1
|
Kleene SJ. Hyperosmolality activates polycystin-2 and TRPM4 in renal primary cilium. Pflugers Arch 2025; 477:479-494. [PMID: 39688695 DOI: 10.1007/s00424-024-03050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/09/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease characterized by renal cysts. It arises from mutations in proteins expressed in part in the primary cilia of renal epithelial cells. One of these, polycystin-2 (PC2), is an ion-conducting channel. To date, ion channels in the cilium have only been characterized in standard normosmolar external solutions, but the osmolality of the renal filtrate bathing the cilia varies widely. Here I report that urine, which better represents the filtrate, activates a large cation-conducting current in the cilia. With defined external solutions, hyperosmolality through addition of urea, NaCl, or D-mannitol activates a similar current. Most but not all of this current is conducted through TRPM4 channels. It is greatly reduced by internal MgATP or 9-phenanthrol, which inhibit TRPM4, or by shRNA knockdown of TRPM4. However, part of the current activated by urea conducts Ca2+ through channels that remain to be identified. External hyperosmolality also greatly increases the activity of ciliary PC2 channels; this is the first physiological stimulus identified for these channels. Possibilities are discussed for the mechanisms of channel activation and the roles for these activities in regulatory volume increase and cystogenesis.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Lin Y, Lacroix JJ, Sterling JD, Luo YL. Dissecting current rectification through asymmetric nanopores. Biophys J 2025; 124:597-603. [PMID: 39614613 PMCID: PMC11900152 DOI: 10.1016/j.bpj.2024.11.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Rectification, the tendency of bidirectional ionic conductors to favor ion flow in a specific direction, is an intrinsic property of many ion channels and synthetic nanopores. Despite its frequent occurrence in ion channels and its phenomenological explanation using Eyring's rate theory, a quantitative relationship between the rectified current and the underlying ion-specific and voltage-dependent free energy profile has been lacking. In this study, we designed nanopores in which potassium and chloride current rectification can be manipulated by altering the electrostatic pore polarity. Using molecular dynamics-based free energy simulations, we quantified voltage-dependent changes of free energy barriers in six ion-nanopore systems. Our results illustrate how the energy barriers for inward and outward fluxes become unequal in the presence of an electromotive driving force, leading to varying degrees of rectification for cation and anion currents. By establishing a direct link between potential of mean force and current rectification rate, we demonstrate that rectification caused by energy barrier asymmetry depends on the nature of the permeating ion, can be tuned by pore polarity, does not require ion binding sites, conformational flexibility, or specific pore geometry, and, as such, may be widespread among ion channels.
Collapse
Affiliation(s)
- Yichun Lin
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California; Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California
| | - Jerome J Lacroix
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, California
| | - James D Sterling
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California
| | - Yun Lyna Luo
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
3
|
Solano AS, Lavanderos B, Metwally E, Earley S. Transient Receptor Potential Channels in Vascular Mechanotransduction. Am J Hypertens 2025; 38:151-160. [PMID: 39579078 DOI: 10.1093/ajh/hpae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/25/2024] Open
Abstract
Transmural pressure and shear stress are mechanical forces that profoundly affect the smooth muscle cells (SMCs) comprising the vascular wall and the endothelial cells (ECs) lining the lumen. Pressure and flow are detected by mechanosensors in these cells and translated into appropriate responses to regulate blood pressure and flow. This review focuses on the role of the transient receptor potential (TRP) superfamily of cation channels in this process. We discuss how specific members of the TRP superfamily (TRPC6, TRPM4, TRPV1, TRPV4, and TRPP1) regulate the resting membrane and intracellular Ca2+ levels in SMCs and ECs to promote changes in vascular tone in response to intraluminal pressure and shear stress. Although TRP channels participate in vascular mechanotransduction, little evidence supports their intrinsic mechanosensitivity. Therefore, we also examine the evidence exploring the force-sensitive signal transduction pathways acting upstream of vascular TRP channels. Understanding the interplay between mechanosensors, force-induced signaling cascades, and TRP channels holds promise for the development of targeted therapies for diseases caused by vascular dysfunction.
Collapse
Affiliation(s)
- Alfredo Sanchez Solano
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Boris Lavanderos
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Scott Earley
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Ekundayo B, Arullampalam P, Gerber CE, Hämmerli AF, Guichard S, Boukenna M, Ross-Kaschitza D, Lochner M, Rougier JS, Stahlberg H, Abriel H, Ni D. Identification of a binding site for small molecule inhibitors targeting human TRPM4. Nat Commun 2025; 16:833. [PMID: 39828793 PMCID: PMC11743598 DOI: 10.1038/s41467-025-56131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Transient receptor potential (TRP) melastatin 4 (TRPM4) protein is a calcium-activated monovalent cation channel associated with various genetic and cardiovascular disorders. The anthranilic acid derivative NBA is a potent and specific TRPM4 inhibitor, but its binding site in TRPM4 has been unknown, although this information is crucial for drug development targeting TRPM4. We determine three cryo-EM structures of full-length human TRPM4 embedded in native lipid nanodiscs without inhibitor, bound to NBA, and an anthranilic acid derivative, IBA. We found that the small molecules NBA and IBA were bound in a pocket formed between the S3, S4, and TRP helices and the S4-S5 linker of TRPM4. Our structural data and results from patch clamp experiments enable validation of a binding site for small molecule inhibitors, paving the way for further drug development targeting TRPM4.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, Lausanne, Switzerland
| | - Prakash Arullampalam
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Christian E Gerber
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Anne-Flore Hämmerli
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Sabrina Guichard
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Mey Boukenna
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Daniela Ross-Kaschitza
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Jean-Sebastien Rougier
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, Lausanne, Switzerland.
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland.
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, Lausanne, Switzerland
- International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Binkle-Ladisch L, Pironet A, Zaliani A, Alcouffe C, Mensching D, Haferkamp U, Willing A, Woo MS, Erdmann A, Jessen T, Hess SD, Gribbon P, Pless O, Vennekens R, Friese MA. Identification and development of TRPM4 antagonists to counteract neuronal excitotoxicity. iScience 2024; 27:111425. [PMID: 39687019 PMCID: PMC11648915 DOI: 10.1016/j.isci.2024.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration in central nervous system disorders is linked to dysregulated neuronal calcium. Direct inhibition of glutamate-induced neuronal calcium influx, particularly via N-methyl-D-aspartate receptors (NMDAR), has led to adverse effects and clinical trial failures. A more feasible approach is to modulate NMDAR activity or calcium signaling indirectly. In this respect, the calcium-activated non-selective cation channel transient receptor potential melastatin 4 (TRPM4) has been identified as a promising target. However, high affinity and specific antagonists are lacking. Here, we conducted high-throughput screening of a compound library to identify high affinity TRPM4 antagonists. This yielded five lead compound series with nanomolar half-maximal inhibitory concentration values. Through medicinal chemistry optimization of two series, we established detailed structure-activity relationships and inhibition of excitotoxicity in neurons. Moreover, we identified their potential binding site supported by electrophysiological measurements. These potent TRPM4 antagonists are promising drugs for treating neurodegenerative disorders and TRPM4-related pathologies, potentially overcoming previous therapeutic challenges.
Collapse
Affiliation(s)
- Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andy Pironet
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, Herestraat 49-Bus 802, 3000 Leuven, Belgium
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Chantal Alcouffe
- Department of Chemistry, Evotec SE, 195 Route D'Espagne, 31036 Toulouse, France
| | - Daniel Mensching
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Anne Willing
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Alexandre Erdmann
- Department of Chemistry, Evotec SE, 195 Route D'Espagne, 31036 Toulouse, France
| | | | - Stephen D. Hess
- Evotec Asia Pte Ltd, 79 Science Park Drive, #04-05 Cintech IV, Singapore 118264, Singapore
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, Herestraat 49-Bus 802, 3000 Leuven, Belgium
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
6
|
Wijerathne TD, Bhatt A, Jiang W, Luo YL, Lacroix JJ. Mammalian PIEZO channels rectify anionic currents. Biophys J 2024:S0006-3495(24)00719-7. [PMID: 39543876 DOI: 10.1016/j.bpj.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Under physiological conditions, mammalian PIEZO channels (PIEZO1 and PIEZO2) elicit transient currents mostly carried by monovalent and divalent cations. PIEZO1 is also known to permeate chloride ions, with a Cl-/Na+ permeability ratio of about 0.2. Yet, little is known about how anions permeate PIEZO channels. Here, by separately measuring sodium and chloride currents using nonpermanent counterions, we show that both PIEZO1 and PIEZO2 rectify chloride currents outwardly, favoring entry of chloride ions at voltages above their reversal potential, whereas little to no rectification was observed for sodium currents. Interestingly, chloride currents elicited by 9K, an anion-selective PIEZO1 mutant harboring multiple positive residues along intracellular pore fenestrations, also rectify but in the inward direction. Molecular dynamics simulations reveal that the inward rectification of chloride currents in 9K correlates with the presence of a large positive electrostatic potential at intracellular pore fenestrations, suggesting that rectification can be tuned by the electrostatic polarity of the pore. These results demonstrate that the pore of mammalian PIEZO channels inherently rectifies chloride currents.
Collapse
Affiliation(s)
- Tharaka D Wijerathne
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Aashish Bhatt
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California
| | - Wenjuan Jiang
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California
| | - Yun L Luo
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California.
| | - Jerome J Lacroix
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
7
|
Huffer K, Denley MCS, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. eLife 2024; 13:RP99643. [PMID: 39485376 PMCID: PMC11530238 DOI: 10.7554/elife.99643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Matthew CS Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Elisabeth V Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
8
|
Uchida K. TRPM3, TRPM4, and TRPM5 as thermo-sensitive channels. J Physiol Sci 2024; 74:43. [PMID: 39294615 PMCID: PMC11409758 DOI: 10.1186/s12576-024-00937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Temperature detection is essential for the survival and perpetuation of any species. Thermoreceptors in the skin sense body temperature as well as the temperatures of ambient air and objects. Since Dr. David Julius and his colleagues discovered that TRPV1 is expressed in small-diameter primary sensory neurons, and activated by temperatures above 42 °C, 11 of thermo-sensitive TRP channels have been identified. TRPM3 expressed in sensory neurons acts as a sensor for noxious heat. TRPM4 and TRPM5 are Ca2⁺-activated monovalent cation channels, and their activity is drastically potentiated by temperature increase. This review aims to summarize the expression patterns, electrophysiological properties, and physiological roles of TRPM3, TRPM4, and TRPM5 associated with thermosensation.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Laboratory of Functional Physiology, Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Suruga-Ku, Shizuoka, Shizuoka, 422-8526, Japan.
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
9
|
Yu F, Hubrack S, Raynaud CM, Elmi A, Mackeh R, Agrebi N, Thareja G, Belkadi A, Al Saloos H, Ahmed AA, Purayil SC, Mohamoud YA, Suhre K, Abi Khalil C, Schmidt F, Lo B, Hassan A, Machaca K. Loss of the TRPM4 channel in humans causes immune dysregulation with defective monocyte migration. J Allergy Clin Immunol 2024; 154:792-806. [PMID: 38750824 DOI: 10.1016/j.jaci.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND TRPM4 is a broadly expressed, calcium-activated, monovalent cation channel that regulates immune cell function in mice and cell lines. Clinically, however, partial loss- or gain-of-function mutations in TRPM4 lead to arrhythmia and heart disease, with no documentation of immunologic disorders. OBJECTIVE To characterize functional cellular mechanisms underlying the immune dysregulation phenotype in a proband with a mutated TRPM4 gene. METHODS We employed a combination of biochemical, cell biological, imaging, omics analyses, flow cytometry, and gene editing approaches. RESULTS We report the first human cases to our knowledge with complete loss of the TRPM4 channel, leading to immune dysregulation with frequent bacterial and fungal infections. Single-cell and bulk RNA sequencing point to altered expression of genes affecting cell migration, specifically in monocytes. Inhibition of TRPM4 in T cells and the THP-1 monocyte cell line reduces migration. More importantly, primary T cells and monocytes from TRPM4 patients migrate poorly. Finally, CRISPR knockout of TRPM4 in THP-1 cells greatly reduces their migration potential. CONCLUSION Our results demonstrate that TRPM4 plays a critical role in regulating immune cell migration, leading to increased susceptibility to infections.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | | | | | - Asha Elmi
- Research Department, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY; Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Abdelaziz Belkadi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY; Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | | | - Saleema C Purayil
- Allergy & Immunology Division, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY; Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Charbel Abi Khalil
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar; Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Frank Schmidt
- Research Department, Sidra Medicine, Doha, Qatar; Department of Biochemistry, Weill Cornell Medicine, New York, NY
| | - Bernice Lo
- Research Department, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Amel Hassan
- Pediatric Allergy and Immunology Department, Sidra Medicine, Doha, Qatar.
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
10
|
Huffer K, Denley MC, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595003. [PMID: 38826484 PMCID: PMC11142142 DOI: 10.1101/2024.05.20.595003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew C.S. Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Elisabeth V. Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Present Address: Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
11
|
Gao Z, Lv J, Tong TT, Zhang K, Han YX, Zhao Y, Shen MM, Liu Y, Ban T, Sun Y. Role of the transient receptor potential melastatin 4 in inhibition effect of arsenic trioxide on the tumor biological features of colorectal cancer cell. PeerJ 2024; 12:e17559. [PMID: 38854798 PMCID: PMC11160432 DOI: 10.7717/peerj.17559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Background To investigate the effects of arsenic trioxide (ATO) on human colorectal cancer cells (HCT116) growth and the role of transient receptor potential melastatin 4 (TRPM4) channel in this process. Methods The viability of HCT116 cells was assessed using the CCK-8 assay. Western blot analysis was employed to examine the protein expression of TRPM4. The apoptosis of HCT116 cells was determined using TUNEL and Flow cytometry. Cell migration was assessed through the cell scratch recovery assay and Transwell cell migration assay. Additionally, Transwell cell invasion assay was performed to determine the invasion ability of HCT116 cells. Results ATO suppressed the viability of HCT116 cells in a dose-dependent manner, accompanied by a decline in cell migration and invasion, and an increase in apoptosis. 9-phenanthroline (9-Ph), a specific inhibitor of TRPM4, abrogated the ATO-induced upregulation of TRPM4 expression. Additionally, blocking TRPM4 reversed the effects of ATO on HCT116 cells proliferation, including restoration of cell viability, migration and invasion, as well as the inhibition of apoptosis. Conclusion ATO inhibits CRC cell growth by inducing TRPM4 expression, our findings indicate that ATO is a promising therapeutic strategy and TRPM4 may be a novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Zhan Gao
- General Medical Department, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Jing Lv
- Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ting-Ting Tong
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu-Xuan Han
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Mei-Mei Shen
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Ban
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Yu Sun
- Harbin Medical University Science Park, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Hu J, Park SJ, Walter T, Orozco IJ, O'Dea G, Ye X, Du J, Lü W. Physiological temperature drives TRPM4 ligand recognition and gating. Nature 2024; 630:509-515. [PMID: 38750366 PMCID: PMC11168932 DOI: 10.1038/s41586-024-07436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 06/14/2024]
Abstract
Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity1,2. However, its impact is often overlooked in biophysical studies that are typically performed at non-physiological temperatures, potentially leading to inaccurate mechanistic and pharmacological insights. Here we demonstrate temperature-dependent changes in the structure and function of TRPM4, a temperature-sensitive Ca2+-activated ion channel3-7. By studying TRPM4 prepared at physiological temperature using single-particle cryo-electron microscopy, we identified a 'warm' conformation that is distinct from those observed at lower temperatures. This conformation is driven by a temperature-dependent Ca2+-binding site in the intracellular domain, and is essential for TRPM4 function in physiological contexts. We demonstrated that ligands, exemplified by decavanadate (a positive modulator)8 and ATP (an inhibitor)9, bind to different locations of TRPM4 at physiological temperatures than at lower temperatures10,11, and that these sites have bona fide functional relevance. We elucidated the TRPM4 gating mechanism by capturing structural snapshots of its different functional states at physiological temperatures, revealing the channel opening that is not observed at lower temperatures. Our study provides an example of temperature-dependent ligand recognition and modulation of an ion channel, underscoring the importance of studying macromolecules at physiological temperatures. It also provides a potential molecular framework for deciphering how thermosensitive TRPM channels perceive temperature changes.
Collapse
Affiliation(s)
- Jinhong Hu
- Van Andel Institute, Grand Rapids, MI, USA
| | | | - Tyler Walter
- Van Andel Institute, Grand Rapids, MI, USA
- Zoetis, Kalamazoo, MI, USA
| | - Ian J Orozco
- Van Andel Institute, Grand Rapids, MI, USA
- AnaBios, San Diego, CA, USA
| | | | - Xinyu Ye
- Van Andel Institute, Grand Rapids, MI, USA
| | - Juan Du
- Van Andel Institute, Grand Rapids, MI, USA.
| | - Wei Lü
- Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
13
|
Pironet A, Vandewiele F, Vennekens R. Exploring the role of TRPM4 in calcium-dependent triggered activity and cardiac arrhythmias. J Physiol 2024; 602:1605-1621. [PMID: 37128952 DOI: 10.1113/jp283831] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Cardiac arrhythmias pose a major threat to a patient's health, yet prove to be often difficult to predict, prevent and treat. A key mechanism in the occurrence of arrhythmias is disturbed Ca2+ homeostasis in cardiac muscle cells. As a Ca2+-activated non-selective cation channel, TRPM4 has been linked to Ca2+-induced arrhythmias, potentially contributing to translating an increase in intracellular Ca2+ concentration into membrane depolarisation and an increase in cellular excitability. Indeed, evidence from genetically modified mice, analysis of mutations in human patients and the identification of a TRPM4 blocking compound that can be applied in vivo further underscore this hypothesis. Here, we provide an overview of these data in the context of our current understanding of Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Andy Pironet
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frone Vandewiele
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Poore CP, Wei S, Chen B, Low SW, Tan JSQ, Lee ATH, Nilius B, Liao P. In vivo evaluation of monoclonal antibody M4M using a humanised rat model of stroke demonstrates attenuation of reperfusion injury via blocking human TRPM4 channel. J Drug Target 2024; 32:413-422. [PMID: 38345028 DOI: 10.1080/1061186x.2024.2313522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Blocking Transient Receptor Potential Melastatin 4 (TRPM4) in rodents by our antibody M4P has shown to attenuate cerebral ischaemia-reperfusion injury. Since M4P does not interact with human TRPM4, the therapeutic potential of blocking human TRPM4 remains unclear. We developed a monoclonal antibody M4M that inhibited human TRPM4 in cultured cells. However, M4M has no effect on stroke outcome in wild-type rats. Therefore, M4M needs to be evaluated on animal models expressing human TRPM4. METHODS We generated a humanised rat model using the CRISPR/Cas technique to knock-in (KI) the human TRPM4 antigen sequence. RESULTS In primary neurons from human TRPM4 KI rats, M4M binds to hypoxic neurons, but not normoxic nor wild-type neurons. Electrophysiological studies showed that M4M blocked ATP depletion-induced activation of TRPM4 and inhibited hypoxia-associated cell volume increase. In a stroke model, administration of M4M reduced infarct volume in KI rats. Rotarod test and Neurological deficit score revealed improvement following M4M treatment. CONCLUSION M4M selectively binds and inhibits hypoxia-induced human TRPM4 channel activation in neurons from the humanised rat model, with no effect on healthy neurons. Use of M4M in stroke rats showed functional improvements, suggesting the potential for anti-human TRPM4 antibodies in treating acute ischaemic stroke patients.
Collapse
Affiliation(s)
- Charlene Priscilla Poore
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Shunhui Wei
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Bo Chen
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Low
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Jeslyn Si Qi Tan
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Andy Thiam-Huat Lee
- Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ping Liao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
- Graduate Medical School, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
15
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
16
|
Chubanov V, Köttgen M, Touyz RM, Gudermann T. TRPM channels in health and disease. Nat Rev Nephrol 2024; 20:175-187. [PMID: 37853091 DOI: 10.1038/s41581-023-00777-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Different cell channels and transporters tightly regulate cytoplasmic levels and the intraorganelle distribution of cations. Perturbations in these processes lead to human diseases that are frequently associated with kidney impairment. The family of melastatin-related transient receptor potential (TRPM) channels, which has eight members in mammals (TRPM1-TRPM8), includes ion channels that are highly permeable to divalent cations, such as Ca2+, Mg2+ and Zn2+ (TRPM1, TRPM3, TRPM6 and TRPM7), non-selective cation channels (TRPM2 and TRPM8) and monovalent cation-selective channels (TRPM4 and TRPM5). Three family members contain an enzymatic protein moiety: TRPM6 and TRPM7 are fused to α-kinase domains, whereas TRPM2 is linked to an ADP-ribose-binding NUDT9 homology domain. TRPM channels also function as crucial cellular sensors involved in many physiological processes, including mineral homeostasis, blood pressure, cardiac rhythm and immunity, as well as photoreception, taste reception and thermoreception. TRPM channels are abundantly expressed in the kidney. Mutations in TRPM genes cause several inherited human diseases, and preclinical studies in animal models of human disease have highlighted TRPM channels as promising new therapeutic targets. Here, we provide an overview of this rapidly evolving research area and delineate the emerging role of TRPM channels in kidney pathophysiology.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Rhian M Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
17
|
Niu L, Liu H, Li X, Wang L, Hua H, Cao Q, Xiang Q, Cai T, Zhu D. Design, synthesis, and biological evaluation of 2-(naphthalen-1-yloxy)-N-phenylacetamide derivatives as TRPM4 inhibitors for the treatment of prostate cancer. Bioorg Med Chem 2024; 98:117584. [PMID: 38168629 DOI: 10.1016/j.bmc.2023.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Transient receptor potential melastatin 4 (TRPM4) is considered to be a potential target for cancer and other human diseases. Herein, a series of 2-(naphthalen-1-yloxy)-N-phenylacetamide derivatives were designed and synthesized as new TRPM4 inhibitors, aiming to improve cellular potency. One of the most promising compounds, 7d (ZX08903), displayed promising antiproliferative activity against prostate cancer cell lines. 7d also suppressed colony formation and the expression of androgen receptor (AR) protein in prostate cancer cells. Furthermore, 7d can concentration-dependently induce cell apoptosis in prostate cancer cells. Collectively, these findings indicated that compound 7d may serve as a promising lead compound for further anticancer drug development.
Collapse
Affiliation(s)
- Le Niu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China; Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Huina Liu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Xiaomei Li
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Lin Wang
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Hua
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Qiaofeng Cao
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qiuping Xiang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Ting Cai
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China.
| | - Dongsheng Zhu
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
18
|
Tarnovskaya SI, Kostareva AA, Zhorov BS. In silico analysis of TRPM4 variants of unknown clinical significance. PLoS One 2023; 18:e0295974. [PMID: 38100498 PMCID: PMC10723691 DOI: 10.1371/journal.pone.0295974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND TRPM4 is a calcium-activated channel that selectively permeates monovalent cations. Genetic variants of the channel in cardiomyocytes are associated with various heart disorders, such as progressive familial heart block and Brugada syndrome. About97% of all known TRPM4 missense variants are classified as variants of unknown clinical significance (VUSs). The very large number of VUSs is a serious problem in diagnostics and treatment of inherited heart diseases. METHODS AND RESULTS We collected 233 benign or pathogenic missense variants in the superfamily of TRP channels from databases ClinVar, Humsavar and Ensembl Variation to compare performance of 22 algorithms that predict damaging variants. We found that ClinPred is the best-performing tool for TRP channels. We also used the paralogue annotation method to identify disease variants across the TRP family. In the set of 565 VUSs of hTRPM4, ClinPred predicted pathogenicity of 299 variants. Among these, 12 variants are also categorized as LP/P variants in at least one paralogue of hTRPM4. We further used the cryo-EM structure of hTRPM4 to find scores of contact pairs between parental (wild type) residues of VUSs for which ClinPred predicts a high probability of pathogenicity of variants for both contact partners. We propose that 68 respective missense VUSs are also likely pathogenic variants. CONCLUSIONS ClinPred outperformed other in-silico tools in predicting damaging variants of TRP channels. ClinPred, the paralogue annotation method, and analysis of residue contacts the hTRPM4 cryo-EM structure collectively suggest pathogenicity of 80 TRPM4 VUSs.
Collapse
Affiliation(s)
- Svetlana I. Tarnovskaya
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna A. Kostareva
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Department of Women’s and Children’s Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Boris S. Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
19
|
Yamasaki E, Thakore P, Ali S, Solano AS, Wang X, Gao X, Labelle-Dumais C, Chaumeil MM, Gould DB, Earley S. Impaired intracellular Ca 2+ signaling contributes to age-related cerebral small vessel disease in Col4a1 mutant mice. Sci Signal 2023; 16:eadi3966. [PMID: 37963192 PMCID: PMC10726848 DOI: 10.1126/scisignal.adi3966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Humans and mice with mutations in COL4A1 and COL4A2 manifest hallmarks of cerebral small vessel disease (cSVD). Mice with a missense mutation in Col4a1 at amino acid 1344 (Col4a1+/G1344D) exhibit age-dependent intracerebral hemorrhages (ICHs) and brain lesions. Here, we report that this pathology was associated with the loss of myogenic vasoconstriction, an intrinsic vascular response essential for the autoregulation of cerebral blood flow. Electrophysiological analyses showed that the loss of myogenic constriction resulted from blunted pressure-induced smooth muscle cell (SMC) membrane depolarization. Furthermore, we found that dysregulation of membrane potential was associated with impaired Ca2+-dependent activation of large-conductance Ca2+-activated K+ (BK) and transient receptor potential melastatin 4 (TRPM4) cation channels linked to disruptions in sarcoplasmic reticulum (SR) Ca2+ signaling. Col4a1 mutations impair protein folding, which can cause SR stress. Treating Col4a1+/G1344D mice with 4-phenylbutyrate, a compound that promotes the trafficking of misfolded proteins and alleviates SR stress, restored SR Ca2+ signaling, maintained BK and TRPM4 channel activity, prevented loss of myogenic tone, and reduced ICHs. We conclude that alterations in SR Ca2+ handling that impair ion channel activity result in dysregulation of SMC membrane potential and loss of myogenic tone and contribute to age-related cSVD in Col4a1+/G1344D mice.
Collapse
Affiliation(s)
- Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Xiaowei Wang
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94158, USA
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, UCSF School of Medicine, San Francisco, CA 94143, USA
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, UCSF School of Medicine, San Francisco, CA 94143, USA
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Douglas B. Gould
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94158, USA
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, Bakar Aging Research Institute, UCSF School of Medicine, San Francisco, CA 94158, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| |
Collapse
|
20
|
Chakraborty P, Azam MA, Massé S, Lai PF, Rose RA, Ibarra Moreno CA, Riazi S, Nanthakumar K. Uncoupling cytosolic calcium from membrane voltage by transient receptor potential melastatin 4 channel (TRPM4) modulation: A novel strategy to treat ventricular arrhythmias. Heart Rhythm O2 2023; 4:725-732. [PMID: 38034891 PMCID: PMC10685170 DOI: 10.1016/j.hroo.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
The current antiarrhythmic paradigm is mainly centered around modulating membrane voltage. However, abnormal cytosolic calcium (Ca2+) signaling, which plays an important role in driving membrane voltage, has not been targeted for therapeutic purposes in arrhythmogenesis. There is clear evidence for bidirectional coupling between membrane voltage and intracellular Ca2+. Cytosolic Ca2+ regulates membrane voltage through Ca2+-sensitive membrane currents. As a component of Ca2+-sensitive currents, Ca2+-activated nonspecific cationic current through the TRPM4 (transient receptor potential melastatin 4) channel plays a significant role in Ca2+-driven changes in membrane electrophysiology. In myopathic and ischemic ventricles, upregulation and/or enhanced activity of this current is associated with the generation of afterdepolarization (both early and delayed), reduction of repolarization reserve, and increased propensity to ventricular arrhythmias. In this review, we describe a novel concept for the management of ventricular arrhythmias in the remodeled ventricle based on mechanistic concepts from experimental studies, by uncoupling the Ca2+-induced changes in membrane voltage by inhibition of this TRPM4-mediated current.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Mohammed Ali Azam
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Stéphane Massé
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Patrick F.H. Lai
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Robert A. Rose
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Carlos A. Ibarra Moreno
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Takács-Lovász K, Aczél T, Borbély É, Szőke É, Czuni L, Urbán P, Gyenesei A, Helyes Z, Kun J, Bölcskei K. Hemokinin-1 induces transcriptomic alterations in pain-related signaling processes in rat primary sensory neurons independent of NK1 tachykinin receptor activation. Front Mol Neurosci 2023; 16:1186279. [PMID: 37965042 PMCID: PMC10641776 DOI: 10.3389/fnmol.2023.1186279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
The tachykinin hemokinin-1 (HK-1) is involved in immunological processes, inflammation, and pain. Although the neurokinin 1 receptor (NK1R) is described as its main target, several effects are mediated by currently unidentified receptor(s). The role of HK-1 in pain is controversial, depending on the involvement of peripheral and central sensitization mechanisms in different models. We earlier showed the ability of HK-1 to activate the trigeminovascular system, but the mechanisms need to be clarified. Therefore, in this study, we investigated HK-1-induced transcriptomic alterations in cultured rat trigeminal ganglion (TRG) primary sensory neurons. HK-1 was applied for 6 or 24 h in 1 μM causing calcium-influx in these neurons, 500 nM not inducing calcium-entry was used for comparison. Next-generation sequencing was performed on the isolated RNA, and transcriptomic changes were analyzed to identify differentially expressed (DE) genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. NK1R and Neurokinin receptor 2 (NK2R) were not detected. Neurokinin receptor 3 (NK3R) was around the detection limit, which suggests the involvement of other NKR isoforms or other receptors in HK-1-induced sensory neuronal activation. We found protease-activated receptor 1 (PAR1) and epidermal growth factor receptor (EGFR) as DE genes in calcium signaling. The transmembrane protein anthrax toxin receptor 2 (ANTXR2), a potential novel pain-related target, was upregulated. Acid-sensing ion channel 1; 3 (Asic1,3), N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors decreased, myelin production and maintenance related genes (Mbp, Pmp2, Myef2, Mpz) and GNDF changed by HK-1 treatment. Our data showed time and dose-dependent effects of HK-1 in TRG cell culture. Result showed calcium signaling as altered event, however, we did not detect any of NK receptors. Presumably, the activation of TRG neurons is independent of NK receptors. ANTXR2 is a potential new target, PAR-1 has also important role in pain, however their connection to HK-1 is unknown. These findings might highlight new targets or key mediators to solve how HK-1 acts on TRG.
Collapse
Affiliation(s)
- Krisztina Takács-Lovász
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Research Group, Budapest, Hungary
| | - Lilla Czuni
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Research Group, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
22
|
Arullampalam P, Essers MC, Boukenna M, Guichard S, Rougier J, Abriel H. Knockdown of the TRPM4 channel alters cardiac electrophysiology and hemodynamics in a sex- and age-dependent manner in mice. Physiol Rep 2023; 11:e15783. [PMID: 37604672 PMCID: PMC10442522 DOI: 10.14814/phy2.15783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
TRPM4 is a calcium-activated, voltage-modulated, nonselective ion channel widely expressed in various cells and tissues. TRPM4 regulates the influx of sodium ions, thus playing a role in regulating the membrane potential. In the heart, TRPM4 is expressed in both cardiomyocytes and cells of the conductive pathways. Clinical studies have linked TRPM4 mutations to several cardiac disorders. While data from experimental studies have demonstrated TRPM4's functional significance in cardiac physiology, its exact roles in the heart have remained unclear. In this study, we investigated the role of TRPM4 in cardiac physiology in a newly generated Trpm4 knockdown mouse model. Male and female Trpm4 knockdown (Trpm4-/- ) and wild-type mice of different ages (5- to 12- week-old (young) and 24-week-old or more (adult)) were characterized using a multimodal approach, encompassing surface electrocardiograms (ECG), echocardiography recordings, ex vivo ECGs in isolated heart, endocardial mappings, Western blots, and mRNA quantifications. The assessment of cardiac electrophysiology by surface ECGs revealed no significant differences between wild-type and Trpm4-/- young (5- to 12-week-old) mice of either sex. Above 24 weeks of age, adult male Trpm4-/- mice showed reduced heart rate and increased heart rate variability. Echocardiography revealed that only adult male Trpm4-/- mice exhibited slight left ventricular hypertrophic alterations compared to controls, illustrated by alterations of the mitral valve pressure halftime, the mitral valve E/A ratio, the isovolumetric relaxation time, and the mitral valve deceleration. In addition, an assessment of the right ventricular systolic function by scanning the pulmonary valve highlighted an alteration in pulmonary valve peak velocity and pressure in adult male Trpm4-/- mice. Endocardial mapping recordings showed that applying 5 μM of the new TRPM4 inhibitor NBA triggered a third-degree atrioventricular block on 40% of wild-type hearts. These results confirm the key role of TRPM4 in the proper structure and electrical function of the heart. It also reveals differences between male and female animals that have never been reported. In addition, the investigation of the effects of NBA on heart function confirms the role of TRPM4 in atrioventricular conduction.
Collapse
Affiliation(s)
- Prakash Arullampalam
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Maria C. Essers
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Mey Boukenna
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Sabrina Guichard
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Jean‐Sébastien Rougier
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of BernBernSwitzerland
| |
Collapse
|
23
|
Hu Y, Cang J, Hiraishi K, Fujita T, Inoue R. The Role of TRPM4 in Cardiac Electrophysiology and Arrhythmogenesis. Int J Mol Sci 2023; 24:11798. [PMID: 37511555 PMCID: PMC10380800 DOI: 10.3390/ijms241411798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The transient receptor potential melastatin 4 (TRPM4) channel is a non-selective cation channel that activates in response to increased intracellular Ca2+ levels but does not allow Ca2+ to pass through directly. It plays a crucial role in regulating diverse cellular functions associated with intracellular Ca2+ homeostasis/dynamics. TRPM4 is widely expressed in the heart and is involved in various physiological and pathological processes therein. Specifically, it has a significant impact on the electrical activity of cardiomyocytes by depolarizing the membrane, presumably via Na+ loading. The TRPM4 channel likely contributes to the development of cardiac arrhythmias associated with specific genetic backgrounds and cardiac remodeling. This short review aims to overview what is known so far about the TRPM4 channel in cardiac electrophysiology and arrhythmogenesis, highlighting its potential as a novel therapeutic target to effectively prevent and treat cardiac arrhythmias.
Collapse
Affiliation(s)
- Yaopeng Hu
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Jiehui Cang
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Takayuki Fujita
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
24
|
Ravenscroft TA, Jacobs A, Gu M, Eberl DF, Bellen HJ. The Voltage-Gated Sodium Channel in Drosophila, Para, Localizes to Dendrites As Well As Axons in Mechanosensitive Chordotonal Neurons. eNeuro 2023; 10:ENEURO.0105-23.2023. [PMID: 37328295 PMCID: PMC10316460 DOI: 10.1523/eneuro.0105-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
The fruit fly Drosophila melanogaster has provided important insights into how sensory information is transduced by transient receptor potential (TRP) channels in the peripheral nervous system (PNS). However, TRP channels alone have not been able to completely model mechanosensitive transduction in mechanoreceptive chordotonal neurons (CNs). Here, we show that, in addition to TRP channels, the sole voltage-gated sodium channel (NaV) in Drosophila, Para, is localized to the dendrites of CNs. Para is localized to the distal tip of the dendrites in all CNs, from embryos to adults, and is colocalized with the mechanosensitive TRP channels No mechanoreceptor potential C (NompC) and Inactive/Nanchung (Iav/Nan). Para localization also demarcates spike initiation zones (SIZs) in axons and the dendritic localization of Para is indicative of a likely dendritic SIZ in fly CNs. Para is not present in the dendrites of other peripheral sensory neurons. In both multipolar and bipolar neurons in the PNS, Para is present in a proximal region of the axon, comparable to the axonal initial segment (AIS) in vertebrates, 40-60 μm from the soma in multipolar neurons and 20-40 μm in bipolar neurons. Whole-cell reduction of para expression using RNAi in CNs of the adult Johnston's organ (JO) severely affects sound-evoked potentials (SEPs). However, the duality of Para localization in the CN dendrites and axons identifies a need to develop resources to study compartment-specific roles of proteins that will enable us to better understand Para's role in mechanosensitive transduction.
Collapse
Affiliation(s)
- Thomas A Ravenscroft
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
- Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Ashleigh Jacobs
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Mingxue Gu
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
- Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Hugo J Bellen
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
- Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
25
|
Szallasi A. "ThermoTRP" Channel Expression in Cancers: Implications for Diagnosis and Prognosis (Practical Approach by a Pathologist). Int J Mol Sci 2023; 24:9098. [PMID: 37240443 PMCID: PMC10219044 DOI: 10.3390/ijms24109098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels (so-called "thermoTRPs") are multifunctional signaling molecules with important roles in cell growth and differentiation. Several "thermoTRP" channels show altered expression in cancers, though it is unclear if this is a cause or consequence of the disease. Regardless of the underlying pathology, this altered expression may potentially be used for cancer diagnosis and prognostication. "ThermoTRP" expression may distinguish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive urothelial carcinoma. "ThermoTRP" expression can also be used to predict clinical outcomes. For instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma patients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents. This review will explore the current state of this rapidly evolving field with special emphasis on immunostains that can already be added to the armoire of diagnostic pathologists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
26
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
27
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
28
|
Dutta Banik D, Medler KF. Defining the role of TRPM4 in broadly responsive taste receptor cells. Front Cell Neurosci 2023; 17:1148995. [PMID: 37032837 PMCID: PMC10073513 DOI: 10.3389/fncel.2023.1148995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. We have previously identified a subpopulation of Type III taste cells that are broadly responsive (BR) and respond to multiple taste stimuli including bitter, sweet, umami, and sour. These BR cells use a PLCβ3/IP3R1 signaling pathway to detect bitter, sweet, and umami stimuli and use a separate pathway to detect sour. Currently, the downstream targets of the PLCβ3 signaling pathway are unknown. Here we identify TRPM4, a monovalent selective TRP channel, as an important downstream component in this signaling pathway. Using live cell imaging on isolated taste receptor cells from mice, we show that inhibition of TRPM4 abolished the taste-evoked sodium responses and significantly reduced the taste-evoked calcium responses in BR cells. Since BR cells are a subpopulation of Type III taste cells, they have conventional chemical synapses that require the activation of voltage-gated calcium channels (VGCCs) to cause neurotransmitter release. We found that TRPM4-dependent membrane depolarization selectively activates L-type VGCCs in these cells. The calcium influx through L-type VGCCs also generates a calcium-induced calcium release (CICR) via ryanodine receptors that enhances TRPM4 activity. Together these signaling events amplify the initial taste response to generate an appropriate output signal.
Collapse
|
29
|
Wei S, Behn J, Poore CP, Low SW, Nilius B, Fan H, Liao P. Binding epitope for recognition of human TRPM4 channel by monoclonal antibody M4M. Sci Rep 2022; 12:19562. [PMID: 36380063 PMCID: PMC9666640 DOI: 10.1038/s41598-022-22077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mouse monoclonal antibody M4M was recently designed to block human TRPM4 channel. The polypeptide for generating M4M is composed of peptide A1 between the transmembrane segment 5 (S5) and the pore, and a second peptide A2 between the pore and the transmembrane segment 6 (S6). Using peptide microarray, a 4-amino acid sequence EPGF within the A2 was identified to be the binding epitope for M4M. Substitution of EPGF with other amino acids greatly reduced binding affinity. Structural analysis of human TRPM4 structure indicates that EPGF is located externally to the channel pore. A1 is close to the EPGF binding epitope in space, albeit separated by a 37-amino acid peptide. Electrophysiological study reveals that M4M could block human TRPM4, but with no effect on rodent TRPM4 which shares a different amino acid sequence ERGS for the binding motif. Our results demonstrate that M4M is a specific inhibitor for human TRPM4.
Collapse
Affiliation(s)
- Shunhui Wei
- grid.276809.20000 0004 0636 696XCalcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Julian Behn
- grid.418325.90000 0000 9351 8132Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671 Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charlene Priscilla Poore
- grid.276809.20000 0004 0636 696XCalcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - See Wee Low
- grid.276809.20000 0004 0636 696XCalcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Bernd Nilius
- grid.5596.f0000 0001 0668 7884Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hao Fan
- grid.418325.90000 0000 9351 8132Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671 Singapore
| | - Ping Liao
- grid.276809.20000 0004 0636 696XCalcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore ,grid.486188.b0000 0004 1790 4399Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
30
|
Wang C, Chen J, Kuang Y, Cheng X, Deng M, Jiang Z, Hu X. A novel methylated cation channel TRPM4 inhibited colorectal cancer metastasis through Ca 2+/Calpain-mediated proteolysis of FAK and suppression of PI3K/Akt/mTOR signaling pathway. Int J Biol Sci 2022; 18:5575-5590. [PMID: 36147460 PMCID: PMC9461655 DOI: 10.7150/ijbs.70504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive malignancy with poor prognosis. It is imperative to elucidate the potential molecular mechanisms that regulate CRC cell aggressiveness. In present study, the transient receptor potential melastatin 4 (TRPM4), a calcium-activated nonselective cation channel, is downregulated in CRC as a novel methylated tumor suppressor gene (TSG). The reduced mRNA level of TRPM4 is due to the epigenetic methylation of its promoter CpG island (CGI). Moreover, ectopic expression of TRPM4 inhibited tumor growth and metastasis both in vitro and in vivo. Our experiments also demonstrate that TRPM4 restructures the CRC cytoskeleton and activates the Ca2+-mediated calpain pathway through enhancing calcium influx. The western blot analysis shows that the expression of focal adhesion kinase (FAK), a calpain-mediated proteolytic substrate, is markedly suppressed after ectopic overexpression of TRPM4, besides, Akt (also known as protein kinase B, PKB), phosphatidylinositol 3-kinase (PI3K) as well as its central target mTOR have significantly decreased expression accompanied by elevated E-cadherin and restrained matrix metalloproteinases (MMP2/MMP9) expression. The inhibition of protease calpain effectively relieves the retard of FAK/Akt signals and reverses the migration suppression of TRPM4. Taken together, TRPM4, identified as a novel methylated TSG, employs intracellular Ca2+ signals to activate calpain-mediated cleavage of FAK and impede CRC migration and invasion through modulating the PI3K/Akt/mTOR signaling cascade, providing the first evidence that TRPM4 is likely to be a significant biomarker and potential target for CRC therapy.
Collapse
Affiliation(s)
- Chan Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jiaxin Chen
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Yeye Kuang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Min Deng
- Department of Pathology, The First People's Hospital of Fuyang, Hangzhou 311400, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Xiaotong Hu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
31
|
Malysz J, Maxwell SE, Petkov GV. Differential effects of TRPM4 channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4-chloro-2-[2-(2-chloro-phenoxy)-acetylamino]-benzoic acid (CBA) versus classical 9-phenanthrol. Pharmacol Res Perspect 2022; 10:e00982. [PMID: 35822549 PMCID: PMC9277609 DOI: 10.1002/prp2.982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022] Open
Abstract
Non-selective cation channels in urinary bladder smooth muscle (UBSM) are thought to mediate increases in cellular excitability and contractility. For transient receptor potential melastatin type-4 (TRPM4) channels, the evidence primarily relies on the inhibitor 9-phenanthrol, which exhibits pharmacological limitations. Recently, 4-chloro-2-[2-(2-chloro-phenoxy)-acetylamino]-benzoic acid (CBA) has been discovered as a novel TRPM4 channel blocker. We examined how, in comparison to 9-phenanthrol, CBA affects the excitability of freshly isolated guinea pig UBSM cells and the contractility of UBSM strips. Additionally, non-selective TRPM4 channel inhibitor flufenamic acid (FFA) and potentiator BTP2 (also known as YM-58483) were studied in UBSM cells. Unlike robust inhibition for 9-phenanthrol already known, CBA (up to 100 μM) displayed either no or a very weak reduction (<20%) in spontaneous phasic, 20 mM KCl-induced, and electrical field stimulated contractions. For 300 μM CBA, reductions were higher except for an increase in the frequency of KCl-induced contractions. In UBSM cells, examined under amphotericin B-perforated patch-clamp, CBA (30 μM) did not affect the membrane potential (I = 0) or voltage step-induced whole-cell cation currents, sensitive to 9-phenanthrol. The currents were not inhibited by FFA (100 μM), increased by BTP2 (10 μM), nor enhanced under a strongly depolarizing holding voltage of -16 or + 6 mV (vs. -74 mV). None of the three compounds affected the cell capacitance, unlike 9-phenanthrol. In summary, the novel inhibitor CBA and nonselective FFA did not mimic the inhibitory properties of 9-phenanthrol on UBSM function. These results suggest that TRPM4 channels, although expressed in UBSM, play a distinct role rather than direct regulation of excitability and contractility.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Present address:
Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUSA
| | - Sarah E. Maxwell
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Georgi V. Petkov
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
32
|
Title: p53 alters intracellular Ca2+ signaling through regulation of TRPM4. Cell Calcium 2022; 104:102591. [DOI: 10.1016/j.ceca.2022.102591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
|
33
|
Palladino A, Papa AA, Petillo R, Scutifero M, Morra S, Passamano L, Nigro V, Politano L. The Role of TRPM4 Gene Mutations in Causing Familial Progressive Cardiac Conduction Disease: A Further Contribution. Genes (Basel) 2022; 13:genes13020258. [PMID: 35205305 PMCID: PMC8871839 DOI: 10.3390/genes13020258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Progressive cardiac conduction disease (PCCD) is a relatively common condition in young and elderly populations, related to rare mutations in several genes, including SCN5A, SCN1B, LMNA and GJA5, TRPM4. Familial cases have also been reported. We describe a family with a large number of individuals necessitating pacemaker implantation, likely due to varying degrees of PCCD. The proband is a 47-year-old-patient, whose younger brother died at 25 years of unexplained sudden cardiac death. Three paternal uncles needed a pacemaker (PM) implantation between 40 and 65 years for unspecified causes. At the age of 42, he was implanted with a PM for two episodes of syncope and the presence of complete atrioventricular block (AVB). NGS analysis revealed the missense variation c. 2351G>A, p.Gly844Asp in the exon 17 of the TRPM4 gene. This gene encodes the TRPM4 channel, a calcium-activated nonselective cation channel of the transient receptor potential melastatin (TRPM) ion channel family. Variations in TRPM4 have been shown to cause an increase in cell surface current density, which results in a gain of gene function. Our report broadens and supports the causative role of TRPM4 gene mutations in PCCD. Genetic screening and identification of the causal mutation are critical for risk stratification and family counselling.
Collapse
Affiliation(s)
- Alberto Palladino
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Andrea Antonio Papa
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy;
| | - Roberta Petillo
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Marianna Scutifero
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Salvatore Morra
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Luigia Passamano
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Luisa Politano
- Cardiomiology and Medical Genetics, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.P.); (R.P.); (M.S.); (S.M.); (L.P.)
- Correspondence:
| |
Collapse
|
34
|
Lezama-García K, Mota-Rojas D, Pereira AMF, Martínez-Burnes J, Ghezzi M, Domínguez A, Gómez J, de Mira Geraldo A, Lendez P, Hernández-Ávalos I, Falcón I, Olmos-Hernández A, Wang D. Transient Receptor Potential (TRP) and Thermoregulation in Animals: Structural Biology and Neurophysiological Aspects. Animals (Basel) 2022; 12:106. [PMID: 35011212 PMCID: PMC8749608 DOI: 10.3390/ani12010106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents and analyzes recent scientific findings on the structure, physiology, and neurotransmission mechanisms of transient receptor potential (TRP) and their function in the thermoregulation of mammals. The aim is to better understand the functionality of these receptors and their role in maintaining the temperature of animals, or those susceptible to thermal stress. The majority of peripheral receptors are TRP cation channels formed from transmembrane proteins that function as transductors through changes in the membrane potential. TRP are classified into seven families and two groups. The data gathered for this review include controversial aspects because we do not fully know the mechanisms that operate the opening and closing of the TRP gates. Deductions, however, suggest the intervention of mechanisms related to G protein-coupled receptors, dephosphorylation, and ligands. Several questions emerge from the review as well. For example, the future uses of these data for controlling thermoregulatory disorders and the invitation to researchers to conduct more extensive studies to broaden our understanding of these mechanisms and achieve substantial advances in controlling fever, hyperthermia, and hypothermia.
Collapse
Affiliation(s)
- Karina Lezama-García
- PhD Program in Biological and Health Sciences, [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Daniel Mota-Rojas
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Marcelo Ghezzi
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Adriana Domínguez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Jocelyn Gómez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Ana de Mira Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Pamela Lendez
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico;
| | - Isabel Falcón
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
35
|
Annigeri R, Kumar R, Srimathy V. Concurrent gitelman syndrome-like tubulopathy and grave's disease. Indian J Nephrol 2022; 32:275-278. [PMID: 35814325 PMCID: PMC9267079 DOI: 10.4103/ijn.ijn_532_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 01/02/2022] [Indexed: 11/04/2022] Open
Abstract
Gitelman syndrome (GS) is a rare autosomal recessive disorder characterized by the loss of function mutation of the solute carrier family-12 member-3 (SLC12A3) gene, encoding for sodium-chloride cotransporter of the distal convolute tubule. GS is characterized by hypokalemia, hypomagnesemia, metabolic alkalosis, and hypocalciuria. GS-like syndrome has been described rarely. Hyperthyroidism due to Grave's disease (GD) is characterized by the presence of autoantibodies to thyrotropin receptors. Concurrent occurrence of GS and GD is rarely reported, that too exclusively from far-east Asian populations. We describe a case of a 45-year-old man who presented with severe muscle weakness; the evaluation showed volume depletion, hypokalemia, hypomagnesemia, renal potassium and magnesium wasting, metabolic alkalosis, and hypocalciuria. He was also detected to have GD at the time of presentation. Genetic evaluation revealed a mutation in transient receptor potential melastatin 4 (TRPM4) gene. The clinical significance of this mutation in our patient remains unclear.
Collapse
|
36
|
Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel-Part 2: TRPM4 in Health and Disease. Pharmaceuticals (Basel) 2021; 15:ph15010040. [PMID: 35056097 PMCID: PMC8779181 DOI: 10.3390/ph15010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future.
Collapse
|
37
|
Sheikhy A, Fallahzadeh A, Aghaei Meybodi HR, Hasanzad M, Tajdini M, Hosseini K. Personalized medicine in cardiovascular disease: review of literature. J Diabetes Metab Disord 2021; 20:1793-1805. [PMID: 34900826 DOI: 10.1007/s40200-021-00840-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Purpose Personalized medicine (PM) is the concept of managing patients based on their characteristics, including genotypes. In the field of cardiology, advantages of PM could be found in the diagnosis and treatment of several conditions such as arrhythmias and cardiomyopathies; moreover, it may be beneficial to prevent adverse drug reactions (ADR) and select the best medication. Genetic background can help us in selecting effective treatments, appropriate dose requirements, and preventive strategies in individuals with particular genotypes. Method In this review, we provide examples of personalized medicine based on human genetics for the most used pharmaceutics in cardiology, including warfarin, clopidogrel, and statins. We also review cardiovascular diseases, including coronary artery disease, arrhythmia, and cardiomyopathies. Conclusion Genetic factors are as important as environmental factors and they should be tested and evaluated more in the future by improving in genetic testing tools. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00840-0.
Collapse
Affiliation(s)
- Ali Sheikhy
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Fallahzadeh
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masih Tajdini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Li S, Feng Y, Zhang T, Wang S, Sun J. Identification and characterization of Trpm4 gene involved in regulating Japanese flounder (Paralichthys olivaceus) inflammatory response. JOURNAL OF FISH DISEASES 2021; 44:1765-1776. [PMID: 34252211 DOI: 10.1111/jfd.13493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed Ca2+ -impermeable cation channel involved in modulating inflammatory and immune responses in mammals. However, the role of TRPM4 channel in fish immunity remains unclear. In this report, from a comparative immunological point of view, we identified and characterized a Trpm4 gene from Japanese flounder (Paralichthys olivaceus) and analysed its potential role in regulating the fish inflammatory response. The Japanese flounder Trpm4 gene is expressed in a wide range of tissues and encodes a 1264-amino acid protein which expresses on the cell surface and shares several conserved domains with its mammalian counterparts. In vitro inflammatory challenge and in vivo bacterial infection experiments revealed that Japanese flounder Trpm4 expression was significantly modulated following different immune challenges, indicating the implication of Trpm4 in the fish immune response. Overexpression of TRPM4 significantly attenuated LPS- and poly(I:C)-induced pro-inflammatory cytokine expression in Japanese flounder FG-9307 cells. In contrast, pharmacological inhibition of the endogenous TRPM4 channel activity in Japanese flounder head kidney macrophages resulted in increased pro-inflammatory cytokine expression following LPS and poly(I:C) stimulations. Taken together, these findings indicate that TRPM4 channels may play a conserved role in regulating inflammatory response(s) in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Tongtong Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Shan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
39
|
Ali S, Solano AS, Gonzales AL, Thakore P, Krishnan V, Yamasaki E, Earley S. Nitric Oxide Signals Through IRAG to Inhibit TRPM4 Channels and Dilate Cerebral Arteries. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab051. [PMID: 34734188 PMCID: PMC8557268 DOI: 10.1093/function/zqab051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023]
Abstract
Nitric oxide (NO) relaxes vascular smooth muscle cells (SMCs) and dilates blood vessels by increasing intracellular levels of cyclic guanosine monophosphate (cGMP), which stimulates the activity of cGMP-dependent protein kinase (PKG). However, the vasodilator mechanisms downstream of PKG remain incompletely understood. Here, we found that transient receptor potential melastatin 4 (TRPM4) cation channels, which are activated by Ca2+ released from the sarcoplasmic reticulum (SR) through inositol triphosphate receptors (IP3Rs) under native conditions, are essential for SMC membrane depolarization and vasoconstriction. We hypothesized that signaling via the NO/cGMP/PKG pathway causes vasodilation by inhibiting TRPM4. We found that TRPM4 currents activated by stretching the plasma membrane or directly activating IP3Rs were suppressed by exogenous NO or a membrane-permeable cGMP analog, the latter of which also impaired IP3R-mediated release of Ca2+ from the SR. The effects of NO on TRPM4 activity were blocked by inhibition of soluble guanylyl cyclase or PKG. Notably, upon phosphorylation by PKG, IRAG (IP3R-associated PKG substrate) inhibited IP3R-mediated Ca2+ release, and knockdown of IRAG expression diminished NO-mediated inhibition of TRPM4 activity and vasodilation. Using superresolution microscopy, we found that IRAG, PKG, and IP3Rs form a nanoscale signaling complex on the SR of SMCs. We conclude that NO/cGMP/PKG signaling through IRAG inhibits IP3R-dependent activation of TRPM4 channels in SMCs to dilate arteries. SIGNIFICANCE STATEMENT Nitric oxide is a gaseous vasodilator produced by endothelial cells that is essential for cardiovascular function. Although NO-mediated signaling pathways have been intensively studied, the mechanisms by which they relax SMCs to dilate blood vessels remain incompletely understood. In this study, we show that NO causes vasodilation by inhibiting the activity of Ca2+-dependent TRPM4 cation channels. Probing further, we found that NO does not act directly on TRPM4 but instead initiates a signaling cascade that inhibits its activation by blocking the release of Ca2+ from the SR. Thus, our findings reveal the essential molecular pathways of NO-induced vasodilation-a fundamental unresolved concept in cardiovascular physiology.
Collapse
Affiliation(s)
| | | | - Albert L Gonzales
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | - Vivek Krishnan
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | | |
Collapse
|
40
|
Dienes C, Hézső T, Kiss DZ, Baranyai D, Kovács ZM, Szabó L, Magyar J, Bányász T, Nánási PP, Horváth B, Gönczi M, Szentandrássy N. Electrophysiological Effects of the Transient Receptor Potential Melastatin 4 Channel Inhibitor (4-Chloro-2-(2-chlorophenoxy)acetamido) Benzoic Acid (CBA) in Canine Left Ventricular Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22179499. [PMID: 34502410 PMCID: PMC8430982 DOI: 10.3390/ijms22179499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 01/16/2023] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) plays an important role in many tissues, including pacemaker and conductive tissues of the heart, but much less is known about its electrophysiological role in ventricular myocytes. Our earlier results showed the lack of selectivity of 9-phenanthrol, so CBA ((4-chloro-2-(2-chlorophenoxy)acetamido) benzoic acid) was chosen as a new, potentially selective inhibitor. Goal: Our aim was to elucidate the effect and selectivity of CBA in canine left ventricular cardiomyocytes and to study the expression of TRPM4 in the canine heart. Experiments were carried out in enzymatically isolated canine left ventricular cardiomyocytes. Ionic currents were recorded with an action potential (AP) voltage-clamp technique in whole-cell configuration at 37 °C. An amount of 10 mM BAPTA was used in the pipette solution to exclude the potential activation of TRPM4 channels. AP was recorded with conventional sharp microelectrodes. CBA was used in 10 µM concentrations. Expression of TRPM4 protein in the heart was studied by Western blot. TRPM4 protein was expressed in the wall of all four chambers of the canine heart as well as in samples prepared from isolated left ventricular cells. CBA induced an approximately 9% reduction in AP duration measured at 75% and 90% of repolarization and decreased the short-term variability of APD90. Moreover, AP amplitude was increased and the maximal rates of phase 0 and 1 were reduced by the drug. In AP clamp measurements, CBA-sensitive current contained a short, early outward and mainly a long, inward current. Transient outward potassium current (Ito) and late sodium current (INa,L) were reduced by approximately 20% and 47%, respectively, in the presence of CBA, while L-type calcium and inward rectifier potassium currents were not affected. These effects of CBA were largely reversible upon washout. Based on our results, the CBA induced reduction of phase-1 slope and the slight increase of AP amplitude could have been due to the inhibition of Ito. The tendency for AP shortening can be explained by the inhibition of inward currents seen in AP-clamp recordings during the plateau phase. This inward current reduced by CBA is possibly INa,L, therefore, CBA is not entirely selective for TRPM4 channels. As a consequence, similarly to 9-phenanthrol, it cannot be used to test the contribution of TRPM4 channels to cardiac electrophysiology in ventricular cells, or at least caution must be applied.
Collapse
Affiliation(s)
- Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dénes Zsolt Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dóra Baranyai
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsigmond Máté Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (C.D.); (T.H.); (D.Z.K.); (D.B.); (Z.M.K.); (L.S.); (J.M.); (T.B.); (P.P.N.); (B.H.); (M.G.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52255575; Fax: +36-52255116
| |
Collapse
|
41
|
Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:ijms22168782. [PMID: 34445487 PMCID: PMC8395829 DOI: 10.3390/ijms22168782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanosensitive ion channels are widely expressed in the cardiovascular system. They translate mechanical forces including shear stress and stretch into biological signals. The most prominent biological signal through which the cardiovascular physiological activity is initiated or maintained are intracellular calcium ions (Ca2+). Growing evidence show that the Ca2+ entry mediated by mechanosensitive ion channels is also precisely regulated by a variety of key proteins which are distributed in the cell membrane or endoplasmic reticulum. Recent studies have revealed that mechanosensitive ion channels can even physically interact with Ca2+ regulatory proteins and these interactions have wide implications for physiology and pathophysiology. Therefore, this paper reviews the cross-talk between mechanosensitive ion channels and some key Ca2+ regulatory proteins in the maintenance of calcium homeostasis and its relevance to cardiovascular health and disease.
Collapse
|
42
|
Guo Y, Yu ZY, Wu J, Gong H, Kesteven S, Iismaa SE, Chan AY, Holman S, Pinto S, Pironet A, Cox CD, Graham RM, Vennekens R, Feneley MP, Martinac B. The Ca 2+-activated cation channel TRPM4 is a positive regulator of pressure overload-induced cardiac hypertrophy. eLife 2021; 10:66582. [PMID: 34190686 PMCID: PMC8245133 DOI: 10.7554/elife.66582] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/20/2021] [Indexed: 01/19/2023] Open
Abstract
Pathological left ventricular hypertrophy (LVH) occurs in response to pressure overload and remains the single most important clinical predictor of cardiac mortality. The molecular pathways in the induction of pressure overload LVH are potential targets for therapeutic intervention. Current treatments aim to remove the pressure overload stimulus for LVH, but do not completely reverse adverse cardiac remodelling. Although numerous molecular signalling steps in the induction of LVH have been identified, the initial step by which mechanical stretch associated with cardiac pressure overload is converted into a chemical signal that initiates hypertrophic signalling remains unresolved. In this study, we show that selective deletion of transient receptor potential melastatin 4 (TRPM4) channels in mouse cardiomyocytes results in an approximately 50% reduction in the LVH induced by transverse aortic constriction. Our results suggest that TRPM4 channel is an important component of the mechanosensory signalling pathway that induces LVH in response to pressure overload and represents a potential novel therapeutic target for the prevention of pathological LVH.
Collapse
Affiliation(s)
- Yang Guo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ze-Yan Yu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Jianxin Wu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Hutao Gong
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Scott Kesteven
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Siiri E Iismaa
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Andrea Y Chan
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Sara Holman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Silvia Pinto
- Laboratory of Ion Channel Research, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,TRP Research Platform Leuven (TRPLe), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Andy Pironet
- Laboratory of Ion Channel Research, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,TRP Research Platform Leuven (TRPLe), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,TRP Research Platform Leuven (TRPLe), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Cardiology, St Vincent's Hospital, Sydney, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
43
|
Shi R, Fu Y, Zhao D, Boczek T, Wang W, Guo F. Cell death modulation by transient receptor potential melastatin channels TRPM2 and TRPM7 and their underlying molecular mechanisms. Biochem Pharmacol 2021; 190:114664. [PMID: 34175300 DOI: 10.1016/j.bcp.2021.114664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Transient receptor potential melastatin (TRPM) channels are members of the transient receptor potential (TRP) channels, a family of evolutionarily conserved integral membrane proteins. TRPM channels are nonselective cation channels, mediating the influx of various ions including Ca2+, Na+ and Zn2+. The function of TRPM channels is vital for cell proliferation, cell development and cell death. Cell death is a key procedure during embryonic development, organism homeostasis, aging and disease. The category of cell death modalities, beyond the traditionally defined concepts of necrosis, autophagy, and apoptosis, were extended with the discovery of pyroptosis, necroptosis and ferroptosis. As upstream signaling regulators of cell death, TRPM channels have been involved inrelevant pathologies. In this review, we introduced several cell death modalities, then summarized the contribution of TRPM channels (especially TRPM2 and TRPM7) to different cell death modalities and discussed the underlying regulatory mechanisms. Our work highlighted the possibility of TRPM channels as potential therapeutic targets in cell death-related diseases.
Collapse
Affiliation(s)
- Ruixue Shi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dongyi Zhao
- The University of Tokyo, Department of Pharmaceutical Science, 1130033, Japan
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215, Poland.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
44
|
Petit-Pedrol M, Groc L. Regulation of membrane NMDA receptors by dynamics and protein interactions. J Cell Biol 2021; 220:211609. [PMID: 33337489 PMCID: PMC7754687 DOI: 10.1083/jcb.202006101] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding neurotransmitter system crosstalk in the brain is a major challenge in neurobiology. Several intracellular and genomic cascades have been identified in this crosstalk. However, the discovery that neurotransmitter receptors are highly diffusive in the plasma membrane of neurons, where they form heterocomplexes with other proteins, has profoundly changed our view of neurotransmitter signaling. Here, we review new insights into neurotransmitter crosstalk at the plasma membrane. We focus on the membrane organization and interactome of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) that plays a central role in excitatory synaptic and network physiology and is involved in the etiology of several major neuropsychiatric disorders. The nanoscale organization and dynamics of NMDAR is a key regulatory process for glutamate synapse transmission, plasticity, and crosstalk with other neurotransmitter systems, such as the monoaminergic ones. The plasma membrane appears to be a prime regulatory compartment for spatial and temporal crosstalk between neurotransmitter systems in the healthy and diseased brain. Understanding the molecular mechanisms regulating membrane neurotransmitter receptor crosstalk will likely open research avenues for innovative therapeutical strategies.
Collapse
Affiliation(s)
- Mar Petit-Pedrol
- Université de Bordeaux, Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Unité Mixte de Recherche 5297, Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Unité Mixte de Recherche 5297, Bordeaux, France
| |
Collapse
|
45
|
Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:649785. [PMID: 33928135 PMCID: PMC8076504 DOI: 10.3389/fcvm.2021.649785] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury.
Collapse
Affiliation(s)
| | | | | | | | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
46
|
Deletion of Trpm4 Alters the Function of the Na v1.5 Channel in Murine Cardiac Myocytes. Int J Mol Sci 2021; 22:ijms22073401. [PMID: 33810249 PMCID: PMC8037196 DOI: 10.3390/ijms22073401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential melastatin member 4 (TRPM4) encodes a Ca2+-activated, non-selective cation channel that is functionally expressed in several tissues, including the heart. Pathogenic mutants in TRPM4 have been reported in patients with inherited cardiac diseases, including conduction blockage and Brugada syndrome. Heterologous expression of mutant channels in cell lines indicates that these mutations can lead to an increase or decrease in TRPM4 expression and function at the cell surface. While the expression and clinical variant studies further stress the importance of TRPM4 in cardiac function, the cardiac electrophysiological phenotypes in Trpm4 knockdown mouse models remain incompletely characterized. To study the functional consequences of Trpm4 deletion on cardiac electrical activity in mice, we performed perforated-patch clamp and immunoblotting studies on isolated atrial and ventricular cardiac myocytes and surfaces, as well as on pseudo- and intracardiac ECGs, either in vivo or in Langendorff-perfused explanted mouse hearts. We observed that TRPM4 is expressed in atrial and ventricular cardiac myocytes and that deletion of Trpm4 unexpectedly reduces the peak Na+ currents in myocytes. Hearts from Trpm4−/− mice presented increased sensitivity towards mexiletine, a Na+ channel blocker, and slower intraventricular conduction, consistent with the reduction of the peak Na+ current observed in the isolated cardiac myocytes. This study suggests that TRPM4 expression impacts the Na+ current in murine cardiac myocytes and points towards a novel function of TRPM4 regulating the Nav1.5 function in murine cardiac myocytes.
Collapse
|
47
|
Feng J, Zong P, Yan J, Yue Z, Li X, Smith C, Ai X, Yue L. Upregulation of transient receptor potential melastatin 4 (TRPM4) in ventricular fibroblasts from heart failure patients. Pflugers Arch 2021; 473:521-531. [PMID: 33594499 PMCID: PMC8857941 DOI: 10.1007/s00424-021-02525-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
The transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective monovalent cation channel belonging to the TRP channel superfamily. TRPM4 is widely expressed in various tissues and most abundantly expressed in the heart. TRPM4 plays a critical role in cardiac conduction. Patients carrying a gain-of-function or loss-of-function mutation of TRPM4 display impaired cardiac conduction. Knockout or over-expression of TRPM4 in mice recapitulates conduction defects in patients. Moreover, recent studies have indicated that TRPM4 plays a role in hypertrophy and heart failure. Whereas the role of TRPM4 mediated by cardiac myocytes has been well investigated, little is known about TRPM4 and its role in cardiac fibroblasts. Here we show that in human left ventricular fibroblasts, TRPM4 exhibits typical Ca2+-activation characteristics, linear current-voltage (I-V) relation, and monovalent permeability. TRPM4 currents recorded in fibroblasts from heart failure patients (HF) are more than 2-fold bigger than those from control individuals (CTL). The enhanced functional TRPM4 in HF is not resulted from changed channel properties, as TRPM4 currents from both HF and CTL fibroblasts demonstrate similar sensitivity to intracellular calcium activation and extracellular 9-phenanthrol (9-phen) blockade. Consistent with enhanced TRPM4 activity, the protein level of TRPM4 is about 2-fold higher in HF than that of CTL hearts. Moreover, TRPM4 current in CTL fibroblasts is increased after 24 hours of TGFβ1 treatment, implying that TRPM4 in vivo may be upregulated by fibrogenesis promotor TGFβ1. The upregulated TRPM4 in HF fibroblasts suggests that TRPM4 may play a role in cardiac fibrogenesis under various pathological conditions.
Collapse
Affiliation(s)
- Jianlin Feng
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Pengyu Zong
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Jiajie Yan
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Xin Li
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Chevaughn Smith
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA
| | - Xun Ai
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT, 06030, USA.
| |
Collapse
|
48
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
49
|
Maxwell SE, Leo MD, Malysz J, Petkov GV. Age-dependent decrease in TRPM4 channel expression but not trafficking alters urinary bladder smooth muscle contractility. Physiol Rep 2021; 9:e14754. [PMID: 33625779 PMCID: PMC7903938 DOI: 10.14814/phy2.14754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
During development, maturation, or aging, the expression and function of urinary bladder smooth muscle (UBSM) ion channels can change, thus affecting micturition. Increasing evidence supports a novel role of transient receptor potential melastatin‐4 (TRPM4) channels in UBSM physiology. However, it remains unknown whether the functional expression of these key regulatory channels fluctuates in UBSM over different life stages. Here, we examined TRPM4 channel protein expression (Western blot) and the effects of TRPM4 channel inhibitors, 9‐phenanthrol and glibenclamide, on phasic contractions of UBSM isolated strips obtained from juvenile (UBSM‐J, 5–9 weeks old) and adult (UBSM‐A, 6–18 months old) male guinea pigs. Compared to UBSM‐J, UBSM‐A displayed a 50–70% reduction in total TRPM4 protein expression, while the surface‐to‐intracellular expression ratio (channel trafficking) remained the same in both age groups. Consistent with the reduced total TRPM4 protein expression in UBSM‐A, 9‐phenanthrol showed lower potencies and/or maximum efficacies in UBSM‐A than UBSM‐J for inhibiting amplitude and muscle force of spontaneous and 20 mM KCl‐induced phasic contractions. Compared to 9‐phenanthrol, glibenclamide also attenuated both spontaneous and KCl‐induced contractions, but with less pronounced differential effects in UBSM‐A and UBSM‐J. In both age groups, regardless of the overall reduced total TRPM4 protein expression in UBSM‐A, cell surface TRPM4 protein expression (~80%) predominated over its intracellular fraction (~20%), revealing preserved channel trafficking mechanisms toward the cell membrane. Collectively, this study reports novel findings illuminating a fundamental physiological role for TRPM4 channels in UBSM function that fluctuates with age.
Collapse
Affiliation(s)
- Sarah E Maxwell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - M Dennis Leo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
50
|
Kim K, Hong KS. Transient receptor potential channel-dependent myogenic responsiveness in small-sized resistance arteries. J Exerc Rehabil 2021; 17:4-10. [PMID: 33728282 PMCID: PMC7939990 DOI: 10.12965/jer.2040836.418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/19/2020] [Indexed: 11/22/2022] Open
Abstract
It is well documented that the inherent ability of small arteries and arterioles to regulate intraluminal diameter in response to alterations in intravascular pressure determines peripheral vascular resistance and blood flow (termed myogenic response or pressure-induced vasoconstriction/dilation). This autoregulatory property of resistance arteries is primarily originated from mechanosensitive vascular smooth muscle cells (VSMCs). There are diverse biological apparatuses in the plasma membrane of VSMCs that sense mechanical stimuli and generate intracellular signals for the contractility of VSMCs. Although the roles of transient receptor potential (TRP) channels in pressure-induced vasoconstriction are not fully understood to date, TRP channels that are directly activated by mechanical stimuli (e.g., stretch of VSMCs) or indirectly evoked by intracellular molecules (e.g., inositol trisphosphate) provide the major sources of Ca2+ (e.g., Ca2+ influx or release from the sarcoplasmic reticulum) and in turn, evoke vascular reactivity. This review sought to summarize mounting evidence over several decades that the activation of TRP canonical, TRP melastatin, TRP vanilloid, and TRP polycystin channels contributes to myogenic vasoconstriction.
Collapse
Affiliation(s)
- Kijeong Kim
- School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Kwang-Seok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Korea
| |
Collapse
|