unambiguously done by the Michaelis-Menten approach. The system-independent elementary rate constants for P-gp obtained in vitro are more fundamental parameters than those obtained using Michaelis-Menten steady-state equations. This suggests they will be more robust mechanistic parameters for incorporation into physiologically based pharmacokinetic models for transporters.
Collapse
Affiliation(s)
- Zhou Meng
- Drexel University, Department of Biology, Philadelphia, Pennsylvania (Z.M., J.B.); and GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (Z.M., H.E.)
| | - Harma Ellens
- Drexel University, Department of Biology, Philadelphia, Pennsylvania (Z.M., J.B.); and GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (Z.M., H.E.)
| | - Joe Bentz
- Drexel University, Department of Biology, Philadelphia, Pennsylvania (Z.M., J.B.); and GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (Z.M., H.E.)
| |
Collapse
|
19
|
Yang Z, Zhou Q, Mok L, Singh A, Swartz DJ, Urbatsch IL, Brouillette CG. Interactions and cooperativity between P-glycoprotein structural domains determined by thermal unfolding provides insights into its solution structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:48-60. [PMID: 27783926 DOI: 10.1016/j.bbamem.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/19/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022]
Abstract
Structural changes in mouse P-glycoprotein (Pgp) induced by thermal unfolding were studied by differential scanning calorimetry (DSC), circular dichroism and fluorescence spectroscopy to gain insight into the solution conformation(s) of this ABC transporter that may not be apparent from current crystal structures. DSC of reconstituted Pgp showed two thermal unfolding transitions in the absence of MgATP, suggesting that each transition involved the cooperative unfolding of two or more interacting structural domains. A low calorimetric unfolding enthalpy and minimal structural changes were observed, which are hallmarks of the thermal unfolding of α-helical membrane proteins, because generally only the extramembranous regions undergo significant unfolding. Nucleotide binding increased the unfolding temperature of both transitions to the same extent, suggesting that one nucleotide binding domain (NBD) unfolds with each transition. Combined with the results from the two isolated NBDs, we propose that each DSC transition represents the cooperative unfolding of one NBD and the two contacting intracellular loops. Further, the presence of two transitions in both apo and MgATP bound wild-type Pgp suggests the NBD-dimeric conformation is transient, and that Pgp resides predominantly in the crystallographically observed inward-facing conformation with NBDs separated, even under conditions supporting continuous MgATP hydrolysis. In contrast, DSC of the vanadate-trapped MgADP·Pgp complex and the MgATP-bound catalytically inactive mutant, E552A/E1197A, show an additional transition at much higher temperature, corresponding to the unfolding of the nucleotide-trapped NBD-dimeric outward-facing conformation. The collective results indicate a strong preference for an NBD dissociated, inward-facing conformation of Pgp.
Collapse
Affiliation(s)
- Zhengrong Yang
- Center for Structural Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qingxian Zhou
- Center for Structural Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leo Mok
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anukriti Singh
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Douglas J Swartz
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Christie G Brouillette
- Center for Structural Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Moeller A, Lee SC, Tao H, Speir JA, Chang G, Urbatsch IL, Potter CS, Carragher B, Zhang Q. Distinct conformational spectrum of homologous multidrug ABC transporters. Structure 2015; 23:450-460. [PMID: 25661651 DOI: 10.1016/j.str.2014.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 12/12/2014] [Indexed: 01/10/2023]
Abstract
ATP-binding cassette (ABC) exporters are ubiquitously found in all kingdoms of life and their members play significant roles in mediating drug pharmacokinetics and multidrug resistance in the clinic. Significant questions and controversies remain regarding the relevance of their conformations observed in X-ray structures, their structural dynamics, and mechanism of transport. Here, we used single particle electron microscopy (EM) to delineate the entire conformational spectrum of two homologous ABC exporters (bacterial MsbA and mammalian P-glycoprotein) and the influence of nucleotide and substrate binding. Newly developed amphiphiles in complex with lipids that support high protein stability and activity enabled EM visualization of individual complexes in a membrane-mimicking environment. The data provide a comprehensive view of the conformational flexibility of these ABC exporters under various states and demonstrate not only similarities but striking differences between their mechanistic and energetic regulation of conformational changes.
Collapse
Affiliation(s)
- Arne Moeller
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sung Chang Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Houchao Tao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey A Speir
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geoffrey Chang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Clinton S Potter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bridget Carragher
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Kluth M, Stindt J, Dröge C, Linnemann D, Kubitz R, Schmitt L. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3. J Biol Chem 2014; 290:4896-4907. [PMID: 25533467 DOI: 10.1074/jbc.m114.588566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain.
Collapse
Affiliation(s)
- Marianne Kluth
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, 40225 Düsseldorf
| | - Carola Dröge
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, 40225 Düsseldorf
| | - Doris Linnemann
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, 40225 Düsseldorf
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, 40225 Düsseldorf
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf; Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Brewer FK, Follit CA, Vogel PD, Wise JG. In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains. Mol Pharmacol 2014; 86:716-26. [PMID: 25270578 DOI: 10.1124/mol.114.095414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp.
Collapse
Affiliation(s)
- Frances K Brewer
- Department of Biological Sciences, the Center for Drug Discovery, Design and Delivery, and the Center for Scientific Computing, Southern Methodist University, Dallas, Texas
| | - Courtney A Follit
- Department of Biological Sciences, the Center for Drug Discovery, Design and Delivery, and the Center for Scientific Computing, Southern Methodist University, Dallas, Texas
| | - Pia D Vogel
- Department of Biological Sciences, the Center for Drug Discovery, Design and Delivery, and the Center for Scientific Computing, Southern Methodist University, Dallas, Texas
| | - John G Wise
- Department of Biological Sciences, the Center for Drug Discovery, Design and Delivery, and the Center for Scientific Computing, Southern Methodist University, Dallas, Texas
| |
Collapse
|
23
|
Kinetic validation of the models for P-glycoprotein ATP hydrolysis and vanadate-induced trapping. Proposal for additional steps. PLoS One 2014; 9:e98804. [PMID: 24897122 PMCID: PMC4045855 DOI: 10.1371/journal.pone.0098804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
P-Glycoprotein, a member of the ATP-binding cassette (ABC) superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich dimer. Intimate knowledge of the catalytic cycle of these proteins is clearly essential for understanding their mechanism of action. P-Glycoprotein has been proposed to hydrolyse ATP by an alternating mechanism, for which there is substantial experimental evidence, including inhibition of catalytic activity by trapping of ortho-vanadate at one nucleotide-binding domain, and the observation of an asymmetric occluded state. Despite many studies of P-glycoprotein ATPase activity over the past 20 years, no comprehensive kinetic analysis has yet been carried out, and some puzzling features of its behaviour remain unexplained. In this work, we have built several progressively more complex kinetic models, and then carried out simulations and detailed analysis, to test the validity of the proposed reaction pathway employed by P-glycoprotein for ATP hydrolysis. To establish kinetic parameters for the catalytic cycle, we made use of the large amount of published data on ATP hydrolysis by hamster P-glycoprotein, both purified and in membrane vesicles. The proposed kinetic scheme(s) include a high affinity priming reaction for binding of the first ATP molecule, and an independent pathway for ADP binding outside the main catalytic cycle. They can reproduce to varying degrees the observed behavior of the protein's ATPase activity and its inhibition by ortho-vanadate. The results provide new insights into the mode of action of P-glycoprotein, and some hypotheses about the nature of the occluded nucleotide-bound state.
Collapse
|
24
|
Scian M, Acchione M, Li M, Atkins WM. Reaction dynamics of ATP hydrolysis catalyzed by P-glycoprotein. Biochemistry 2014; 53:991-1000. [PMID: 24506763 PMCID: PMC3985762 DOI: 10.1021/bi401280v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
P-glycoprotein
(P-gp) is a member of the ABC transporter family
that confers drug resistance to many tumors by catalyzing their efflux,
and it is a major component of drug–drug interactions. P-gp
couples drug efflux with ATP hydrolysis by coordinating conformational
changes in the drug binding sites with the hydrolysis of ATP and release
of ADP. To understand the relative rates of the chemical step for
hydrolysis and the conformational changes that follow it, we exploited
isotope exchange methods to determine the extent to which the ATP
hydrolysis step is reversible. With γ18O4-labeled ATP, no positional isotope exchange is detectable at the
bridging β-phosphorus–O−γ-phosphorus bond.
Furthermore, the phosphate derived from hydrolysis includes a constant
ratio of three 18O/two 18O/one 18O that reflects the isotopic composition of the starting ATP in multiple
experiments. Thus, H2O-exchange with HPO42– (Pi) was negligible, suggesting that a
[P-gp·ADP·Pi] is not long-lived. This further
demonstrates that the hydrolysis is essentially irreversible in the
active site. These mechanistic details of ATP hydrolysis are consistent
with a very fast conformational change immediately following, or concomitant
with, hydrolysis of the γ-phosphate linkage that ensures a high
commitment to catalysis in both drug-free and drug-bound states.
Collapse
Affiliation(s)
- Michele Scian
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | | | | | | |
Collapse
|
25
|
Hirayama H, Kimura Y, Kioka N, Matsuo M, Ueda K. ATPase activity of human ABCG1 is stimulated by cholesterol and sphingomyelin. J Lipid Res 2012; 54:496-502. [PMID: 23172659 DOI: 10.1194/jlr.m033209] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP-binding cassette protein G1 (ABCG1) is important for the formation of HDL. However, the biochemical properties of ABCG1 have not been reported, and the mechanism of how ABCG1 is involved in HDL formation remains unclear. We established a procedure to express and purify human ABCG1 using the suspension-adapted human cell FreeStyle293-F. ABCG1, fused at the C terminus with green fluorescent protein and Flag-peptide, was solubilized with n-dodecyl-β-D-maltoside and purified via a single round of Flag-M2 antibody affinity chromatography. The purified ABCG1 was reconstituted in liposome of various lipid compositions, and the ATPase activity was analyzed. ABCG1 reconstituted in egg lecithin showed ATPase activity (150 nmol/min/mg), which was inhibited by beryllium fluoride. The ATPase activity of ABCG1, reconstituted in phosphatidylserine liposome, was stimulated by cholesterol and choline phospholipids (especially sphingomyelin), and the affinity for cholesterol was increased by the addition of sphingomyelin. These results suggest that ABCG1 is an active lipid transporter and possesses different binding sites for cholesterol and sphingomyelin, which may be synergistically coupled.
Collapse
Affiliation(s)
- Hiroshi Hirayama
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | | | | | | | | |
Collapse
|
26
|
Gout T. Role of ATP binding and hydrolysis in the gating of the cystic fibrosis transmembrane conductance regulator. Ann Thorac Med 2012; 7:115-21. [PMID: 22924067 PMCID: PMC3425041 DOI: 10.4103/1817-1737.98842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/17/2011] [Indexed: 11/16/2022] Open
Abstract
The CFTR gene is unique within the ATP-binding cassette (ABC) protein family, predominantly of transporters, by coding a chloride channel. The gating mechanism of ABC proteins has been characterized by the ATP Switch model in terms cycles of dimer formation and dissociation linked to ATP binding and hydrolysis, respectively. It would be of interest to assess the extent that Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), a functional channel, fits the ATP Switch model for ABC transporters. Additional transporter mechanisms, namely those of Pgp and HlyB, are discussed for perspective. Literature search of databases selected key references in comparing and contrasting the gating mechanism. CFTR is a functional chloride channel facilitating transmembrane anion flow down electrochemical gradients. A dysfunctional CFTR protein results in cystic fibrosis, a fatal pleiotropic disease currently managed symptomatically. Understanding the gating mechanism will help target drug development aimed at alleviating and curing the disease.
Collapse
Affiliation(s)
- Taras Gout
- University of Cambridge School of Clinical Medicine, Addenbrookes's Hospital, Cambridge, CB2 0SP, UK
| |
Collapse
|
27
|
Abstract
In this article, I reflect on research on two ATPases. The first is F(1)F(0)-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization.
Collapse
Affiliation(s)
- Alan E Senior
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
28
|
Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations. Proc Natl Acad Sci U S A 2012; 109:10832-6. [PMID: 22711831 DOI: 10.1073/pnas.1204067109] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The study of membrane proteins remains a challenging task, and approaches to unravel their dynamics are scarce. Here, we applied hydrogen/deuterium exchange (HDX) coupled to mass spectrometry to probe the motions of a bacterial multidrug ATP-binding cassette (ABC) transporter, BmrA, in the inward-facing (resting state) and outward-facing (ATP-bound) conformations. Trypsin digestion and global or local HDX support the transition between inward- and outward-facing conformations during the catalytic cycle of BmrA. However, in the resting state, peptides from the two intracellular domains, especially ICD2, show a much faster HDX than in the closed state. This shows that these two subdomains are very flexible in this conformation. Additionally, molecular dynamics simulations suggest a large fluctuation of the Cα positions from ICD2 residues in the inward-facing conformation of a related transporter, MsbA. These results highlight the unexpected flexibility of ABC exporters in the resting state and underline the power of HDX coupled to mass spectrometry to explore conformational changes and dynamics of large membrane proteins.
Collapse
|
29
|
Verhalen B, Ernst S, Börsch M, Wilkens S. Dynamic ligand-induced conformational rearrangements in P-glycoprotein as probed by fluorescence resonance energy transfer spectroscopy. J Biol Chem 2011; 287:1112-27. [PMID: 22086917 DOI: 10.1074/jbc.m111.301192] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, functions as an ATP hydrolysis-driven efflux pump to rid the cell of toxic organic compounds, including a variety of drugs used in anticancer chemotherapy. Here, we used fluorescence resonance energy transfer (FRET) spectroscopy to delineate the structural rearrangements the two nucleotide binding domains (NBDs) are undergoing during the catalytic cycle. Pairs of cysteines were introduced into equivalent regions in the N- and C-terminal NBDs for labeling with fluorescent dyes for ensemble and single-molecule FRET spectroscopy. In the ensemble FRET, a decrease of the donor to acceptor (D/A) ratio was observed upon addition of drug and ATP. Vanadate trapping further decreased the D/A ratio, indicating close association of the two NBDs. One of the cysteine mutants was further analyzed using confocal single-molecule FRET spectroscopy. Single Pgp molecules showed fast fluctuations of the FRET efficiencies, indicating movements of the NBDs on a time scale of 10-100 ms. Populations of low, medium, and high FRET efficiencies were observed during drug-stimulated MgATP hydrolysis, suggesting the presence of at least three major conformations of the NBDs during catalysis. Under conditions of vanadate trapping, most molecules displayed high FRET efficiency states, whereas with cyclosporin, more molecules showed low FRET efficiency. Different dwell times of the FRET states were found for the distinct biochemical conditions, with the fastest movements during active turnover. The FRET spectroscopy observations are discussed in context of a model of the catalytic mechanism of Pgp.
Collapse
Affiliation(s)
- Brandy Verhalen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
30
|
Ritchie TK, Kwon H, Atkins WM. Conformational analysis of human ATP-binding cassette transporter ABCB1 in lipid nanodiscs and inhibition by the antibodies MRK16 and UIC2. J Biol Chem 2011; 286:39489-96. [PMID: 21937435 DOI: 10.1074/jbc.m111.284554] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human ATP-binding cassette (ABC) transporter, P-glycoprotein (P-gp; ABCB1), mediates the ATP-dependent efflux of a variety of drugs. As a result, P-gp plays a critical role in tumor cell drug resistance and the pharmacokinetic properties of most drugs. P-gp exhibits extraordinary substrate and inhibitor promiscuity, resulting in a wide range of possible drug-drug interactions. Inhibitory antibodies have long been considered as a possible strategy to modulate P-gp-dependent cancer cell drug resistance, and it is widely suggested that the antibodies MRK16 and UIC2 inhibit P-gp by capturing a single isoform and preventing flux through the catalytic cycle. Although the crystal structures of many bacterial whole transporters, as well as isolated nucleotide-binding domains, have been solved, high resolution structural data for mammalian ABC transporters are currently lacking. It has been extremely difficult to determine the detailed mechanism of transport of P-gp, in part because it is difficult to obtain purified protein in well defined lipid systems. Here we exploit surface plasmon resonance (SPR) to probe conformational changes associated with these intermediate states for P-gp in lipid bilayer nanodiscs. The results indicate that P-gp in nanodiscs undergoes functionally relevant ligand-dependent conformational changes and that previously described inhibitory antibodies bind to multiple nucleotide-bound states but not the ADP-VO(4)-trapped state, which mimics the post-hydrolysis state. The results also suggest that the substrate drug vinblastine is released at stages that precede or follow the post-hydrolysis ADP-PO(4)·P-gp complex.
Collapse
Affiliation(s)
- Tasha K Ritchie
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, USA
| | | | | |
Collapse
|
31
|
A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris. PLoS One 2011; 6:e22577. [PMID: 21826197 PMCID: PMC3149604 DOI: 10.1371/journal.pone.0022577] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/24/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. METHODOLOGY/PRINCIPAL FINDINGS Codon-optimized "Opti-Pgp" and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (∼130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ∼15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from T(m) ∼40 °C to 49 °C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. CONCLUSION The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins.
Collapse
|
32
|
Design and probing of efflux functions of EGFP fused ABC membrane transporters in live cells using fluorescence spectroscopy. Anal Bioanal Chem 2011; 400:223-35. [PMID: 21336797 DOI: 10.1007/s00216-011-4727-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
We have designed and constructed fusion genes of C-terminal (Ct) or N-terminal (Nt) bmrA with EGFP vectors and successfully expressed them in ΔBmrA (BmrA deletion strain of Bacillus subtilis), generating two new strains of B. subtilis (Ct-BmrA-EGFP and Nt-BmrA-EGFP). The fusion genes were characterized using gel electrophoresis and DNA sequencing. Their expression in live cells was determined by measuring the fluorescence of EGFP in single live cells using fluorescence microscopy and spectroscopy. The efflux function of the new strains was studied by measuring their accumulation kinetics of intracellular Hoechst dye molecules (a pump substrate) using fluorescence spectroscopy, which were compared with wild-type (WT-BmrA) and ΔBmrA strains. Both new strains show lower accumulation rates than ΔBmrA, and their efflux kinetics are inhibited by a pump inhibitor (orthovanadate). The results suggest that both strains extrude the dye molecules and the fusion proteins retain the efflux function of BmrA (ATP-binding cassette, ABC, transporter). Notably, Nt-BmrA-EGFP strain shows lower accumulation rates (higher efflux rates) than Ct-BmrA-EGFP. Modeled structures of the fusion proteins illustrate a highly flexible linker region connecting EGFP with BmrA, suggesting a minimal obstruction of EGFP to the BmrA. A closer distance of two C termini (~14 Å) than two N termini (47.9 Å) of the "closed" BmrA dimer depicts the larger steric effect of C-terminal fusion. This study also shows that glucose affects the fluorescence study of efflux function of BmrA, suggesting that efflux kinetics of ABC membrane transporters in live cells must be characterized in the absence of glucose.
Collapse
|
33
|
Verhalen B, Wilkens S. P-glycoprotein retains drug-stimulated ATPase activity upon covalent linkage of the two nucleotide binding domains at their C-terminal ends. J Biol Chem 2011; 286:10476-82. [PMID: 21278250 DOI: 10.1074/jbc.m110.193151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein (Pgp), a member of the ABC transporter family, functions as an ATP hydrolysis-driven efflux pump to rid the cell of toxic organic compounds, including a variety of drugs used in anti-cancer chemotherapy. We have recently obtained EM projection images of lipid-bound Pgp without nucleotide and transport substrate that showed the two halves of the transporter separated by a central cavity (Lee, J. Y., Urbatsch, I. L., Senior, A. E., and Wilkens, S. (2002) J. Biol. Chem. 277, 40125-40131). Addition of nucleotide and/or substrate lead to a close association of the two halves of the transporter, thereby closing the central cavity (Lee, J. Y., Urbatsch, I. L., Senior, A. E., and Wilkens, S. (2008) J. Biol. Chem. 283, 5769-5779). Here, we used cysteine-mediated disulfide cross-linking to further delineate the structural rearrangements of the two nucleotide binding domains (NBD1 and NBD2) that take place during catalysis. Cysteines introduced at or near the C-terminal ends of NBD1 and NBD2 allowed for spontaneous disulfide cross-linking under nonreducing conditions. For mutant A627C/S1276C, disulfide formation was with high efficiency and cross-linked Pgp retained 30-68% drug-stimulated ATPase activity compared with reduced or cysteine-less Pgp. Two other cysteine pairs (K615C/S1276C and A627C/K1260C) also formed a disulfide but to a lesser extent, and the cross-linked form of these two mutants had lower drug-stimulated ATPase activity. The data suggest that the C-terminal ends of the two NBDs of Pgp are not required to undergo significant motion with respect to one another during the catalytic cycle.
Collapse
Affiliation(s)
- Brandy Verhalen
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
34
|
Lee KJ, Browning LM, Huang T, Ding F, Nallathamby PD, Xu XHN. Probing of multidrug ABC membrane transporters of single living cells using single plasmonic nanoparticle optical probes. Anal Bioanal Chem 2010; 397:3317-28. [PMID: 20544182 DOI: 10.1007/s00216-010-3864-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 01/16/2023]
Abstract
Currently, molecular mechanisms of multidrug ABC (ATP-binding cassette) membrane transporters remain elusive. In this study, we synthesized and characterized purified spherically shaped silver nanoparticles (Ag NPs) (11.8 +/- 2.6 nm in diameter), which were stable (non-aggregation) in PBS buffer and inside single living cells. We used the size-dependent localized surface plasmon resonance (LSPR) spectra of single Ag NPs to determine their sizes and to probe the size-dependent transport kinetics of the ABC (BmrA, BmrA-EGFP) transporters in single living cells (Bacillus subtilis) in real time at nanometer resolution using dark-field optical microscopy and spectroscopy (DFOMS). The results show that the smaller NPs stayed longer inside the cells than larger NPs, suggesting size-dependent efflux kinetics of the membrane transporter. Notably, accumulation and efflux kinetics of intracellular NPs for single living cells depended upon the cellular expression level of BmrA, NP concentrations, and a pump inhibitor (25 muM, orthovanadate), suggesting that NPs are substrates of BmrA transporters and that passive diffusion driven by concentration gradients is the primary mechanism by which the NPs enter the cells. The accumulation and efflux kinetics of intracellular NPs for given cells are similar to those observed using a substrate (Hoechst dye) of BmrA, demonstrating that NPs are suitable probes for study of multidrug membrane transporters of single living cells in real-time. Unlike fluorescent probes, single Ag NPs exibit size-dependent LSPR spectra and superior photostability, enabling them to probe the size-dependent efflux kinetics of membrane transporters of single living cells in real-time for better understanding of multidrug resistance.
Collapse
Affiliation(s)
- Kerry J Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | | | | | | | | | | |
Collapse
|
35
|
Johnson BJH, Lee JY, Pickert A, Urbatsch IL. Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8. Biochemistry 2010; 49:3403-11. [PMID: 20210363 DOI: 10.1021/bi902064g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ABCG5 and ABCG8 are half-size ABC transporters that function as heterodimers (ABCG5/G8) to reduce sterol absorption in the intestines and increase sterol excretion from the liver. Previous studies demonstrated that bile acids increased ABCG5/G8 specific cholesterol efflux in cell models. In this study we tested the effects of bile acids on ATP hydrolysis in Pichia pastoris purified ABCG5/G8 and found that they stimulated hydrolysis approximately 20-fold in wild-type ABCG5/G8 but not in a hydrolysis-deficient mutant. Nonconjugated cholate supported the highest ATPase activity in ABCG5/G8 (256 +/- 9 nmol min(-1) mg(-1)). ATP hydrolysis was also stimulated by other conjugated bile acids and a mixture of bile acids resembling human bile with activities ranging from 129 +/- 4 to 147 +/- 14 nmol min(-1) mg(-1). The kinetic parameters, inhibitor profiles, and lipid requirements of bile acid stimulated ATP hydrolysis were characterized. Cholate-stimulated ATP hydrolysis was maximal at concentrations of >or=10 mM MgATP and had a relatively high K(M) (MgATP) of approximately 1 mM. Orthovanadate, BeFx, and AlFx effectively inhibited ABCG5/G8 at concentrations of 1 mM. Various lipid mixtures supported bile acid-stimulated ATP hydrolysis, which increased when cholesterol was present. The data demonstrate that bile acids together with lipids and cholesterol increase ATP hydrolysis in purified ABCG5/G8. Bile acids may promote an active conformation of purified ABCG5/G8 either by global stabilization of the transporter or by binding to a specific site on ABCG5/G8.
Collapse
Affiliation(s)
- Brandy J Harvey Johnson
- Department of Cell Biology and Biochemistry and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | |
Collapse
|
36
|
Jose M, Thomas SV. Role of multidrug transporters in neurotherapeutics. Ann Indian Acad Neurol 2010; 12:89-98. [PMID: 20142853 PMCID: PMC2812747 DOI: 10.4103/0972-2327.53076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 05/14/2009] [Accepted: 06/02/2009] [Indexed: 11/30/2022] Open
Abstract
Acquired resistance to antibiotics and other chemotherapeutic agents is a major problem in the practice of neurology and other branches of medicine. There are several mechanisms by which drug resistance is acquired. Multidrug transporters are important glycoproteins located in the cell membrane that actively transport small lipophilic molecules from one side of the cell membrane to the other, most often from the inside to the outside of a cell. They have important protective role yet may prove inconvenient in chemotherapy. In epilepsy and other disorders this mechanism augments the elimination of drugs from their target cells and leads to drug resistance. In this review, we have discussed the biochemical characteristics of multidrug transporters and the mechanisms by which these membrane bound proteins transport their target molecules from one side to the other side of the cell membrane. We have also briefly discussed the application of this knowledge in the understanding of drug resistance in various clinical situations with particular reference to neurological disorders. These proteins located in the placenta have important role in preventing the transplacental movement of drugs in to the fetus which may result in congenital malformations or other defects. The molecular genetic mechanisms that govern the expression of these important proteins are discussed briefly. The potential scope to develop targeted chemotherapeutic agents is also discussed.
Collapse
Affiliation(s)
- Manna Jose
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | | |
Collapse
|
37
|
Abstract
The role of the ATP-binding cassette ABCB1 in mediating the resistance to chemotherapy in many forms of cancer has been well established. The protein is also endogenously expressed in numerous barrier and excretory tissues, thereby regulating or impacting on drug pharmacokinetic profiles. Given these prominent roles in health and disease, a great deal of biochemical, structural and pharmacological research has been directed towards modulating its activity. Despite the effort, only a small handful of compounds have reached the later stages of clinical trials. What is responsible for this poor return on the heavy research investment? Perhaps the most significant factor is the lack of information on the location, physical features and chemical properties of the drug-binding site(s) in ABCB1. This minireview outlines the various strategies and outcomes of research efforts to pin-point the sites of interaction. The data may be assimilated into two working hypotheses to describe drug binding to ABCB1; (a) the central cavity and the (b) domain interface models.
Collapse
Affiliation(s)
- Emily Crowley
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
38
|
Abstract
CLC-0 and cystic fibrosis transmembrane conductance regulator (CFTR) Cl−channels play important roles in Cl−transport across cell membranes. These two proteins belong to, respectively, the CLC and ABC transport protein families whose members encompass both ion channels and transporters. Defective function of members in these two protein families causes various hereditary human diseases. Ion channels and transporters were traditionally viewed as distinct entities in membrane transport physiology, but recent discoveries have blurred the line between these two classes of membrane transport proteins. CLC-0 and CFTR can be considered operationally as ligand-gated channels, though binding of the activating ligands appears to be coupled to an irreversible gating cycle driven by an input of free energy. High-resolution crystallographic structures of bacterial CLC proteins and ABC transporters have led us to a better understanding of the gating properties for CLC and CFTR Cl−channels. Furthermore, the joined force between structural and functional studies of these two protein families has offered a unique opportunity to peek into the evolutionary link between ion channels and transporters. A promising byproduct of this exercise is a deeper mechanistic insight into how different transport proteins work at a fundamental level.
Collapse
|
39
|
Tombline G, Holt JJ, Gannon MK, Donnelly DJ, Wetzel B, Sawada GA, Raub TJ, Detty MR. ATP occlusion by P-glycoprotein as a surrogate measure for drug coupling. Biochemistry 2008; 47:3294-307. [PMID: 18275155 DOI: 10.1021/bi7021393] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The multidrug efflux pump P-glycoprotein (Pgp) couples drug transport to ATP hydrolysis. Previously, using a synthetic library of tetramethylrosamine ( TMR) analogues, we observed significant variation in ATPase stimulation ( V m (D)). Concentrations required for half-maximal ATPase stimulation ( K m (D)) correlated with ATP hydrolysis transition-state stabilization and ATP occlusion (EC 50 (D)) at a single site. Herein, we characterize several TMR analogues that elicit modest turnover ( k cat <or= 1-2 s (-1)) compared to verapamil (VER) ( k cat approximately 10 s (-1)). Apparent ATPase activities manifest as nearly equivalent to basal values. In some cases, K m (D) parameters for drug stimulation of ATPase could not be accurately determined, yet these same TMR analogues promoted ATP occlusion at relatively low concentrations ( approximately 0.4-40 microM). Moreover, the TMR analogues competitively inhibited VER-dependent ATPase activity at concentrations similar to those required for ATP occlusion. Finally, the TMR analogues facilitated uptake of calcein-AM into CR1R12 and MDCK-MDR1 cells and are actively transported by Pgp in monolayers of MDCK-MDR1 cells at similarly low concentrations ( approximately 1-20 microM). ADP.V i release kinetics were identical in the presence of the TMR derivatives, VER, or in the absence of drug, suggesting that slow turnover is not likely due to slow release of the ATP hydrolysis products ADP and P i. These data support the partition model in which drug site occupancy converts residual basal ATPase activity to a drug-dependent mechanism even in cases where stimulation appears to be exactly compensatory to basal values. It is noteworthy that when compared to previously reported TMR analogues, subtle modification of the TMR scaffold can confer large differences in ATP turnover.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Orelle C, Gubellini F, Durand A, Marco S, Lévy D, Gros P, Di Pietro A, Jault JM. Conformational change induced by ATP binding in the multidrug ATP-binding cassette transporter BmrA. Biochemistry 2008; 47:2404-12. [PMID: 18215075 DOI: 10.1021/bi702303s] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters.
Collapse
Affiliation(s)
- Cédric Orelle
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université de Lyon 1 and IFR 128 BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee JY, Urbatsch IL, Senior AE, Wilkens S. Nucleotide-induced structural changes in P-glycoprotein observed by electron microscopy. J Biol Chem 2007; 283:5769-79. [PMID: 18093977 DOI: 10.1074/jbc.m707028200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp) is an ATP hydrolysis driven multidrug efflux pump, which, when overexpressed in the plasma membrane of certain cancers, can lead to the failure of chemotherapy. Previously, we have presented a projection structure of nucleotide-free mouse Pgp from electron microscopic images of lipid monolayer-generated two-dimensional crystals ( Lee, J. Y., Urbatsch, I. L., Senior, A. E., and Wilkens, S. (2002) J. Biol. Chem. 277, 40125-40131 ). Here we have analyzed the structure of cysteine-free human Pgp from two-dimensional crystals that were generated with the same lipid-monolayer technique in the absence and presence of various nucleotides. The images show that human Pgp has a similar structure to the mouse protein. Furthermore, the analysis of projection structures obtained under different nucleotide conditions suggests that Pgp can exist in at least two major conformations, one of which shows a central cavity between the N- and C-terminal halves of the molecule and another in which the two halves have moved sideways, thereby closing the central cavity. Intermediate conformations were observed for some nucleotide/vanadate combinations. A low-resolution, three-dimensional model of human Pgp was calculated from tilted specimen crystallized in the presence of the non-hydrolyzable nucleotide analog, adenosine 5'-O-(thiotriphosphate). The structural analysis presented here adds to the emerging picture that multidrug ABC transporters function by switching between two major conformations in a nucleotide-dependent manner.
Collapse
Affiliation(s)
- Jyh-Yeuan Lee
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
42
|
Chloupková M, Pickert A, Lee JY, Souza S, Trinh YT, Connelly SM, Dumont ME, Dean M, Urbatsch IL. Expression of 25 human ABC transporters in the yeast Pichia pastoris and characterization of the purified ABCC3 ATPase activity. Biochemistry 2007; 46:7992-8003. [PMID: 17569508 DOI: 10.1021/bi700020m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human ATP-binding cassette (ABC) transporters comprise a family of 48 membrane-spanning transport proteins, many of which are associated with genetic diseases or multidrug resistance of cancers. In this study, we present a comprehensive approach for the cloning, expression, and purification of human ABC transporters in the yeast Pichia pastoris. We analyzed the expression of 25 proteins and demonstrate that 11 transporters, including ABCC3, ABCB6, ABCD1, ABCG1, ABCG4, ABCG5, ABCG8, ABCE1, ABCF1, ABCF2, and ABCF3, were expressed at high levels comparable to that of ABCB1 (P-glycoprotein). As an example of the purification strategy via tandem affinity chromatography, we purified ABCC3 (MRP3) whose role in the transport of anticancer drugs, bile acids, and glucuronides has been controversial. The yield of ABCC3 was 3.5 mg/100 g of cells in six independent purifications. Purified ABCC3, activated with PC lipids, exhibited significant ATPase activity with a Vmax of 82 +/- 32 nmol min-1 mg-1. The ATPase activity was stimulated by bile acids and glucuronide conjugates, reaching 170 +/- 28 nmol min-1 mg-1, but was not stimulated by a variety of anticancer drugs. The glucuronide conjugates ethinylestradiol-3-glucuronide and 17beta-estradiol-17-glucuronide stimulated the ATPase with relatively high affinities (apparent Km values of 2 and 3 microM, respectively) in contrast to bile acids (apparent Km values of >130 microM), suggesting that glucuronides are the preferred substrates for this transporter. Overall, the availability of a purification system for the production of large quantities of active transporters presents a major step not only toward understanding the role of ABCC3 but also toward future structure-function analysis of other human ABC transporters.
Collapse
Affiliation(s)
- Maja Chloupková
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6540, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aänismaa P, Seelig A. P-Glycoprotein kinetics measured in plasma membrane vesicles and living cells. Biochemistry 2007; 46:3394-404. [PMID: 17302433 DOI: 10.1021/bi0619526] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P-glycoprotein (MDR1, ABCB1) is an ATP-dependent efflux transporter of a large variety of compounds. To understand P-glycoprotein in more detail, it is important to elucidate its activity in the cellular ensemble as well as in plasma membrane vesicles (under conditions where other ATP dependent proteins are blocked). We measured P-glycoprotein activity in inside-out vesicles formed from plasma membranes of MDR1-transfected mouse embryo fibroblasts (NIH-MDR1-G185) for comparison with previous measurements of P-glycoprotein activity in living NIH-MDR1-G185 cells. In plasma membrane vesicles activity was measured by monitoring phosphate release upon ATP hydrolysis and in living cells by monitoring the extracellular acidification rate upon ATP synthesis via glycolysis. P-glycoprotein was stimulated as a function of the concentration with 19 structurally different drugs, including local anesthetics, cyclic peptides, and cytotoxic drugs. The concentrations of half-maximum P-glycoprotein activation, K1, were identical in inside-out plasma membrane vesicles and in living cells and covered a broad range of concentrations (K1 approximately (10(-8)-10(-3)) M). The influence of the pH, drug association, and vesicle aggregation on the concentration of half-maximum P-glycoprotein activation was investigated. The turnover numbers in plasma membrane vesicles and in living cells were also approximately identical if the latter were measured in the presence of pyruvate. However, in the absence of pyruvate they were higher in living cells. The rate of ATP hydrolysis/ATP synthesis decreased exponentially with decreasing free energy of drug binding from water to the transporter, DeltaG0(tw)(1) (or increasing binding affinity). This suggests that drug release from the transmembrane domains has to occur before ATP is hydrolyzed for resetting the transporter.
Collapse
Affiliation(s)
- Päivi Aänismaa
- Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, Switzerland
| | | |
Collapse
|
44
|
Russell P, Sharom F. Conformational and functional characterization of trapped complexes of the P-glycoprotein multidrug transporter. Biochem J 2006; 399:315-23. [PMID: 16803457 PMCID: PMC1609918 DOI: 10.1042/bj20060015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Pgp (P-glycoprotein) multidrug transporter couples ATP hydrolysis at two cytoplasmic NBDs (nucleotide-binding domains) to the transport of hydrophobic compounds. Orthovanadate (V(i)) and fluoroaluminate (AlF(x)) trap nucleotide in one NBD by forming stable catalytically inactive complexes (Pgp-M2+-ADP-X), which are proposed to resemble the catalytic transition state, whereas the complex formed by beryllium fluoride (BeF(x)) is proposed to resemble the ground state. We studied the trapped complexes formed via incubation of Pgp with ATP (catalytically forward) or ADP (reverse) and V(i), BeF(x) or AlF(x) using Mg2+ or Co2+ as the bivalent cation. Quenching of intrinsic Pgp tryptophan fluorescence by acrylamide, iodide and caesium indicated that conformational changes took place upon formation of the trapped complexes. Trapping with V(i) and ATP led to a 6-fold increase in the acrylamide quenching constant, K(SV), suggesting that large conformational changes take place in the Pgp transmembrane regions on trapping in the forward direction. Trapping with V(i) and ADP gave only a small change in quenching, indicating that the forward- and reverse-trapped complexes are different. TNP (trinitrophenyl)-ATP/TNP-ADP interacted with all of the trapped complexes, however, the fluorescence enhancement differed for the trapped states, suggesting a change in polarity in the nucleotide-binding sites. The nucleotide-binding site of the BeF(x)-trapped complex was much more polar than that of the V(i) and AlF(x) complexes. Functionally, all the trapped complexes were able to bind drugs and TNP-nucleotides with unchanged affinity compared with native Pgp.
Collapse
Affiliation(s)
- Paula L. Russell
- Department of Molecular and Cellular Biology University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Frances J. Sharom
- Department of Molecular and Cellular Biology University of Guelph, Guelph, ON, Canada N1G 2W1
- To whom correspondence should be addressed (email )
| |
Collapse
|
45
|
Wang Z, Stalcup LD, Harvey BJ, Weber J, Chloupkova M, Dumont ME, Dean M, Urbatsch IL. Purification and ATP hydrolysis of the putative cholesterol transporters ABCG5 and ABCG8. Biochemistry 2006; 45:9929-39. [PMID: 16893193 DOI: 10.1021/bi0608055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the ATP-binding cassette (ABC) transporters ABCG5 and ABCG8 lead to sitosterolemia, a disorder characterized by sterol accumulation and premature atherosclerosis. ABCG5 and ABCG8 are both half-size transporters that have been proposed to function as heterodimers in vivo. We have expressed the recombinant human ABCG5 and ABCG8 genes in the yeast Pichia pastoris and purified the proteins to near homogeneity. Purified ABCG5 and ABCG8 had very low ATPase activities (<5 nmol min(-)(1) mg(-)(1)), suggesting that expression of ABCG5 or ABCG8 alone yielded nonfunctional transporters. Coexpression of the two genes in P. pastoris greatly increased the yield of pure proteins, indicating that the two transporters stabilize each other during expression and purification. Copurified ABCG5/G8 displayed low but significant ATPase activity with a V(max) of approximately 15 nmol min(-)(1) mg(-)(1). The ATPase activity was not stimulated by sterols. The catalytic activity of copurified ABCG5/G8 was characterized in detail, demonstrating low affinity for MgATP, a preference for Mg as a metal cofactor and ATP as a hydrolyzed substrate, and a pH optimum near 8.0. AlFx and BeFx inhibited MgATP hydrolysis by specific trapping of nucleotides in the ABCG5/G8 proteins. Furthermore, ABCG5/G8 eluted as a dimer on gel filtration columns. The data suggest that the hetero-dimer is the catalytically active species, and likely the active species in vivo.
Collapse
Affiliation(s)
- Zhanling Wang
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6540, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Linton KJ, Higgins CF. Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch 2006; 453:555-67. [PMID: 16937116 DOI: 10.1007/s00424-006-0126-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/15/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that facilitate the transbilayer movement of ligands. They comprise, minimally, two transmembrane domains, which impart ligand specificity, and two nucleotide-binding domains (NBDs), which power the transport cycle. Almost 25 years of biochemistry is reviewed in light of the recent structure analyses resulting in the ATP-switch model for function in which the NBDs switch between a dimeric conformation, closed around two molecules of ATP, and a nucleotide-free, dimeric 'open' conformation. The flexibility of this switching mechanism has evolved to provide different kinetic control for different transporters and has also been co-opted to diverse functions other than transmembrane transport.
Collapse
Affiliation(s)
- Kenneth J Linton
- MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital Campus, London, UK.
| | | |
Collapse
|
47
|
Tombline G, Donnelly DJ, Holt JJ, You Y, Ye M, Gannon MK, Nygren CL, Detty MR. Stimulation of P-glycoprotein ATPase by analogues of tetramethylrosamine: coupling of drug binding at the "R" site to the ATP hydrolysis transition state. Biochemistry 2006; 45:8034-47. [PMID: 16800628 DOI: 10.1021/bi0603470] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The multidrug resistance efflux pump P-glycoprotein (Pgp) couples drug export to ATP binding and hydrolysis. Details regarding drug trajectory, as well as the molecular basis for coupling, remain unknown. Nearly all drugs exported by Pgp have been assayed for competitive behavior with rhodamine123 transport at a canonical "R" drug binding site. Tetramethylrosamine (TMR) displays a relatively high affinity for Pgp when compared to other rhodamines. Here, we present the construction and characterization of a library of compounds based upon the TMR scaffold and use this set to assess the determinants of drug binding to the "R" site of Pgp. This set contained modifications in (1) the number, location, and conformational mobility of hydrogen-bond acceptors; (2) the heteroatom in the xanthylium core; and (3) the size of the substituent in the 9-position of the xanthylium core. Relative specificity for coupling to the distal ATP catalytic site was assessed by ATPase stimulation. We found marked ( approximately 1000-fold) variation in the ATPase specificity constant within the library of TMR analogues. Using established methods involving ADP-Vi trapping by wild-type Pgp and ATP binding by catalytic carboxylate mutant Pgp, these effects can be extended to ATP hydrolysis transition-state stabilization and ATP occlusion at a single site. These data support the idea that drugs trigger the engagement of ATP catalytic site residues necessary for hydrolysis. Further, the nature of the drug binding site and coupling mechanism may be dissected by variation of a drug-like scaffold. These studies may facilitate development of novel competitive inhibitors at the "R" drug site.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wan CK, Zhu GY, Shen XL, Chattopadhyay A, Dey S, Fong WF. Gomisin A alters substrate interaction and reverses P-glycoprotein-mediated multidrug resistance in HepG2-DR cells. Biochem Pharmacol 2006; 72:824-37. [PMID: 16889754 DOI: 10.1016/j.bcp.2006.06.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/12/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Through an extensive herbal drug screening program, we found that gomisin A, a dibenzocyclooctadiene compound isolated from Schisandra chinensis, reversed multidrug resistance (MDR) in Pgp-overexpressing HepG2-DR cells. Gomisin A was relatively non-toxic but without altering Pgp expression, it restored the cytotoxic actions of anticancer drugs such as vinblastine and doxorubicin that are Pgp substrates but may act by different mechanisms. Several lines of evidence suggest that gomisin A alters Pgp-substrate interaction but itself is neither a Pgp substrate nor competitive inhibitor. (1) First unlike Pgp substrates gomisin A inhibited the basal Pgp-associated ATPase (Pgp-ATPase) activity. (2) The cytotoxicity of gomisin A was not affected by Pgp competitive inhibitors such as verapamil. (3) Gomisin A acted as an uncompetitive inhibitor for Pgp-ATPase activity stimulated by the transport substrates verapamil and progesterone. (4) On the inhibition of rhodamine-123 efflux the effects of gomisin A and the competitive inhibitor verapamil were additive, so were the effects of gomisin A and the ATPase inhibitor vanadate. (5) Binding of transport substrates with Pgp would result in a Pgp conformational change favoring UIC-2 antibody reactivity but gomisin A impeded UIC-2 binding. (6) Photocrosslinking of Pgp with its transport substrate [125I]iodoarylazidoprazosin was inhibited by gomisin A in a concentration-dependent manner. Taken together our results suggest that gomisin A may bind to Pgp simultaneously with substrates and alters Pgp-substrate interaction.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphate/metabolism
- Anticarcinogenic Agents/chemistry
- Anticarcinogenic Agents/pharmacology
- Azides/pharmacology
- Blotting, Western/methods
- Cell Line, Tumor
- Cell Survival/drug effects
- Cyclooctanes/chemistry
- Cyclooctanes/pharmacology
- Dioxoles/chemistry
- Dioxoles/pharmacology
- Dose-Response Relationship, Drug
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Humans
- Hydrolysis/drug effects
- Lignans/chemistry
- Lignans/pharmacology
- Prazosin/analogs & derivatives
- Prazosin/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rhodamine 123/metabolism
- Vanadates/pharmacology
- Verapamil/pharmacology
- Vinblastine/pharmacology
Collapse
Affiliation(s)
- Chi-Keung Wan
- Bioactive Products Research Group, Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S A R, China
| | | | | | | | | | | |
Collapse
|
49
|
Wang J, Sun F, Zhang DW, Ma Y, Xu F, Belani JD, Cohen JC, Hobbs HH, Xie XS. Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution. J Biol Chem 2006; 281:27894-904. [PMID: 16867993 PMCID: PMC4527585 DOI: 10.1074/jbc.m605603200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporters G5 and G8 are half-transporters expressed on the apical membranes of enterocytes and hepatocytes that limit intestinal uptake and promote secretion of neutral sterols. Genetic defects that inactivate either half-transporter cause accumulation of cholesterol and plant sterols, resulting in premature coronary atherosclerosis. These observations suggest that G5 and G8 promote the translocation of sterols across membranes, but the primary transport substrate of the G5G8 complex has not been directly determined. Here we report the development of a sterol transfer assay using "inside-out" membrane vesicles from Sf9 cells expressing recombinant mouse G5 and G8. Radiolabeled cholesterol or sitosterol was transferred from donor liposomes to G5- and G8-containing membrane vesicles in an ATP-dependent and vanadate-sensitive manner; net transfer of cholesterol was associated with an increase in vesicular cholesterol mass. CTP, GTP, and UTP, as well as ATP, supported transfer but with lesser efficiency (ATP >> CTP > GTP > UTP). Transfer was specific for sterols and was stereoselective; minimal ATP-dependent and vanadate-sensitive transfer of cholesteryl oleate, phosphatidylcholine, or enantiomeric cholesterol was observed. These studies indicate that G5 and G8 are sufficient for reconstitution of sterol transfer activity in vitro and provide the first demonstration that sterols are direct transport substrates of the G5 and G8 heterodimer.
Collapse
Affiliation(s)
- Jin Wang
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Fang Sun
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Da-wei Zhang
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Yongming Ma
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Fang Xu
- Center of Human Nutrition, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Jitendra D. Belani
- Department of Chemistry, University of California, Irvine, California 92697-2025
| | - Jonathan C. Cohen
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Center of Human Nutrition, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Helen H. Hobbs
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Howard Hughes Medical Institute and Department of Molecular Genetics, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
| | - Xiao-Song Xie
- Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591
- To whom correspondence should be addressed. Tel.: 214-648-7700; Fax: 214-648-7720;
| |
Collapse
|
50
|
Wang Y, Hao D, Stein WD, Yang L. A kinetic study of Rhodamine123 pumping by P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1671-6. [PMID: 16854369 DOI: 10.1016/j.bbamem.2006.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/05/2006] [Accepted: 06/02/2006] [Indexed: 11/27/2022]
Abstract
The MDR1 P-glycoprotein (P-gp) actively extrudes a wide variety of structurally diverse cytotoxic compounds out of the cell, is widely expressed in the epithelial cells of kidney, liver and intestine, and in the endothelial cells of brain and placenta, and plays an important role in drug resistance. We measured the accumulation of Rhodamine 123 (Rho123), a substrate of P-gp, into a drug sensitive and a drug resistant strain of the human leukemia cell line K562, as function of Rho123 concentration. With the aid of a mathematical transformation, we used the accumulation of Rho123 into the sensitive cells as a surrogate measure for the internal concentration of the probe in the resistant cells, and were thus able to measure the kinetic parameters of drug efflux pumping by P-gp. Drug pumping was half-saturated at an external Rho123 concentration of 7.2E-06+/-1.1E-06 M, and displayed a co-operative behaviour with a Hill number of 1.94+/-0.32. Verapamil could be shown to inhibit Rho123 efflux uncompetitively.
Collapse
Affiliation(s)
- Yulin Wang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | |
Collapse
|