1
|
Sibilska-Kaminski IK, Fabisiak A, Brzeminski P, Plum LA, Sicinski RR, DeLuca HF. Novel superagonist analogs of 2-methylene calcitriol: Design, molecular docking, synthesis and biological evaluation. Bioorg Chem 2021; 118:105416. [PMID: 34798456 DOI: 10.1016/j.bioorg.2021.105416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
A new series of highly biologically active (20S,22R)-1α,25-dihydroxy-22-methyl-2-methylene-vitamin D3 analogs, possessing different side chains, have been efficiently prepared as potential agents for medical therapy. Design of these synthetic targets was based on the analysis of the literature data and molecular docking experiments. The synthetic strategy involved Sonogashira coupling of the known A-ring dienyne with the C,D-ring enol triflates, obtained from the corresponding Grundmann ketones. All synthesized vitamin D compounds were characterized by high in vitro potency and, moreover, they proved to be very calcemic in vivo exerting high activity on bone with particularly elevated intestinal calcium transport.
Collapse
Affiliation(s)
| | - Adrian Fabisiak
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Pawel Brzeminski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Rafal R Sicinski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Hector F DeLuca
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Sibilska-Kaminski IK, Sicinski RR, Plum LA, DeLuca HF. Synthesis and Biological Activity of 2,22-Dimethylene Analogues of 19-Norcalcitriol and Related Compounds. J Med Chem 2020; 63:7355-7368. [PMID: 32510210 DOI: 10.1021/acs.jmedchem.0c00580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Continuing our search for vitamin D analogues, we explored the modification of the steroidal side chain and inserted a methylene moiety in position C-22 together with either lengthening the side chain or introducing a ring at the terminal end. Our conformational studies confirmed that the presence of a methylene group attached to C-22 restricts the conformational flexibility of the side chain, which can result in changes in biological characteristics of a molecule. All synthesized 1α,25-dihydroxy-2,22-dimethylene-19-norvitamin D3 analogues proved equal to calcitriol in their ability to bind to the vitamin D receptor, and most of them exert significantly higher differentiation and transcriptional activity than calcitriol. The most active compounds were characterized by the presence of an elongated side chain or 26,27-dimethylene bridge. The synthetic strategy was based on the Wittig-Horner coupling of the known A-ring phosphine oxide with the corresponding Grundmann ketones prepared from a 20-epi-Inhoffen-Lythgoe diol derived from vitamin D2.
Collapse
Affiliation(s)
- Izabela K Sibilska-Kaminski
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Rafal R Sicinski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Hector F DeLuca
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Moena D, Merino P, Lian JB, Stein GS, Stein JL, Montecino M. Switches in histone modifications epigenetically control vitamin D3-dependent transcriptional upregulation of the CYP24A1 gene in osteoblastic cells. J Cell Physiol 2019; 235:5328-5339. [PMID: 31868234 DOI: 10.1002/jcp.29420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 01/17/2023]
Abstract
In bone cells vitamin D dependent regulation of gene expression principally occurs through modulation of gene transcription. Binding of the active vitamin D metabolite, 1,25-dihydroxy vitamin D3 (1,25(OH)2 D3 ) to the vitamin D receptor (VDR) induces conformational changes in its C-terminal domain enabling competency for interaction with physiologically relevant coactivators, including SRC-1. Consequently, regulatory complexes can be assembled that support intrinsic enzymatic activities with competency to posttranslationally modify chromatin histones at target genomic sequences to epigenetically alter transcription. Here we examine specific transitions in representation and/or enrichment of epigenetic histone marks during 1,25(OH)2 D3 mediated upregulation of CYP24A1 gene expression in osteoblastic cells. This gene encodes the 24-hydroxylase enzyme, essential for biological control of vitamin D levels. We demonstrate that as the CYP24A1 gene promoter remains transcriptionally silent, there is enrichment of H4R3me2s together with its "writing" enzyme PRMT5 and decreased abundance of the istone H3 and H4 acetylation, H3R17me2a, and H4R3me2a marks as well as of their corresponding "writers." Exposure of osteoblastic cells to 1,25(OH)2 D3 stimulates the recruitment of a VDR/SRC-1 containing complex to the CYP24A1 promoter to mediate increased H3/H4 acetylation. VDR/SRC-1 binding occurs concomitant with the release of PRMT5 and the recruitment of the arginine methyltransferases CARM1 and PRMT1 to catalyze the deposition of the H3R17me2a and H4R3me2a marks, respectively. Our results indicate that these dynamic transitions of histone marks at the CYP24A1 promoter, provide a "chromatin context" that is transcriptionally competent for activation of the CYP24A1 gene in osteoblastic cells in response to 1,25(OH)2 D3 .
Collapse
Affiliation(s)
- Daniel Moena
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello-Santiago, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello-Concepcion, Santiago, Chile
| | - Paola Merino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello-Santiago, Santiago, Chile
| | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello-Santiago, Santiago, Chile
| |
Collapse
|
4
|
Abstract
![]()
For many individuals,
in particular during winter, supplementation
with the secosteroid vitamin D3 is essential for the prevention
of bone disorders, muscle weakness, autoimmune diseases, and possibly
also different types of cancer. Vitamin D3 acts via its
metabolite 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]
as potent agonist of the transcription factor vitamin D receptor (VDR).
Thus, vitamin D directly affects chromatin structure and gene regulation
at thousands of genomic loci, i.e., the epigenome and transcriptome
of its target tissues. Modifications of 1,25(OH)2D3 at its
side-chain, A-ring, triene system, or C-ring, alone and in combination,
as well as nonsteroidal mimics provided numerous potent VDR agonists
and some antagonists. The nearly 150 crystal structures of VDR’s
ligand-binding domain with various vitamin D compounds allow a detailed
molecular understanding of their action. This review discusses the
most important vitamin D analogs presented during the past 10 years
and molecular insight derived from new structural information on the
VDR protein.
Collapse
Affiliation(s)
- Miguel A Maestro
- Departamento de Química-CICA , Universidade da Coruña , ES-15071 A Coruña , Spain
| | - Ferdinand Molnár
- School of Science and Technology, Department of Biology , Nazarbayev University , KZ-010000 Astana , Kazakhstan
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine , University of Eastern Finland , FI-70211 Kuopio , Finland
| |
Collapse
|
5
|
Saleh M, Welsch C, Cai C, Döring C, Gouttenoire J, Friedrich J, Haselow K, Sarrazin C, Badenhoop K, Moradpour D, Zeuzem S, Rueschenbaum S, Lange CM. Differential modulation of hepatitis C virus replication and innate immune pathways by synthetic calcitriol-analogs. J Steroid Biochem Mol Biol 2018; 183:142-151. [PMID: 29885880 DOI: 10.1016/j.jsbmb.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Vitamin D signaling is involved in infectious and non-infectious liver diseases, yet the natural vitamin D metabolites are suboptimal therapeutic agents. In the present study, we therefore aimed to explore the potential and mechanism of selected calcitriol analogs to regulate the hepatocellular transcriptome and to inhibit hepatitis C virus (HCV) in comparison with calcitriol. METHODS Human hepatoma cell lines and primary human macrophages were stimulated with calcitriol and selected calcitriol analogs. The effect of calcitriol and its derivatives on hepatocellular gene expression and vitamin D receptor (VDR) signaling as well as on replication of HCV were assessed by quantitative PCR, microarray analyses and in silico analyses of ligand-VDR complexes. RESULTS The structurally related vitamin D analogs calcipotriol and tacalcitiol, but not calcitriol itself, suppressed HCV replication in a VDR-dependent manner. Using a residue-interaction network approach we outline structural and functional differences between VDR-ligand complexes. In particular we find characteristics in the VDR structure bound to calcipotriol with distinct local residue interaction patterns that affect key functional residues that pertain to the VDR charge clamp, H397 and F422, a VDR regulatory element for interaction with co-activators and -repressors. As a consequence, we show calcipotriol in comparison to calcitriol to induce stronger regulatory actions on the transcriptome of hepatocytes and macrophages including key antimicrobial peptides. CONCLUSION Calcipotriol induces local structure rearrangements in VDR that could possibly translate into a superior clinical potential to execute important non-classical vitamin D effects such as inhibition of HCV replication.
Collapse
Affiliation(s)
- Maged Saleh
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Christoph Welsch
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Chengcong Cai
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Claudia Döring
- Senckenberg Institute of Pathology, Goethe University Hospital, D-60596, Frankfurt a. M., Germany
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, University Hospital Lausanne, CH-1011, Lausanne, Switzerland
| | - Judith Friedrich
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Katrin Haselow
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Christoph Sarrazin
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany; Medical Department II Gastroenterology, Hepatology, Infectiology, Diabetology, St. Josefs-Hospital, D-65189, Wiesbaden, Germany
| | - Klaus Badenhoop
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, University Hospital Lausanne, CH-1011, Lausanne, Switzerland
| | - Stefan Zeuzem
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Sabrina Rueschenbaum
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Christian M Lange
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany.
| |
Collapse
|
6
|
Pharmacokinetics of a New Oral Vitamin D Receptor Activator (2-Methylene-19-Nor-(20S)-1α,25-Dihydroxyvitamin D 3) in Patients with Chronic Kidney Disease and Secondary Hyperparathyroidism on Hemodialysis. Drugs R D 2018; 17:597-605. [PMID: 28905271 PMCID: PMC5694423 DOI: 10.1007/s40268-017-0210-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background 2-Methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D3 (DP001 or 2MD) is a novel, potent 1α-hydroxylated vitamin D analog that binds to the vitamin D receptor and suppresses parathyroid hormone synthesis and secretion with potential for an improved safety profile compared to existing active vitamin D analogs. The purpose of this study was to evaluate the pharmacokinetics of DP001 given orally after hemodialysis. Methods DP001 (550 ng) was given orally to 11 hemodialysis patients with secondary hyperparathyroidism after each dialysis session (3 times/week) for 4 weeks. Pharmacokinetic analyses were performed after the first and final dose. Results After the first and final dose, the half-life of DP001 was similar (55.8 ± 13.0 and 50.8 ± 8.2 h, respectively). At 4 weeks, the time to maximum plasma concentration was 4.0 ± 0.8 h, with a concentration maximum of 3.4 ± 0.3 pg/mL. The area under the curve (0 to infinity) after the final dose was 204.3 ± 23.9 pg h/mL, and apparent volume of distribution was 2.03 ± 0.22 L/kg. At week 4, mean intact parathyroid hormone was suppressed 33% from the baseline (pre-dose) value (313 ± 52 vs 462 ± 39 pg/mL, respectively). No clinically significant changes from baseline values were found for vital signs, electrocardiogram measurements, or other laboratory parameters, including serum calcium and phosphorus. Conclusions In hemodialysis patients, DP001 has a longer half-life than existing vitamin D therapies and enables control of parathyroid hormone when administered every 2–3 days on the day of dialysis. It is effective at a lower concentration maximum and area under the curve than other clinically available vitamin D compounds. DP001 may represent a therapeutic improvement over existing compounds due to rapid and extensive distribution to its target and its long half-life enabling sustained parathyroid hormone suppression. These studies support further evaluation of DP001 in longer-term treatment of secondary hyperparathyroidism.
Collapse
|
7
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1087] [Impact Index Per Article: 135.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Lee SM, Meyer MB, Benkusky NA, O'Brien CA, Pike JW. Mechanisms of Enhancer-mediated Hormonal Control of Vitamin D Receptor Gene Expression in Target Cells. J Biol Chem 2015; 290:30573-86. [PMID: 26504088 PMCID: PMC4683277 DOI: 10.1074/jbc.m115.693614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/14/2015] [Indexed: 12/18/2022] Open
Abstract
The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), whose expression in bone cells is regulated positively by 1,25(OH)2D3, retinoic acid, and parathyroid hormone through both intergenic and intronic enhancers. In this report, we used ChIP-sequencing analysis to confirm the presence of these Vdr gene enhancers in mesenchyme-derived bone cells and to describe the epigenetic histone landscape that spans the Vdr locus. Using bacterial artificial chromosome-minigene stable cell lines, CRISPR/Cas9 enhancer-deleted daughter cell lines, transient transfection/mutagenesis analyses, and transgenic mice, we confirmed the functionality of these bone cell enhancers in vivo as well as in vitro. We also identified VDR-binding sites across the Vdr gene locus in kidney and intestine using ChIP-sequencing analysis, revealing that only one of the bone cell-type enhancers bound VDR in kidney tissue, and none were occupied by the VDR in the intestine, consistent with weak or absent regulation by the 1,25(OH)2D3 hormone in these tissues, respectively. However, a number of additional sites of VDR binding unique to either kidney or intestine were present further upstream of the Vdr gene, suggesting the potential for alternative regulatory loci. Importantly, virtually all of these regions retained histone signatures consistent with those of enhancers and exhibited unique DNase I hypersensitivity profiles that reflected the potential for chromatin access. These studies define mechanisms associated with hormonal regulation of the Vdr and hint at the differential nature of VDR binding activity at the Vdr gene in different primary target tissues in vivo.
Collapse
Affiliation(s)
- Seong Min Lee
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | - Mark B Meyer
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | - Nancy A Benkusky
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | - Charles A O'Brien
- the Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - J Wesley Pike
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| |
Collapse
|
9
|
Sibilska IK, Szybinski M, Sicinski RR, Plum LA, DeLuca HF. Synthesis and Biological Activity of 2-Methylene Analogues of Calcitriol and Related Compounds. J Med Chem 2015; 58:9653-62. [PMID: 26574921 DOI: 10.1021/acs.jmedchem.5b01295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In an attempt to prepare vitamin D analogues that are superagonists, (20R)- and (20S)-isomers of 1α-hydroxy-2-methylenevitamin D3 and 1α,25-dihydroxy-2-methylenevitamin D3 have been synthesized. To prepare the desired A-ring dienyne fragment, two different approaches were used, both starting from the (-)-quinic acid. The obtained derivative was subsequently coupled with the C,D-ring enol triflates derived from the corresponding Grundmann ketones, using the Sonogashira reaction. Moreover, (20R)- and (20S)-1α,25-dihydroxy-2-methylenevitamin D3 compounds with an (5E)-configuration were prepared by iodine catalyzed isomerization. All four 2-methylene analogues of the native hormone were characterized by high in vitro activity. As expected, the 25-desoxy analogues were much less potent. Among the synthesized compounds, two of them, 1α,25-dihydroxy-2-methylenevitamin D3 and its C-20 epimer, were found to be almost as active as 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D3 (2MD) on bone but more active in intestine.
Collapse
Affiliation(s)
- Izabela K Sibilska
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Marcin Szybinski
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Rafal R Sicinski
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Hector F DeLuca
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Takada I, Makishima M. Therapeutic application of vitamin D receptor ligands: an updated patent review. Expert Opin Ther Pat 2015; 25:1373-83. [DOI: 10.1517/13543776.2015.1093113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Bishop KA, Wang X, Coy HM, Meyer MB, Gumperz JE, Pike JW. Transcriptional regulation of the human TNFSF11 gene in T cells via a cell type-selective set of distal enhancers. J Cell Biochem 2015; 116:320-30. [PMID: 25211367 DOI: 10.1002/jcb.24974] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 01/22/2023]
Abstract
In addition to osteoblast lineage cells, the TNF-like factor receptor activator of NF-κB ligand (RANKL) is expressed in both B and T cells and may play a role in bone resorption. Rankl gene (Tnfsf11) expression in mouse T cells is mediated through multiple distal elements marked by increased transcription factor occupancy, histone tail acetylation, and RNA polymerase II recruitment. Little is known, however, of the regulation of human TNFSF11 in T cells. Accordingly, we examined the consequence of T cell activation on the expression of this factor both in Jurkat cells and in primary human T cells. We then explored the mechanism of this regulation by scanning over 400 kb of DNA surrounding the TNFSF11 locus for regulatory enhancers using ChIP-chip analysis. Histone H3/H4 acetylation enrichment identified putative regulatory regions located between -170 and -220 kb upstream of the human TNFSF11 TSS that we designated the human T cell control region (hTCCR). This region showed high sequence conservation with the mouse TCCR. Inhibition of MEK1/2 by U0126 resulted in decreased RANKL expression suggesting that stimulation through MEK1/2 was a prerequisite. ChIP-chip analysis also revealed that c-FOS was recruited to the hTCCR as well. Importantly, both the human TNFSF11 D5a/b (RLD5a/b) enhancer and segments of the hTCCR mediated robust inducible reporter activity following TCR activation. Finally, SNPs implicated in diseases characterized by dysregulated BMD co-localized to the hTCCR region. We conclude that the hTCCR region contains a cell-selective set of enhancers that plays an integral role in the transcriptional regulation of the TNFSF11 gene in human T cells.
Collapse
Affiliation(s)
- Kathleen A Bishop
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | | | | | | | | |
Collapse
|
12
|
Meyer MB, Benkusky NA, Pike JW. Selective Distal Enhancer Control of the Mmp13 Gene Identified through Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Genomic Deletions. J Biol Chem 2015; 290:11093-107. [PMID: 25773540 DOI: 10.1074/jbc.m115.648394] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 12/29/2022] Open
Abstract
Matrix metalloproteinase 13 (Mmp13, collagenase-3) plays an essential role in bone metabolism and mineral homeostasis. It is regulated by numerous factors, including BMP-2, parathyroid hormone, and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), through transcription factors such as Runt-related transcription factor 2 (RUNX2), CCAAT/enhancer-binding protein β (C/EBPβ), OSX, and vitamin D receptor (VDR). During osteoblast maturation, the basal expression of Mmp13 and its sensitivity to 1,25(OH)2D3 are strikingly increased. In this report, ChIP-sequencing analysis in mouse preosteoblasts revealed that the Mmp13 gene was probably regulated by three major enhancers located -10, -20, and -30 kb upstream of the gene promoter, occupied by activated VDR and prebound C/EBPβ and RUNX2, respectively. Initially, bacterial artificial chromosome clone recombineering and traditional mutagenesis defined binding sites for VDR and RUNX2. We then employed a CRISPR/Cas9 gene editing approach to delete the -10 and -30 kb Mmp13 enhancers, a region proximal to the promoter, and VDR or RUNX2. VDR-mediated up-regulation of Mmp13 transcription was completely abrogated upon removal of the -10 kb enhancer, resulting in a 1,25(OH)2D3-directed repression of Mmp13. Deletion of either the -30 kb enhancer or RUNX2 resulted in a complete loss of basal transcript activity and a ChIP-identified destabilization of the chromatin enhancer environment and factor binding. Whereas enhancer deletions only affected Mmp13 expression, the RUNX2 deletion led to changes in gene expression, a reduction in cellular proliferation, and an inability to differentiate. We conclude that the Mmp13 gene is regulated via at least three specific distal enhancers that display independent activities yet are able to integrate response from multiple signaling pathways in a model of activation and suppression.
Collapse
Affiliation(s)
- Mark B Meyer
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Nancy A Benkusky
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - J Wesley Pike
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
13
|
Meyer MB, Benkusky NA, Lee CH, Pike JW. Genomic determinants of gene regulation by 1,25-dihydroxyvitamin D3 during osteoblast-lineage cell differentiation. J Biol Chem 2014; 289:19539-54. [PMID: 24891508 DOI: 10.1074/jbc.m114.578104] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The biological effects of 1α,25-dihydroxyvitamin D3 (1,25 (OH)2D3) on osteoblast differentiation and function differ significantly depending upon the cellular state of maturation. To explore this phenomenon mechanistically, we examined the impact of 1,25(OH)2D3 on the transcriptomes of both pre-osteoblastic (POBs) and differentiated osteoblastic (OBs) MC3T3-E1 cells, and assessed localization of the vitamin D receptor (VDR) at sites of action on a genome-scale using ChIP sequence analysis. We observed that the 1,25(OH)2D3-induced transcriptomes of POBs and OBs were quantitatively and qualitatively different, supporting not only the altered biology observed but the potential for a change in VDR interaction at the genome as well. This idea was confirmed through discovery that VDR cistromes in POBs and OBs were also strikingly different. Depletion of VDR-binding sites in OBs, due in part to reduced VDR expression, was the likely cause of the loss of VDR-target gene interaction. Continued novel regulation by 1,25(OH)2D3, however, suggested that factors in addition to the VDR might also be involved. Accordingly, we show that transcriptomic modifications are also accompanied by changes in genome binding of the master osteoblast regulator RUNX2 and the chromatin remodeler CCAAT/enhancer-binding protein β. Importantly, genome occupancy was also highlighted by the presence of epigenetic enhancer signatures that were selectively changed in response to both differentiation and 1,25(OH)2D3. The impact of VDR, RUNX2, and C/EBPβ on osteoblast differentiation is exemplified by their actions at the Runx2 and Sp7 gene loci. We conclude that each of these mechanisms may contribute to the diverse actions of 1,25(OH)2D3 on differentiating osteoblasts.
Collapse
Affiliation(s)
- Mark B Meyer
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nancy A Benkusky
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chang-Hun Lee
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - J Wesley Pike
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
14
|
Leyssens C, Verlinden L, Verstuyf A. The future of vitamin D analogs. Front Physiol 2014; 5:122. [PMID: 24772087 PMCID: PMC3982071 DOI: 10.3389/fphys.2014.00122] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/13/2014] [Indexed: 12/19/2022] Open
Abstract
The active form of vitamin D3, 1,25-dihydroxyvitamin D3, is a major regulator of bone and calcium homeostasis. In addition, this hormone also inhibits the proliferation and stimulates the differentiation of normal as well as malignant cells. Supraphysiological doses of 1,25-dihydroxyvitamin D3 are required to reduce cancer cell proliferation. However, these doses will lead in vivo to calcemic side effects such as hypercalcemia and hypercalciuria. During the last 25 years, many structural analogs of 1,25-dihydroxyvitamin D3 have been synthesized by the introduction of chemical modifications in the A-ring, central CD-ring region or side chain of 1,25-dihydroxyvitamin D3 in the hope to find molecules with a clear dissociation between the beneficial antiproliferative effects and adverse calcemic side effects. One example of such an analog with a good dissociation ratio is calcipotriol (Daivonex®), which is clinically used to treat the hyperproliferative skin disease psoriasis. Other vitamin D analogs were clinically approved for the treatment of osteoporosis or secondary hyperparathyroidism. No vitamin D analog is currently used in the clinic for the treatment of cancer although several analogs have been shown to be potent drugs in animal models of cancer. Transcriptomics studies as well as in vitro cell biological experiments unraveled basic mechanisms involved in the antineoplastic effects of vitamin D and its analogs. 1,25-dihydroxyvitamin D3 and analogs act in a cell type- and tissue-specific manner. Moreover, a blockade in the transition of the G0/1 toward S phase of the cell cycle, induction of apoptosis, inhibition of migration and invasion of tumor cells together with effects on angiogenesis and inflammation have been implicated in the pleiotropic effects of 1,25-dihydroxyvitamin D3 and its analogs. In this review we will give an overview of the action of vitamin D analogs in tumor cells and look forward how these compounds could be introduced in the clinical practice.
Collapse
Affiliation(s)
- Carlien Leyssens
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven Leuven, Belgium
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven Leuven, Belgium
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven Leuven, Belgium
| |
Collapse
|
15
|
Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. CHEMISTRY & BIOLOGY 2014. [PMID: 24529992 DOI: 10.1016/j.chembiol.2013.12.016]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vitamin D3 is made in the skin from 7-dehydrocholesterol under the influence of UV light. Vitamin D2 (ergocalciferol) is derived from the plant sterol ergosterol. Vitamin D is metabolized first to 25 hydroxyvitamin D (25OHD), then to the hormonal form 1,25-dihydroxyvitamin D (1,25(OH)2D). CYP2R1 is the most important 25-hydroxylase; CYP27B1 is the key 1-hydroxylase. Both 25OHD and 1,25(OH)2D are catabolized by CYP24A1. 1,25(OH)2D is the ligand for the vitamin D receptor (VDR), a transcription factor, binding to sites in the DNA called vitamin D response elements (VDREs). There are thousands of these binding sites regulating hundreds of genes in a cell-specific fashion. VDR-regulated transcription is dependent on comodulators, the profile of which is also cell specific. Analogs of 1,25(OH)2D are being developed to target specific diseases with minimal side effects. This review will examine these different aspects of vitamin D metabolism, mechanism of action, and clinical application.
Collapse
Affiliation(s)
- Daniel D Bikle
- VA Medical Center, Department of Medicine and Dermatology, University of California, San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
16
|
Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. ACTA ACUST UNITED AC 2014; 21:319-29. [PMID: 24529992 DOI: 10.1016/j.chembiol.2013.12.016] [Citation(s) in RCA: 1025] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/16/2013] [Accepted: 12/21/2013] [Indexed: 02/07/2023]
Abstract
Vitamin D3 is made in the skin from 7-dehydrocholesterol under the influence of UV light. Vitamin D2 (ergocalciferol) is derived from the plant sterol ergosterol. Vitamin D is metabolized first to 25 hydroxyvitamin D (25OHD), then to the hormonal form 1,25-dihydroxyvitamin D (1,25(OH)2D). CYP2R1 is the most important 25-hydroxylase; CYP27B1 is the key 1-hydroxylase. Both 25OHD and 1,25(OH)2D are catabolized by CYP24A1. 1,25(OH)2D is the ligand for the vitamin D receptor (VDR), a transcription factor, binding to sites in the DNA called vitamin D response elements (VDREs). There are thousands of these binding sites regulating hundreds of genes in a cell-specific fashion. VDR-regulated transcription is dependent on comodulators, the profile of which is also cell specific. Analogs of 1,25(OH)2D are being developed to target specific diseases with minimal side effects. This review will examine these different aspects of vitamin D metabolism, mechanism of action, and clinical application.
Collapse
Affiliation(s)
- Daniel D Bikle
- VA Medical Center, Department of Medicine and Dermatology, University of California, San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
17
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kasiappan R, Shen Z, Tse AKW, Jinwal U, Tang J, Lungchukiet P, Sun Y, Kruk P, Nicosia SV, Zhang X, Bai W. 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J Biol Chem 2012; 287:41297-309. [PMID: 23055531 DOI: 10.1074/jbc.m112.407189] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Telomerase is an essential enzyme that counteracts the telomere attrition accompanying DNA replication during cell division. Regulation of the promoter activity of the gene encoding its catalytic subunit, the telomerase reverse transcriptase, is established as the dominant mechanism conferring the high telomerase activity in proliferating cells, such as embryonic stem and cancer cells. This study reveals a new mechanism of telomerase regulation through non-coding small RNA by showing that microRNA-498 (miR-498) induced by 1,25-dihydroxyvitamin D3 (1,25(OH)(2)D(3)) decreases the mRNA expression of the human telomerase reverse transcriptase. MiR-498 was first identified in a microarray analysis as the most induced microRNA by 1,25(OH)(2)D(3) in ovarian cancer cells and subsequently validated by quantitative polymerase chain reaction assays in multiple human cancer types. A functional vitamin D response element was defined in the 5-prime regulatory region of the miR-498 genome, which is occupied by the vitamin D receptor and its coactivators. Further studies showed that miR-498 targeted the 3-prime untranslated region of human telomerase reverse transcriptase mRNA and decreased its expression. The levels of miR-498 expression were decreased in malignant human ovarian tumors as well as human ovarian cancer cell lines. The ability of 1,25(OH)(2)D(3) to decrease human telomerase reverse transcriptase mRNA and to suppress ovarian cancer growth was compromised when miR-498 was depleted using the sponges in cell lines and mouse tumor models. Taken together, our studies define a novel mechanism of telomerase regulation by small non-coding RNAs and identify miR-498 as an important mediator for the anti-tumor activity of 1,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Ravi Kasiappan
- Department of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, Florida 33612-4799, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Vitamin D is important for the normal development and maintenance of bone. The elucidation of the vitamin D activation pathway and the cloning of the vitamin D receptor have advanced our understanding of the actions of vitamin D on bone. The preponderance of evidence indicates that 1,25(OH)₂D₃ enhances bone mineralization through its effects to promote calcium and phosphate absorption. Although 1,25(OH)₂D₃ stimulates bone resorption in vitro, treatment in vivo can prevent bone loss and fracture through several potential mechanisms. The development of vitamin D analogues has provided new therapeutic options for increasing bone mineral density and reducing fractures.
Collapse
Affiliation(s)
- Tomohiko Yoshida
- Division of Endocrinology, Diabetes and Metabolism, Chiba University Hospital, 1-8-1 Inohana, Chiba-shi, Chiba 260-8670, Japan
| | | |
Collapse
|
20
|
Vitamin D compounds and diabetic nephropathy. Arch Biochem Biophys 2012; 523:87-94. [DOI: 10.1016/j.abb.2012.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 12/22/2022]
|
21
|
Glebocka A, Chiellini G. A-ring analogs of 1,25-dihydroxyvitamin D3. Arch Biochem Biophys 2012; 523:48-57. [DOI: 10.1016/j.abb.2011.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 01/07/2023]
|
22
|
Meyer MB, Goetsch PD, Pike JW. VDR/RXR and TCF4/β-catenin cistromes in colonic cells of colorectal tumor origin: impact on c-FOS and c-MYC gene expression. Mol Endocrinol 2012; 26:37-51. [PMID: 22108803 PMCID: PMC3248320 DOI: 10.1210/me.2011-1109] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many of the transcriptional and growth regulating activities of 1α,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in the intestine and colon are recapitulated in the human colorectal cancer cell LS180. We therefore used this line together with chromatin immunoprecipitation-seq and gene expression analyses to identify the vitamin D receptor (VDR)/retinoid X receptor (RXR) and transcription factor 7-like 2 (TCF7L2/TCF4)/β-catenin cistromes and the genes that they regulate. VDR and RXR colocalized to predominantly promoter distal, vitamin D response element-containing sites in a largely ligand-dependent manner. These regulatory sites control the expression of both known as well as novel 1,25-(OH)(2)D(3) target genes. TCF4 and β-catenin cistromes partially overlapped, contained TCF/lymphoid enhancer-binding factor consensus elements, and were only modestly influenced by 1,25-(OH)(2)D(3). However, the two heterodimer complexes colocalized at sites near a limited set of genes that included c-FOS and c-MYC; the expression of both genes was modulated by 1,25-(OH)(2)D(3). At the c-FOS gene, both VDR/RXR and TCF4/β-catenin bound to a single distal enhancer located 24 kb upstream of the transcriptional start site. At the c-MYC locus, however, binding was noted at a cluster of sites between -139 and -165 kb and at a site located -335 kb upstream. Examined as isolated enhancer fragments, these regions exhibited basal and 1,25-(OH)(2)D(3)-inducible activities that were interlinked to both VDR and β-catenin activation. These data reveal additional complexity in the regulation of target genes by 1,25-(OH)(2)D(3) and support a direct action of both VDR and the TCF4/β-catenin regulatory complex at c-FOS and c-MYC.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
23
|
Abe J, Nagai Y, Higashikuni R, Iida K, Hirokawa T, Nagai H, Kominato K, Tsuchida T, Hirata M, Inada M, Miyaura C, Nagasawa K. Synthesis of vitamin D3 derivatives with nitrogen-linked substituents at A-ring C-2 and evaluation of their vitamin D receptor-mediated transcriptional activity. Org Biomol Chem 2012; 10:7826-39. [DOI: 10.1039/c2ob26017d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Martowicz ML, Meyer MB, Pike JW. The mouse RANKL gene locus is defined by a broad pattern of histone H4 acetylation and regulated through distinct distal enhancers. J Cell Biochem 2011; 112:2030-45. [PMID: 21465526 DOI: 10.1002/jcb.23123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RANKL is a stromal cell-derived tumor necrosis factor (TNF)-like factor that plays a primary role in osteoclast formation and function. Recent studies suggest that 1,25(OH)(2) D(3) induces Rankl expression via vitamin D receptor (VDR) interaction at several enhancers located up to 76 kb upstream of the gene's transcriptional start site (TSS). In the current studies, we explored these interactions further using ChIP-chip and RNA analysis. We confirm VDR and RXR binding to the five enhancers described previously and identify two additional sites, one located within the Rankl coding region. We also show that RNA polymerase II is recruited to these enhancers, most likely through transcription factors TBP, TFIIB, and TAF(II) 250. Interestingly, the recruitment of these factors leads to the production of RNA transcripts, although their role at present is unknown. We also discovered that histone H4 acetylation (H4ac) marks many upstream Rankl enhancers under basal conditions and that H4ac is increased upon 1,25(OH)(2) D(3) treatment. Surprisingly, the hormone also induces C/EBPβ binding across the Rankl locus. C/EBPβ binding correlates directly with increased H4ac activity following 1,25(OH)(2) D(3) treatment. Finally, elevated H4ac is restricted to an extended region located between two potential insulator sites occupied by CTCF and Rad21. These data suggest a mechanism whereby 1,25(OH)(2) D(3) functions via the VDR and C/EBPβ to upregulate Rankl expression.
Collapse
Affiliation(s)
- Melissa L Martowicz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
25
|
Bishop KA, Coy HM, Nerenz RD, Meyer MB, Pike JW. Mouse Rankl expression is regulated in T cells by c-Fos through a cluster of distal regulatory enhancers designated the T cell control region. J Biol Chem 2011; 286:20880-91. [PMID: 21487009 DOI: 10.1074/jbc.m111.231548] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor activator of NF-κB ligand (Rankl) is a TNF-like factor that induces the formation of osteoclasts responsible for bone resorption. Although T cell activation up-regulates this gene, the molecular mechanism of its transcriptional control remains unknown. We used ChIP-chip analysis in mouse primary T cells and a T cell hybridoma to define the regulatory enhancers responsible for this up-regulation and to characterize their properties. Elevated H3/H4 acetylation and increased RNA polymerase II density were evident at mRL-D5, a known enhancer located 76 kb upstream of the TSS, as well as at a cluster of regulatory sites located even further upstream between -123 to -156 kb, termed the T cell control region (TCCR). Based upon the ability of calcium signaling and MAPK inhibitors to block Rankl expression, we conducted further ChIP-chip analysis of the transcriptional mediators c-Fos, NF-κB, and Nfat. T cell activation induced c-Fos binding at the mRL-D5 enhancer and within the TCCR. The interaction of NF-κB was observed at the transcriptional start site and at mRL-D5. Both mRL-D5 and segments of the TCCR exhibited robust transcriptional activity in reporter assays, and site-specific mutagenesis of c-Fos and Nfat elements abrogated reporter activity, suggesting a role for both factors in the control of enhancer-mediated Rankl transcription. Finally, chromosome conformation capture analysis confirmed that mRL-D5 and segments of the TCCR were located in proximity to the Rankl gene promoter and thus potentially able to influence directly Rankl gene promoter activity. We conclude that both mRL-D5 and the TCCR represent control segments that play an integral role in Rankl expression in T cells.
Collapse
Affiliation(s)
- Kathleen A Bishop
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
26
|
Lee JW, Kobayashi Y, Nakamichi Y, Udagawa N, Takahashi N, Im NK, Seo HJ, Jeon WB, Yonezawa T, Cha BY, Woo JT. Alisol-B, a novel phyto-steroid, suppresses the RANKL-induced osteoclast formation and prevents bone loss in mice. Biochem Pharmacol 2010; 80:352-61. [DOI: 10.1016/j.bcp.2010.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
|
27
|
Peleg S, Nguyen CV. The importance of nuclear import in protection of the vitamin D receptor from polyubiquitination and proteasome-mediated degradation. J Cell Biochem 2010; 110:926-34. [DOI: 10.1002/jcb.22606] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Meyer MB, Goetsch PD, Pike JW. A downstream intergenic cluster of regulatory enhancers contributes to the induction of CYP24A1 expression by 1alpha,25-dihydroxyvitamin D3. J Biol Chem 2010; 285:15599-15610. [PMID: 20236932 DOI: 10.1074/jbc.m110.119958] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CYP24A1 expression is up-regulated by 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) via a vitamin D receptor (VDR)/retinoid X receptor (RXR) heterodimer that binds to two vitamin D response elements (VDREs) located near the proximal promoter. Interestingly, although 1,25(OH)(2)D(3) induced VDR/RXR binding to the VDRE-containing proximal promoter, the VDR/RXR heterodimer also localized to a cluster of at least four potential enhancers located in intergenic regions 50-69 kb downstream of the human CYP24A1 gene and 35-45 kb downstream of the mouse Cyp24a1 gene as revealed by ChIP-chip and ChIP-seq analyses. To address whether this downstream region and potential VDREs located within mediated CYP24A1 induction, we constructed recombinant wild-type and mutant bacterial artificial chromosome clones that spanned mouse and human loci and contained luciferase reporters inserted into their 3'-untranslated regions. The activity of these clones in stably transfected cells revealed that both the proximal and the putative downstream elements contributed to CYP24A1 up-regulation by 1,25(OH)(2)D(3). Further analysis using transfected enhancer fragments led to the identification of contributing regulatory elements in several of these downstream regions. Additional studies of coregulator recruitment using ChIP-chip analysis revealed both similarities and differences between the region located proximal to and those located downstream of the promoter. Recruitment of these coregulators was likely responsible for the increase in RNA polymerase II and histone H4 acetylation, which was also observed in response to 1,25(OH)(2)D(3) at the enhancer sites across the locus. We conclude that a more complex mechanism is responsible for the striking CYP24A1 up-regulation induced by the vitamin D hormone in target cells.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Paul D Goetsch
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
29
|
Zella LA, Meyer MB, Nerenz RD, Lee SM, Martowicz ML, Pike JW. Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription. Mol Endocrinol 2009; 24:128-47. [PMID: 19897601 DOI: 10.1210/me.2009-0140] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The vitamin D receptor (VDR) mediates the endocrine actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and autoregulates the expression of its own gene in target cells. In studies herein, we used chromatin immunoprecipitation-chip analyses to examine further the activities of 1,25(OH)(2)D(3) and to assess the consequences of VDR/retinoid X receptor heterodimer binding at the VDR gene locus. We also explored mechanisms underlying the ability of retinoic acid, dexamethasone, and the protein kinase A activator forskolin to induce VDR up-regulation as well. We confirmed two previously identified intronic 1,25(OH)(2)D(3)-inducible enhancers and discovered two additional regions, one located 6 kb upstream of the VDR transcription start site. Although RNA polymerase II was present at the transcription start site in the absence of 1,25(OH)(2)D(3), it was strikingly up-regulated at both this site and at individual enhancers in its presence. 1,25(OH)(2)D(3) also increased basal levels of H4 acetylation at these enhancers as well. Surprisingly, many of these enhancers were targets for CCAAT enhancer-binding protein-beta and runt-related transcription factor 2; a subset also bound cAMP response element binding protein, retinoic acid receptor, and glucocorticoid receptor. Unexpectedly, many of these factors were resident at the Vdr gene locus in the absence of inducer, suggesting that they might contribute to basal Vdr gene expression. Indeed, small interfering RNA down-regulation of CCAAT enhancer-binding protein-beta suppressed basal VDR expression. These regulatory activities of 1,25(OH)(2)D(3), forskolin, and dexamethasone were recapitulated in MC3T3-E1 cells stably transfected with a full-length VDR bacterial artificial chromosome (BAC) clone-luciferase reporter gene. Finally, 1,25(OH)(2)D(3) also induced accumulation of VDR and up-regulated H4 acetylation at conserved regions in the human VDR gene. These data provide important new insights into VDR gene regulation in bone cells.
Collapse
Affiliation(s)
- Lee A Zella
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bishop KA, Meyer MB, Pike JW. A novel distal enhancer mediates cytokine induction of mouse RANKl gene expression. Mol Endocrinol 2009; 23:2095-110. [PMID: 19880655 DOI: 10.1210/me.2009-0209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic inflammatory states are associated with increased bone loss. This increase is often linked to an elevation in receptor activator of nuclear factor-kappaB ligand (RANKL), a TNFalpha-like factor essential to osteoclast formation. In this study, we document the ability of IL-6 in combination with IL-6 soluble receptor (IL-6/IL-6sR) and oncostatin M to induce Rankl expression in stromal cells via signal transducer and activator of transcription 3 (STAT3). We used chromatin immunoprecipitation-tiled DNA microarray analysis to determine sites of action of STAT3 at the Rankl locus and to assess the consequences of binding on histone H4 acetylation and RNA polymerase II recruitment. Both IL-6/IL-6 soluble receptor and oncostatin M stimulated STAT3 binding upstream of the Rankl transcriptional start site. Although previously identified enhancers bound STAT3, a more distal enhancer termed mRLD6 was a particular focus of STAT3 binding. When fused to a heterologous promoter, this enhancer was highly active, containing two functionally active STAT response elements. Importantly, small interfering RNA knockdown of Stat3 mRNA and protein, but not that of Stat1 or Stat5a, was effective in limiting Rankl mRNA up-regulation. Interestingly, although RNA polymerase II and histone H4 acetylation marked many of the enhancers under basal conditions, the levels of both were strongly increased after cytokine treatment, particularly at mRLD6. Finally, mRLD6 was also a target for forskolin-induced cellular response element-binding protein (CREB) recruitment, which potentiated cytokine activity. Our studies provide new insight into mechanisms by which glycoprotein 130 activating cytokines induce RANKL expression.
Collapse
Affiliation(s)
- Kathleen A Bishop
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
31
|
Zella LA, Meyer MB, Nerenz RD, Pike JW. The enhanced hypercalcemic response to 20-epi-1,25-dihydroxyvitamin D3 results from a selective and prolonged induction of intestinal calcium-regulating genes. Endocrinology 2009; 150:3448-56. [PMID: 19423758 PMCID: PMC2717886 DOI: 10.1210/en.2009-0113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
20-Epi-1,25-dihydroxyvitamin D(3) (20-epi-1,25(OH)(2)D(3)) is a vitamin D analog that exhibits unique biologic properties. The mechanism(s) responsible for these activities remains unclear. Here we explore the ability of 20-epi-1,25(OH)(2)D(3) to induce calcemic responses in mice in vivo and identify a potential mechanism. Surprisingly, the levels of calcemia induced at 24 h after single injections of equivalent doses of 1,25(OH)(2)D(3) or 20-epi-1,25(OH)(2)D(3) were similar, suggesting that both compounds were equal in both potency and efficacy. This similarity was also observed at genes involved in calcium homeostasis including, S100g (calbindin D9K), Trpv6, Cldn2 (claudin 2), Trpv5, and Tnfsf11 (Rankl) as well as Cyp24a1. Despite this, the activities of the two compounds at 48 h were strikingly different. Thus, whereas the activity of 1,25-dihydroxyvitamin D(3) declined at this time point, the response to 20-epi-1,25(OH)(2)D(3) was increased. This unique profile was not due to an exaggerated induction of calcium regulating genes in the intestine, kidney, or bone but to a sustained action on these genes in the intestine. This conclusion was supported by studies using in vivo chromatin immunoprecipitation analysis, which revealed a prolonged presence of vitamin D receptor and RNA polymerase II at the Trpv6 and Cyp24a1 promoters and a sustained increase in histone 4 acetylation in these gene regions as well. We conclude that 20-epi-1,25(OH)(2)D(3) displays superagonist properties largely as a result of its duration of action in the intestine. This action is likely due to a decrease in the rate of intestinal-specific degradation of the ligand rather than to an increase in the functional stability of the vitamin D receptor.
Collapse
Affiliation(s)
- Lee A Zella
- Department of Biochemistry, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
32
|
Choi M, Makishima M. Therapeutic applications for novel non-hypercalcemic vitamin D receptor ligands. Expert Opin Ther Pat 2009; 19:593-606. [PMID: 19441936 DOI: 10.1517/13543770902877717] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The active form of vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), plays an important role in calcium homeostasis, cell differentiation, cell proliferation and immunity. A more complete understanding of the several physiological and pharmacological properties of 1,25(OH)(2)D(3) indicates that the vitamin D receptor (VDR) is a promising drug target in the treatment of cancers, autoimmune diseases, infections and cardiovascular disease as well as bone and mineral disorders. The calcemic effect of 1,25(OH)(2)D(3) and its derivatives has limited their clinical application. As a result, the development of non-calcemic VDR ligands is required to realize the potential of VDR-targeting therapy. OBJECTIVE In this review, we discuss the in vitro and in vivo pharmacological actions, including VDR interaction, regulation of cofactor recruitment, pharmacokinetics and cell type or tissue-selective action of VDR ligands with less-calcemic activity. CONCLUSION Pharmacokinetic parameters and selective tissue accumulation are related to the therapeutic benefit of non-hypercalcemic vitamin D derivatives. Induction of distinct VDR conformations and cofactor recruitment may be associated with selective actions of non-secosteroidal VDR ligands. Derivatives of lithocholic acid, a newly identified endogenous VDR ligand, are less-calcemic VDR ligands.
Collapse
Affiliation(s)
- Mihwa Choi
- Nihon University School of Medicine, Division of Biochemistry, Department of Biomedical Sciences, Tokyo, Japan
| | | |
Collapse
|
33
|
Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S, Matsuno K, Yabe-Nishimura C, Rokutan K. Receptor activator of nuclear factor-kappaB ligand-induced mouse osteoclast differentiation is associated with switching between NADPH oxidase homologues. Free Radic Biol Med 2009; 47:189-99. [PMID: 19409483 DOI: 10.1016/j.freeradbiomed.2009.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/06/2009] [Accepted: 04/23/2009] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been suggested to regulate receptor activator of nuclear factor-kappaB ligand (RANKL)-stimulated osteoclast differentiation. Stimulation of wild-type mouse bone marrow monocyte/macrophage lineage (BMM) cells by RANKL down-regulated NADPH oxidase 2 (Nox2) mRNA expression by half. RANKL reciprocally increased Nox1 mRNA levels and newly induced Nox4 transcript expression. BMM cells from Nox1 knockout (Nox1(-/-)) as well as Nox2(-/-) mice generated ROS in response to RANKL and differentiated into osteoclasts in the same way as wild-type BMM cells, which was assessed by the appearance of tartrate-resistant acid phosphatase-positive, multinucleated cells having the ability to form resorption pits and by the expression of osteoclast marker genes. A small interfering RNA (siRNA) targeting Nox1 or Nox2 failed to inhibit the RANKL-stimulated ROS generation and osteoclast formation in wild-type cells, whereas Nox1 and Nox2 siRNAs significantly suppressed the ROS generation and osteoclast formation in Nox2(-/-) and Nox1(-/-) cells, respectively. We also confirmed that Nox4 siRNA did not affect the RANKL-dependent events in Nox2(-/-) cells, whereas p22(phox) siRNA suppressed the events in both wild-type and Nox1(-/-) cells. Collectively, our results suggest that there may be a flexible compensatory mechanism between Nox1 and Nox2 for RANKL-stimulated ROS generation to facilitate osteoclast differentiation.
Collapse
Affiliation(s)
- Hideyuki Sasaki
- Department of Stress Science, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S, Rokutan K. NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56:33-41. [PMID: 19262012 DOI: 10.2152/jmi.56.33] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Reactive oxygen species (ROS) derived from NADPH oxidase (Nox) homologues have been suggested to regulate osteoclast differentiation. However, no bone abnormalities have been documented in Nox1 deficient, Nox2 deficient, or Nox3 mutant mice. During receptor activator of nuclear factor-kappaB ligand (RANKL)-stimulated differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts, mRNA levels of Nox enzymes (Nox1-4) and their adaptor proteins were monitored by real-time reverse transcriptase PCR. RAW264.7 cells constitutively expressed abundant Nox2 mRNA and small amounts of Nox1 and Nox3 transcripts. RANKL markedly attenuated Nox2 mRNA expression in association with reciprocal up-regulation of Nox1 and Nox3 transcripts. Introduction of small interference RNA targeting p67(phox) or p22(phox) into RAW264.7 cells effectively down-regulated ROS generation and significantly suppressed the RANKL-stimulated differentiation, which was assessed by appearance of tartrate resistant acid phosphatase (TRAP)-positive, multinucleated cells having an ability to form resorption pits on calcium phosphate thin film-coated disks, and by expression of osteoclast marker genes (TRAP, cathepsin K, Atp6i, ClC-7, and NFATc1). Our results suggest that RANKL may stimulate switching between Nox homologues during osteoclast differentiation, and Nox-derived ROS may be crucial for RANKL-induced osteoclast differentiation.
Collapse
Affiliation(s)
- Hideyuki Sasaki
- Departments of Stress Science, Institute of Health Biosciences, the University of Tokushima Graduate School, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Kelly J, Lin A, Wang CJ, Park S, Nishimura I. Vitamin D and bone physiology: demonstration of vitamin D deficiency in an implant osseointegration rat model. J Prosthodont 2009; 18:473-8. [PMID: 19486459 DOI: 10.1111/j.1532-849x.2009.00446.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The patient population varies in nutritional deficiencies, which may confound the host response to biomaterials. The objective of this study was to evaluate the effect of a common deficiency of vitamin D on implant osseointegration in the rat model. MATERIALS AND METHODS Male Sprague-Dawley rats were maintained under the cessation of vitamin D intake and UV exposure. The serum levels of 1,25(OH)(2)D(3), 25 OHD(3), Ca, and P were determined. Miniature cylindrical Ti6Al4V implants (2-mm long, 1-mm diameter) were fabricated with double acid-etched (DAE) surface or modified DAE with discrete crystalline deposition (DCD) of hydroxyapatite nanoparticles. DAE and DCD implants were placed in the femurs of vitamin D-insufficient and control rats. After 14 days of healing, the femur-implant samples were subjected to implant push-in test and nondecalcified histology. The surfaces of recovered implant specimens after the push-in test were further evaluated by scanning electron microscopy (SEM). RESULTS The decreased serum level of 25 OHD(3) demonstrated the establishment of vitamin D insufficiency in this model. The implant push-in test revealed that DAE and DCD implants in the vitamin D-insufficient group (15.94 +/- 8.20 N, n = 7; 15.63 +/- 3.96 N, n = 7, respectively) were significantly lower than those of the control group (24.99 +/- 7.92 N, n = 7, p < 0.05; 37.48 +/- 17.58 N, n = 7, p < 0.01, respectively). The transcortical bone-to-implant contact ratio (BIC) was also significantly decreased in the vitamin D-insufficient group. SEM analyses further suggested that the calcified tissues remaining next to the implant surface after push-in test appeared unusually fragmented. CONCLUSIONS The effect of vitamin D insufficiency significantly impairing the establishment of Ti6Al4V implant osseointegration in vivo was unexpectedly profound. The outcome of Ti-based endosseous implants may be confounded by the increasing prevalence of vitamin D insufficiency in our patient population.
Collapse
Affiliation(s)
- James Kelly
- The Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
37
|
Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T, Hosoya A, Ninomiya T, Nakamura H, Yamamoto Y, Kinugawa S, Nakamura M, Nakamichi Y, Kobayashi Y, Nagasawa S, Oda K, Tanaka H, Tagaya M, Penninger JM, Ito M, Takahashi N. Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. ACTA ACUST UNITED AC 2009; 184:541-54. [PMID: 19237598 PMCID: PMC2654120 DOI: 10.1083/jcb.200806139] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteoclasts are multinucleated cells that resorb bone. Although osteoclasts originate from the monocyte/macrophage lineage, osteoclast precursors are not well characterized in vivo. The relationship between proliferation and differentiation of osteoclast precursors is examined in this study using murine macrophage cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB (RANK) ligand (RANKL). Cell cycle-arrested quiescent osteoclast precursors (QuOPs) were identified as the committed osteoclast precursors in vitro. In vivo experiments show that QuOPs survive for several weeks and differentiate into osteoclasts in response to M-CSF and RANKL. Administration of 5-fluorouracil to mice induces myelosuppression, but QuOPs survive and differentiate into osteoclasts in response to an active vitamin D(3) analogue given to those mice. Mononuclear cells expressing c-Fms and RANK but not Ki67 are detected along bone surfaces in the vicinity of osteoblasts in RANKL-deficient mice. These results suggest that QuOPs preexist at the site of osteoclastogenesis and that osteoblasts are important for maintenance of QuOPs.
Collapse
Affiliation(s)
- Toshihide Mizoguchi
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Eelen G, Valle N, Sato Y, Rochel N, Verlinden L, De Clercq P, Moras D, Bouillon R, Muñoz A, Verstuyf A. Superagonistic fluorinated vitamin D3 analogs stabilize helix 12 of the vitamin D receptor. ACTA ACUST UNITED AC 2008; 15:1029-34. [PMID: 18940664 DOI: 10.1016/j.chembiol.2008.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/03/2008] [Accepted: 08/06/2008] [Indexed: 11/18/2022]
Abstract
Side chain fluorination is often used to make analogs of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] resistant to degradation by 24-hydroxylase. The fluorinated nonsteroidal analogs CD578, WU515, and WY1113 have an increased prodifferentiating action on SW480-ADH colon cancer cells, which correlated with stronger induction of vitamin D receptor (VDR)-coactivator interactions and stronger repression of beta-catenin/TCF activity. Cocrystallization of analog CD578 with the zebrafish (z)VDR and an SRC-1 coactivator peptide showed that the fluorine atoms of CD578 make additional contacts with Val444 and Phe448 of activation helix 12 (H12) of the zVDR and with Leu440 of the H11-H12 loop. Consequently, the SRC-1 peptide makes more contacts with the VDR-CD578 complex than with the VDR-1,25(OH)2D3 complex. These data show that fluorination not only affects degradation of an analog but can also have direct effects on H12 stabilization.
Collapse
MESH Headings
- Binding Sites
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cholecalciferol/agonists
- Cholecalciferol/analogs & derivatives
- Cholecalciferol/chemistry
- Crystallography, X-Ray
- Fluorine Compounds/agonists
- Fluorine Compounds/chemistry
- Humans
- Models, Molecular
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Calcitriol/chemistry
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- TCF Transcription Factors/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- beta Catenin/genetics
Collapse
Affiliation(s)
- Guy Eelen
- LEGENDO, K.U. Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brown WM. Vitamin D, vitamin D analogs (deltanoids) and prostate cancer. Expert Rev Clin Pharmacol 2008; 1:803-13. [PMID: 24410609 DOI: 10.1586/17512433.1.6.803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
'Vitamin D' is a generic term for a family of secosteroids, members of which bind to the vitamin D receptor. Calcitriol, the active form of vitamin D, has antiproliferative effects on many tumor cells. However, clinical use of calcitriol in cancer prevention or therapy is limited because it induces hypercalcemia at the necessary supraphysiological doses. The anti-tumor effects of vitamin D analogs (deltanoids) have been researched extensively; more than 3000 deltanoids have now been described. Prostate cancer is more common in northern geographic regions; mortality decreases with exposure to sunlight. As UV light is necessary for vitamin D synthesis in the skin, it has long been dogma that vitamin D is involved. This review concerns deltanoids that have been assessed for use in treating or preventing prostate cancer.
Collapse
Affiliation(s)
- William M Brown
- VaxDesign Corp., 12612 Challenger Parkway, Suite 365, Orlando, FL 32826, USA.
| |
Collapse
|
40
|
Zella LA, Shevde NK, Hollis BW, Cooke NE, Pike JW. Vitamin D-binding protein influences total circulating levels of 1,25-dihydroxyvitamin D3 but does not directly modulate the bioactive levels of the hormone in vivo. Endocrinology 2008; 149:3656-67. [PMID: 18372326 PMCID: PMC2453093 DOI: 10.1210/en.2008-0042] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mice deficient in the expression of vitamin D-binding protein (DBP) are normocalcemic despite undetectable levels of circulating 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. We used this in vivo mouse model together with cells in culture to explore the impact of DBP on the biological activity of 1,25(OH)(2)D(3). Modest changes in the basal expression of genes involved in 1,25(OH)(2)D(3) metabolism and calcium homeostasis were observed in vivo; however, these changes seemed unlikely to explain the normal calcium balance seen in DBP-null mice. Further investigation revealed that despite the reduced blood levels of 1,25(OH)(2)D(3) in these mice, tissue concentrations were equivalent to those measured in wild-type counterparts. Thus, the presence of DBP has limited impact on the extracellular pool of 1,25(OH)(2)D(3) that is biologically active and that accumulates within target tissues. In cell culture, in contrast, the biological activity of 1,25(OH)(2)D(3) is significantly impacted by DBP. Here, although DBP deficiency had no effect on the activation profile itself, the absence of DBP strongly reduced the concentration of exogenous 1,25(OH)(2)D(3) necessary for transactivation. Surprisingly, analogous studies in wild-type and DBP-null mice, wherein we explored the activity of exogenous 1,25(OH)(2)D(3), produced strikingly different results as compared with those in vitro. Here, the carrier protein had virtually no impact on the distribution, uptake, activation profile, or biological potency of the hormone. Collectively, these experiments suggest that whereas DBP is important to total circulating 1,25(OH)(2)D(3) and sequesters extracellular levels of this hormone both in vivo and in vitro, the binding protein does not influence the hormone's biologically active pool.
Collapse
Affiliation(s)
- Lee A Zella
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
41
|
Nerenz RD, Martowicz ML, Pike JW. An enhancer 20 kilobases upstream of the human receptor activator of nuclear factor-kappaB ligand gene mediates dominant activation by 1,25-dihydroxyvitamin D3. Mol Endocrinol 2008; 22:1044-56. [PMID: 18202151 DOI: 10.1210/me.2007-0380] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Receptor activator of nuclear factor-kappaB ligand (RANKL) is a TNF-like factor that is both produced by osteoblasts, mesenchymal cells, and activated T cells and required for osteoclast maturation and survival. The gene is up-regulated by the two primary calcemic hormones, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and PTH. Previous studies have indicated that five enhancer regions located significantly upstream of the mouse Rankl transcriptional start site mediate up-regulation by 1,25(OH)2D3 and PTH. The most distal of these, termed mRLD5, is highly conserved in the human gene at -96 kb where it was also shown to be functionally active. Four additional mouse Rankl upstream enhancers are also highly conserved in the human gene at -20, -25, -75, and -87 kb. In the present studies, we characterized the activity of these regions, explored their capacity to mediate the actions of 1,25(OH)2D3, and identified the vitamin D response elements contained within the two most proximal segments. Interestingly, whereas the most distal of the five enhancers is the dominant mediator of 1,25(OH)2D3 activity in the mouse Rankl gene, that role in the human gene is manifested by the most proximal element at -20 kb. Importantly, activity at this region in response to 1,25(OH)2D3 was associated with a significant increase in histone acetylation as well as the enhanced recruitment of RNA polymerase II. Both likely reflect the primary role of this enhancer in human RANKL gene expression. Our studies confirm the complex nature of RANKL regulation and indicate that although the five enhancers are evolutionarily conserved across several species, their relative contributions to RANKL expression in response to 1,25(OH)2D3 may be different.
Collapse
Affiliation(s)
- Robert D Nerenz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
42
|
Fretz JA, Shevde NK, Singh S, Darnay BG, Pike JW. Receptor activator of nuclear factor-kappaB ligand-induced nuclear factor of activated T cells (C1) autoregulates its own expression in osteoclasts and mediates the up-regulation of tartrate-resistant acid phosphatase. Mol Endocrinol 2007; 22:737-50. [PMID: 18063694 DOI: 10.1210/me.2007-0333] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Osteoclasts are large multinucleated, bone-resorbing cells derived from hematopoietic precursors in response to receptor activator of nuclear factor-kappaB ligand (RANKL). RANKL activates a number of signal transduction pathways, which stimulate, in turn, a series of specific transcription factors that initiate the process of osteoclastogenesis. Perhaps the most important of these is nuclear factor of activated T cells cytoplasmic 1 (NFATc1), a DNA-binding protein that upon activation translocates to the nucleus where it stimulates transcription. The objective of this study was to explore the process whereby RANKL induces NFATc1 and to assess the role of this factor in the activation of an additional key osteoclast target gene. We found that whereas several NFAT members are expressed in RAW264.7 cells, soluble RANKL-induced up-regulation is limited to NFATc1 through a mechanism that is largely autoregulatory. Thus, although we observed the presence of resident NFAT members at the inducible Nfatc1 P1 promoter at very early times after RANKL treatment, a selective and time-dependent increase in the binding of up-regulated NFATc1 to Nfatc1 was observed beginning at 12 h. Several additional factors that are activated by soluble RANKL and also participate in NFATc1 up-regulation include c-Fos and RNA polymerase II. Chromatin immunoprecipitation analysis also revealed a similar, time-dependent accumulation of NFATc1 at multiple sites on the Acp5 promoter, thereby highlighting a central contributing role for NFATc1 in the activation of this gene as well. Our studies provide additional molecular detail regarding the mechanisms through which RANKL induces NFATc1 in osteoclast precursors and into mechanisms by which NFATc1 induces the expression of at least one gene responsible for the osteoclast phenotype.
Collapse
Affiliation(s)
- Jackie A Fretz
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
43
|
Schwinn MK, DeLuca HF. Differential recruitment of coactivators to the vitamin D receptor transcriptional complex by 1alpha,25-dihydroxyvitamin D3 analogs. Arch Biochem Biophys 2007; 465:443-51. [PMID: 17658451 DOI: 10.1016/j.abb.2007.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/14/2007] [Accepted: 06/16/2007] [Indexed: 12/27/2022]
Abstract
To clarify the molecular mechanism for analog potency and selectivity, we investigated the ability of 1,25(OH)(2)D(3) analogs to recruit coactivators to the vitamin D receptor (VDR) transcriptional complex. Using a modified version of the avidin-biotin complex DNA binding assay, we discovered that 20S-analogs enhance the binding of specific coactivators to the transcriptional complex relative to natural hormone and that the enhanced binding occurs independently of vitamin D response element and cell type. With the exception of two of these coactivators, DRIP205 and DRIP240, all proteins were recruited to the transcriptional complex in a dose-dependent manner. While the results do not provide an explanation for tissue selectivity of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D(3) (2MD), they provide evidence that in the presence of a full-length side chain, the 20S configuration improves binding of specific proteins to the VDR transcriptional complex while modifications at carbon 2 do not.
Collapse
Affiliation(s)
- Marie K Schwinn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
44
|
Meyer MB, Zella LA, Nerenz RD, Pike JW. Characterizing early events associated with the activation of target genes by 1,25-dihydroxyvitamin D3 in mouse kidney and intestine in vivo. J Biol Chem 2007; 282:22344-52. [PMID: 17556365 DOI: 10.1074/jbc.m703475200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we explore the interaction of the vitamin D receptor (VDR) at regulatory sites within both the Cyp24a1 and the Trpv6 genes using chromatin immunoprecipitation techniques in a mouse model in vivo. We show that exogenous 1,25(OH)(2)D(3) induces rapid VDR and RXR (retinoid X receptor) binding to the Cyp24a1 gene in both the kidney and the intestine and to the Trpv6 gene in the intestine. Separate studies of Trpv6 in vitro suggest that VDR binding occurs directly to VDR response elements located -2 and -4 kb upstream of the TSS. VDR binding is dose-dependent, demonstrating EC(50) values that are comparable with those for the induction of both Cyp24a1 and Trpv6 mRNA. Importantly, interaction of the VDR with these targets results in rapid changes in histone 4 acetylation as well as the recruitment of RNA polymerase II. The presence of both VDR and RNA polymerase II at these sites declines between 3-6 h, whereas the changes observed in acetylation decrease more slowly. Finally, we show that whereas mediator protein 1 is recruited to the Cyp24a1 promoter in the intestine, this coactivator is apparently not required for Trpv6 activation. These studies provide the first evidence for 1,25(OH)(2)D(3)-induced VDR interaction at key target genes in vivo, revealing the consequences of that interaction on the Cyp24a1 and Trpv6 genes.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
45
|
Nakagawa K, Okano T, Ozono K, Kato S, Kubodera N, Ohba S, Itoh Y, Mikami K. Catalytic asymmetric synthesis and anticancer effects of the novel non-calcemic analog of vitamin D, 2α-fluoro-19-nor-22-oxa-1α,25-dihydroxyvitamin D3 in metastatic lung carcinoma. J Fluor Chem 2007. [DOI: 10.1016/j.jfluchem.2007.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Zella LA, Chang CY, McDonnell DP, Pike JW. The vitamin D receptor interacts preferentially with DRIP205-like LxxLL motifs. Arch Biochem Biophys 2007; 460:206-12. [PMID: 17254542 PMCID: PMC1924797 DOI: 10.1016/j.abb.2006.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/11/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
The vitamin D receptor (VDR) mediates the biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) through its capacity to recruit coregulatory proteins. This interaction is mediated via a coregulatory LxxLL motif. We screened a combinatorial (x)7LxxLL(x)7 phage library with purified VDR to identify peptides that displayed high affinity and selectivity for VDR. These peptides contained the consensus sequence Lx E/H x H/F P L/M/I LxxLL and exhibited significant sequence similarity to the active LxxLL box found in DRIP205. Nearly all LxxLL peptides interacted in a ligand-dependent manner directly with human VDR. However, a pattern of selectivity of the peptides for other members of the nuclear receptor family was also observed. Interestingly, the interaction between the VDR and many of the peptides was differentially sensitive to a broad assortment of VDR ligands. Finally, several of these peptides were shown to inhibit activation of a 1,25(OH)2D3-sensitive reporter gene. These studies suggest that the LxxLL motif can interact directly with the VDR and that this interaction is regulated by chemically diverse vitamin D ligands.
Collapse
Affiliation(s)
- Lee A Zella
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
47
|
Kim S, Yamazaki M, Zella LA, Meyer MB, Fretz JA, Shevde NK, Pike JW. Multiple enhancer regions located at significant distances upstream of the transcriptional start site mediate RANKL gene expression in response to 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 2007; 103:430-4. [PMID: 17197168 PMCID: PMC1892901 DOI: 10.1016/j.jsbmb.2006.12.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
One of the primary regulators of receptor activator of NF-kappaB ligand (RANKL) is 1,25-dihydoxyvitamin D(3) (1,25(OH)(2)D(3)). To elucidate the mechanism whereby 1,25(OH)(2)D(3) activates RANKL expression we screened some 300kb of the RANKL gene locus using a ChIP on chip analysis and identified five potential regulatory regions lying significant distances upstream of the transcription start site (TSS), the farthest over 70kb from the TSS. A direct ChIP analysis confirmed the presence of the VDR/RXR heterodimer at these sites. The binding of the VDR was associated with histone modification and enhanced entry of RNA polymerase II, indicating an important functional consequence to the localization of these transcription factors in response to 1,25(OH)(2)D(3). The region -76kb upstream from the TSS, termed D5, was capable of mediating VDR-dependent transcriptional output in response to 1,25(OH)(2)D(3) in luciferase assays. The identified VDRE in this region was able to confer dramatic 1,25(OH)(2)D(3) sensitivity to heterologous promoters. This region was highly evolutionarily conserved and functionally active in the human RANKL gene as well. We propose that the RANKL gene is regulated via multiple enhancers that while located at significant distances from the TSS, likely form a chromatin hub centered on the RankL promoter.
Collapse
Affiliation(s)
- Sungtae Kim
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Zella LA, Kim S, Shevde NK, Pike JW. Enhancers located in the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 2007; 103:435-9. [PMID: 17218097 DOI: 10.1016/j.jsbmb.2006.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The regulatory actions of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) on target genes are mediated by the vitamin D receptor (VDR). Interestingly, one of the genomic targets of 1,25(OH)(2)D(3) action is the VDR gene itself; however, the mechanism underlying this regulation is unknown. We investigated VDR autoregulation by screening the mouse VDR locus from 20kb upstream of the transcriptional start site (TSS) to 10kb downstream of the last exon using chromatin immunoprecipitation (ChIP)-DNA microarray analysis (ChIP/chip). Three potential VDR binding sites were located within introns lying downstream of the TSS and their activities confirmed through direct ChIP analysis. Further exploration revealed that one of these intronic regions was capable of conferring 1,25(OH)(2)D(3) response to both a downstream heterologous promoter and the minimal VDR promoter. Importantly, this regulatory region contained a classic vitamin D response element and was highly conserved within the human gene. We also demonstrated using ChIP analysis that the binding of VDR is associated with co-localization of RXR and the enhanced entry of RNA polymerase II. Thus, each of these sites appears likely to contribute to VDR autoregulation. Our studies using ChIP/chip analysis coupled to more traditional approaches define a direct mechanism whereby the VDR gene is upregulated by 1,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Lee A Zella
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
49
|
Fretz JA, Zella LA, Kim S, Shevde NK, Pike JW. 1,25-Dihydroxyvitamin D3 induces expression of the Wnt signaling co-regulator LRP5 via regulatory elements located significantly downstream of the gene's transcriptional start site. J Steroid Biochem Mol Biol 2007; 103:440-5. [PMID: 17229572 PMCID: PMC1868540 DOI: 10.1016/j.jsbmb.2006.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Canonical Wnt signaling is essential for bone formation. Activation involves binding of secreted members of the Wnt family of proteins with a membrane receptor Frizzled on osteoblasts, an interaction that is facilitated by LRP5/LRP6 co-receptors. LRP5 is known to play a particularly important role in bone formation such that the loss of this protein results in a reduction in osteoblast number, a delay in mineralization and a reduction in peak BMD. During the course of a VDR ChIP-chip analysis we found that 1,25(OH)(2)D(3) could induce binding of the VDR to sites within the Lrp5 gene locus. Importantly, this interaction between 1,25(OH)(2)D(3)-activated VDR and the Lrp5 gene led to both a modification in chromatin structure within the Lrp5 locus and the induction of LRP5 mRNA transcripts in vivo as well as in vitro. One site within Lrp5 was discovered to confer 1,25(OH)(2)D(3) response to a heterologous promoter in osteoblastic cells, permitting both the identification and characterization of the component VDRE. While the regulatory region in Lrp5 was highly conserved in the human genome, the VDRE was not. Our studies show that 1,25(OH)(2)D(3) can enhance the expression of a critical component of the Wnt signaling pathway which is known to impact osteogenesis.
Collapse
Affiliation(s)
- Jackie A Fretz
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
50
|
Sato M, Nakamichi Y, Nakamura M, Sato N, Ninomiya T, Muto A, Nakamura H, Ozawa H, Iwasaki Y, Kobayashi E, Shimizu M, DeLuca HF, Takahashi N, Udagawa N. New 19-nor-(20S)-1alpha,25-dihydroxyvitamin D3 analogs strongly stimulate osteoclast formation both in vivo and in vitro. Bone 2007; 40:293-304. [PMID: 17070129 DOI: 10.1016/j.bone.2006.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 09/03/2006] [Accepted: 09/06/2006] [Indexed: 01/22/2023]
Abstract
2-Methylene-19-nor-(20S)-1alpha,25-dihydroxyvitamin D3 (2MD), an analog of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3], has been shown to strongly induce bone formation both in vitro and in vivo. We have synthesized four substituents at carbon 2 of 2MD (2MD analogs), four stereoisomers at carbon 20 of the respective 2MD analogs (2MD analog-C20 isomers) and four 2MD analogs with an oxygen atom at carbon 22 (2MD-22-oxa analogs) and examined their ability to stimulate osteoclastogenesis and induce hypercalcemia. 2MD analogs were 100 times as potent as 1alpha,25(OH)2D3 in stimulating the formation of osteoclasts in vitro and in inducing the expression of receptor activator of NF-kappaB ligand (RANKL) and 25-hydroxyvitamin D3-24 hydroxylase mRNAs in osteoblasts. The osteoclast-inducing activities of 2MD analog-C20 isomers and 2MD 22-oxa analogs were much weaker than those of 2MD analogs. In addition, the activity of a 2MD analog in inducing dentine resorption was much stronger than that of 1alpha,25(OH)2D3 in the pit formation assay. Affinities to the vitamin D receptor and transcriptional activities of these compounds did not always correlate with their osteoclastogenic activities. Osteoprotegerin-deficient (OPG-/-) mice provide a suitable model for investigating in vivo effects of 2MD analogs because they exhibit extremely high concentrations of serum RANKL. The same amounts of 2MD analogs and 1alpha,25(OH)2D3 were administered daily to OPG-/- mice for 2 days. The elevation in serum concentrations of RANKL and calcium was much greater in 2MD analog-treated OPG-/- mice than in 1alpha,25(OH)2D3-treated ones. A 2MD analog was much more potent than 1alpha,25(OH)2D3 in causing hypercalcemia and in increasing soluble RANKL with enhanced osteoclastogenesis even in wild-type mice. In contrast, the administration of the 2MD analog to c-fos-deficient mice failed to induce osteoclastogenesis and hypercalcemia. These results suggest that new substituents at carbon 2 of 2MD strongly stimulate osteoclast formation in vitro and in vivo, and that osteoclastic bone resorption is indispensable for their hypercalcemic action of 2MD analogs in vivo.
Collapse
Affiliation(s)
- Masahiro Sato
- Graduate School of Oral Medicine, Matsumoto Dental University, Nagano 399-0781, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|