1
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel J, Pons L, Foster K, Beard M, Bard F. Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons. eLife 2024; 12:RP92806. [PMID: 39196607 DOI: 10.7554/elife.92806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia P Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Rebecca Bennion
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| | - Omar Loss
- Ipsen Bioinnovation, London, United Kingdom
| | | | | | | | | | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| |
Collapse
|
2
|
Tan C, Du Y, Zhu L, Jing S, Gao J, Qian Y, Yue X, Lee I. KDEL Receptor Trafficking to the Plasma Membrane Is Regulated by ACBD3 and Rab4A-GTP. Cells 2023; 12:cells12071079. [PMID: 37048152 PMCID: PMC10093020 DOI: 10.3390/cells12071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
KDEL receptor-1 maintains homeostasis in the early secretory pathway by capturing and retrieving ER chaperones to the ER during heavy secretory activity. Unexpectedly, a fraction of the receptor is also known to reside in the plasma membrane (PM), although it is largely unknown exactly how the KDEL receptor gets exported from the Golgi and travels to the PM. We have previously shown that a Golgi scaffolding protein (ACBD3) facilitates KDEL receptor localization at the Golgi via the regulating cargo wave-induced cAMP/PKA-dependent signaling pathway. Upon endocytosis, surface-expressed KDEL receptor undergoes highly complex itineraries through the Golgi and the endo-lysosomal compartments, where the endocytosed receptor utilizes Rab14A- and Rab11A-positive recycling endosomes and clathrin-decorated tubulovesicular carriers. In this study, we sought to investigate the mechanism through which the KDEL receptor gets exported from the Golgi en route to the PM. We report here that ACBD3 depletion results in greatly increased trafficking of KDEL receptor to the PM via Rab4A-positive tubular carriers emanating from the Golgi. Expression of constitutively activated Rab4A mutant (Q72L) increases the surface expression of KDEL receptor up to 2~3-fold, whereas Rab4A knockdown or the expression of GDP-locked Rab4A mutant (S27N) inhibits KDEL receptor targeting of the PM. Importantly, KDELR trafficking from the Golgi to the PM is independent of PKA- and Src kinase-mediated mechanisms. Taken together, these results reveal that ACBD3 and Rab4A play a key role in regulating KDEL receptor trafficking to the cell surface.
Collapse
Affiliation(s)
- Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yulei Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jingkai Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Lungu C, Meyer F, Hörning M, Steudle J, Braun A, Noll B, Benz D, Fränkle F, Schmid S, Eisler SA, Olayioye MA. Golgi screen identifies the RhoGEF Solo as a novel regulator of RhoB and endocytic transport. Traffic 2023; 24:162-176. [PMID: 36562184 DOI: 10.1111/tra.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The control of intracellular membrane trafficking by Rho GTPases is central to cellular homeostasis. How specific guanine nucleotide exchange factors and GTPase-activating proteins locally balance GTPase activation in this process is nevertheless largely unclear. By performing a microscopy-based RNAi screen, we here identify the RhoGEF protein Solo as a functional counterplayer of DLC3, a RhoGAP protein with established roles in membrane trafficking. Biochemical, imaging and optogenetics assays further uncover Solo as a novel regulator of endosomal RhoB. Remarkably, we find that Solo and DLC3 control not only the activity, but also total protein levels of RhoB in an antagonistic manner. Together, the results of our study uncover the first functionally connected RhoGAP-RhoGEF pair at endomembranes, placing Solo and DLC3 at the core of endocytic trafficking.
Collapse
Affiliation(s)
- Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Marcel Hörning
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany.,Institute of Biomaterials and Biomolecular Systems, Biobased Materials Group, University of Stuttgart, Stuttgart, Germany
| | - Jasmin Steudle
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Anja Braun
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Bettina Noll
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - David Benz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Felix Fränkle
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stephan A Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Tang Q, Liu Q, Li Y, Mo L, He J. CRELD2, endoplasmic reticulum stress, and human diseases. Front Endocrinol (Lausanne) 2023; 14:1117414. [PMID: 36936176 PMCID: PMC10018036 DOI: 10.3389/fendo.2023.1117414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
CRELD2, a member of the cysteine-rich epidermal growth factor-like domain (CRELD) protein family, is both an endoplasmic reticulum (ER)-resident protein and a secretory factor. The expression and secretion of CRELD2 are dramatically induced by ER stress. CRELD2 is ubiquitously expressed in multiple tissues at different levels, suggesting its crucial and diverse roles in different tissues. Recent studies suggest that CRELD2 is associated with cartilage/bone metabolism homeostasis and pathological conditions involving ER stress such as chronic liver diseases, cardiovascular diseases, kidney diseases, and cancer. Herein, we first summarize ER stress and then critically review recent advances in the knowledge of the characteristics and functions of CRELD2 in various human diseases. Furthermore, we highlight challenges and present future directions to elucidate the roles of CRELD2 in human health and disease.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Mo
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Jinhan He,
| |
Collapse
|
5
|
Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. J Biol Chem 2022; 298:102061. [PMID: 35609712 PMCID: PMC9218512 DOI: 10.1016/j.jbc.2022.102061] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
The concentration of Ca2+ in the endoplasmic reticulum (ER) is critically important for maintaining its oxidizing environment as well as for maintaining luminal ATP levels required for chaperone activity. Therefore, local luminal Ca2+ concentrations and the dynamic Ca2+ flux between the different subcellular compartments are tightly controlled. Influx of Ca2+ into the ER is enabled by a reductive shift, which opens the sarcoendoplasmic reticulum calcium transport ATPase pump, building the Ca2+ gradient across the ER membrane required for ATP import. Meanwhile, Ca2+ leakage from the ER has been reported to occur via the Sec61 translocon following protein translocation. In this review, we provide an overview of the complex regulation of Ca2+ homeostasis, Ca2+ flux between subcellular compartments, and the cellular stress response (the unfolded protein response) induced upon dysregulated luminal Ca2+ metabolism. We also provide insight into the structure and gating mechanism at the Sec61 translocon and examine the role of ER-resident cochaperones in assisting the central ER-resident chaperone BiP in the control of luminal Ca2+ concentrations.
Collapse
|
6
|
Mechanisms regulating the sorting of soluble lysosomal proteins. Biosci Rep 2022; 42:231123. [PMID: 35394021 PMCID: PMC9109462 DOI: 10.1042/bsr20211856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lysosomes are key regulators of many fundamental cellular processes such as metabolism, autophagy, immune response, cell signalling and plasma membrane repair. These highly dynamic organelles are composed of various membrane and soluble proteins, which are essential for their proper functioning. The soluble proteins include numerous proteases, glycosidases and other hydrolases, along with activators, required for catabolism. The correct sorting of soluble lysosomal proteins is crucial to ensure the proper functioning of lysosomes and is achieved through the coordinated effort of many sorting receptors, resident ER and Golgi proteins, and several cytosolic components. Mutations in a number of proteins involved in sorting soluble proteins to lysosomes result in human disease. These can range from rare diseases such as lysosome storage disorders, to more prevalent ones, such as Alzheimer’s disease, Parkinson’s disease and others, including rare neurodegenerative diseases that affect children. In this review, we discuss the mechanisms that regulate the sorting of soluble proteins to lysosomes and highlight the effects of mutations in this pathway that cause human disease. More precisely, we will review the route taken by soluble lysosomal proteins from their translation into the ER, their maturation along the Golgi apparatus, and sorting at the trans-Golgi network. We will also highlight the effects of mutations in this pathway that cause human disease.
Collapse
|
7
|
Del Giudice S, De Luca V, Parizadeh S, Russo D, Luini A, Di Martino R. Endogenous and Exogenous Regulatory Signaling in the Secretory Pathway: Role of Golgi Signaling Molecules in Cancer. Front Cell Dev Biol 2022; 10:833663. [PMID: 35399533 PMCID: PMC8984190 DOI: 10.3389/fcell.2022.833663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
The biosynthetic transport route that constitutes the secretory pathway plays a fundamental role in the cell, providing to the synthesis and transport of around one third of human proteins and most lipids. Signaling molecules within autoregulatory circuits on the intracellular membranes of the secretory pathway regulate these processes, especially at the level of the Golgi complex. Indeed, cancer cells can hijack several of these signaling molecules, and therefore also the underlying regulated processes, to bolster their growth or gain more aggressive phenotypes. Here, we review the most important autoregulatory circuits acting on the Golgi, emphasizing the role of specific signaling molecules in cancer. In fact, we propose to draw awareness to highlight the Golgi-localized regulatory systems as potential targets in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Luini
- *Correspondence: Alberto Luini, ; Rosaria Di Martino,
| | | |
Collapse
|
8
|
Chia J, Wang SC, Wee S, Gill DJ, Tay F, Kannan S, Verma CS, Gunaratne J, Bard FA. Src activates retrograde membrane traffic through phosphorylation of GBF1. eLife 2021; 10:68678. [PMID: 34870592 PMCID: PMC8727025 DOI: 10.7554/elife.68678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022] Open
Abstract
The Src tyrosine kinase controls cancer-critical protein glycosylation through Golgi to ER relocation of GALNTs enzymes. How Src induces this trafficking event is unknown. Golgi to ER transport depends on the GTP exchange factor (GEF) GBF1 and small GTPase Arf1. Here, we show that Src induces the formation of tubular transport carriers containing GALNTs. The kinase phosphorylates GBF1 on 10 tyrosine residues; two of them, Y876 and Y898, are located near the C-terminus of the Sec7 GEF domain. Their phosphorylation promotes GBF1 binding to the GTPase; molecular modeling suggests partial melting of the Sec7 domain and intramolecular rearrangement. GBF1 mutants defective for these rearrangements prevent binding, carrier formation, and GALNTs relocation, while phosphomimetic GBF1 mutants induce tubules. In sum, Src promotes GALNTs relocation by promoting GBF1 binding to Arf1. Based on residue conservation, similar regulation of GEF-Arf complexes by tyrosine phosphorylation could be a conserved and widespread mechanism.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Shyi-Chyi Wang
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Institute of Bioengineering and Bioimaging, Singapore, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | - Felicia Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Frederic A Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
| |
Collapse
|
9
|
Guedouari H, Ould Amer Y, Pichaud N, Hebert-Chatelain E. Characterization of the interactome of c-Src within the mitochondrial matrix by proximity-dependent biotin identification. Mitochondrion 2021; 57:257-269. [PMID: 33412331 DOI: 10.1016/j.mito.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Abstract
C-Src kinase is localized in several subcellular compartments, including mitochondria where it is involved in the regulation of organelle functions and overall metabolism. Surprisingly, the characterization of the intramitochondrial Src interactome has never been fully determined. Using in vitro proximity-dependent biotin identification (BioID) coupled to mass spectrometry, we identified 51 candidate proteins that may interact directly or indirectly with c-Src within the mitochondrial matrix. Pathway analysis suggests that these proteins are involved in a large array of mitochondrial functions such as protein folding and import, mitochondrial organization and transport, oxidative phosphorylation, tricarboxylic acid cycle and metabolism of amino and fatty acids. Among these proteins, we identified 24 tyrosine phosphorylation sites in 17 mitochondrial proteins (AKAP1, VDAC1, VDAC2, VDAC3, LonP1, Hsp90, SLP2, PHB2, MIC60, UBA1, EF-Tu, LRPPRC, ACO2, OAT, ACAT1, ETFβ and ATP5β) as potential substrates for intramitochondrial Src using in silico prediction of tyrosine phospho-sites. Interaction of c-Src with SLP2 and ATP5β was confirmed using coimmunoprecipitation. This study suggests that the intramitochondrial Src could target several proteins and regulate different mitochondrial functions.
Collapse
Affiliation(s)
- Hala Guedouari
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada; University of Moncton, Dept. of Biology, Moncton, NB, Canada
| | - Yasmine Ould Amer
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada; University of Moncton, Dept. of Biology, Moncton, NB, Canada
| | - Nicolas Pichaud
- University of Moncton, Dept. of Chemistry and Biochemistry, Moncton, NB, Canada
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada; University of Moncton, Dept. of Biology, Moncton, NB, Canada.
| |
Collapse
|
10
|
Voltà-Durán E, Serna N, Sánchez-García L, Aviñó A, Sánchez JM, López-Laguna H, Cano-Garrido O, Casanova I, Mangues R, Eritja R, Vázquez E, Villaverde A, Unzueta U. Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomater 2021; 119:312-322. [PMID: 33189955 DOI: 10.1016/j.actbio.2020.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
The possibility to conjugate tumor-targeted cytotoxic nanoparticles and conventional antitumoral drugs in single pharmacological entities would open a wide spectrum of opportunities in nanomedical oncology. This principle has been explored here by using CXCR4-targeted self-assembling protein nanoparticles based on two potent microbial toxins, the exotoxin A from Pseudomonas aeruginosa and the diphtheria toxin from Corynebacterium diphtheriae, to which oligo-floxuridine and monomethyl auristatin E respectively have been chemically coupled. The resulting multifunctional hybrid nanoconjugates, with a hydrodynamic size of around 50 nm, are stable and internalize target cells with a biological impact. Although the chemical conjugation minimizes the cytotoxic activity of the protein partner in the complexes, the concept of drug combination proposed here is fully feasible and highly promising when considering multiple drug treatments aimed to higher effectiveness or when facing the therapy of cancers with acquired resistance to classical drugs.
Collapse
|
11
|
van Berkel AA, Santos TC, Shaweis H, van Weering JRT, Toonen RF, Verhage M. Loss of MUNC18-1 leads to retrograde transport defects in neurons. J Neurochem 2020; 157:450-466. [PMID: 33259669 PMCID: PMC8247427 DOI: 10.1111/jnc.15256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
Loss of the exocytic Sec1/MUNC18 protein MUNC18-1 or its target-SNARE partners SNAP25 and syntaxin-1 results in rapid, cell-autonomous and unexplained neurodegeneration, which is independent of their known role in synaptic vesicle exocytosis. cis-Golgi abnormalities are the earliest cellular phenotypes before degeneration occurs. Here, we investigated whether loss of MUNC18-1 causes defects in intracellular membrane transport pathways in primary murine neurons that may explain neurodegeneration. Electron, confocal and super resolution microscopy confirmed that loss of MUNC18-1 expression results in a smaller cis-Golgi. In addition, we now show that medial-Golgi and the trans-Golgi Network are also affected. However, stacking and cisternae ultrastructure of the Golgi were normal. Overall, ultrastructure of null mutant neurons was remarkably normal just hours before cell death occurred. By synchronizing protein trafficking by conditional cargo retention in the endoplasmic reticulum using selective hooks (RUSH) and immunocytochemistry, we show that anterograde Endoplasmic Reticulum-to-Golgi and Golgi exit of endogenous and exogenous proteins were normal. In contrast, loss of MUNC18-1 caused reduced retrograde Cholera Toxin B-subunit transport from the plasma membrane to the Golgi. In addition, MUNC18-1-deficiency resulted in abnormalities in retrograde TrkB trafficking in an antibody uptake assay. We conclude that MUNC18-1 deficient neurons have normal anterograde but reduced retrograde transport to the Golgi. The impairments in retrograde pathways suggest a role of MUNC18-1 in endosomal SNARE-dependent fusion and provide a plausible explanation for the observed Golgi abnormalities and cell death in MUNC18-1 deficient neurons.
Collapse
Affiliation(s)
- Annemiek A van Berkel
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Tatiana C Santos
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Hesho Shaweis
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Kokubun H, Jin H, Aoe T. Pathogenic Effects of Impaired Retrieval between the Endoplasmic Reticulum and Golgi Complex. Int J Mol Sci 2019; 20:ijms20225614. [PMID: 31717602 PMCID: PMC6888596 DOI: 10.3390/ijms20225614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular activities, such as growth and secretion, are dependent on correct protein folding and intracellular protein transport. Injury, like ischemia, malnutrition, and invasion of toxic substances, affect the folding environment in the endoplasmic reticulum (ER). The ER senses this information, following which cells adapt their response to varied situations through the unfolded protein response. Activation of the KDEL receptor, resulting from the secretion from the ER of chaperones containing the KDEL sequence, plays an important role in this adaptation. The KDEL receptor was initially shown to be necessary for the retention of KDEL sequence-containing proteins in the ER. However, it has become clear that the activated KDEL receptor also regulates bidirectional transport between the ER and the Golgi complex, as well as from the Golgi to the secretory pathway. In addition, it has been suggested that the signal for KDEL receptor activation may also affect several other cellular activities. In this review, we discuss KDEL receptor-mediated bidirectional transport and signaling and describe disease models and human diseases related to KDEL receptor dysfunction.
Collapse
Affiliation(s)
- Hiroshi Kokubun
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Aoe
- Department of Medicine, Pain Center, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
- Correspondence: ; Tel.: +81-436-62-1211
| |
Collapse
|
13
|
Luo PM, Boyce M. Directing Traffic: Regulation of COPI Transport by Post-translational Modifications. Front Cell Dev Biol 2019; 7:190. [PMID: 31572722 PMCID: PMC6749011 DOI: 10.3389/fcell.2019.00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
The coat protein complex I (COPI) is an essential, highly conserved pathway that traffics proteins and lipids between the endoplasmic reticulum (ER) and the Golgi. Many aspects of the COPI machinery are well understood at the structural, biochemical and genetic levels. However, we know much less about how cells dynamically modulate COPI trafficking in response to changing signals, metabolic state, stress or other stimuli. Recently, post-translational modifications (PTMs) have emerged as one common theme in the regulation of the COPI pathway. Here, we review a range of modifications and mechanisms that govern COPI activity in interphase cells and suggest potential future directions to address as-yet unanswered questions.
Collapse
Affiliation(s)
- Peter M Luo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
14
|
Rodríguez-Cruz F, Torres-Cruz FM, Monroy-Ramírez HC, Escobar-Herrera J, Basurto-Islas G, Avila J, García-Sierra F. Fragmentation of the Golgi Apparatus in Neuroblastoma Cells Is Associated with Tau-Induced Ring-Shaped Microtubule Bundles. J Alzheimers Dis 2019; 65:1185-1207. [PMID: 30124450 DOI: 10.3233/jad-180547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abnormal fibrillary aggregation of tau protein is a pathological condition observed in Alzheimer's disease and other tauopathies; however, the presence and pathological significance of early non-fibrillary aggregates of tau remain under investigation. In cell and animal models expressing normal or modified tau, toxic effects altering the structure and function of several membranous organelles have also been reported in the absence of fibrillary structures; however, how these abnormalities are produced is an issue yet to be addressed. In order to obtain more insights into the mechanisms by which tau may disturb intracellular membranous elements, we transiently overexpressed human full-length tau and several truncated tau variants in cultured neuroblastoma cells. After 48 h of transfection, either full-length or truncated tau forms produced significant fragmentation of the Golgi apparatus (GA) with no changes in cell viability. Noteworthy is that in the majority of cells exhibiting dispersion of the GA, a ring-shaped array of cortical or perinuclear microtubule (Mt) bundles was also generated under the expression of either variant of tau. In contrast, Taxol treatment of non-transfected cells increased the amount of Mt bundles but not sufficiently to produce fragmentation of the GA. Tau-induced ring-shaped Mt bundles appeared to be well-organized and stable structures because they were resistant to Nocodazole post-treatment and displayed a high level of tubulin acetylation. These results further indicate that a mechanical force generated by tau-induced Mt-bundling may be responsible for Golgi fragmentation and that the repeated domain region of tau may be the main promoter of this effect.
Collapse
Affiliation(s)
- Fanny Rodríguez-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Francisco Miguel Torres-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jaime Escobar-Herrera
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
15
|
Yahiro K, Ogura K, Terasaki Y, Satoh M, Miyagi S, Terasaki M, Yamasaki E, Moss J. Cholix toxin, an eukaryotic elongation factor 2 ADP-ribosyltransferase, interacts with Prohibitins and induces apoptosis with mitochondrial dysfunction in human hepatocytes. Cell Microbiol 2019; 21:e13033. [PMID: 31009148 PMCID: PMC9986844 DOI: 10.1111/cmi.13033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Vibrio cholerae produced-Cholix toxin (Cholix) is a cytotoxin that ADP-ribosylates eukaryotic elongation factor 2, inhibiting protein synthesis, and inducing apoptosis. Here, we identified prohibitin (PHB) 1 and 2 as novel Cholix-interacting membrane proteins in immortalised human hepatocytes and HepG2 cells by Cholix immunoprecipitation assays. The expression level of PHB1 was decreased by Cholix after a 12hr incubation. Cholix-induced poly (ADP-ribose) polymerase (PARP) cleavage was significantly enhanced in PHB (PHB1 or PHB2) knockdown cells. In contrast, transiently overexpressed PHB in hepatocytes attenuated Cholix-induced Bax/Bak conformational changes and PARP cleavage. In addition, Cholix-induced reactive oxygen species production and accumulation of fragmented mitochondria were enhanced in PHB-knockdown cells. Furthermore, Cholix induced activation of Rho-associated coiled coil-containing protein kinase 1 (ROCK1), which was enhanced in PHB-knockdown cells, followed by actin filament depolymerisation and accumulation of tubulin in the blebbing cells. Inhibition of ROCK1 by siRNA or its inhibitor suppressed Cholix-induced PARP cleavage and reactive oxygen species generation. Our findings identify PHB as a new protein that interacts with Cholix and is involved in Cholix-induced mitochondrial dysfunction and cytoskeletal rearrangement by ROCK1 activation during apoptosis.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan
| | - Satoru Miyagi
- Department of Life Science, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Eiki Yamasaki
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Xiong Q, Jiang X, Liu X, Zhou P, Ding K. Prediction of IER5 structure and function using a bioinformatics approach. Mol Med Rep 2019; 19:4631-4636. [PMID: 31059029 PMCID: PMC6522821 DOI: 10.3892/mmr.2019.10166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/25/2019] [Indexed: 11/06/2022] Open
Abstract
Immediate-early response gene 5 (IER5) is a gene involved in the regulation of the cell cycle, and its structure and function have been investigated by bioinformatics analyses. The present study determined the sites of promoter methylation and gene ontology (GO) annotations associated with IER5. In addition, we conducted a prediction analysis to determine the physical and chemical properties, hydrophobicity/hydrophilicity, posttranslational modification, subcellular localization, transmembrane structure, signal peptide and secondary and tertiary structures of IER5. One CpG island and several methylated sites were identified close to the promoter of IER5. The GO analysis suggested that IER5 could bind ions and proteins that were mainly associated with metabolic processes. IER5 comprised 327 amino acids and was reported to be an unstable hydrophilic protein with an isoelectric point of 4.91. A total of 18 O-glycosylation sites and 22 phosphorylation sites were identified within this protein. The subcellular localization of IER5 was mainly in the nucleus, and its main secondary structural element was the α-helix. Bioinformatic analyses of the features of IER5 may improve understanding of its structure and function; however, experimental verification is required.
Collapse
Affiliation(s)
- Qiang Xiong
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xiaoyan Jiang
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xiaodan Liu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pingkun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Kuke Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| |
Collapse
|
17
|
Chia J, Tay F, Bard F. The GalNAc-T Activation (GALA) Pathway: Drivers and markers. PLoS One 2019; 14:e0214118. [PMID: 30889231 PMCID: PMC6424425 DOI: 10.1371/journal.pone.0214118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
The enzymes GALNTs add GalNAc sugar to Ser and Thr residues, forming the Tn glycan. GALNTs are activated by trafficking from Golgi to ER, a process driven by the Src kinase and negatively regulated by ERK8. This GALNTs activation (aka GALA) pathway induces high Tn levels and is a key driver of liver tumor growth. Recently, Tabak and colleagues have contested our previous data that EGF stimulation can induce GALNTs relocation. Here, we show that relocation induced by EGF is actually detectable in the very images acquired by Tabak et al. Furthermore, we show that over-expression of EGFR strongly enhances EGF-induced relocation and that EGFR appears required to drive relocation induced by ERK8 depletion. Direct co-localisation of GALNT with the ER marker Calnexin is observed after EGF stimulation. We furthermore propose that quantification of O-glycosylation of the ER resident protein PDIA4 provides a mean to quantify GALA independently of imaging. In sum, we demonstrate that the claimed non-reproducibility was due to experimental imaging conditions, that EGFR is indeed a driver of GALA and propose additional markers to facilitate the study of this pathway.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
18
|
Jin H, Komita M, Aoe T. Decreased Protein Quality Control Promotes the Cognitive Dysfunction Associated With Aging and Environmental Insults. Front Neurosci 2018; 12:753. [PMID: 30443201 PMCID: PMC6221900 DOI: 10.3389/fnins.2018.00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/01/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Most neurodegenerative diseases are sporadic and develop with age. Degenerative neural tissues often contain intra- and extracellular protein aggregates, suggesting that the proteostasis network that combats protein misfolding could be dysfunctional in the setting of neurodegenerative disease. Binding immunoglobulin protein (BiP) is an endoplasmic reticulum (ER) chaperone that is crucial for protein folding and modulating the adaptive response in early secretory pathways. The interaction between BiP and unfolded proteins is mediated by the substrate-binding domain and nucleotide-binding domain with ATPase activity. The interaction facilitates protein folding and maturation. BiP has a recovery motif at the carboxyl terminus. The aim of this study is to examine cognitive function in model mice with an impaired proteostasis network by expressing a mutant form of BiP lacking the recovery motif. We also investigated if impairments of cognitive function were exacerbated by exposure to environmental insults, such as inhaled anesthetics. Methods: We examined cognitive function by performing radial maze testing with mutant BiP mice and assessed the additional impact of general anesthesia in the context of proteostasis dysfunction. Testing over 8 days was performed 10 weeks, 6 months, and 1 year after birth. Results: Age-related cognitive decline occurred in both forms of mice. The mutant BiP and anesthetic exposure promoted cognitive dysfunction prior to the senile period. After senescence, when mice were tested at 6 months of age and at 1 year old, there were no significant differences between the two genotypes in terms of the radial maze testing; furthermore, there was no significant difference when tested with and without anesthetic exposure. Conclusion: Our data suggest that aging was the predominant factor underlying the impairment of cognitive function in this study. Impairment of the proteostasis network may promote age-related neurodegeneration, and this is exacerbated by external insults.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mari Komita
- Department of Anesthesiology, Chiba Rosai Hospital, Ichihara, Japan
| | - Tomohiko Aoe
- Department of Medicine, Pain Center, Chiba Medical Center, Teikyo University, Ichihara, Japan
| |
Collapse
|
19
|
The Golgi architecture and cell sensing. Biochem Soc Trans 2018; 46:1063-1072. [DOI: 10.1042/bst20180323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
An array of signalling molecules are located at the Golgi apparatus, including phosphoinositides, small GTPases, kinases, and phosphatases, which are linked to multiple signalling pathways. Initially considered to be associated predominantly with membrane trafficking, signalling pathways at the Golgi are now recognised to regulate a diverse range of higher-order functions. Many of these signalling pathways are influenced by the architecture of the Golgi. In vertebrate cells, the Golgi consists of individual stacks fused together into a compact ribbon structure and the function of this ribbon structure has been enigmatic. Notably, recent advances have identified a role for the Golgi ribbon in regulation of cellular processes. Fragmentation of the Golgi ribbon results in modulation of many signalling pathways. Various diseases and disorders, including cancer and neurodegeneration, are associated with the loss of the Golgi ribbon and the appearance of a dispersed fragmented Golgi. Here, we review the emerging theme of the Golgi as a cell sensor and highlight the relationship between the morphological status of the Golgi in vertebrate cells and the modulation of signalling networks.
Collapse
|
20
|
Kostenko S, Heu CC, Yaron JR, Singh G, de Oliveira C, Muller WJ, Singh VP. c-Src regulates cargo transit via the Golgi in pancreatic acinar cells. Sci Rep 2018; 8:11903. [PMID: 30093675 PMCID: PMC6085363 DOI: 10.1038/s41598-018-30370-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
The exocrine pancreatic acinar cell is unique for its rapid protein synthesis and packaging in zymogen granules (ZGs). However, while crucial to the pathogenesis of pancreatitis, the signaling involved in the transit of proteins via the Golgi is poorly understood in these cells. Noting the evidence of c-Src in regulating transit of cargo via the Golgi in other systems, we explored this in acinar cells. Stimulation of ZG formation with dexamethasone activated Src and increased the Golgi area in acinar cells. c-Src localized to the microsomes of acinar cells on immunofluorescence and subcellular fractionation. While other Src family members had no effect on the Golgi markers P115 and GM130, active c-Src increased the Golgi area these stained, extending them into the ER. Src inhibition reduced amylase staining outside the Golgi and increased it in a stack like Golgi morphology. In vivo pharmacologic inhibition or acinar specific genetic deletion of c-Src reduced ZG number and staining of amylase in ZGs along with increasing amylase retention in the microsomal fraction. Morphologically this was associated with smaller Golgi stacks, and dilation of the endoplasmic reticulum. Therefore the role c-Src regulated Golgi function, ZG formation and microsomal zymogen transit in acinar cells needs to be explored in pancreatitis.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Chan C Heu
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Jordan R Yaron
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Garima Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - William J Muller
- Goodman Cancer Research Center and Department of Biology, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Vijay P Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA.
| |
Collapse
|
21
|
Serebrenik YV, Hellerschmied D, Toure M, López-Giráldez F, Brookner D, Crews CM. Targeted protein unfolding uncovers a Golgi-specific transcriptional stress response. Mol Biol Cell 2018; 29:1284-1298. [PMID: 29851555 PMCID: PMC5994893 DOI: 10.1091/mbc.e17-11-0693] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells, organelle-specific stress-response mechanisms are vital for maintaining cellular homeostasis. The Golgi apparatus, an essential organelle of the secretory system, is the major site of protein modification and sorting within a cell and functions as a platform for spatially regulated signaling. Golgi homeostasis mechanisms that regulate organelle structure and ensure precise processing and localization of protein substrates remain poorly understood. Using a chemical biology strategy to induce protein unfolding, we uncover a Golgi-specific transcriptional response. An RNA-sequencing profile of this stress response compared with the current state-of-the-art Golgi stressors, nigericin and xyloside, demonstrates the enhanced precision of Golgi targeting achieved with our system. The data set further reveals previously uncharacterized genes that we find to be essential for Golgi structural integrity. These findings highlight the Golgi's ability to sense misfolded proteins and establish new aspects of Golgi autoregulation.
Collapse
Affiliation(s)
- Yevgeniy V. Serebrenik
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Doris Hellerschmied
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Momar Toure
- Department of Chemistry, Yale University, New Haven, CT 06511
| | | | - Dennis Brookner
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Department of Chemistry, Yale University, New Haven, CT 06511
- Department of Pharmacology, Yale University, New Haven, CT 06511
| |
Collapse
|
22
|
Endoplasmic reticulum stress activates SRC, relocating chaperones to the cell surface where GRP78/CD109 blocks TGF-β signaling. Proc Natl Acad Sci U S A 2018; 115:E4245-E4254. [PMID: 29654145 DOI: 10.1073/pnas.1714866115] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The discovery that endoplasmic reticulum (ER) luminal chaperones such as GRP78/BiP can escape to the cell surface upon ER stress where they regulate cell signaling, proliferation, apoptosis, and immunity represents a paradigm shift. Toward deciphering the mechanisms, we report here that, upon ER stress, IRE1α binds to and triggers tyrosine kinase SRC activation, leading to ASAP1 phosphorylation and Golgi accumulation of ASAP1 and Arf1-GTP, resulting in KDEL receptor dispersion from the Golgi and suppression of retrograde transport. At the cell surface, GRP78 binds to and acts in concert with a glycosylphosphatidylinositol-anchored protein, CD109, in blocking TGF-β signaling by promoting the routing of the TGF-β receptor to the caveolae, thereby disrupting its binding to and activation of Smad2. Collectively, we uncover a SRC-mediated signaling cascade that leads to the relocalization of ER chaperones to the cell surface and a mechanism whereby GRP78 counteracts the tumor-suppressor effect of TGF-β.
Collapse
|
23
|
Jin H, Komita M, Aoe T. The Role of BiP Retrieval by the KDEL Receptor in the Early Secretory Pathway and its Effect on Protein Quality Control and Neurodegeneration. Front Mol Neurosci 2017; 10:222. [PMID: 28769758 PMCID: PMC5511815 DOI: 10.3389/fnmol.2017.00222] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Protein quality control in the early secretory pathway is a ubiquitous eukaryotic mechanism for adaptation to endoplasmic reticulum (ER) stress. An ER molecular chaperone, immunoglobulin heavy chain-binding protein (BiP), is one of the essential components in this process. BiP interacts with nascent proteins to facilitate their folding. BiP also plays an important role in preventing aggregation of misfolded proteins and regulating the ER stress response when cells suffer various injuries. BiP is a member of the 70-kDa heat shock protein (HSP70) family of molecular chaperones that resides in the ER. Interaction between BiP and unfolded proteins is mediated by a substrate-binding domain and a nucleotide-binding domain for ATPase activity, leading to protein folding and maturation. BiP also possesses a retrieval motif in its carboxyl terminal. When BiP is secreted from the ER, the Lys-Asp-Glu-Leu (KDEL) receptor in the post-ER compartments binds with the carboxyl terminal KDEL sequence of BiP and returns BiP to the ER via coat protein complex I (COPI) vesicular transport. Although yeast studies showed that BiP retrieval by the KDEL receptor is not essential in single cells, it is crucial for multicellular organisms, where some essential proteins require retrieval to facilitate folding and maturation. Experiments in knock-in mice expressing mutant BiP with the retrieval motif deleted revealed a unique role of BiP retrieval by the KDEL receptor in neuronal development and age-related neurodegeneration.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Mari Komita
- Department of Anesthesiology, Chiba Rosai HospitalIchihara, Japan
| | - Tomohiko Aoe
- Pain Center, Chiba Medical Center, Teikyo UniversityIchihara, Japan
| |
Collapse
|
24
|
Gomez-Navarro N, Miller E. Protein sorting at the ER-Golgi interface. J Cell Biol 2016; 215:769-778. [PMID: 27903609 PMCID: PMC5166505 DOI: 10.1083/jcb.201610031] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023] Open
Abstract
In this review, Gomez-Navarro and Miller summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. Protein traffic is of critical importance for normal cellular physiology. In eukaryotes, spherical transport vesicles move proteins and lipids from one internal membrane-bound compartment to another within the secretory pathway. The process of directing each individual protein to a specific destination (known as protein sorting) is a crucial event that is intrinsically linked to vesicle biogenesis. In this review, we summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. We focus on the first two compartments of the secretory pathway: the endoplasmic reticulum and Golgi. We provide an overview of the complexity and diversity of cargo adaptor function and regulation, focusing on recent mechanistic discoveries that have revealed insight into protein sorting in cells.
Collapse
Affiliation(s)
- Natalia Gomez-Navarro
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Elizabeth Miller
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
25
|
Cracking the Glycome Encoder: Signaling, Trafficking, and Glycosylation. Trends Cell Biol 2016; 26:379-388. [DOI: 10.1016/j.tcb.2015.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 01/22/2023]
|
26
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
27
|
Baschieri F, Uetz-von Allmen E, Legler DF, Farhan H. Loss of GM130 in breast cancer cells and its effects on cell migration, invasion and polarity. Cell Cycle 2016; 14:1139-47. [PMID: 25892554 DOI: 10.1080/15384101.2015.1007771] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Spatially distinct pools of the small GTPase Cdc42 were observed, but the major focus of research so far has been to investigate its signaling at the plasma membrane. We recently showed that the Golgi pool of Cdc42 is relevant for cell polarity and that it is regulated by GM130, a Golgi matrix protein. Loss of GM130 abrogated cell polarity and consistent with the notion that polarity is frequently impaired in cancer, we found that GM130 is downregulated in colorectal cancer. Whether the loss of GM130 solely affects polarity, or whether it affects other processes relevant for tumorigenesis remains unclear. In a panel of breast cancer cells lines, we investigated the consequences of GM130 depletion on traits of relevance for tumor progression, such as survival, proliferation, adhesion, migration and invasion. We show that cellular assays that depend on polarity, such as chemotaxis and wound scratch assays, are only of limited use to investigate the role of polarity modulators in cancer. Depletion of GM130 increases cellular velocity and increases the invasiveness of breast cancer cells, therefore supporting the view that alterations of polarity contribute to tumor progression.
Collapse
Affiliation(s)
- Francesco Baschieri
- a Biotechnology Institute Thurgau; University of Konstanz ; Kreuzlingen , Switzerland
| | | | | | | |
Collapse
|
28
|
Niang B, Jin L, Chen X, Guo X, Zhang H, Wu Q, Padhiar AA, Xiao M, Fang D, Zhang J. GalNAc-T4 putatively modulates the estrogen regulatory network through FOXA1 glycosylation in human breast cancer cells. Mol Cell Biochem 2016; 411:393-402. [PMID: 26541755 DOI: 10.1007/s11010-015-2601-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
GALNT4 belongs to a family of N-acetylgalactosaminyltransferases, which catalyze the transfer of GalNAc to Serine or Threonine residues in the initial step of mucin-type O-linked protein glycosylation. This glycosylation type is the most complex post-translational modification of proteins, playing important roles during cellular differentiation and in pathological disorders. Most of the breast cancer subtypes are estrogen receptor positive, and hence, the estrogen pathway represents a key regulatory network. We investigated the expression of GalNAc-T4 in a panel of mammary epithelial cell lines and found its expression is associated with the estrogen status of the cells. FOXA1, a key transcription factor, functions to promote estrogen responsive gene expression by acting as a cofactor to estrogen receptor alpha (ERα), but all the aspects of this regulatory mechanism are not fully explored. This study found that knockdown of GALNT4 expression in human breast cancer cells attenuated the protein expression of ERα, FOXA1, and Cyclin D1. Further, our immunoprecipitation assays depicted the possibility of FOXA1 to undergo O-GalNAc modifications with a decrease of GalNAc residues in the GALNT4 knockdown cells and also impairment in the FOXA1-ERα association. Rescuing GALNT4 expression could restore the interaction as well as the glycosylation of FOXA1. Together, these findings suggest a key role for GalNAc-T4 in the estrogen pathway through FOXA1 glycosylation.
Collapse
Affiliation(s)
- Bachir Niang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Liyuan Jin
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Xixi Chen
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Xiaohan Guo
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Hongshuo Zhang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Qiong Wu
- School of Life Science and Medicine, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Arshad Ahmed Padhiar
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Min Xiao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Jianing Zhang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China.
- School of Life Science and Medicine, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.
| |
Collapse
|
29
|
Lee WY, Goh G, Chia J, Boey A, Gunko NV, Bard F. The Ubiquitin Ligase CBLC Maintains the Network Organization of the Golgi Apparatus. PLoS One 2015; 10:e0138789. [PMID: 26393512 PMCID: PMC4579092 DOI: 10.1371/journal.pone.0138789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022] Open
Abstract
The Golgi apparatus plays a pivotal role in the sorting and post-translational modifications of secreted and membrane proteins. In mammalian cells, the Golgi is organized in stacks of cisternae linked together to form a network with a ribbon shape. Regulation of Golgi ribbon formation is poorly understood. Here we find in an image-based RNAi screen that depletion of the ubiquitin-ligase CBLC induces Golgi fragmentation. Depletions of the close homologues CBL and CBLB do not induce any visible defects. In CBLC-depleted cells, Golgi stacks appear relatively unperturbed at both the light and electron microscopy levels, suggesting that CBLC controls mostly network organization. CBLC partially localizes on Golgi membranes and this localization is enhanced after activation of the SRC kinase. Inhibition of SRC reverts CBLC depletion effects, suggesting interplay between the two. CBLC's regulation of Golgi network requires its ubiquitin ligase activity. However, SRC levels are not significantly affected by CBLC, and CBLC knockdown does not phenocopy SRC activation, suggesting that CBLC's action at the Golgi is not direct downregulation of SRC. Altogether, our results demonstrate a role of CBLC in regulating Golgi ribbon by antagonizing the SRC tyrosine kinase.
Collapse
Affiliation(s)
- Wan Yin Lee
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Adrian Boey
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Institute of Medical Biology, Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Singapore, Singapore
| | - Natalia V. Gunko
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Institute of Medical Biology, Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Singapore, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Aittaleb M, Chen PJ, Akaaboune M. Failure of lysosome clustering and positioning in the juxtanuclear region in cells deficient in rapsyn. J Cell Sci 2015; 128:3744-56. [PMID: 26330529 DOI: 10.1242/jcs.172536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/23/2015] [Indexed: 01/06/2023] Open
Abstract
Rapsyn, a scaffold protein, is required for the clustering of acetylcholine receptors (AChRs) at contacts between motor neurons and differentiating muscle cells. Rapsyn is also expressed in cells that do not express AChRs. However, its function in these cells remains unknown. Here, we show that rapsyn plays an AChR-independent role in organizing the distribution and mobility of lysosomes. In cells devoid of AChRs, rapsyn selectively induces the clustering of lysosomes at high density in the juxtanuclear region without affecting the distribution of other intracellular organelles. However, when the same cells overexpress AChRs, rapsyn is recruited away from lysosomes to colocalize with AChR clusters on the cell surface. In rapsyn-deficient (Rapsn(-/-)) myoblasts or cells overexpressing rapsyn mutants, lysosomes are scattered within the cell and highly dynamic. The increased mobility of lysosomes in Rapsn(-/-) cells is associated with a significant increase in lysosomal exocytosis, as evidenced by increased release of lysosomal enzymes and plasma membrane damage when cells were challenged with the bacterial pore-forming toxin streptolysin-O. These findings uncover a new link between rapsyn, lysosome positioning, exocytosis and plasma membrane integrity.
Collapse
Affiliation(s)
- Mohamed Aittaleb
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Po-Ju Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Targeted killing of rhabdomyosarcoma cells by a MAP-based human cytolytic fusion protein. Cancer Lett 2015; 365:149-55. [PMID: 25888452 DOI: 10.1016/j.canlet.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 12/26/2022]
Abstract
The treatment of rhabdomyosarcoma (RMS) is challenging, and the prognosis remains especially poor for high-grade RMS with metastasis. The conventional treatment of RMS is based on multi-agent chemotherapy combined with resection and radiotherapy, which are often marked by low success rate. Alternative therapeutic options include the combination of standard treatments with immunotherapy. We generated a microtubule-associated protein (MAP)-based fully human cytolytic fusion protein (hCFP) targeting the fetal acetylcholine receptor, which is expressed on RMS cells. We were able to express and purify functional scFv35-MAP from Escherichia coli cells. Moreover, we found that scFv35-MAP is rapidly internalized by target cells after binding its receptor, and exhibits specific cytotoxicity toward FL-OH1 and RD cells in vitro. We also confirmed that scFv35-MAP induces apoptosis in FL-OH1 and RD cells. The in vivo potential of scFv35-MAP will need to be considered in further studies.
Collapse
|
32
|
Braun AC, Hendrick J, Eisler SA, Schmid S, Hausser A, Olayioye MA. The Rho-specific GAP protein DLC3 coordinates endocytic membrane trafficking. J Cell Sci 2015; 128:1386-99. [PMID: 25673874 DOI: 10.1242/jcs.163857] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Membrane trafficking is known to be coordinated by small GTPases, but the identity of their regulators, the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that ensure balanced GTPase activation at different subcellular sites is largely elusive. Here, we show in living cells that deleted in liver cancer 3 (DLC3, also known as STARD8) is a functional Rho-specific GAP protein, the loss of which enhances perinuclear RhoA activity. DLC3 is recruited to Rab8-positive membrane tubules and is required for the integrity of the Rab8 and Golgi compartments. Depletion of DLC3 impairs the transport of internalized transferrin to the endocytic recycling compartment (ERC), which is restored by the simultaneous downregulation of RhoA and RhoB. We further demonstrate that DLC3 loss interferes with epidermal growth factor receptor (EGFR) degradation associated with prolonged receptor signaling. Taken together, these findings identify DLC3 as a novel component of the endocytic trafficking machinery, wherein it maintains organelle integrity and regulates membrane transport through the control of Rho activity.
Collapse
Affiliation(s)
- Anja C Braun
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Janina Hendrick
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Stephan A Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
33
|
Sicart A, Katan M, Egea G, Sarri E. PLCγ1 participates in protein transport and diacylglycerol production triggered by cargo arrival at the Golgi. Traffic 2015; 16:250-66. [PMID: 25491205 DOI: 10.1111/tra.12246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 02/02/2023]
Abstract
Diacylglycerol (DAG) is required for membrane traffic and structural organization at the Golgi. DAG is a lipid metabolite of several enzymatic reactions present at this organelle, but the mechanisms by which they are regulated are still unknown. Here, we show that cargo arrival at the Golgi increases the recruitment of the DAG-sensing constructs C1-PKCθ-GFP and the PKD-wt-GFP. The recruitment of both constructs was reduced by PLCγ1 silencing. Post-Golgi trafficking of transmembrane and soluble proteins was impaired in PLCγ1-silenced cells. Under basal conditions, PLCγ1 contributed to the maintenance of the pool of DAG associated with the Golgi and to the structural organization of the organelle. Finally, we show that cytosolic phospholipase C (PLC) can hydrolyse phosphatidylinositol 4-phosphate in isolated Golgi membranes. Our results indicate that PLCγ1 is part of the molecular mechanism that couples cargo arrival at the Golgi with DAG production to co-ordinate the formation of transport carriers for post-Golgi traffic.
Collapse
Affiliation(s)
- Adrià Sicart
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain; Current address: Vlaams Instituut voor Biotechnologie (VIB), Centre for the Biology of Disease and KU Leuven, Department of Human Genetics, Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
34
|
Zahnleiter D, Hauer NN, Kessler K, Uebe S, Sugano Y, Neuhauss SC, Giessl A, Ekici AB, Blessing H, Sticht H, Dörr HG, Reis A, Thiel CT. MAP4-Dependent Regulation of Microtubule Formation Affects Centrosome, Cilia, and Golgi Architecture as a Central Mechanism in Growth Regulation. Hum Mutat 2014; 36:87-97. [DOI: 10.1002/humu.22711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Diana Zahnleiter
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Nadine N. Hauer
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Kristin Kessler
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Steffen Uebe
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Yuya Sugano
- Institute of Molecular Life Sciences; University of Zurich; Zurich Switzerland
| | | | - Andreas Giessl
- Animal Physiology; Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - Arif B. Ekici
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Holger Blessing
- Department of Pediatrics and Adolescent Medicine; Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - Heinrich Sticht
- Institute of Biochemistry; Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - Helmuth-Günther Dörr
- Department of Pediatrics and Adolescent Medicine; Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - André Reis
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Christian T. Thiel
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
35
|
Chen Q, Su Y, Wesslowski J, Hagemann AI, Ramialison M, Wittbrodt J, Scholpp S, Davidson G. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling. EMBO Rep 2014; 15:1254-67. [PMID: 25391905 DOI: 10.15252/embr.201439644] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6.
Collapse
Affiliation(s)
- Qing Chen
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yi Su
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Janine Wesslowski
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anja I Hagemann
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gary Davidson
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
36
|
Luini A, Mavelli G, Jung J, Cancino J. Control systems and coordination protocols of the secretory pathway. F1000PRIME REPORTS 2014; 6:88. [PMID: 25374666 PMCID: PMC4191269 DOI: 10.12703/p6-88] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or “coordination protocols”. These regulatory devices are of fundamental importance for optimal function; however, they are generally “hidden” at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.
Collapse
Affiliation(s)
- Alberto Luini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biochimica delle Proteine (IBP)Via Pietro Castellino 111, 80131 NapoliItaly
- Telethon Institute of Genetics and Medicine (TIGEM)Via Pietro Castellino 111, 80131 NapoliItaly
| | - Gabriella Mavelli
- Istituto di Analisi dei Sistemi ed Informatica Antonio Ruberti, Consiglio Nazionale delle RicercheViale Manzoni 30, 00185 RomaItaly
| | - Juan Jung
- Istituto di Ricovero e Cura a Carattere Scientifico-SDN80143 NapoliItaly
| | - Jorge Cancino
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biochimica delle Proteine (IBP)Via Pietro Castellino 111, 80131 NapoliItaly
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés BelloQuillota 980, 2520000 Viña del MarChile
| |
Collapse
|
37
|
Ong YS, Tran THT, Gounko NV, Hong W. TMEM115 is an integral membrane protein of the Golgi complex involved in retrograde transport. J Cell Sci 2014; 127:2825-39. [PMID: 24806965 PMCID: PMC4077589 DOI: 10.1242/jcs.136754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Searching and evaluating the Human Protein Atlas for transmembrane proteins enabled us to identify an integral membrane protein, TMEM115, that is enriched in the Golgi complex. Biochemical and cell biological analysis suggested that TMEM115 has four candidate transmembrane domains located in the N-terminal region. Both the N- and C-terminal domains are oriented towards the cytoplasm. Immunofluorescence analysis supports that TMEM115 is enriched in the Golgi cisternae. Functionally, TMEM115 knockdown or overexpression delays Brefeldin-A-induced Golgi-to-ER retrograde transport, phenocopying cells with mutations or silencing of the conserved oligomeric Golgi (COG) complex. Co-immunoprecipitation and in vitro binding experiments reveals that TMEM115 interacts with the COG complex, and might self-interact to form dimers or oligomers. A short region (residues 206–229) immediately to the C-terminal side of the fourth transmembrane domain is both necessary and sufficient for Golgi targeting. Knockdown of TMEM115 also reduces the binding of the lectins peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA), suggesting an altered O-linked glycosylation profile. These results establish that TMEM115 is an integral membrane protein of the Golgi stack regulating Golgi-to-ER retrograde transport and is likely to be part of the machinery of the COG complex.
Collapse
Affiliation(s)
- Yan Shan Ong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ton Hoai Thi Tran
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Natalia V Gounko
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore IMB-IMCB Joint Electron Microscopy Suite, 20 Biopolis Street, Singapore 138671, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore Department of Biochemistry, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
38
|
Berto GE, Iobbi C, Camera P, Scarpa E, Iampietro C, Bianchi F, Gai M, Sgrò F, Cristofani F, Gärtner A, Dotti CG, Di Cunto F. The DCR protein TTC3 affects differentiation and Golgi compactness in neurons through specific actin-regulating pathways. PLoS One 2014; 9:e93721. [PMID: 24695496 PMCID: PMC3973554 DOI: 10.1371/journal.pone.0093721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/06/2014] [Indexed: 01/10/2023] Open
Abstract
In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization through signaling pathways involving RhoA, ROCK, CIT-N and PIIa. However, the functional relationships between these molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal differentiation.
Collapse
Affiliation(s)
- Gaia Elena Berto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- * E-mail: (GEB); (FDC)
| | - Cristina Iobbi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Scarpa
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federico Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Flavio Cristofani
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Annette Gärtner
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
| | - Carlos G. Dotti
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- * E-mail: (GEB); (FDC)
| |
Collapse
|
39
|
Chia J, Tham KM, Gill DJ, Bard-Chapeau EA, Bard FA. ERK8 is a negative regulator of O-GalNAc glycosylation and cell migration. eLife 2014; 3:e01828. [PMID: 24618899 PMCID: PMC3945522 DOI: 10.7554/elife.01828] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ER O-glycosylation can be induced through relocalisation GalNAc-Transferases from the Golgi. This process markedly stimulates cell migration and is constitutively activated in more than 60% of breast carcinomas. How this activation is achieved remains unclear. Here, we screened 948 signalling genes using RNAi and imaging. We identified 12 negative regulators of O-glycosylation that all control GalNAc-T sub-cellular localisation. ERK8, an atypical MAPK with high basal kinase activity, is a strong hit and is partially localised at the Golgi. Its inhibition induces the relocation of GalNAc-Ts, but not of KDEL receptors, revealing the existence of two separate COPI-dependent pathways. ERK8 down-regulation, in turn, activates cell motility. In human breast and lung carcinomas, ERK8 expression is reduced while ER O-glycosylation initiation is hyperactivated. In sum, ERK8 appears as a constitutive brake on GalNAc-T relocalisation, and the loss of its expression could drive cancer aggressivity through increased cell motility. DOI:http://dx.doi.org/10.7554/eLife.01828.001 The likelihood of an individual being able to recover from cancer depends on: where the cancer is within the body, how quickly the disease is detected and how quickly treatment is started. Cancers that have spread from their original location to another part of the body are particular challenging to treat, and cause the vast majority of cancer deaths every year. Treatments that can recognize and eradicate cancer cells, while leaving nearby healthy cells untouched, are still needed—and so there has been a lot of research into identifying the key differences between healthy cells and cancer cells. For several decades, researchers have been aware that cancer cells have more proteins coated with modified sugars on their cell surfaces than healthy cells. This is caused by the enzymes that add these sugars to the proteins relocating from one location within the cell, the Golgi apparatus, to another, called the endoplasmic reticulum. These specific ‘sugar-coated’ proteins are known to encourage cancer cells to migrate and invade new tissues, but the mechanisms that regulate the addition of these sugar molecules to proteins remains poorly understood. Now Chia et al. have discovered 12 molecules that regulate this process, including an enzyme called ERK8 that is found at the Golgi apparatus. ERK8 is shown to prevent the relocation of the sugar-adding enzymes from the Golgi to the endoplasmic reticulum, thereby restricting the production of sugar-coated proteins that help the cancer cells to spread within the body. By identifying 12 potential targets for new therapeutics aimed at preventing the spread of cancer, the work of Chia et al. could ultimately help to improve the chances of patients recovering from certain cancers. DOI:http://dx.doi.org/10.7554/eLife.01828.002
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | | | | | | |
Collapse
|
40
|
Warren CM, Ziyad S, Briot A, Der A, Iruela-Arispe ML. A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Signal 2014; 7:ra1. [PMID: 24399295 DOI: 10.1126/scisignal.2004235] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although vascular complications are a hallmark of diabetes, the molecular mechanisms that underlie endothelial dysfunction are unclear. We showed that reactive oxygen species generated from hyperglycemia promoted ligand-independent phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2). This VEGFR2 signaling occurred within the Golgi compartment and resulted in progressively decreased availability of VEGFR2 at the cell surface. Consequently, the responses of endothelial cells to exogenous VEGF in a mouse model of diabetes were impaired because of a specific deficiency of VEGFR2 at the cell surface, despite a lack of change in transcript abundance. Hyperglycemia-induced phosphorylation of VEGFR2 did not require intrinsic receptor kinase activity and was instead mediated by Src family kinases. The reduced cell surface abundance of VEGFR2 in diabetic mice was reversed by treatment with the antioxidant N-acetyl-L-cysteine, suggesting a causative role for oxidative stress. These findings uncover a mode of ligand-independent VEGFR2 signaling that can progressively lead to continuously muted responses to exogenous VEGF and limit angiogenic events.
Collapse
Affiliation(s)
- Carmen M Warren
- 1Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
41
|
Ginnan R, Zou X, Pfleiderer PJ, Mercure MZ, Barroso M, Singer HA. Vascular smooth muscle cell motility is mediated by a physical and functional interaction of Ca2+/calmodulin-dependent protein kinase IIδ2 and Fyn. J Biol Chem 2013; 288:29703-12. [PMID: 24003228 DOI: 10.1074/jbc.m113.477257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In vascular smooth muscle (VSM) cells, Ca(2+)/calmodulin-dependent protein kinase IIδ2 (CaMKIIδ2) activates non-receptor tyrosine kinases and EGF receptor, with a Src family kinase as a required intermediate. siRNA-mediated suppression of Fyn, a Src family kinase, inhibited VSM cell motility. Simultaneous suppression of both Fyn and CaMKIIδ2 was non-additive, suggesting coordinated regulation of cell motility. Confocal immunofluorescence microscopy indicated that CaMKIIδ2 and Fyn selectively (compared with Src) co-localized with the Golgi in quiescent cultured VSM cells. Stimulation with PDGF resulted in a rapid (<5 min) partial redistribution and co-localization of both kinases in peripheral membrane regions. Furthermore, CaMKIIδ2 and Fyn selectively (compared with Src) co-immunoprecipitated, suggesting a physical interaction in a signaling complex. Stimulation of VSM cells with ionomycin, a calcium ionophore, resulted in activation of CaMKIIδ2 and Fyn and disruption of the complex. Pretreatment with KN-93, a pharmacological inhibitor of CaMKII, prevented activation-dependent disruption of CaMKIIδ2 and Fyn, implicating CaMKIIδ2 as an upstream mediator of Fyn. Overexpression of constitutively active CaMKII resulted in the dephosphorylation of Fyn at Tyr-527, which is required for Fyn activation. Taken together, these data demonstrate a dynamic interaction between CaMKIIδ2 and Fyn in VSM cells and indicate a mechanism by which CaMKIIδ2 and Fyn may coordinately regulate VSM cell motility.
Collapse
Affiliation(s)
- Roman Ginnan
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | | | | | | | | | | |
Collapse
|
42
|
Regulation of Golgi signaling and trafficking by the KDEL receptor. Histochem Cell Biol 2013; 140:395-405. [DOI: 10.1007/s00418-013-1130-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2013] [Indexed: 12/31/2022]
|
43
|
RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. Mol Syst Biol 2013; 8:629. [PMID: 23212246 PMCID: PMC3542528 DOI: 10.1038/msb.2012.59] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022] Open
Abstract
RNAi screening and automated image analysis reveal 180 kinases and phosphatases regulating the organization of the Golgi apparatus. Most of these genes also control the expression of specific glycans, pointing to a web of interactions between signaling cascades and glycosylation at the Golgi. ![]()
Golgi organization was probed with three markers of different Golgi compartments and quantitative morphological analysis. Knockdowns of ∼20% of all known kinases and phosphatases affected the Golgi globally or in a compartment-specific manner, and were comparable in degree to the depletion of known membrane traffic regulators such as SNAREs. Several cell surface receptors, their cognate ligands and downstream effectors regulate Golgi organization, suggesting a large regulatory network. Most signaling genes affected both Golgi morphology and the expression of specific glycans.
The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.
Collapse
|
44
|
Burgo A, Casano AM, Kuster A, Arold ST, Wang G, Nola S, Verraes A, Dingli F, Loew D, Galli T. Increased activity of the vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor TI-VAMP/VAMP7 by tyrosine phosphorylation in the Longin domain. J Biol Chem 2013; 288:11960-72. [PMID: 23471971 DOI: 10.1074/jbc.m112.415075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation.
Collapse
Affiliation(s)
- Andrea Burgo
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Salcedo-Sicilia L, Granell S, Jovic M, Sicart A, Mato E, Johannes L, Balla T, Egea G. βIII spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex. J Biol Chem 2012; 288:2157-66. [PMID: 23233669 DOI: 10.1074/jbc.m112.406462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A spectrin-based cytoskeleton is associated with endomembranes, including the Golgi complex and cytoplasmic vesicles, but its role remains poorly understood. Using new generated antibodies to specific peptide sequences of the human βIII spectrin, we here show its distribution in the Golgi complex, where it is enriched in the trans-Golgi and trans-Golgi network. The use of a drug-inducible enzymatic assay that depletes the Golgi-associated pool of PI4P as well as the expression of PH domains of Golgi proteins that specifically recognize this phosphoinositide both displaced βIII spectrin from the Golgi. However, the interference with actin dynamics using actin toxins did not affect the localization of βIII spectrin to Golgi membranes. Depletion of βIII spectrin using siRNA technology and the microinjection of anti-βIII spectrin antibodies into the cytoplasm lead to the fragmentation of the Golgi. At ultrastructural level, Golgi fragments showed swollen distal Golgi cisternae and vesicular structures. Using a variety of protein transport assays, we show that the endoplasmic reticulum-to-Golgi and post-Golgi protein transports were impaired in βIII spectrin-depleted cells. However, the internalization of the Shiga toxin subunit B to the endoplasmic reticulum was unaffected. We state that βIII spectrin constitutes a major skeletal component of distal Golgi compartments, where it is necessary to maintain its structural integrity and secretory activity, and unlike actin, PI4P appears to be highly relevant for the association of βIII spectrin the Golgi complex.
Collapse
Affiliation(s)
- Laia Salcedo-Sicilia
- Department de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cancino J, Luini A. Signaling Circuits on the Golgi Complex. Traffic 2012; 14:121-34. [DOI: 10.1111/tra.12022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023]
|
47
|
Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM. Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton (Hoboken) 2012; 69:625-43. [PMID: 22991200 PMCID: PMC3746372 DOI: 10.1002/cm.21051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 01/23/2023]
Abstract
Cortactin is a branched actin regulator and tumor-overexpressed protein that promotes vesicular trafficking at a variety of cellular sites, including endosomes and the trans-Golgi network. To better understand its role in secretory trafficking, we investigated its function in Golgi homeostasis. Here, we report that knockdown (KD) of cortactin leads to a dramatic change in Golgi morphology by light microscopy, dependent on binding the Arp2/3 actin-nucleating complex. Surprisingly, there was little effect of cortactin-KD on anterograde trafficking of the constitutive cargo vesicular stomatitis virus glycoprotein (VSVG), Golgi assembly from endoplasmic reticulum membranes upon Brefeldin A washout, or Golgi ultrastructure. Instead, electron microscopy studies revealed that cortactin-KD cells contained a large number of immature-appearing late endosomal/lysosomal (LE/Lys) hybrid organelles, similar to those found in lysosomal storage diseases. Consistent with a defect in LE/Lys trafficking, cortactin-KD cells also exhibited accumulation of free cholesterol and retention of the retrograde Golgi cargo mannose-6-phosphate receptor in LE. Inhibition of LE maturation by treatment of control cells with Rab7 siRNA or chloroquine led to a compact Golgi morphology similar to that observed in cortactin-KD cells. Furthermore, the Golgi morphology defects of cortactin-KD cells could be rescued by removal of cholesterol-containing lipids from the media, suggesting that buildup of cholesterol-rich membranes in immature LE/Lys induced disturbances in retrograde trafficking. Taken together, these data reveal that LE/Lys maturation and trafficking are highly sensitive to cortactin-regulated branched actin assembly and suggests that cytoskeletal-induced Golgi morphology changes can be a consequence of altered trafficking at late endosomes.
Collapse
Affiliation(s)
- Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
48
|
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012; 22:736-56. [PMID: 22183981 PMCID: PMC3409716 DOI: 10.1093/glycob/cwr182] [Citation(s) in RCA: 612] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
Collapse
Affiliation(s)
- Eric P Bennett
- Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Nørre Alle 20, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
49
|
Hiyoshi M, Takahashi-Makise N, Yoshidomi Y, Chutiwitoonchai N, Chihara T, Okada M, Nakamura N, Okada S, Suzu S. HIV-1 Nef perturbs the function, structure, and signaling of the Golgi through the Src kinase Hck. J Cell Physiol 2012; 227:1090-7. [PMID: 21567396 DOI: 10.1002/jcp.22825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interaction between HIV-1 Nef and the Src kinase Hck in macrophages has been shown to accelerate the progression to AIDS. We previously showed that Nef disturbed the N-glycosylation/trafficking of Fms, a cytokine receptor essential for maintaining macrophages in an anti-inflammatory state, in an Hck-dependent manner. Here, we show the underlying molecular mechanism of this effect. Using various Hck isoforms and their mutants and Golgi-targeting Hck mutants, we confirmed that Hck activation at the Golgi causes the Nef-induced Fms N-glycosylation defect. Importantly, we found that both the co-expression of Nef and Hck and the expression of a Golgi-targeted active Hck mutant caused alterations in the distribution of GM130, a Golgi protein that was shown to be required for efficient protein glycosylation. Moreover, the activation of Hck at the Golgi caused strong serine phosphorylation of the GM130-interacting Golgi structural protein GRASP65, which is known to induce Golgi cisternal unstacking. Using pharmacological inhibitors, we also found that the activation of Hck at the Golgi followed by the activation of the MAP kinase ERK-GRASP65 cascade is involved in the Fms N-glycosylation defect. These results suggest that Nef perturbs the structure and signaling of the Golgi by activating Hck at the Golgi, and thereby, induces the N-glycosylation/trafficking defect of Fms, which is in line with the idea that Src family kinases are crucial Golgi regulators.
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Center for AIDS Research, Kumamoto University, Kumamoto-city, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Weldon JE, Pastan I. A guide to taming a toxin--recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 2011; 278:4683-700. [PMID: 21585657 PMCID: PMC3179548 DOI: 10.1111/j.1742-4658.2011.08182.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas exotoxin A (PE) is a highly toxic protein secreted by the opportunistic pathogen Pseudomonas aeruginosa. The modular structure and corresponding mechanism of action of PE make it amenable to extensive modifications that can redirect its potent cytotoxicity from disease to a therapeutic function. In combination with a variety of artificial targeting elements, such as receptor ligands and antibody fragments, PE becomes a selective agent for the elimination of specific cell populations. This review summarizes our current understanding of PE, its intoxication pathway, and the ongoing efforts to convert this toxin into a treatment for cancer.
Collapse
Affiliation(s)
- John E Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|