1
|
Kong P, Zhang L, Zhang Z, Feng K, Sang Y, Duan X, Liu C, Sun T, Tao Z, Liu W. Emerging Proteins in CRPC: Functional Roles and Clinical Implications. Front Oncol 2022; 12:873876. [PMID: 35756667 PMCID: PMC9226405 DOI: 10.3389/fonc.2022.873876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men in the western world, but the lack of specific and sensitive markers often leads to overtreatment of prostate cancer which eventually develops into castration-resistant prostate cancer (CRPC). Novel protein markers for diagnosis and management of CRPC will be promising. In this review, we systematically summarize and discuss the expression pattern of emerging proteins in tissue, cell lines, and serum when castration-sensitive prostate cancer (CSPC) progresses to CRPC; focus on the proteins involved in CRPC growth, invasion, metastasis, metabolism, and immune microenvironment; summarize the current understanding of the regulatory mechanisms of emerging proteins in CSPC progressed to CRPC at the molecular level; and finally summarize the clinical applications of emerging proteins as diagnostic marker, prognostic marker, predictive marker, and therapeutic marker.
Collapse
Affiliation(s)
- Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengliang Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kangle Feng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Sang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Zhang X, Sun J, Yu W, Jin J. Current views on the genetic landscape and management of variant acute promyelocytic leukemia. Biomark Res 2021; 9:33. [PMID: 33957999 PMCID: PMC8101136 DOI: 10.1186/s40364-021-00284-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the accumulation of promyelocytes in bone marrow. More than 95% of patients with this disease belong to typical APL, which express PML-RARA and are sensitive to differentiation induction therapy containing all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), and they exhibit an excellent clinical outcome. Compared to typical APL, variant APL showed quite different aspects, and how to recognize, diagnose, and treat variant APL remained still challenged at present. Herein, we drew the genetic landscape of variant APL according to recent progresses, then discussed how they contributed to generate APL, and further shared our clinical experiences about variant APL treatment. In practice, when APL phenotype was exhibited but PML-RARA and t(15;17) were negative, variant APL needed to be considered, and fusion gene screen as well as RNA-sequencing should be displayed for making the diagnosis as soon as possible. Strikingly, we found that besides of RARA rearrangements, RARB or RARG rearrangements also generated the phenotype of APL. In addition, some MLL rearrangements, NPM1 rearrangements or others could also drove variant APL in absence of RARA/RARB/RARG rearrangements. These results indicated that one great heterogeneity existed in the genetics of variant APL. Among them, only NPM1-RARA, NUMA-RARA, FIP1L1-RARA, IRF2BP2-RARA, and TFG-RARA have been demonstrated to be sensitive to ATRA, so combined chemotherapy rather than differentiation induction therapy was the standard care for variant APL and these patients would benefit from the quick switch between them. If ATRA-sensitive RARA rearrangement was identified, ATRA could be added back for re-induction of differentiation. Through this review, we hoped to provide one integrated view on the genetic landscape of variant APL and helped to remove the barriers for managing this type of disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| | - Jiewen Sun
- Center Laboratory, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China. .,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China. .,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.
| |
Collapse
|
3
|
Gu JF, Fu W, Qian HX, Gu WX, Zong Y, Chen Q, Lu L. TBL1XR1 induces cell proliferation and inhibit cell apoptosis by the PI3K/AKT pathway in pancreatic ductal adenocarcinoma. World J Gastroenterol 2020; 26:3586-3602. [PMID: 32742128 PMCID: PMC7366057 DOI: 10.3748/wjg.v26.i25.3586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors. Identification of diagnostic and therapeutic biomarkers for PDAC is urgently needed. Transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) has been linked to the progression of various human cancers. Nevertheless, the function and role of TBL1XR1 in pancreatic cancers are unclear.
AIM To elucidate the function and potential mechanism of TBL1XR1 in the development of PDAC.
METHODS Ninety patients with histologically-confirmed PDAC were included in this study. PDAC tumor samples and cell lines were used to determine the expression of TBL1XR1. CCK-8 assays and colony formation assays were carried out to assess PDAC cell viability. Flow cytometry was performed to measure the changes in the cell cycle and cell apoptosis. Changes in related protein expression were measured by western blot analysis. Animal analysis was conducted to confirm the impact of TBL1XR1 in vivo.
RESULTS Patients with TBL1XR1-positive tumors had worse overall survival than those with TBL1XR1-negative tumors. Moreover, we found that TBL1XR1 strongly promoted PDAC cell proliferation and inhibited PDAC cell apoptosis. Moreover, knockdown of TBL1XR1 induced G0/G1 phase arrest. In vivo animal studies confirmed that TBL1XR1 accelerated tumor cell growth. The results of western blot analysis showed that TBL1XR1 might play a key role in regulating PDAC cell proliferation and apoptosis via the PI3K/AKT pathway.
CONCLUSION TBL1XR1 promoted PDAC cell progression and might be an effective diagnostic and therapeutic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Jian-Feng Gu
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Wei Fu
- Department of Oncology, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Hai-Xin Qian
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wen-Xiu Gu
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Yang Zong
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Qian Chen
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Long Lu
- Department of Oncology, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| |
Collapse
|
4
|
Yamamoto H, Hayakawa F, Yasuda T, Odaira K, Minamikawa Y, Tange N, Hirano D, Kojima Y, Morishita T, Tsuzuki S, Naoe T, Kiyoi H. ZNF384-fusion proteins have high affinity for the transcriptional coactivator EP300 and aberrant transcriptional activities. FEBS Lett 2019; 593:2151-2161. [PMID: 31234226 DOI: 10.1002/1873-3468.13506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/07/2022]
Abstract
Zinc-finger protein 384 (ZNF384) fusion (Z-fusion) genes have recently been identified as recurrent fusion genes in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) and have been detected in 7-17% of Philadelphia chromosome-negative BCP-ALL cases. We selected SALL4 and ID2 as potential Z-fusion-specific transcriptional targets that might lead to the differentiation disorder of Z-fusion-positive ALL. The introduction of EP300-ZNF384 and SYNRG-ZNF384 induced the expression of these genes. Z-fusion proteins exhibited stronger transcriptional activities on the promoter or enhancer region of these genes than Wild-Z. Furthermore, GST pull-down assay revealed that Z-fusion proteins associated more strongly with EP300 than Wild-Z. Coexpression of EP300 specifically enhanced the transcriptional activities of Z-fusion proteins. We propose the increased EP300 binding of Z-fusion proteins as a mechanism for their increased transcriptional activities.
Collapse
Affiliation(s)
- Hideyuki Yamamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Fumihiko Hayakawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Japan.,Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Takahiko Yasuda
- Clinical Research Center, Nagoya Medical Center, National Hospital Organization, Nagoya, Japan
| | - Koya Odaira
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Yuka Minamikawa
- Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Naoyuki Tange
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Daiki Hirano
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Yuki Kojima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Takanobu Morishita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, School of Medicine, Aichi Medical University, Japan
| | - Tomoki Naoe
- Nagoya Medical Center, National Hospital Organization, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
5
|
Daniels G, Zhang X, Zhong X, Santiago L, Wang LH, Wu X, Zhang JY, Liang F, Li X, Neubert TA, Steinke L, Shen Y, Basch R, Schneider R, Levy DE, Lee P. Cytoplasmic, full length and novel cleaved variant, TBLR1 reduces apoptosis in prostate cancer under androgen deprivation. Oncotarget 2018; 7:39556-39571. [PMID: 27127173 PMCID: PMC5129953 DOI: 10.18632/oncotarget.9005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/28/2016] [Indexed: 01/28/2023] Open
Abstract
TBLR1/TBL1XR1, a core component of the nuclear receptor corepressor (NCoR) complex critical for the regulation of multiple nuclear receptors, is a transcriptional coactivator of androgen receptor (AR) and functions as a tumor suppressor when expressed in the nucleus in prostate. Subcellular localization of a protein is critical for its function, and although TBLR1, as a transcriptional cofactor, has been primarily viewed as a nuclear protein, many cells also express variable levels of cytoplasmic TBLR1 and its cytoplasmic specific functions have not been studied. Prostate cancer (PCa) cells express moderately higher level of cytoplasmic TBLR1 compared to benign prostate cells. When comparing androgen-dependent (AD) to androgen-independent (AI) PCa, AI cells contain very high levels of TBLR1 cytoplasmic expression and low levels of nuclear expression. Overexpression of cytoplasmic TBLR1 in AD cells inhibits apoptosis induced by androgen deprivation therapy, either in an androgen free condition or in the presence of bicalutamide. Additionally, we identified a cytoplasmic specific isoform of TBLR1 (cvTBLR1) approximately 5 kDa lower in molecular weight, that is expressed at higher levels in AI PCa cells. By immunoprecipitation, we purified cvTBLR1 and using mass spectrometry analysis combined with N-terminal TMPP labeling and Edman degradation, we identified the cleavage site of cvTBLR1 at amino acid 89, truncating the first 88 amino acids of the N-terminus of the full length protein. Functionally, cvTBLR1 expressed in the cytoplasm reduced apoptosis in PCa cells and promoted growth, migration, and invasion. Finally, we identified a nuclear export signal sequence for TBLR1 cellular localization by deletion and site-directed mutagenesis. The roles of TBLR1 and cvTBLR1 provide novel insights into the mechanism of castration resistance and new strategies for PCa therapy.
Collapse
Affiliation(s)
- Garrett Daniels
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Xinmin Zhang
- Department of Pathology and Laboratory Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Xuelin Zhong
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Larion Santiago
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Ling Hang Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Xinyu Wu
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jack Y Zhang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Fengxia Liang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Xin Li
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Thomas A Neubert
- Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Laurey Steinke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Shen
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Ross Basch
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Robert Schneider
- Microbiology and Molecular Pathogenesis, New York University School of Medicine, New York, NY, USA
| | - David E Levy
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Peng Lee
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Department of Urology, New York University School of Medicine, New York, NY, USA.,NYU Cancer Institute, New York University School of Medicine, New York, NY, USA.,New York Harbor Healthcare System, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Wen L, Fu L, Shi YB. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB J 2017; 31:4821-4831. [PMID: 28739643 DOI: 10.1096/fj.201700131r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
Histone modifications are associated with transcriptional regulation by diverse transcription factors. Genome-wide correlation studies have revealed that histone activation marks and repression marks are associated with activated and repressed gene expression, respectively. Among the histone activation marks is histone H3 K79 methylation, which is carried out by only a single methyltransferase, disruptor of telomeric silencing-1-like (DOT1L). We have been studying thyroid hormone (T3)-dependent amphibian metamorphosis in two highly related species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, as a model for postembryonic development, a period around birth in mammals that is difficult to study. We previously showed that H3K79 methylation levels are induced at T3 target genes during natural and T3-induced metamorphosis and that Dot1L is itself a T3 target gene. These suggest that T3 induces Dot1L expression, and Dot1L in turn functions as a T3 receptor (TR) coactivator to promote vertebrate development. We show here that in cotransfection studies or in the reconstituted frog oocyte in vivo transcription system, overexpression of Dot1L enhances gene activation by TR in the presence of T3. Furthermore, making use of the ability to carry out transgenesis in X. laevis and gene knockdown in X. tropicalis, we demonstrate that endogenous Dot1L is critical for T3-induced activation of endogenous TR target genes while transgenic Dot1L enhances endogenous TR function in premetamorphic tadpoles in the presence of T3. Our studies thus for the first time provide complementary gain- and loss-of functional evidence in vivo for a cofactor, Dot1L, in gene activation by TR during vertebrate development.-Wen, L., Fu, L., Shi, Y.-B. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Restrepo RJ, Lim RW, Korthuis RJ, Shukla SD. Binge alcohol alters PNPLA3 levels in liver through epigenetic mechanism involving histone H3 acetylation. Alcohol 2017; 60:77-82. [PMID: 28433418 DOI: 10.1016/j.alcohol.2017.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
The human PNPLA3 (patatin-like phospholipase domain-containing 3) gene codes for a protein which is highly expressed in adipose tissue and liver, and is implicated in lipid homeostasis. While PNPLA3 protein contains regions homologous to functional lipolytic proteins, the regulation of its tissue expression is reflective of lipogenic genes. A naturally occurring genetic variant of PNPLA3 in humans has been linked to increased susceptibility to alcoholic liver disease. We have examined the modulatory effect of alcohol on PNPLA3 protein and mRNA expression as well as the association of its gene promoter with acetylated histone H3K9 by chromatin immunoprecipitation (ChIP) assay in rat hepatocytes in vitro, and in vivo in mouse and rat models of acute binge, chronic, and chronic followed by acute binge ethanol administration. Protein expression of PNPLA3 was significantly increased by alcohol in all three models used. PNPLA3 mRNA also increased, albeit to a varying degree. ChIP assay using H3AcK9 antibody showed increased association with the promoter of PNPLA3 in hepatocytes and in mouse liver. This was less evident in rat livers in vivo except under chronic treatment. It is concluded for the first time that histone acetylation plays a role in the modulation of PNPLA3 levels in the liver exposed to binge ethanol both in vitro and in vivo.
Collapse
|
8
|
Mello FV, Alves LR, Land MGP, Teodósio C, Sanchez ML, Bárcena P, Peres RT, Pedreira CE, Costa ES, Orfao A. Maturation-associated gene expression profiles along normal human bone marrow monopoiesis. Br J Haematol 2017; 176:464-474. [PMID: 28079251 DOI: 10.1111/bjh.14467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Human monopoiesis is a tightly coordinated process which starts in the bone marrow (BM) haematopoietic stem cell (HSC) compartment and leads to the production of circulating blood mature monocytes. Although mature monocytes/macrophages have been extensively studied in both normal or inflammatory conditions, monopoiesis has only been assessed in vitro and in vivo animal models, due to low frequency of the monocytic precursors in the normal human BM. Here we investigated the transcriptional profile along normal human BM monopoiesis. Five distinct maturation-associated stages of monocytic precursors were identified and isolated from (fresh) normal human BM through fluorescence-activated cell sorting, and the gene expression profile (GEP) of each monocytic precursor subset was analysed by DNA-oligonucleotide microarrays. Overall, >6000 genes (18% of the genes investigated) were expressed in ≥1 stage of BM monopoiesis at stable or variable amounts, showing early decrease in cell proliferation with increased levels of expression of genes linked with cell differentiation. The here-defined GEP of normal human BM monopoiesis might contribute to better understand monocytic differentiation and the identification of novel monocytic candidate markers, while also providing a frame of reference for the study of monocytic maturation in both neoplastic and non-neoplastic disease conditions involving monocytic precursor cells.
Collapse
Affiliation(s)
- Fabiana V Mello
- Clinical Medicine Postgraduate Programme, College of Medicine, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro, Brazil.,Cytometry Service, Institute of Paediatrics and Puericulture Martagão Gesteira (IPPMG), UFRJ, Rio de Janeiro, Brazil
| | - Liliane R Alves
- Clinical Medicine Postgraduate Programme, College of Medicine, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro, Brazil.,Cytometry Service, Institute of Paediatrics and Puericulture Martagão Gesteira (IPPMG), UFRJ, Rio de Janeiro, Brazil.,Pharmacy Service INCa, Rio de Janeiro, Brazil
| | - Marcelo G P Land
- Clinical Medicine Postgraduate Programme, College of Medicine, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro, Brazil
| | - Cristina Teodósio
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - María-Luz Sanchez
- Department of Medicine and Cytometry Service (Nucleus), Cancer Research Centre (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain
| | - Paloma Bárcena
- Department of Medicine and Cytometry Service (Nucleus), Cancer Research Centre (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain
| | | | - Carlos E Pedreira
- COPPE-PESC Rio de Janeiro Federal University (UFRJ), Rio de Janeiro, Brazil
| | - Elaine S Costa
- Clinical Medicine Postgraduate Programme, College of Medicine, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro, Brazil.,Cytometry Service, Institute of Paediatrics and Puericulture Martagão Gesteira (IPPMG), UFRJ, Rio de Janeiro, Brazil
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (Nucleus), Cancer Research Centre (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
9
|
Ma M, Yu N. Over-Expression of TBL1XR1 Indicates Poor Prognosis of Serous Epithelial Ovarian Cancer. TOHOKU J EXP MED 2017; 241:239-247. [DOI: 10.1620/tjem.241.239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ming Ma
- Department of Oncology, Linyi People’s Hospital
| | - Nina Yu
- Department of Gynecology and Obstetrics, Linyi People’s Hospital
| |
Collapse
|
10
|
Zhou Q, Wang X, Yu Z, Wu X, Chen X, Li J, Zhu Z, Liu B, Su L. Transducin (β)-like 1 X-linked receptor 1 promotes gastric cancer progression via the ERK1/2 pathway. Oncogene 2016; 36:1873-1886. [PMID: 27694893 PMCID: PMC5378934 DOI: 10.1038/onc.2016.352] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is one of the most common types of cancer worldwide, and it involves extensive local tumour invasion, metastasis and poor prognosis. Understanding the mechanisms regulating the progression of GC is necessary for the development of effective therapeutic strategies. Transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) is an important regulator controlling gene activation and repression, which has been thought to be involved in tumorigenesis. However, the role of TBL1XR1 in human GC remains largely unknown. Here, we find that TBL1XR1 is aberrantly expressed in human GC tissues, and TBL1XR1 levels are highly correlated with local tumour invasion, late tumor, lymph node, metastasis (TNM) stage and poor prognosis. Knockdown of TBL1XR1 by shRNA inhibits GC cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) in vitro, as well as tumorigenesis and peritoneal metastasis in vivo, whereas overexpression of TBL1XR1 produces the opposite effects. These effects are mediated by activation of the ERK1/2 signalling pathway, and inhibition of this pathway with a specific ERK1/2 inhibitor (U0126) significantly impairs the tumour-promoting effects induced by TBL1XR1. Moreover, TBL1XR1 mediated ERK1/2 activation is dependent on the β-catenin/MMP7/EGFR signalling pathway. In conclusion, TBL1XR1 contributes to GC tumorigenesis and progression through the activation of the β-catenin/MMP7/EGFR/ERK signalling pathway and may act as a new therapeutic target for GC.
Collapse
Affiliation(s)
- Q Zhou
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - X Wang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Z Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - X Wu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - X Chen
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - J Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Z Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - B Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - L Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Dreer M, Fertey J, van de Poel S, Straub E, Madlung J, Macek B, Iftner T, Stubenrauch F. Interaction of NCOR/SMRT Repressor Complexes with Papillomavirus E8^E2C Proteins Inhibits Viral Replication. PLoS Pathog 2016; 12:e1005556. [PMID: 27064408 PMCID: PMC4827801 DOI: 10.1371/journal.ppat.1005556] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
Infections with high-risk human papillomaviruses (HR-HPV) such as HPV16 and 31 can lead to ano-genital and oropharyngeal cancers and HPV types from the beta genus have been implicated in the development of non-melanoma skin cancer. HPV replicate as nuclear extrachromosomal plasmids at low copy numbers in undifferentiated cells. HPV16 and 31 mutants have indicated that these viruses express an E8^E2C protein which negatively regulates genome replication. E8^E2C shares the DNA-binding and dimerization domain (E2C) with the essential viral replication activator E2 and the E8 domain replaces the replication/transcription activation domain of E2. The HR-HPV E8 domain is required for inhibiting viral transcription and the replication of the viral origin mediated by viral E1 and E2 proteins. We show now that E8^E2C also limits replication of HPV1, a mu-PV and HPV8, a beta-PV, in normal human keratinocytes. Proteomic analyses identified all NCoR/SMRT corepressor complex components (HDAC3, GPS2, NCoR, SMRT, TBL1 and TBLR1) as co-precipitating host cell proteins for HPV16 and 31 E8^E2C proteins. Co-immunoprecipitation and co-localization experiments revealed that NCoR/SMRT components interact with HPV1, 8, 16 and 31 E8^E2C proteins in an E8-dependent manner. SiRNA knock-down experiments confirm that NCoR/SMRT components are critical for both the inhibition of transcription and HPV origin replication by E8^E2C proteins. Furthermore, a dominant-negative NCoR fragment activates transcription and replication only from HPV16 and 31 wt but not from mutant genomes encoding NCoR/SMRT-binding deficient E8^E2C proteins. In summary, our data suggest that the repressive function of E8^E2C is highly conserved among HPV and that it is mediated by an E8-dependent interaction with NCoR/SMRT complexes. Our data also indicate for the first time that NCoR/SMRT complexes not only are involved in inhibiting cellular and viral transcription but also in controlling the replication of HPV origins. Human papillomaviruses (HPV) have been shown to cause ano-genital and oropharyngeal cancers and have been also implicated in non-melanoma skin cancer. HPV have a two-stage replication cycle: in undifferentiated keratinocytes only a low level of genome replication without virus production can be observed whereas in differentiated keratinocytes high-level genome replication and virus production takes place. Previous studies have suggested that some HPV encode an E8^E2C protein that limits genome replication in undifferentiated cells. We now demonstrate that E8^E2C proteins from phylogenetically diverse HPV types interact with NCoR/SMRT corepressor complexes to limit viral transcription and genome replication. While NCoR/SMRT complexes are known to mediate the transcription repression functions of a wide variety of host transcription factors, this is the first evidence that NCoR/SMRT proteins also are involved in the repression of the replication of viral origins.
Collapse
Affiliation(s)
- Marcel Dreer
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Jasmin Fertey
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Saskia van de Poel
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Elke Straub
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Johannes Madlung
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Frank Stubenrauch
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
12
|
Rincic M, Rados M, Krsnik Z, Gotovac K, Borovecki F, Liehr T, Brecevic L. Complex intrachromosomal rearrangement in 1q leading to 1q32.2 microdeletion: a potential role of SRGAP2 in the gyrification of cerebral cortex. Mol Cytogenet 2016; 9:19. [PMID: 26900403 PMCID: PMC4761178 DOI: 10.1186/s13039-016-0221-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/30/2016] [Indexed: 12/13/2022] Open
Abstract
Background Van der Woude syndrome (MIM: 119300, VWS) is a dominantly inherited and the most common orofacial clefting syndrome; it accounts for ~2 % of all cleft lip and palate cases. Intellectual disability (ID) is characterized by significant limitations, both in intellectual functioning (cognitive deficit) and in adaptive behavior as expressed in conceptual, social and practical adaptive skills. Karyotyping has been the first standard test for the detection of genetic imbalance in patients with ID for more than 35 years. Advances in genetic diagnosis have laid chromosomal microarrays (CMA) as a new standard and first first-line test for diagnosis of patients with ID, as well as other conditions, such as autism spectrum disorders or multiple congenital anomalies. Case Presentation The present case was initially studied due to unexplained cognitive deficit. Physical examination at the age of 18 years revealed cleft palate, lower lip pits and hypodontia, accompanied with other dysmorphic features and absence of speech. Brain MRI uncovered significantly reduced overall volume of gray matter and cortical gyrification. Banding cytogenetics revealed an indistinct intrachromosomal rearrangement in the long arm of one chromosome 1, and subsequent microarray analyses identified a 5.56 Mb deletion in 1q32.1-1q32.3, encompassing 52 genes; included were the entire IRF6 gene (whose mutations/deletions underlay VWS) and SRGAP2, a gene with an important role in neuronal migration during development of cerebral cortex. Besides, a duplication in 3q26.32 (1.9 Mb in size) comprising TBL1XR1 gene was identified. Multicolor banding for chromosome 1 and molecular cytogenetics applying a battery of locus-specific probes covering 1q32.1 to 1q44 characterized a four breakpoint-insertional-rearrangement-event, resulting in 1q32.1-1q32.3 deletion. Conclusions Considering that the human-specific three-fold segmental duplication of SRGAP2 gene evolutionary corresponds to the beginning of neocortical expansion, we hypothesize that aberrations in SRGAP2 are strong candidates underlying specific brain abnormalities, namely reduced volume of grey matter and reduced gyrification. Electronic supplementary material The online version of this article (doi:10.1186/s13039-016-0221-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martina Rincic
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Milan Rados
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Kristina Gotovac
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, and University Hospital Center Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| | - Fran Borovecki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, and University Hospital Center Zagreb, Šalata 2, 10 000 Zagreb, Croatia ; Department of Neurology, University Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, D-07743 Jena, Germany
| | - Lukrecija Brecevic
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Zeidan AM, Gore SD. New strategies in acute promyelocytic leukemia: moving to an entirely oral, chemotherapy-free upfront management approach. Clin Cancer Res 2015; 20:4985-93. [PMID: 25274377 DOI: 10.1158/1078-0432.ccr-13-2725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Incorporation of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) into the management paradigms of acute promyelocytic leukemia (APL) has markedly improved outcomes. Significant progress occurred in understanding the molecular pathogenesis of APL. ATO, in contrast with ATRA, is capable of eradicating the APL-initiating cells and can result in cure. Preclinical and clinical data confirmed the synergy of ATO and ATRA, and the ATRA-ATO combination was proved noninferior to a standard ATRA-chemotherapy regimen in patients with non-high-risk APL. Oral formulations of arsenic exhibited excellent activity in advanced clinical testing and their combinations with ATRA offer an opportunity for a completely oral, chemotherapy-free regimen for curing APL. Nonetheless, significant challenges remain. Reducing early death due to bleeding complications is an important area of unmet need. Data suggest that delays in initiation of ATRA upon suspecting APL continue to occur in the community and contribute to early mortality. Questions remain about the optimal place and schedule of arsenic in the therapeutic sequence and the role of the oral formulations. Refining the role of minimal residual disease in directing treatment decisions is important. Development of novel targeted agents to treat relapsed disease requires deeper understanding of the secondary resistance mechanisms to ATRA and ATO.
Collapse
Affiliation(s)
- Amer M Zeidan
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland.
| | - Steven D Gore
- Section of Hematology, Department of Internal Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
14
|
Transducin β-like 1 X-linked receptor 1 suppresses cisplatin sensitivity in nasopharyngeal carcinoma via activation of NF-κB pathway. Mol Cancer 2014; 13:195. [PMID: 25145705 PMCID: PMC4158072 DOI: 10.1186/1476-4598-13-195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022] Open
Abstract
Background Transducin β-like 1 X-linked receptor 1 (TBL1XR1) is an important transcriptional cofactor involved in the regulation of many signaling pathways, and is associated with carcinogenesis and tumor progression. However, the precise role of TBL1XR1 in these processes is not well understood. Methods We detected the expression of TBL1XR1 protein and mRNA in nasopharyngeal carcinoma (NPC) cell lines and biopsies by western blotting, real-time PCR and immunohistochemical staining (IHC). Overexpression of TBL1XR1 in NPC enhanced chemoresistance to cisplatin using two NPC cell lines in vitro and in vivo. Results TBL1XR1 was upregulated in NPC cell lines and clinical samples. The expression of TBL1XR1 was correlated with several clinicopathological factors including clinical stage, T classification, N classification and patient survival. Univariate and multivariate analysis revealed that TBL1XR1 was an independent prognostic factor for patient survival. In vitro and in vivo studies demonstrated that TBL1XR1 high expression induced resistance to cisplatin-induced apoptosis in NPC cells. Furthermore, we found that TBL1XR1 activated the NF-κB pathway and promoted transcription of genes downstream of NF-κB, especially anti-apoptotic genes. Conclusions Upregulation of TBL1XR1 induces NPC cells resistance to cisplatin by activating the NF-κB pathway, and correlates with poor overall survival of NPC patients. TBL1XR1 has a pivotal role in NPC and could be a valuable prognostic factor as well as a novel biomarker for tailoring appropriate therapeutic regimes. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-195) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. Int J Hematol 2013; 97:717-25. [DOI: 10.1007/s12185-013-1354-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/10/2023]
|
16
|
Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment. Blood 2011; 118:1600-9. [DOI: 10.1182/blood-2011-01-329433] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractArsenic trioxide (As2O3) is a highly effective treatment for patients with refractory/relapsed acute promyelocytic leukemia (APL), but resistance to As2O3 has recently been seen. In the present study, we report the findings that 2 of 15 patients with refractory/relapsed APL treated with As2O3 were clinically As2O3 resistant. Leukemia cells from these 2 patients harbored missense mutations in promyelocytic leukemia gene–retinoic acid receptor-α gene (PML-RARA) transcripts, resulting in amino acid substitutions of A216V and L218P in the PML B2 domain. When wild-type or mutated PML-RARA (PR-WT and PR-B/L-mut, respectively) were overexpressed in HeLa cells, immunoblotting showed SUMOylated and/or oligomerized protein bands in PR-WT but not in PR-B/L-mut after As2O3 treatment. Protein-localization analysis indicated that PR-WT in the soluble fraction was transferred to the insoluble fraction after treatment with As2O3, but PR-B/L-mut was stably detected in fractions both with and without As2O3. Immunofluorescent microscopy analysis showed PR-WT localization as a microgranular pattern in the cytoplasm without As2O3 and as a macrogranular pattern with As2O3. PR-B/L-mut was diffusely observed in the cytoplasm with and without As2O3. Nearly identical localization patterns were observed in patients' primary cells. Therefore, B2 domain mutations may play an important role in aberrant molecular responses to As2O3 and may be critical for As2O3 resistance in APL.
Collapse
|
17
|
Transducin β-like protein 1 recruits nuclear factor κB to the target gene promoter for transcriptional activation. Mol Cell Biol 2010; 31:924-34. [PMID: 21189284 DOI: 10.1128/mcb.00576-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor κB (NF-κB) signaling controls a wide range of cellular functions such as tumor progression and invasion by inducing gene expression. Upon stimulation, NF-κB is translocated to the nucleus and binds to its target gene promoters to activate transcription by recruiting transcription coactivators. Although significant progress has been made in understanding NF-κB-mediated transactivation, little is known about how NF-κB is recruited to its target gene promoters. Here, we report that transducin β-like protein 1 (TBL1) controls the expression of NF-κB target genes by directly binding with NF-κB and facilitating its recruitment to target gene promoters. Tumor necrosis factor alpha stimulation triggered the formation of an NF-κB and TBL1 complex and subsequent target gene promoter binding. Knockdown of TBL1 impaired the recruitment of NF-κB to its target gene promoters. Interestingly, analysis of the Oncomine database revealed that TBL1 mRNA levels were significantly higher in invasive breast cancer tissues than in breast adenocarcinoma tissue. Consistently, TBL1 knockdown significantly reduced the invasive potential of breast cancer cells by inhibiting NF-κB. Our results reveal a new mechanism for the regulation of NF-κB activation, with important implications for the development of novel strategies for cancer therapy by targeting NF-κB.
Collapse
|
18
|
Sugimoto T, Tomita A, Hiraga J, Shimada K, Kiyoi H, Kinoshita T, Naoe T. Escape mechanisms from antibody therapy to lymphoma cells: downregulation of CD20 mRNA by recruitment of the HDAC complex and not by DNA methylation. Biochem Biophys Res Commun 2009; 390:48-53. [PMID: 19769942 DOI: 10.1016/j.bbrc.2009.09.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
Although rituximab is a critical monoclonal antibody therapy for CD20-positive B-cell lymphomas, rituximab resistance showing a CD20-negative phenotypic change has been a considerable clinical problem. Here we demonstrate that CD20 mRNA and protein expression is repressed by recruitment of a histone deacetylase protein complex to the MS4A1 (CD20) gene promoter in CD20-negative transformed cells after treatment with rituximab. CD20 mRNA and protein expression were stimulated by decitabine (5-Aza-dC) in CD20-negative transformed cells, and was enhanced by trichostation A (TSA). Immunoblotting indicated that DNMT1 expression was first downregulated 1 day after treatment with 5-Aza-dC, but IRF4 and Pu.1, the transcriptional regulators of MS4A1, were still expressed with or without 5-Aza-dC. Interestingly, CpG methylation of the MS4A1 promoter was not observed in CD20-negative transformed cells without 5-Aza-dC. A chromatin immunoprecipitation (ChIP) assay indicated that the Sin3A-HDAC1 co-repressor complex was recruited to the promoter and dissociated from the promoter with 5-Aza-dC and TSA, resulting in histone acetylation. Under these conditions, IRF4 and Pu.1 were continually recruited to the promoter with or without 5-Aza-dC and TSA. These results suggest that recruitment of the Sin3A-HDAC1 complex is related to downregulation of CD20 expression in CD20-negative B-cells after treatment with rituximab.
Collapse
Affiliation(s)
- Takumi Sugimoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Sato Y, Ding A, Heimeier RA, Yousef AF, Mymryk JS, Walfish PG, Shi YB. The adenoviral E1A protein displaces corepressors and relieves gene repression by unliganded thyroid hormone receptors in vivo. Cell Res 2009; 19:783-92. [PMID: 19434099 DOI: 10.1038/cr.2009.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human adenovirus type 5 early region 1A (E1A) is one of two oncogenes present in the adenovirus genome and functions by interfering with the activities of cellular regulatory proteins. The E1A gene is alternatively spliced to yield five products. Earlier studies have revealed that E1A can regulate the function of thyroid hormone (T3) receptors (TRs). However, analysis in yeast compared with transfection studies in mammalian cell cultures yields surprisingly different effects. Here, we have examined the effect of E1A on TR function by using the frog oocyte in vivo system, where the effects of E1A can be studied in the context of chromatin. We demonstrate that different isoforms of E1A have distinct effects on TR function. The two longest forms inhibit both the repression by unliganded TR and activation by T3-bound TR. We further show that E1A binds to unliganded TR to displace the endogenous corepressor nuclear receptor corepressor, thus relieving the repression by unliganded TR. On the other hand, in the presence of T3, E1A inhibits gene activation by T3-bound TR indirectly, through a mechanism that requires its binding domain for the general coactivator p300. Taken together, our results thus indicate that E1A affects TR function through distinct mechanisms that are dependent upon the presence or absence of T3.
Collapse
Affiliation(s)
- Yukiyasu Sato
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, PCRM, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Suzuki C, Nagasaki H, Okajima Y, Suga H, Ozaki N, Arima H, Iwasaki Y, Oiso Y. Inflammatory cytokines regulate glycoprotein subunit beta5 of thyrostimulin through nuclear factor-kappaB. Endocrinology 2009; 150:2237-43. [PMID: 19095738 DOI: 10.1210/en.2008-0823] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyrostimulin is a heterodimeric hormone comprised of two glycoprotein hormone subunits, namely glycoprotein hormone subunit alpha2 and glycoprotein hormone subunit beta5 (GPB5). Immunological studies have revealed that both subunits colocalize in human pituitary corticotroph cells. Although recombinant thyrostimulin protein selectively activates the TSH receptor and has thyrotropic activity in rats, its biological functions have not been clarified. To explore the physiological regulators for the GPB5, the 5'-flanking region of the GPB5 coding sequence up to 3-kb upstream was analyzed by luciferase reporter assays. We found that nuclear factor-kappaB (NF-kappaB) markedly activated GPB5 transcription. Disruption of the putative NF-kappaB-binding motifs in the GPB5 5'-flanking region silenced the GPB5 activation by p65. Chromatin immunoprecipitation assays revealed that recombinant p65 bound to the predicted NF-kappaB-binding sites. Because NF-kappaB is known to associate with acute phase inflammatory cytokines, we examined whether TNFalpha or IL-1beta could regulate GPB5. Both these cytokines activated GPB5 transcription by 2- to 3-fold, and their effects were abolished by the addition of MG132, a NF-kappaB inhibitor. Our results suggest that inflammatory cytokines positively regulate thyrostimulin through NF-kappaB activation.
Collapse
Affiliation(s)
- Chizuko Suzuki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood 2009; 113:4885-93. [PMID: 19246561 DOI: 10.1182/blood-2008-08-175208] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although rituximab is a key molecular targeting drug for CD20-positive B-cell lymphomas, resistance to rituximab has recently been recognized as a considerable problem. Here, we report that a CD20-negative phenotypic change after chemotherapies with rituximab occurs in a certain number of CD20-positive B-cell lymphoma patients. For 5 years, 124 patients with B-cell malignancies were treated with rituximab-containing chemotherapies in Nagoya University Hospital. Relapse or progression was confirmed in 36 patients (29.0%), and a rebiopsy was performed in 19 patients. Of those 19, 5 (26.3%; diffuse large B-cell lymphoma [DLBCL], 3 cases; DLBCL transformed from follicular lymphoma, 2 cases) indicated CD20 protein-negative transformation. Despite salvage chemotherapies without rituximab, all 5 patients died within 1 year of the CD20-negative transformation. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) showed that CD20 mRNA expression was significantly lower in CD20-negative cells than in CD20-positive cells obtained from the same patient. Interestingly, when CD20-negative cells were treated with 5-aza-2'-deoxycytidine in vitro, the expression of CD20 mRNA was stimulated within 3 days, resulting in the restoration of both cell surface expression of the CD20 protein and rituximab sensitivity. These findings suggest that some epigenetic mechanisms may be partly related to the down-regulation of CD20 expression after rituximab treatment.
Collapse
|
22
|
Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis. Mol Cell Biol 2008; 29:745-57. [PMID: 19047371 DOI: 10.1128/mcb.00827-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) acts as a transcription coactivator for nuclear receptors through histone H4 R3 methylation. The in vivo function of PRMT1 is largely unknown. Here we investigated the role of PRMT1 in thyroid hormone (T3) receptor (TR)-mediated transcription in vivo during vertebrate development. By using intestinal remodeling during T3-dependent Xenopus laevis metamorphosis for in vivo molecular analysis, we first showed that PRMT1 expression was upregulated during metamorphosis when both TR and T3 were present. We then demonstrated a role for PRMT1 in TR-mediated transcription by showing that PRMT1 enhanced transcriptional activation by liganded TR in the frog oocyte transcription system and was recruited to the T3 response element (TRE) of the target promoter in the oocyte, as well as to endogenous TREs during frog metamorphosis. Surprisingly, we found that PRMT1 was only transiently recruited to the TREs in the target during metamorphosis and observed no PRMT1 recruitment to TREs at the climax of intestinal remodeling when both PRMT1 and T3 were at peak levels. Mechanistically, we showed that overexpression of PRMT1 enhanced TR binding to TREs both in the frog oocyte model system and during metamorphosis. More importantly, transgenic overexpression of PRMT1 enhanced gene activation in vivo and accelerated both natural and T3-induced metamorphosis. These results thus indicate that PRMT1 functions transiently as a coactivator in TR-mediated transcription by enhancing TR-TRE binding and further suggest that PRMT1 has tissue-specific roles in regulating the rate of metamorphosis.
Collapse
|
23
|
Wang X, Matsuda H, Shi YB. Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. Endocrinology 2008; 149:5610-8. [PMID: 18635662 PMCID: PMC2584584 DOI: 10.1210/en.2008-0751] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Amphibian metamorphosis serves as an excellent model to study T3 function during postembryonic development in vertebrate due to its total dependence on T3. Earlier molecular studies in the model species Xenopus laevis have led to a number of important in vivo findings on the function and mechanisms of T3 receptor (TR) action during vertebrate development. However, the lack of genomic sequence information, its tetraploid genome, and lengthy developmental cycle hinder further analyses on TR functions. In this regard, the highly related species, Xenopus tropicalis, is much more advantageous. Toward developing X. tropicalis for genome-wide and genetic studies of TR function, we analyzed the expression profiles of TRs and their heterodimerization partners, retinoid X receptors (RXRs) or 9-cis retinoic acid receptors. We show that their expression correlates with transformations in different organs and that TR/RXR heterodimers are capable of repressing and activating gene expression in vivo in the absence and presence of T3, respectively. We further demonstrate that TRs are bound to endogenous target genes in X. tropicalis tadpoles. Our results thus support a role of TRs in mediating the metamorphic effects of T3 in X. tropicalis. More importantly, the similarities in the expression and function between X. tropicalis and X. laevis TRs and RXRs as demonstrated by our study also pave the way to take advantages of existing morphological, molecular, and cellular knowledge of X. laevis development and the genetic and sequence superiority of X. tropicalis to dissect the molecular pathways governing tissue/organ-specific transformations during vertebrate postembryonic development.
Collapse
Affiliation(s)
- Xuedong Wang
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
24
|
Sato Y, Buchholz DR, Paul BD, Shi YB. A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis. Mech Dev 2008; 124:476-88. [PMID: 17482434 PMCID: PMC1973152 DOI: 10.1016/j.mod.2007.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fascinating feature of thyroid hormone (T3) receptors (TR) is that they constitutively bind to promoter regions of T3-response genes, providing dual functions. In the presence of T3, TR activates T3-inducible genes, while unliganded TR represses these same genes. Although this dual function model is well demonstrated at the molecular level, few studies have addressed the presence or the role of unliganded TR-induced repression in physiological settings. Here, we analyze the role of unliganded TR in Xenopus laevis development. The total dependence of amphibian metamorphosis upon T3 provides us a valuable opportunity for studying TR function in vivo. First, we designed a dominant negative form of TR-binding corepressor N-CoR (dnN-CoR) consisting of its receptor interacting domain. We confirmed its dominant negative activity by showing that dnN-CoR competes away the binding of endogenous N-CoR to unliganded TR and relieves unliganded TR-induced gene repression in frog oocytes. Next, we overexpressed dnN-CoR in tadpoles through transgenesis and analyzed its effect on gene expression and development. Quantitative RT-PCR revealed significant derepression of T3-response genes in transgenic animals. In addition, transgenic tadpoles developed faster than wild type siblings, with an acceleration of as much as 7 days out of the 30-day experiment. These data thus provide in vivo evidence for the presence and a role of unliganded TR-induced gene repression in physiological settings and strongly support our earlier model that unliganded TR represses T3-response genes in premetamorphic tadpoles to regulate the progress of development.
Collapse
Affiliation(s)
- Yukiyasu Sato
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
25
|
Gene transactivation without direct DNA binding defines a novel gain-of-function for PML-RARα. Blood 2008; 111:1634-43. [DOI: 10.1182/blood-2007-04-081125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AbstractPML-RARα is the causative oncogene in 5% to 10% of the cases of acute myeloid leukemia. At physiological concentrations of retinoic acid, PML-RARα silences RARα target genes, blocking differentiation of the cells. At high concentrations of ligand, it (re)activates the transcription of target genes, forcing terminal differentiation. The study of RARα target genes that mediate this differentiation has identified several genes that are important for proliferation and differentiation control in normal and malignant hematopoietic cells. In this paper, we show that the PML-RARα fusion protein not only interferes with the transcription of regular RARα target genes. We show that the ID1 and ID2 promoters are activated by PML-RARα but, unexpectedly, not by wild-type RARα/RXR. Our data support a model in which the PML-RARα fusion protein regulates a novel class of target genes by interaction with the Sp1 and NF-Y transcription factors, without directly binding to the DNA, defining a gain-of-function for the oncoprotein.
Collapse
|
26
|
Heimeier RA, Hsia VS, Shi YB. Participation of Brahma-related gene 1 (BRG1)-associated factor 57 and BRG1-containing chromatin remodeling complexes in thyroid hormone-dependent gene activation during vertebrate development. Mol Endocrinol 2008; 22:1065-77. [PMID: 18238828 DOI: 10.1210/me.2007-0492] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Multiple cofactors and chromatin remodeling complexes have been identified to contribute to the transcriptional activation regulated by thyroid hormone receptors (TRs) in vitro. However, their role and function during development in vivo remains to be elucidated. The total dependence of amphibian metamorphosis on thyroid hormone T3 provides a unique vertebrate model for studying the molecular mechanism of TR function in vivo. In this study, we show that the expression of Brahma-related gene 1 (BRG1), a chromatin-remodeling enzyme, is up-regulated at the climax of Xenopus laevis metamorphosis, whereas BRG1-associated factor 57 (BAF57), a BRG1-binding protein in BRG1-containing chromatin remodeling complexes, is constitutively expressed during development. Consistently, T3 treatment of premetamorphic tadpoles led to up-regulation of the expression of BRG1 but not BAF57. Studies using a reconstituted T3-dependent Xenopus oocyte transcription system, where we could study TR function in the context of chromatin, revealed that BRG1 enhances the transcriptional activation by ligand-bound TRs in a dose-dependent manner, whereas a remodeling-defective BRG1 mutant inhibited the activation, suggesting that this process relies on chromatin remodeling. Additional studies showed that BAF57 interacted with BRG1 in oocytes and enhanced gene activation by TR cooperatively with BRG1 in vivo. Chromatin immunoprecipitation revealed that BAF57 was recruited to the TR-regulated promoter in the presence of TR and T3. Together, these findings suggest a role of BRG1/BAF57-containing chromatin remodeling complexes in TR-regulated gene expression during postembryonic development.
Collapse
Affiliation(s)
- Rachel A Heimeier
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
27
|
Topoisomerase IIbeta negatively modulates retinoic acid receptor alpha function: a novel mechanism of retinoic acid resistance. Mol Cell Biol 2008; 28:2066-77. [PMID: 18212063 DOI: 10.1128/mcb.01576-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between retinoic acid (RA) receptor alpha (RARalpha) and coregulators play a key role in coordinating gene transcription and myeloid differentiation. In patients with acute promyelocytic leukemia (APL), the RARalpha gene is fused with the promyelocytic leukemia (PML) gene via the t(15;17) translocation, resulting in the expression of a PML/RARalpha fusion protein. Here, we report that topoisomerase II beta (TopoIIbeta) associates with and negatively modulates RARalpha transcriptional activity and that increased levels of and association with TopoIIbeta cause resistance to RA in APL cell lines. Knockdown of TopoIIbeta was able to overcome resistance by permitting RA-induced differentiation and increased RA gene expression. Overexpression of TopoIIbeta in clones from an RA-sensitive cell line conferred resistance by a reduction in RA-induced expression of target genes and differentiation. Chromatin immunoprecipitation assays indicated that TopoIIbeta is bound to an RA response element and that inhibition of TopoIIbeta causes hyperacetylation of histone 3 at lysine 9 and activation of transcription. Our results identify a novel mechanism of resistance in APL and provide further insight to the role of TopoIIbeta in gene regulation and differentiation.
Collapse
|
28
|
Suzuki C, Nagasaki H, Okajima Y, Suga H, Arima H, Iwasaki Y, Oiso Y. The LIM domain homeobox gene isl-1 is a positive regulator of glycoprotein alpha 2 (GPA2), a subunit of thyrostimulin. ACTA ACUST UNITED AC 2007; 142:60-7. [PMID: 17363077 DOI: 10.1016/j.regpep.2007.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/25/2007] [Accepted: 01/28/2007] [Indexed: 10/23/2022]
Abstract
Two glycoprotein hormone subunits, glycoprotein hormone subunit alpha (GPA) 2 and glycoprotein hormone subunit beta (GPB) 5, have recently been discovered. When expressed as recombinant proteins, they heterodimerize to form a novel thyrotrophic hormone, thyrostimulin. Recently, we have shown that GPA2 is expressed in both human pancreas and anterior pituitary. To explore the transcriptional regulation of GPA2, we identified from human pancreas full length RNA, the transcription start site (TSS) of the human GPA2 gene. A potential binding site for the LIM homeodomain transcription factor isl-1, which is closely associated with endocrine organs, was found at -2368 to -2363 bp upstream from TSS. The exogenously expressed isl-1 dose-dependently increased the GPA2 promoter activity up to two-fold in the AtT20 mouse corticotroph cell line. In chromatin immunoprecipitation assays we show the binding of isl-1 molecule to the predicted site. The reporter assay also showed that GPA2 transcription is unaffected by tri-iodothyronine or thyroid hormone receptor beta1 (TRbeta1), suggesting that the regulation of GPA2 might be different from the regulations of GSUalpha or TSHbeta, known as hypothalamus-pituitary-thyroid (HPT) axis. This study illustrated that human GPA2 is positively regulated by isl-1, suggesting that this protein associates with endocrine systems including the pituitary and pancreas.
Collapse
Affiliation(s)
- Chizuko Suzuki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Matsuda H, Paul BD, Choi CY, Shi YB. Contrasting Effects of Two Alternative Splicing Forms of Coactivator-Associated Arginine Methyltransferase 1 on Thyroid Hormone Receptor-Mediated Transcription in Xenopus laevis. Mol Endocrinol 2007; 21:1082-94. [PMID: 17312273 DOI: 10.1210/me.2006-0448] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) can repress or activate target genes depending on the absence or presence of thyroid hormone (T3), respectively. This hormone-dependent gene regulation is mediated by the recruitment of corepressors in the absence of T3 and coactivators in its presence. Many TR-interacting coactivators have been characterized in vitro. Among them is coactivator-associated arginine methyltransferase 1 (CARM1), which methylates histone H3. We are interested in investigating the role of CARM1 in TR-mediated gene expression in vivo during postembryonic development by using T3-dependent frog metamorphosis as a model. We first cloned the Xenopus laevis CARM1 and obtained two alternative splicing forms, CARM1a and CARM1b. Both isoforms are expressed throughout metamorphosis, supporting a role for these isoforms during the process. To investigate whether Xenopus CARM1s participate in gene regulation by TRs, transcriptional analysis was conducted in Xenopus oocyte, where the effects of cofactors can be studied in the context of chromatin in vivo. Surprisingly, overexpression of CARM1b had little effect on TR-mediated transcription, whereas CARM1a enhanced gene activation by liganded TR. Chromatin immunoprecipitation assays showed that both endogenous CARM1a and overexpressed CARM1a and b were recruited to the promoter by liganded TR. However, the binding of liganded TR to the target promoter was reduced when CARM1b was overexpressed, accompanied by a slight reduction in histone methylation at the promoter. These results suggest that CARM1 may play a role in TR-mediated transcriptional regulation during frog development and that its function is regulated by alternative splicing.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
30
|
Atsumi A, Tomita A, Kiyoi H, Naoe T. Histone deacetylase 3 (HDAC3) is recruited to target promoters by PML-RARα as a component of the N-CoR co-repressor complex to repress transcription in vivo. Biochem Biophys Res Commun 2006; 345:1471-80. [PMID: 16730330 DOI: 10.1016/j.bbrc.2006.05.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
PML-RARalpha is a chimeric transcription factor tightly associated with acute promyelocytic leukemia. PML-RARalpha plays an important role in the aberrant transcription repression on the target genes of wild-type retinoic acid receptors. Here, we demonstrated that HDAC3, one component of the N-CoR transcription repressor complex, is a key regulator of the transcription repression by PML-RARalphain vivo. Using immunoprecipitation, we demonstrated that PML-RARalpha interacts with N-CoR/HDAC3 in vivo without ligand. Next, using chromatin immunoprecipitation (ChIP) assay, this N-CoR/HDAC3 co-repressor complex was recruited to the endogenous target promoters (RARbeta and CYP26) through PML-RARalpha. The neighboring histones were de-acetylated and gene expression was repressed. When HDAC3 protein was knocked down by RNA interference in PML-RARalpha-expressing cells, the endogenous target genes were significantly activated, which was also confirmed by promoter-luciferase reporter assay. These results provide evidence to show that the N-CoR/HDAC3 co-repressor complex is involved in the aberrant transcription regulation in PML-RARalpha-expressing cells.
Collapse
Affiliation(s)
- Akihide Atsumi
- Department of Hematology, Nagoya University Graduate School of Medicine, Showa-ku, Japan
| | | | | | | |
Collapse
|
31
|
Fu L, Tomita A, Wang H, Buchholz DR, Shi YB. Transcriptional regulation of the Xenopus laevis Stromelysin-3 gene by thyroid hormone is mediated by a DNA element in the first intron. J Biol Chem 2006; 281:16870-16878. [PMID: 16606608 DOI: 10.1074/jbc.m603041200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matrix metalloproteinase (MMP) stromelysin-3 (ST3) (MMP11) was first isolated as a breast cancer-associated gene and is expressed in diverse human carcinomas and various developmental processes involving apoptosis. The Xenopus laevis ST3 is highly up-regulated by thyroid hormone (T3) during amphibian metamorphosis, and its expression is spatially and temporally correlated with apoptosis in different tissues. Furthermore, it has been shown in vivo and in organ cultures to play a critical role in regulating T3-induced epithelial cell death during intestinal metamorphosis. Earlier studies suggest that ST3 is a direct T3 response gene, although a thyroid hormone response element (TRE) was not found in the initial analysis of the ST3 promoter. Here, we have identified a strong TRE consisting of two nearly perfect direct repeats of the consensus nuclear hormone receptor binding element AGGTCA separated by 4 bp in the first intron of the Xenopus ST3 gene. We show that the heterodimers of T3 receptor (TR) and 9-cis-retinoic acid receptor bind to the TRE both in vitro and in vivo in the context of chromatin. Furthermore, T3 induces strong activation of the promoter through the intronic TRE. Interestingly, although the unliganded TR/9-cis-retinoic acid receptor was able to recruit corepressors to the promoter, it had little repressive effect on the promoter in vivo. These results suggest that the intronic TRE mediates the inductive effect of T3 and that promoter context plays an important role in gene repression by unliganded TR.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Akihiro Tomita
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Hua Wang
- Department of Food Science and Technology, Ohio State University, Columbus, Ohio 43210
| | - Daniel R Buchholz
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
32
|
Kumar R, Gururaj AE, Vadlamudi RK, Rayala SK. The clinical relevance of steroid hormone receptor corepressors. Clin Cancer Res 2005; 11:2822-31. [PMID: 15837729 DOI: 10.1158/1078-0432.ccr-04-1276] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroid hormone receptors are ligand-dependent transcription factors that control a variety of essential physiologic and developmental processes in humans. The functional activity of a steroid receptor is regulated not only by hormones but also by an array of regulatory proteins such as coactivators, corepressors, and chromatin modifiers. Contrary to an earlier notion that corepressors and coactivators exist in separate complexes, these molecules, which have apparently opposite functions, are increasingly being found in the same complex, which allows for efficient transcriptional control mechanisms. These control mechanisms are in turn regulated by an array of post-translational modifications under the influence of upstream and local signaling networks. Because the outcome of steroidal hormone receptor transcriptional complexes is measured in terms of the expression of target genes, any dysregulation of coregulator complexes perturbs normal homeostasis and could contribute to the development and maintenance of malignant phenotypes. Increasing evidence implicating steroid hormone receptors and their coregulators in various pathophysiologic conditions has elicited interest in their structure and biology. Further advances in this field of study should open up a unique window for novel targeted therapies for diseases such as cancer. Here we briefly review the clinical relevance of corepressors, with a particular focus on their role in the development of cancerous phenotypes.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
33
|
Paul BD, Fu L, Buchholz DR, Shi YB. Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis. Mol Cell Biol 2005; 25:5712-24. [PMID: 15964825 PMCID: PMC1156993 DOI: 10.1128/mcb.25.13.5712-5724.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 10/19/2004] [Accepted: 03/25/2005] [Indexed: 11/20/2022] Open
Abstract
Thyroid hormone receptors (TRs) can repress or activate target genes depending on the absence or presence of thyroid hormone (T3), respectively. This hormone-dependent gene regulation is mediated by recruitment of co-repressors in the absence of T3 and coactivators in its presence. Many TR-interacting coactivators have been characterized in vitro. In comparison, few studies have addressed the developmental roles of these cofactors in vivo. We have investigated the role of coactivators in transcriptional activation by TR during postembryonic tissue remodeling by using amphibian metamorphosis as a model system. We have previously shown that steroid receptor coactivator 3 (SRC3) is expressed and upregulated during metamorphosis, suggesting a role in gene regulation by liganded TR. Here, we have generated transgenic tadpoles expressing a dominant negative form of SRC3 (F-dnSRC3). The transgenic tadpoles exhibited normal growth and development throughout embryogenesis and premetamorphic stages. However, transgenic expression of F-dnSRC3 inhibits essentially all aspects of T3-induced metamorphosis, as well as natural metamorphosis, leading to delayed or arrested metamorphosis or the formation of tailed frogs. Molecular analysis revealed that F-dnSRC3 functioned by blocking the recruitment of endogenous coactivators to T3 target genes without affecting corepressor release, thereby preventing the T3-dependent gene regulation program responsible for tissue transformations during metamorphosis. Our studies thus demonstrate that coactivator recruitment, aside from corepressor release, is required for T3 function in development and further provide the first example where a specific coactivator-dependent gene regulation pathway by a nuclear receptor has been shown to underlie specific developmental events.
Collapse
Affiliation(s)
- Bindu Diana Paul
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
34
|
Matsui W, Smith BD, Vala M, Beal N, Huff CA, Diehl LF, Jones RJ. Requirement for myeloid growth factors in the differentiation of acute promyelocytic leukaemia. Br J Haematol 2005; 128:853-62. [PMID: 15755292 DOI: 10.1111/j.1365-2141.2005.05395.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well known that the differentiation of acute promyelocytic leukaemia (APL) cells by all-trans-retinoic acid (ATRA) may be enhanced by myeloid growth factors, but the requirement for growth factors in this process is unclear. Our previous studies in multiple myeloma and non-APL acute myeloid leukaemia demonstrated that lineage-specific growth factors are required for the maximal activity of many pharmacologic differentiating agents in vitro. Thus, we studied whether the differentiation of APL is similarly dependent on growth factors. We found that the myeloid growth factors granulocyte colony-stimulating factor or granulocyte-macrophage colony-stimulating factor markedly increased the differentiation of NB4 cells or APL blasts from clinical samples treated with ATRA, arsenic trioxide (ATO), or bryostatin-1 as evidenced by the enhanced expression of myeloid surface antigens and the inhibition of clonogenic growth. Furthermore, myeloid growth factors were necessary for the differentiation of APL cells since the activity of each pharmacologic agent could be blocked by specific growth factor-neutralizing antibodies. Each differentiating agent was active only at concentrations that inhibited cell cycling, suggesting that this property is also required for differentiation. These data demonstrate that both pharmacologic differentiating agents and myeloid growth factors are required, but neither sufficient, for the differentiation of APL cells. The combined use of pharmacologic differentiating agents and growth factors may improve the clinical efficacy of differentiation therapy in APL.
Collapse
Affiliation(s)
- William Matsui
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Goodson ML, Jonas BA, Privalsky ML. Alternative mRNA splicing of SMRT creates functional diversity by generating corepressor isoforms with different affinities for different nuclear receptors. J Biol Chem 2005; 280:7493-503. [PMID: 15632172 PMCID: PMC2720035 DOI: 10.1074/jbc.m411514200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many eukaryotic transcription factors are bimodal in their regulatory properties and can both repress and activate expression of their target genes. These divergent transcriptional properties are conferred through recruitment of auxiliary proteins, denoted coactivators and corepressors. Repression plays a particularly critical role in the functions of the nuclear receptors, a large family of ligand-regulated transcription factors involved in metazoan development, differentiation, reproduction, and homeostasis. The SMRT corepressor interacts directly with nuclear receptors and serves, in turn, as a platform for the assembly of a larger corepressor complex. We report here that SMRT is expressed in cells by alternative mRNA splicing to yield two distinct variants or isoforms. We designate these isoforms SMRTalpha and SMRTtau and demonstrate that these isoforms have significantly different affinities for different nuclear receptors. These isoforms are evolutionarily conserved and are expressed in a tissue-specific manner. Our results suggest that differential mRNA splicing serves to customize corepressor function in different cells, allowing the transcriptional properties of nuclear receptors to be adapted to different contexts.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- DNA/chemistry
- DNA/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Databases as Topic
- Dimerization
- Dose-Response Relationship, Drug
- Expressed Sequence Tags
- Genes, Dominant
- Humans
- Mice
- Mice, Inbred C57BL
- Muramidase/chemistry
- Nuclear Receptor Co-Repressor 2
- Open Reading Frames
- Plasmids/metabolism
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Software
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
| | | | - Martin L. Privalsky
- To whom correspondence should be addressed: Section of Microbiology, Div. of Biological Sciences, One Shields Ave., University of California, Davis, CA 95616. Tel.: 530-752-3013; Fax: 530-752-9014; E-mail:
| |
Collapse
|
36
|
Buchholz DR, Tomita A, Fu L, Paul BD, Shi YB. Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis. Mol Cell Biol 2004; 24:9026-37. [PMID: 15456876 PMCID: PMC517898 DOI: 10.1128/mcb.24.20.9026-9037.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormone (T3) has long been known to be important for vertebrate development and adult organ function. Whereas thyroid hormone receptor (TR) knockout and transgenic studies of mice have implicated TR involvement in mammalian development, the underlying molecular bases for the resulting phenotypes remain to be determined in vivo, especially considering that T3 is known to have both genomic, i.e., through TRs, and nongenomic effects on cells. Amphibian metamorphosis is an excellent model for studying the role of TR in vertebrate development because of its total dependence on T3. Here we investigated the role of TR in metamorphosis by developing a dominant positive mutant thyroid hormone receptor (dpTR). In the frog oocyte transcription system, dpTR bound a T3-responsive promoter and activated the promoter independently of T3. Transgenic expression of dpTR under the control of a heat shock-inducible promoter in premetamorphic tadpoles led to precocious metamorphic transformations. Molecular analyses showed that dpTR induced metamorphosis by specifically binding to known T3 target genes, leading to increased local histone acetylation and gene activation, similar to T3-bound TR during natural metamorphosis. Our experiments indicated that the metamorphic role of T3 is through genomic action of the hormone, at least on the developmental parameters tested. They further provide the first example where TR is shown to mediate directly and sufficiently these developmental effects of T3 in individual organs by regulating target gene expression in these organs.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Hoberg JE, Yeung F, Mayo MW. SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell 2004; 16:245-55. [PMID: 15494311 DOI: 10.1016/j.molcel.2004.10.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 09/20/2004] [Accepted: 09/23/2004] [Indexed: 12/14/2022]
Abstract
Understanding how signaling cascades stimulate chromatin-remodeling events through derepression is one of the foremost questions in the transcription field. Here, we demonstrate that NF-kappaB transcription requires IKKalpha to phosphorylate SMRT on chromatin, stimulating the exchange of corepressor for coactivator complexes. IKKalpha-induced phosphorylation coincides with a loss of chromatin-associated SMRT and HDAC3 and with nuclear export of the SMRT corepressor, events required for expression of the NF-kappaB-regulated cIAP-2 and IL-8 genes. Although SMRT derepression corresponds with the recruitment of TBL1/TBLR1, this complex alone is insufficient to relieve repression. Using a nonphosphorylatable SMRT protein, we demonstrate that IKKalpha-induced phosphorylation is required to recruit 14-3-3epsilon and Ubc5 for SMRT derepression. Failure of IKKalpha to stimulate the removal of SMRT from chromatin inhibits the recruitment of NF-kappaB to promoters, blocking transcription and sensitizing cells to apoptosis. Our work provides evidence that IKKalpha orchestrates SMRT derepression, a prerequisite for NF-kappaB transcription and survival.
Collapse
Affiliation(s)
- Jamie E Hoberg
- Department of Biochemistry and Molecular Genetics, The University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
38
|
Côté S, McNamara S, Brambilla D, Bianchini A, Rizzo G, del Rincón SV, Grignani F, Nervi C, Miller WH. Expression of SMRTbeta promotes ligand-induced activation of mutated and wild-type retinoid receptors. Blood 2004; 104:4226-35. [PMID: 15319284 DOI: 10.1182/blood-2003-10-3583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptors are ligand-modulated transcription factors regulated by interactions with corepressors and coactivators, whose functions are not fully understood. Acute promyelocytic leukemia (APL) is characterized by a translocation, t(15;17), that produces a PML/RARalpha fusion oncoprotein, whose abnormal transcriptional function is successfully targeted by pharmacologic levels of all-trans-retinoic acid (ATRA). Mutations in the ligand-binding domain of PML/RARalpha that confer resistance to ATRA have been studied by expression in nonhematopoietic cells, such as Cos-1. Here, we show that ATRA binding and transcriptional activation by the same PML/RARalpha mutant differ markedly between nonhematopoietic and leukemic cell lines. Differential expression of the corepressor isoform silencing mediator for retinoid and thyroid receptors beta (SMRTbeta) correlates with increased ligand binding and transcription by the mutant PML/RARalpha. Transient and stable overexpression of SMRTbeta in hematopoietic cells that only express SMRTalpha increased ATRA binding, ligand-induced transcription, and ATRA-induced cell differentiation. This effect may not be limited to abnormal nuclear receptors, because overexpression of SMRTbeta increased ATRA-induced binding and transcriptional activation of wild-type receptors PML/RARalpha and RARalpha. Our results suggest a novel role for the SMRTbeta isoform whereby its cell-specific expression may influence the binding and transcriptional capacities of nuclear receptors, thus providing new evidence of distinct functions of corepressor isoforms and adding complexity to transcriptional regulation.
Collapse
MESH Headings
- Cell Line, Tumor
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- DNA-Binding Proteins/genetics
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Jurkat Cells
- Leukemia, Promyelocytic, Acute/genetics
- Ligands
- Neoplasm Proteins/genetics
- Nuclear Receptor Co-Repressor 2
- Oncogene Proteins, Fusion/genetics
- Plasmids
- Receptors, Retinoic Acid/genetics
- Repressor Proteins/genetics
- Transcriptional Activation
- Translocation, Genetic
- Tretinoin/pharmacokinetics
- Tretinoin/toxicity
Collapse
Affiliation(s)
- Sylvie Côté
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755, Chemin de la Côte Ste-Catherine, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tomita A, Buchholz DR, Shi YB. Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol Cell Biol 2004; 24:3337-46. [PMID: 15060155 PMCID: PMC381683 DOI: 10.1128/mcb.24.8.3337-3346.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The corepressors N-CoR (nuclear receptor corepressor) and SMRT (silencing mediator for retinoid and thyroid hormone receptors) interact with unliganded nuclear hormone receptors, including thyroid hormone (T(3)) receptor (TR). Several N-CoR/SMRT complexes containing histone deacetylases have been purified. The best studied among them are N-CoR/SMRT complexes containing TBL1 (transducin beta-like protein 1) or TBLR1 (TBL1-related protein). Despite extensive studies of these complexes, there has been no direct in vivo evidence for the interaction of TBL1 or TBLR1 with TR or the possible involvement of such complexes in gene repression by any nuclear receptors in any animals. Here, we used the frog oocyte system to demonstrate that unliganded TR interacts with TBLR1 and recruits TBLR1 to its chromatinized target promoter in vivo, accompanied by histone deacetylation and gene repression. We further provide evidence to show that the recruitment of TBLR1 or related proteins is important for repression by unliganded TR. To investigate the potential role for TBLR1 complexes during vertebrate development, we made use of T(3)-dependent amphibian metamorphosis as a model. We found that TBLR1, SMRT, and N-CoR are recruited to T(3)-inducible promoters in premetamorphic tadpoles and are released upon T(3) treatment, which induces metamorphosis. More importantly, we demonstrate that the dissociation of N-CoR/SMRT-TBLR1 complexes from endogenous TR target promoters is correlated with the activation of these genes during spontaneous metamorphosis. Taken together, our studies provide in vivo evidence for targeted recruitment of N-CoR/SMRT-TBLR1 complexes by unliganded TR in transcriptional repression during vertebrate development.
Collapse
Affiliation(s)
- Akihiro Tomita
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5431, USA
| | | | | |
Collapse
|