1
|
Tan G, Jia T, Qi Z, Lu S. Regenerated Fiber's Ideal Target: Comparable to Natural Fiber. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1834. [PMID: 38673192 PMCID: PMC11050933 DOI: 10.3390/ma17081834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
The toughness of silk naturally obtained from spiders and silkworms exceeds that of all other natural and man-made fibers. These insects transform aqueous protein feedstocks into mechanically specialized materials, which represents an engineering phenomenon that has developed over millions of years of natural evolution. Silkworms have become a new research hotspot due to the difficulties in collecting spider silk and other challenges. According to continuous research on the natural spinning process of the silkworm, it is possible to divide the main aspects of bionic spinning into two main segments: the solvent and behavior. This work focuses on the various methods currently used for the spinning of artificial silk fibers to replicate natural silk fibers, providing new insights based on changes in the fiber properties and production processes over time.
Collapse
Affiliation(s)
| | | | | | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (G.T.); (T.J.); (Z.Q.)
| |
Collapse
|
2
|
Shirk BD, Torres Pereira Meriade Duarte I, McTyer JB, Eccles LE, Lateef AH, Shirk PD, Stoppel WL. Harvesting Silk Fibers from Plodia interpunctella: Role of Environmental Rearing Conditions in Fiber Production and Properties. ACS Biomater Sci Eng 2024; 10:2088-2099. [PMID: 38427786 DOI: 10.1021/acsbiomaterials.3c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Silk fibers are produced by a wide variety of insects. The silkworm Bombyx mori (Bombyx) was domesticated because the physical properties of its silk fibers were amenable to the production of fine textiles. Subsequently, engineers have regenerated silk fibroin to form biomaterials. The monocular focus on Bombyx silk has underutilized the expanse of diverse silk proteins produced by more than 100,000 other arthropods. This vast array of silk fibers could be utilized for biomedical engineering challenges if sufficient rearing and purification processes are developed. Herein, we show that the moth, Plodia interpunctella (Plodia), represents an alternative silk source that is easily reared in highly regulated culture environments allowing for greater consistency in the silk produced. We controlled the temperature, resource availability (larvae/gram diet), and population density (larvae/mL) with the goal of increasing silk fiber production and improving homogeneity in Plodia silk proteins. We determined that higher temperatures accelerated insect growth and reduced life cycle length. Furthermore, we established initial protocols for the production of Plodia silk with optimal silk production occurring at 24 °C, with a resource availability of 10 larvae/gram and a population density of 0.72 larvae/mL. Population density was shown to be the most prominent driving force of Plodia silk mat formation among the three parameters assessed. Future work will need to link gene expression, protein production and purification, and resulting mechanical properties as a function of environmental cues to further transition Plodia silk into regenerated silk fibroin biomaterials.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | | | - Jasmine B McTyer
- Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren E Eccles
- Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Paul D Shirk
- Entomology and Nematology, University of Florida, Gainesville, Florida 32611, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
A native sericin wound dressing spun directly from silkworms enhances wound healing. Colloids Surf B Biointerfaces 2023; 225:113228. [PMID: 36889105 DOI: 10.1016/j.colsurfb.2023.113228] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
It is attractive and challenging to develop a bioactive dressing based on native nondestructive sericin. Here, a native sericin wound dressing was secreted directly by silkworms bred through regulating their spinning behaviors. To be excited, our first reported wound dressing possesses original unique features of natural sericin, including natural structures and bioactivities. Besides, it has a porous fibrous network structure with a porosity of 75 %, thus achieving excellent air permeability. Moreover, the wound dressing exhibits pH-responsive degradability, softness, and super absorbency properties whose equilibrium water contents are no less than 75 % in various pH conditions. Furthermore, the sericin wound dressing demonstrates high mechanical strength, reaching 2.5 MPa tensile strength. Importantly, we confirmed good cell compatibility of sericin wound dressing that can support cell viability, proliferation, and migration for a long time. When tested in a mouse full-thickness skin wound model, the wound dressing efficiently accelerated the healing process. Our findings suggest that the sericin wound dressing has promising application and commercial value in wound repair.
Collapse
|
4
|
Wu BCH, Sauman I, Maaroufi HO, Zaloudikova A, Zurovcova M, Kludkiewicz B, Hradilova M, Zurovec M. Characterization of silk genes in Ephestia kuehniella and Galleria mellonella revealed duplication of sericin genes and highly divergent sequences encoding fibroin heavy chains. Front Mol Biosci 2022; 9:1023381. [DOI: 10.3389/fmolb.2022.1023381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Silk is a secretory product of numerous arthropods with remarkable mechanical properties. In this work, we present the complete sequences of the putative major silk proteins of E. kuehniella and compare them with those of G. mellonella, which belongs to the same moth family Pyralidae. To identify the silk genes of both species, we combined proteomic analysis of cocoon silk with a homology search in transcriptomes and genomic sequences to complement the information on both species. We analyzed structure of the candidate genes obtained, their expression specificity and their evolutionary relationships. We demonstrate that the silks of E. kuehniella and G. mellonella differ in their hydrophobicity and that the silk of E. kuehniella is highly hygroscopic. In our experiments, we show that the number of genes encoding sericins is higher in G. mellonella than in E. kuehniella. By analyzing the synteny of the chromosomal segment encoding sericin genes in both moth species, we found that the region encoding sericins is duplicated in G. mellonella. Finally, we present the complete primary structures of nine fibH genes and proteins from both families of the suborder Pyraloidea and discuss their specific and conserved features. This study provides a foundation for future research on the evolution of silk proteins and lays the groundwork for future detailed functional studies.
Collapse
|
5
|
Rouhová L, Sehadová H, Pauchová L, Hradilová M, Žurovcová M, Šerý M, Rindoš M, Žurovec M. Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa. Front Mol Biosci 2022; 9:945239. [PMID: 36060257 PMCID: PMC9432349 DOI: 10.3389/fmolb.2022.945239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Similar to Lepidoptera, the larvae of Trichoptera are also capable of producing silk. Plectrocnemia conspersa, a predatory species belonging to the suborder Annulipalpia, builds massive silken retreats with preycapturing nets. In this study, we describe the silk glands of P. conspersa and use the multi-omics methods to obtain a complete picture of the fiber composition. A combination of silk gland-specific transcriptome and proteomic analyses of the spun-out fibers yielded 27 significant candidates whose full-length sequences and gene structures were retrieved from the publicly available genome database. About one-third of the candidates were completely novel proteins for which there are no described homologs, including a group of five pseudofibroins, proteins with a composition similar to fibroin heavy chain. The rest were homologs of lepidopteran silk proteins, although some had a larger number of paralogs. On the other hand, P. conspersa fibers lacked some proteins that are regular components in moth silk. In summary, the multi-omics approach provides an opportunity to compare the overall composition of silk with other insect species. A sufficient number of such studies will make it possible to distinguish between the basic components of all silks and the proteins that represent the adaptation of the fibers for specific purposes or environments.
Collapse
Affiliation(s)
- Lenka Rouhová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Hana Sehadová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Pauchová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czechia
| | - Martina Žurovcová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Michal Šerý
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Michal Rindoš
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Michal Žurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
6
|
Guo K, Zhang X, Zhao D, Qin L, Jiang W, Hu W, Liu X, Xia Q, Dong Z, Zhao P. Identification and characterization of sericin5 reveals non-cocoon silk sericin components with high β-sheet content and adhesive strength. Acta Biomater 2022; 150:96-110. [PMID: 35902035 DOI: 10.1016/j.actbio.2022.07.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/01/2022]
Abstract
Sericins are glue proteins on the surface of silk fibers. Four sericins have been characterized in silkworm, namely sericin1 (Ser1), sericin2 (Ser2), sericin3 (Ser3), and sericin4 (Ser4). In this study, we report a novel sericin, sericin5 (Ser5), which exists only in non-cocoon silk. We describe the sequence, exon-intron structure, and translation products of Ser5 in Bombyx mori. The Ser5 gene is approximately 22-kb long and comprises 16 exons. Ser5 protein has a size of 260 kDa, as determined by SDS-PAGE, western blot, and LC-MS/MS. Immunofluorescence analysis revealed that Ser5 co-localizes with Ser1 in the sericin layer. The expression pattern of Ser5 was detected at the transcriptional and translational levels. We systematically analyzed and compared the amino acid composition, repeat regions, and hydrophilicity of silkworm sericins. Morphological observations showed that non-cocoon silk had more sericin than cocoon silk. Circular dichroism spectra revealed that non-cocoon silk sericin contained more β-sheet structures than cocoon silk sericin. In addition, we found that the hydrophilicity and adhesive strength of native sericin increases gradually from the inner layer to the outer layer. This research enhances our understanding of various sericins from cocoon silk and non-cocoon silk with regard to their expression patterns, hydrophilicity, secondary structure and adhesive performances. STATEMENT OF SIGNIFICANCE: : Sericin is a natural biomaterial with diverse biological properties, which has long been used as tissue engineering and biomedical applications. However, the composition and distribution of sericins in different kinds of silk are still uncertain, and the properties difference between sericins have not yet been reported. Our study makes a significant contribution to the literature as it identifies the sequence, composition, hydrophilicity and adhesive property of sericins. Moreover, it provides key insights into the structure-function and function-distribution relationships associated with sericins. We believe that this study will arouse the interest to the readership of your journal as it identifies the new complete sequence of sericin and revealed the composition and properties of sericin, thus highlighting their future potentials applications in both the biomaterial and technical fields.
Collapse
Affiliation(s)
- Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Lixia Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Wenchao Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xiao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China.
| |
Collapse
|
7
|
Ealla KKR, Veeraraghavan VP, Ravula NR, Durga CS, Ramani P, Sahu V, Poola PK, Patil S, Panta P. Silk Hydrogel for Tissue Engineering: A Review. J Contemp Dent Pract 2022; 23:467-477. [PMID: 35945843 DOI: 10.5005/jp-journals-10024-3322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
AIM This review aims to explore the importance of silk hydrogel and its potential in tissue engineering (TE). BACKGROUND Tissue engineering is a procedure that incorporates cells into the scaffold materials with suitable growth factors to regenerate injured tissue. For tissue formation in TE, the scaffold material plays a key role. Different forms of silk fibroin (SF), such as films, mats, hydrogels, and sponges, can be easily manufactured when SF is disintegrated into an aqueous solution. High precision procedures such as micropatterning and bioprinting of SF-based scaffolds have been used for enhanced fabrication. REVIEW RESULTS In this narrative review, SF physicochemical and mechanical properties have been presented. We have also discussed SF fabrication techniques like electrospinning, spin coating, freeze-drying, and physiochemical cross-linking. The application of SF-based scaffolds for skeletal, tissue, joint, muscle, epidermal, tissue repair, and tympanic membrane regeneration has also been addressed. CONCLUSION SF has excellent mechanical properties, tunability, biodegradability, biocompatibility, and bioresorbability. CLINICAL SIGNIFICANCE Silk hydrogels are an ideal scaffold matrix material that will significantly impact tissue engineering applications, given the rapid scientific advancements in this field.
Collapse
Affiliation(s)
- Kranti Kiran Reddy Ealla
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, SIMATS, Chennai, Tamil Nadu, India; Department of Oral Pathology and Microbiology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India, e-mail:
| | | | - Nikitha Reddy Ravula
- Center for Research Development and Sustenance, Malla Reddy Health City, Hyderabad, Telangana, India
| | | | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Vikas Sahu
- Center for Research Development and Sustenance, Malla Reddy Health City, Hyderabad, Telangana, India
| | | | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India, e-mail:
| |
Collapse
|
8
|
Diverse silk and silk-like proteins derived from terrestrial and marine organisms and their applications. Acta Biomater 2021; 136:56-71. [PMID: 34551332 DOI: 10.1016/j.actbio.2021.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
Organisms develop unique systems in a given environment. In the process of adaptation, they employ materials in a clever way, which has inspired mankind extensively. Understanding the behavior and material properties of living organisms provides a way to emulate these natural systems and engineer various materials. Silk is a material that has been with human for over 5000 years, and the success of mass production of silkworm silk has realized its applications to medical, pharmaceutical, optical, and even electronic fields. Spider silk, which was characterized later, has expanded the application sectors to textile and military materials based on its tough mechanical properties. Because silk proteins are main components of these materials and there are abundant creatures producing silks that have not been studied, the introduction of new silk proteins would be a breakthrough of engineering materials to open innovative industry fields. Therefore, in this review, we present diverse silk and silk-like proteins and how they are utilized with respect to organism's survival. Here, the range of organisms are not constrained to silkworms and spiders but expanded to other insects, and even marine creatures which produce silk-like proteins that are not observed in terrestrial silks. This viewpoint broadening of silk and silk-like proteins would suggest diverse targets of engineering to design promising silk-based materials. STATEMENT OF SIGNIFICANCE: Silk has been developed as a biomedical material due to unique mechanical and chemical properties. For decades, silks from various silkworm and spider species have been intensively studied. More recently, other silk and silk-like proteins with different sequences and structures have been reported, not only limited to terrestrial organisms (honeybee, green lacewing, caddisfly, and ant), but also from marine creatures (mussel, squid, sea anemone, and pearl oyster). Nevertheless, there has hardly been well-organized literature on silks from such organisms. Regarding the relationship among sequence-structure-properties, this review addresses how silks have been utilized with respect to organism's survival. Finally, this information aims to improve the understanding of diverse silk and silk-like proteins which can offer a significant interest to engineering fields.
Collapse
|
9
|
Vadivel R, Nirmala M, Raji K, Siddaiah B, Ramamurthy P. Synthesis of highly luminescent carbon dots from postconsumer waste silk cloth and investigation of its electron transfer dynamics with methyl viologen dichloride. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Tsubota T, Yoshioka T, Jouraku A, Suzuki TK, Yonemura N, Yukuhiro K, Kameda T, Sezutsu H. Transcriptomic analysis of the bagworm moth silk gland reveals a number of silk genes conserved within Lepidoptera. INSECT SCIENCE 2021; 28:885-900. [PMID: 32589338 DOI: 10.1111/1744-7917.12846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Lepidopteran insects produce cocoons with unique properties. The cocoons are made of silk produced in the larval tissue silk gland and our understanding of the silk genes is still very limited. Here, we investigated silk genes in the bagworm moth Eumeta variegata, a species that has recently been found to produce extraordinarily strong and tough silk. Using short-read transcriptomic analysis, we identified a partial sequence of the fibroin heavy chain gene and its product was found to have a C-terminal structure that is conserved within nonsaturniid species. This is in accordance with the presence of fibroin light chain/fibrohexamerin genes and it is suggested that the bagworm moth is producing silk composed of fibroin ternary complex. This indicates that the fibroin structure has been evolutionarily conserved longer than previously thought. Other than fibroins we identified candidates for sericin genes, expressed strongly in the middle region of the silk gland and encoding serine-rich proteins, and other silk genes, that are structurally conserved with other lepidopteran homologues. The bagworm moth is thus considered to be producing conventional lepidopteran type of silk. We further found a number of genes expressed in a specific region of the silk gland and some genes showed conserved expression with Bombyx mori counterparts. This is the first study allowing comprehensive silk gene identification and expression analysis in the lepidopteran Psychidae family and should contribute to the understanding of silk gene evolution as well as to the development of novel types of silk.
Collapse
Affiliation(s)
- Takuya Tsubota
- Institute of Agrobiological Sciences, Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Taiyo Yoshioka
- Institute of Agrobiological Sciences, Silk Materials Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Akiya Jouraku
- Insect Genome Research and Engineering Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takao K Suzuki
- Institute of Agrobiological Sciences, Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Naoyuki Yonemura
- Institute of Agrobiological Sciences, Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kenji Yukuhiro
- Institute of Agrobiological Sciences, Silk Materials Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Tsunenori Kameda
- Institute of Agrobiological Sciences, Silk Materials Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Zuluaga-Vélez A, Quintero-Martinez A, Orozco LM, Sepúlveda-Arias JC. Silk fibroin nanocomposites as tissue engineering scaffolds - A systematic review. Biomed Pharmacother 2021; 141:111924. [PMID: 34328093 DOI: 10.1016/j.biopha.2021.111924] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response.
Collapse
Affiliation(s)
- Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Adrián Quintero-Martinez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Lina M Orozco
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
12
|
Yang CC, Yokoi K, Yamamoto K, Jouraku A. An update of KAIKObase, the silkworm genome database. Database (Oxford) 2021; 2021:baaa099. [PMID: 33645624 PMCID: PMC7918157 DOI: 10.1093/database/baaa099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
KAIKObase was established in 2009 as the genome database of the domesticated silkworm Bombyx mori. It provides several gene sets and genetic maps as well as genome annotation obtained from the sequencing project of the International Silkworm Genome Consortium in 2008. KAIKObase has been used widely for silkworm and insect studies even though there are some erroneous predicted genes due to misassembly and gaps in the genome. In 2019, we released a new silkworm genome assembly, showing improvements in gap closure and covering more and longer gene models. Therefore, there is a need to include new genome and new gene models to KAIKObase. In this article, we present the updated contents of KAIKObase and the methods to generate, integrate and analyze the data sets. Database URL: https://kaikobase.dna.affrc.go.jp.
Collapse
Affiliation(s)
- Ching-chia Yang
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kimiko Yamamoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
13
|
Sun W, Gregory DA, Tomeh MA, Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int J Mol Sci 2021; 22:ijms22031499. [PMID: 33540895 PMCID: PMC7867316 DOI: 10.3390/ijms22031499] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering (TE) is the approach to combine cells with scaffold materials and appropriate growth factors to regenerate or replace damaged or degenerated tissue or organs. The scaffold material as a template for tissue formation plays the most important role in TE. Among scaffold materials, silk fibroin (SF), a natural protein with outstanding mechanical properties, biodegradability, biocompatibility, and bioresorbability has attracted significant attention for TE applications. SF is commonly dissolved into an aqueous solution and can be easily reconstructed into different material formats, including films, mats, hydrogels, and sponges via various fabrication techniques. These include spin coating, electrospinning, freeze drying, physical, and chemical crosslinking techniques. Furthermore, to facilitate fabrication of more complex SF-based scaffolds with high precision techniques including micro-patterning and bio-printing have recently been explored. This review introduces the physicochemical and mechanical properties of SF and looks into a range of SF-based scaffolds that have been recently developed. The typical TE applications of SF-based scaffolds including bone, cartilage, ligament, tendon, skin, wound healing, and tympanic membrane, will be highlighted and discussed, followed by future prospects and challenges needing to be addressed.
Collapse
Affiliation(s)
- Weizhen Sun
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
- Department of Material Science and Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Correspondence: ; Tel.: +44(0)-114-222-8256
| |
Collapse
|
14
|
Nagarajan S, Radhakrishnan S, Kalkura SN, Balme S, Miele P, Bechelany M. Overview of Protein‐Based Biopolymers for Biomedical Application. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900126] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sakthivel Nagarajan
- Institut Européen des Membranes, IEM–UMR 5635ENSCM, CNRS, University of Montpellier Montpellier 34090 France
| | | | | | - Sebastien Balme
- Institut Européen des Membranes, IEM–UMR 5635ENSCM, CNRS, University of Montpellier Montpellier 34090 France
| | - Philippe Miele
- Institut Européen des Membranes, IEM–UMR 5635ENSCM, CNRS, University of Montpellier Montpellier 34090 France
- Institut Universitaire de France MESRI, 1 rue Descartes, 75231 Paris cedex 05 France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM–UMR 5635ENSCM, CNRS, University of Montpellier Montpellier 34090 France
| |
Collapse
|
15
|
Kono N, Nakamura H, Ohtoshi R, Tomita M, Numata K, Arakawa K. The bagworm genome reveals a unique fibroin gene that provides high tensile strength. Commun Biol 2019; 2:148. [PMID: 31044173 PMCID: PMC6488591 DOI: 10.1038/s42003-019-0412-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/03/2019] [Indexed: 12/30/2022] Open
Abstract
Arthropod silk is known as a versatile tool, and its variability makes it an attractive biomaterial. Eumeta variegata is a bagworm moth (Lepidoptera, Psychidae) that uses silk throughout all life stages. Notably, the bagworm-specific uses of silk include larval development in a bag coated with silk and plant materials and the use of silk attachments to hang pupae. An understanding at the molecular level of bagworm silk, which enables such unique purposes, is an opportunity to expand the possibilities for artificial biomaterial design. However, very little is known about the bagworm fibroin gene and the mechanical properties of bagworm silk. Here, we report the bagworm genome, including a silk fibroin gene. The genome is approximately 700 Mbp in size, and the newly found fibroin gene has a unique repetitive motif. Furthermore, a mechanical property test demonstrates a phylogenetic relationship between the unique motif and tensile strength of bagworm silk.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | | | | | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | | | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| |
Collapse
|
16
|
Wang J, Zhang Y, Jin N, Mao C, Yang M. Protein-Induced Gold Nanoparticle Assembly for Improving the Photothermal Effect in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11136-11143. [PMID: 30869510 DOI: 10.1021/acsami.8b21488] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gold nanoparticles (AuNPs) are promising photothermal agents for cancer therapy. However, the absorption of spherical AuNPs is weak in the desired tissue-penetrating near-infrared (NIR) window, resulting in low photothermal efficiency within this window. Here, we show that fibrous nanostructures assembled from spherical AuNPs since the templating effect of silk fibroin (SF) could red-shift the optical absorption to NIR and thus present improved photothermal efficiency within the NIR window. Specifically, negatively charged SF, a protein derived from Bombyx mori, was assembled into nanofibers due to the interaction with the positively charged AuNPs and concomitantly templated the AuNPs into fibrous nanostructures. The resultant AuNPs/SF nanofibers presented higher NIR light absorption at 808 nm and higher photothermal efficiency under 808 nm NIR irradiation than nonassembled AuNPs. In vitro and in vivo analyses proved that AuNPs/SF nanofibers could efficiently kill breast cancer cells and destruct breast cancer tumor tissues under one-time NIR irradiation for 6 min by photothermal therapy (PTT) but nonassembled AuNPs could not. This work suggests that the self-assembled AuNPs/SF nanofibers are effective photosensitizers for PTT, and biotemplated assembly of photothermal agents into highly ordered nanostructures is a promising approach to increasing the PTT efficiency.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science , Zhejiang University , Yuhangtang Road 866 , Hangzhou , 310058 Zhejiang , China
| | - Ying Zhang
- Institute of Applied Bioresource Research, College of Animal Science , Zhejiang University , Yuhangtang Road 866 , Hangzhou , 310058 Zhejiang , China
| | - Na Jin
- Institute of Applied Bioresource Research, College of Animal Science , Zhejiang University , Yuhangtang Road 866 , Hangzhou , 310058 Zhejiang , China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019-5251 , United States
- School of Materials Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science , Zhejiang University , Yuhangtang Road 866 , Hangzhou , 310058 Zhejiang , China
| |
Collapse
|
17
|
Milutinović M, Čurović D, Nikodijević D, Vukajlović F, Predojević D, Marković S, Pešić S. The silk of Plodia interpunctella as a potential biomaterial and its cytotoxic effect on cancer cells. Anim Biotechnol 2019; 31:195-202. [PMID: 30795724 DOI: 10.1080/10495398.2019.1575848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insect silk has been widely studied for its application in regenerative medicine. However, the data about Plodia interpunctella silk as a biomaterial and its anticancer properties are insufficient. Thus, the aim of this study was to investigate native silk as a substrate for growing normal human fibroblasts MRC-5, and test potential cytotoxic effects of the two silk extracts (with DMSO and Trypsin for sericin isolation) on HCT-116 colorectal carcinoma cells and MRC-5 fibroblasts as a control. Fifth-instar larval silk, collected for 15 and 30 days, was used for testing of proliferation and adhesion of MRC-5, 24 h and 72 h after seeding. Light- and fluorescence-microscope showed cell adhesion and spread on silk, as well as enhanced number of cells after 72 compared to 24 h and nonsignificant percentage of apoptotic cells on the silk. Although insoluble, P. interpunctella silk showed remarkable cytotoxic activity on HCT-116 cells, without significant cytotoxity on normal fibroblasts after 24 h and weak effects after 72 h. This study provides significant information about P. interpunctella silk as a potential biomaterial and shows the presence of some active constituents with anticancer properties, thus pointing to the possibility for exploitation of this worldwide pest insect in biomedical application.
Collapse
Affiliation(s)
- Milena Milutinović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Danica Čurović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Danijela Nikodijević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Filip Vukajlović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Predojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Snežana Marković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Snežana Pešić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
18
|
Xu H, Yi W, Li D, Zhang P, Yoo S, Bai L, Hou J, Hou X. Obtaining high mechanical performance silk fibers by feeding purified carbon nanotube/lignosulfonate composite to silkworms. RSC Adv 2019; 9:3558-3569. [PMID: 35518113 PMCID: PMC9060236 DOI: 10.1039/c8ra09934k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 11/21/2022] Open
Abstract
Silkworm fibers have attracted widespread attention for their superb glossy texture and promising mechanical performance. The mechanical properties can be reinforced with carbon nanofillers, particularly carbon nanotubes (CNTs), depending on the CNT content in the silk fibers. In order to increase the CNT content, lignosulfonate (LGS) was used as a surfactant to ameliorate the CNT solubility, dispersibility, and biocompatibility. The resulting CNT/LGS nano-composite was further processed through an additional purification method to remove excess surfactant and enhance the CNT/LGS ratio. Then the purified biocompatible single and multiple-walled CNTs were fed to silkworms, leading to a large CNT content in the resulting silk fibers. Reinforced silk fibers were produced with a mechanical strength as high as 1.07 GPa and a strain of 16.8%. The toughness modulus is 1.69 times than that of the unpurified group. The CNT-embedded silk fibers were characterized via Raman spectrometry and thermogravimetric analysis (TGA), demonstrating that the CNT content in the silk fibers increased 1.5-fold in comparison to the unpurified group. The increased CNT content not only contributed to the self-assembly into buffering knots of silk fibers, but it also enhanced the conductivity of graphitized silk. Our coating and purification strategies provide a potential facile way to obtain natural silk fibers with high mechanical performance. Silkworm fibers have attracted widespread attention for their superb glossy texture and promising mechanical performance.![]()
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory for Information Photonic Technology of Shaanxi Province
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education
- School of Electronics and Information Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of Shaanxi Province
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education
- School of Electronics and Information Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Dongfan Li
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an 710054
- P. R. China
| | - Ping Zhang
- Key Laboratory for Information Photonic Technology of Shaanxi Province
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education
- School of Electronics and Information Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Sweejiang Yoo
- Key Laboratory for Information Photonic Technology of Shaanxi Province
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education
- School of Electronics and Information Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Lei Bai
- Key Laboratory for Information Photonic Technology of Shaanxi Province
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education
- School of Electronics and Information Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Jin Hou
- Department of Pharmacology
- School of Basic Medical Sciences
- Xi'an Medical University
- Xi'an 710021
- People's Republic of China
| | - Xun Hou
- Key Laboratory for Information Photonic Technology of Shaanxi Province
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education
- School of Electronics and Information Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
19
|
Tsubota T, Yamamoto K, Mita K, Sezutsu H. Gene expression analysis in the larval silk gland of the eri silkworm Samia ricini. INSECT SCIENCE 2016; 23:791-804. [PMID: 26178074 DOI: 10.1111/1744-7917.12251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Insects produce silk for a range of purposes. In the Lepidoptera, silk is utilized as a material for cocoon production and serves to protect larvae from adverse environmental conditions or predators. Species in the Saturniidae family produce an especially wide variety of cocoons, for example, large, golden colored cocoons and those with many small holes. Although gene expression in the silk gland of the domestic silkworm (Bombyx mori L.) has been extensively studied, considerably fewer investigations have focused on members of the saturniid family. Here, we established expression sequence tags from the silk gland of the eri silkworm (Samia ricini), a saturniid species, and used these to analyze gene expression. Although we identified the fibroin heavy chain gene in the established library, genes for other major silk proteins, such as fibroin light chain and fibrohexamerin, were absent. This finding is consistent with previous reports that these latter proteins are lacking in saturniid silk. Recently, a series of fibrohexamerin-like genes were identified in the Bombyx genome. We used this information to conduct a detailed analysis of the library established here. This analysis identified putative homologues of these genes. We also found several genes encoding small silk protein molecules that are also present in the silk of other Lepidoptera. Gene expression patterns were compared between eri and domestic silkworm, and both conserved and nonconserved expression patterns were identified for the tested genes. Such differential gene expression might be one of the major causes of the differences in silk properties between these species. We believe that our study can be of value as a basic catalogue for silk gland gene expression, which will yield to the further understanding of silk evolution.
Collapse
Affiliation(s)
- Takuya Tsubota
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Ibaraki, 305-8634, Japan
| | - Kimiko Yamamoto
- Insect Genome Research Unit, National Institute of Agrobiological Sciences, Ibaraki, 305-8634, Japan
| | - Kazuei Mita
- Insect Genome Research Unit, National Institute of Agrobiological Sciences, Ibaraki, 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Ibaraki, 305-8634, Japan
| |
Collapse
|
20
|
Wang X, Li Y, Liu Q, Chen Q, Xia Q, Zhao P. In vivo effects of metal ions on conformation and mechanical performance of silkworm silks. Biochim Biophys Acta Gen Subj 2016; 1861:567-576. [PMID: 27865996 DOI: 10.1016/j.bbagen.2016.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND The mechanism of silk fiber formation is of particular interest. Although in vitro evidence has shown that metal ions affect conformational transitions of silks, the in vivo effects of metal ions on silk conformations and mechanical performance are still unclear. METHODS This study explored the effects of metal ions on silk conformations and mechanical properties of silk fibers by adding K+ and Cu2+ into the silk fibroin solutions or injecting them into the silkworms. Aimed by CD analysis, FTIR analysis, and mechanical testing, the conformational and mechanical changes of the silks were estimated. By using BION Web Server, the interactions of K+ and N-terminal of silk fibroin were also simulated. RESULTS We presented that K+ and Cu2+ induced the conformational transitions of silk fibroin by forming β-sheet structures. Moreover, the mechanical parameters of silk fibers, such as strength, toughness and Young's modulus, were also improved after K+ or Cu2+ injection. Using BION Web Server, we found that potassium ions may have strong electrostatic interactions with the negatively charged residues. CONCLUSION We suggest that K+ and Cu2+ play crucial roles in the conformation and mechanical performances of silks and they are involved in the silk fiber formation in vivo. GENERAL SIGNIFICANCE Our results are helpful for clarifying the mechanism of silk fiber formation, and provide insights for modifying the mechanical properties of silk fibers.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, PR China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Qingsong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Quanmei Chen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
21
|
Kumar V, Krishna KV, Khanna S, Joshi KB. Aggregation propensity of amyloidogenic and elastomeric dipeptides constituents. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Zurovec M, Yonemura N, Kludkiewicz B, Sehnal F, Kodrik D, Vieira LC, Kucerova L, Strnad H, Konik P, Sehadova H. Sericin Composition in the Silk of Antheraea yamamai. Biomacromolecules 2016; 17:1776-87. [PMID: 27049111 DOI: 10.1021/acs.biomac.6b00189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The silks produced by caterpillars consist of fibroin proteins that form two core filaments, and sericin proteins that seal filaments into a fiber and conglutinate fibers in the cocoon. Sericin genes are well-known in Bombyx mori (Bombycidae) but have received little attention in other insects. This paper shows that Antheraea yamamai (Saturniidae) contains five sericin genes very different from the three sericin genes of B. mori. In spite of differences, all known sericins are characterized by short exons 1 and 2 (out of 3-12 exons), expression in the middle silk gland section, presence of repeats with high contents of Ser and charged amino acid residues, and secretion as a sticky silk component soluble in hot water. The B. mori sericins represent tentative phylogenetic lineages (I) BmSer1 and orthologs in Saturniidae, (II) BmSer2, and (III) BmSer3 and related sericins of Saturniidae and of the pyralid Galleria mellonella. The lineage (IV) seems to be limited to Saturniidae. Concerted evolution of the sericin genes was apparently associated with gene amplifications as well as gene loses. Differences in the silk fiber morphology indicate that the cocktail of sericins linking the filaments and coating the fiber is modified during spinning. Silks are composite biomaterials of conserved function in spite of great diversity of their composition.
Collapse
Affiliation(s)
- Michal Zurovec
- Entomological Institute, Biology Centre ASCR , Branišovská 31, 370 05 České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia , Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Naoyuki Yonemura
- National Institute of Agrobiological Sciences Tsukuba , Ibaraki 305-8634, Japan
| | - Barbara Kludkiewicz
- Entomological Institute, Biology Centre ASCR , Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - František Sehnal
- Entomological Institute, Biology Centre ASCR , Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Dalibor Kodrik
- Entomological Institute, Biology Centre ASCR , Branišovská 31, 370 05 České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia , Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Ligia Cota Vieira
- Entomological Institute, Biology Centre ASCR , Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Lucie Kucerova
- Entomological Institute, Biology Centre ASCR , Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics ASCR , Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Peter Konik
- Faculty of Science, University of South Bohemia , Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Hana Sehadova
- Entomological Institute, Biology Centre ASCR , Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
23
|
Dong Y, Dai F, Ren Y, Liu H, Chen L, Yang P, Liu Y, Li X, Wang W, Xiang H. Comparative transcriptome analyses on silk glands of six silkmoths imply the genetic basis of silk structure and coloration. BMC Genomics 2015; 16:203. [PMID: 25886738 PMCID: PMC4372302 DOI: 10.1186/s12864-015-1420-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 02/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Silk has numerous unique properties that make it a staple of textile manufacturing for several thousand years. However, wider applications of silk in modern have been stalled due to limitations of traditional silk produced by Bombyx mori. While silk is commonly produced by B. mori, several wild non-mulberry silkmoths--especially members of family Saturniidae--produce silk with superior properties that may be useful for wider applications. Further utilization of such silks is hampered by the non-domestication status or limited culturing population of wild silkworms. To date there is insufficient basic genomic or transcriptomic data on these organisms or their silk production. RESULTS We sequenced and compared the transcriptomes of silk glands of six Saturniidae wild silkmoth species through next-generation sequencing technology, identifying 37758 ~ 51734 silkmoth unigenes, at least 36.3% of which are annotated with an e-value less than 10(-5). Sequence analyses of these unigenes identified a batch of genes specific to Saturniidae that are enriched in growth and development. Analyses of silk proteins including fibroin and sericin indicate intra-genus conservation and inter-genus diversification of silk protein features among the wild silkmoths, e.g., isoelectric points, hydrophilicity profile and amino acid composition in motifs of silk H-fibroin. Interestingly, we identified p25 in two of the silkmoths, which were previously predicted to be absent in Saturniidae. There are rapid evolutionary changes in sericin proteins, which might account for the highly heterogeneity of sericin in Saturniidae silkmoths. Within the six sikmoths, both colored-cocoon silkmoth specific transcripts and differentially expressed genes between the colored-cocoon and non-colored-cocoon silkmoths are significantly enriched in catalytic activity, especially transferase activity, suggesting potentially viable targets for future gene mining or genetic manipulation. CONCLUSIONS Our results characterize novel and potentially valuable gene resources of saturniid silkmoths that may facilitate future genetic improvement and modification of mulberry silkworms. Our results suggest that the disparate features of silk--coloration, retention, strength, etc. --are likely not only due to silk proteins, but also to the environment of silk assembly, and more specifically, that stable silk coloration exhibited by some Saturniidae silkmoths may be attributable to active catalytic progress in pigmentation.
Collapse
Affiliation(s)
- Yang Dong
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province, 650500, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan Province, 650223, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Sericultural Laboratory of Agricultural Ministry, Institute of Sericulture and Systems Biology, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan Province, 650223, China
| | - Hui Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan Province, 650223, China
| | - Lei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan Province, 650223, China
| | - Pengcheng Yang
- Institute of Zoology, Chinese Academy of Sciences, 69 East Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yanqun Liu
- Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang Province, 110866, China
| | - Xin Li
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan Province, 650223, China.
| | - Hui Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan Province, 650223, China.
| |
Collapse
|
24
|
Long D, Lu W, Zhang Y, Guo Q, Xiang Z, Zhao A. New insight into the mechanism underlying fibroin secretion in silkworm, Bombyx mori. FEBS J 2014; 282:89-101. [PMID: 25302556 DOI: 10.1111/febs.13105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
Abstract
In order to investigate the role of different parts of the fibroin heavy chain (H-chain) in the secretion of fibroin in the silk gland of the silkworm (Bombyx mori) in vivo, two enhanced green fluorescent protein (EGFP)/H-chain fusion genes with deduced protein sequences containing an identical N-terminal region and different C-terminal regions of the H-chain were introduced into the B. mori genome using a piggyBac-mediated germline transformation. EGFP fluorescence and molecular analysis showed the products of two different EGFP/H-chain fusion proteins were secreted into the posterior silk gland lumen and aggregated in the middle silk gland and spun into cocoons. The results revealed that only the non-repetitive N terminus of the H-chain is essential for secretion of the H-chain into the posterior silk gland lumen. In addition, our results also indicated that the most likely post-translational modification of the H-chain is at the C-terminal domain. Here, our results not only provide a theoretical basis for the genetic modification of silk fiber as a functional biomaterial but also are of great significance to establishing a new silk gland bioreactor to mass-produce exogenous proteins in an active form.
Collapse
Affiliation(s)
- Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of the Agricultural Ministry, Southwest University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
25
|
Church JS, Woodhead AL, Walker AA, Sutherland TD. A comparison of convergently evolved insect silks that share β-sheet molecular structure. Biopolymers 2014; 101:630-9. [DOI: 10.1002/bip.22431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Jeffrey S. Church
- CSIRO Materials Science and Engineering; Pigdons Road, Waurn Ponds, VIC 3216 Australia
| | - Andrea L. Woodhead
- CSIRO Materials Science and Engineering; Pigdons Road, Waurn Ponds, VIC 3216 Australia
| | - Andrew A. Walker
- CSIRO Ecosystem Sciences; Clunies Ross St, Acton, ACT, 2601 Australia
| | | |
Collapse
|
26
|
|
27
|
Zurovec M, Kludkiewicz B, Fedic R, Sulitkova J, Mach V, Kucerova L, Sehnal F. Functional Conservation and Structural Diversification of Silk Sericins in Two Moth Species. Biomacromolecules 2013; 14:1859-66. [DOI: 10.1021/bm400249b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michal Zurovec
- Entomological Institute,
Biology Centre ASCR, Branišovská 31, 370 05 České
Budějovice, Czech Republic
| | - Barbara Kludkiewicz
- Entomological Institute,
Biology Centre ASCR, Branišovská 31, 370 05 České
Budějovice, Czech Republic
| | - Robert Fedic
- Entomological Institute,
Biology Centre ASCR, Branišovská 31, 370 05 České
Budějovice, Czech Republic
| | - Jitka Sulitkova
- Entomological Institute,
Biology Centre ASCR, Branišovská 31, 370 05 České
Budějovice, Czech Republic
| | - Vaclav Mach
- Entomological Institute,
Biology Centre ASCR, Branišovská 31, 370 05 České
Budějovice, Czech Republic
| | - Lucie Kucerova
- Entomological Institute,
Biology Centre ASCR, Branišovská 31, 370 05 České
Budějovice, Czech Republic
| | - Frantisek Sehnal
- Entomological Institute,
Biology Centre ASCR, Branišovská 31, 370 05 České
Budějovice, Czech Republic
| |
Collapse
|
28
|
Chaitanya RK, Sridevi P, Senthilkumaran B, Dutta Gupta A. Effect of juvenile hormone analog, methoprene on H-fibroin regulation during the last instar larval development of Corcyra cephalonica. Gen Comp Endocrinol 2013; 181:10-7. [PMID: 22929589 DOI: 10.1016/j.ygcen.2012.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
Juvenile hormone (JH) and 20-hydroxyecdysone (20E), co-ordinately orchestrate insect growth and development. The process of silk synthesis and secretion in lepidopteran insects is known to be under hormonal control. However, the role of JH in this process has not been demonstrated hitherto. The present study is aimed to elucidate the role of JH in H-fibroin regulation in Corcyra cephalonica, a serious lepidopteran pest. Reiterated amino acid stretches and the large molecular weight of H-fibroin render its cloning and characterization cumbersome. To address this, a commercially synthesized short amino acid peptide conjugated with a carrier protein was used to generate antibodies against the N-terminal region of H-fibroin. ELISA and immunoblot experiments demonstrated the sensitivity and specificity of antibody. Further, immunohistochemical analyses revealed the antibody's cross-reactivity with H-fibroins of C. cephalonica and Bombyx mori in the silk gland lumen. Quantitative RT-PCR and Western blot analysis demonstrated the tissue-specificity and developmental expression of H-fibroin. Hormonal studies revealed that JH alone does not alter the expression of H-fibroin. However, in the presence 20E, JH reverses the declined expression caused by 20E administration to normal levels. This study provides molecular evidence for the regulation of H-fibroin by the cumulative action of JH and 20E.
Collapse
Affiliation(s)
- R K Chaitanya
- Department of Animal Sciences, School of Life Sciences, Sir CR Rao Road, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | |
Collapse
|
29
|
Yonemura N, Sehnal F, Konik P, Ajimura M, Tamura T, Mita K. Conservation of a pair of serpin 2 genes and their expression in Amphiesmenoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:371-380. [PMID: 22342880 DOI: 10.1016/j.ibmb.2012.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/25/2012] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
Silk secreted by the larvae of Hydropsyche angustipennis (Trichoptera) contains serpins HaSerp2A and HaSerp2B that are homologous to serpin 2 known from several lepidopterans and some other insects. The gene HaSerp2A is 2684 bp downstream from the HaSerp2B gene. The genes possess identical exon/intron segmentation (9 exons) and their sequences are nearly identical: only 8 out of 1203 nt differ in the coding region, 4 out of 567 nt in the introns and 2 out of 52 nt in 3' UTR. Both genes are highly expressed in the silk glands whereas expression in larval carcass devoid of the silk glands is hard to detect. Translation products of the genes consist of 401 amino acids, are 98.8% identical, and are secreted as 45 kDa proteins into silk. Homologous genes in similar tandem arrangement occur on chromosome 15 of Bombyx mori (Lepidoptera). The upstream gene BmSerp2B is modified in several exons and does not seem to produce functional mRNA. The gene BmSerp2A contains two copies of exon 9, of which only the second one is used. One kind of mRNA does and the other does not include exon 1, which encodes a signal peptide. The mRNA yielding secreted BmSerp2A is expressed in the posterior, and that encoding the cytoplasmic BmSerp2A in the middle silk gland region; both kinds are strongly expressed in the anterior region. The data indicate that (1) A duplication of serpin 2 gene occurred either before Trichoptera and Lepidoptera diverged as separate orders or independently in early phylogeny of either order; (2) In the caddisfly H. angustipennis, both genes are expressed specifically in the silk glands and generate proteins deposited in the silk; (3) Only one gene seems to be functional in B. mori and is expressed in a cytoplasmic and in a secreted forms in diverse organs, including the silk glands.
Collapse
Affiliation(s)
- Naoyuki Yonemura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305 8634, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Collin MA, Edgerly JS, Hayashi CY. Comparison of fibroin cDNAs from webspinning insects: insight into silk formation and function. ZOOLOGY 2011; 114:239-46. [PMID: 21741226 DOI: 10.1016/j.zool.2011.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/20/2011] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
Abstract
Embiopterans (webspinning insects) are renowned for their prolific use of silk. These organisms spin silk to construct elaborate networks of tubes in which they live, forage, and reproduce. The silken galleries are essential for protecting these soft-bodied insects from predators and other environmental hazards. Despite the ecological importance of embiopteran silk, very little is known about its constituent proteins. Here, we characterize the silk protein cDNAs from four embiopteran species to better understand the function and evolution of these adaptive molecules. We show that webspinner fibroins (silk proteins) are highly repetitive in sequence and possess several conserved characteristics, despite differences in habitat preferences across species. The most striking similarities are in the codon usage biases of the fibroin genes, particularly in the repetitive regions, as well as sequence conservation of the carboxyl-terminal regions of the fibroins. Based on analyses of the silk genes, we propose hypotheses regarding codon bias and its effect on the translation and replication of these unusual genes. Furthermore, we discuss the significance of specific fibroin motifs to the mechanical and structural characteristics of silk fibers. Lastly, we report that the conservation of webspinner fibroin carboxyl-terminal regions suggests that fiber formation may occur through a mechanism analogous to that found in Lepidoptera. From these results, insight is gained into the tempo and mode of evolution that has shaped embiopteran fibroins.
Collapse
Affiliation(s)
- Matthew A Collin
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
31
|
Chaitanya RK, Sridevi P, Senthilkumaran B, Gupta AD. 20-Hydroxyecdysone regulation of H-fibroin gene in the stored grain pest Corcyra cephalonica, during the last instar larval development. Steroids 2011; 76:125-34. [PMID: 21034755 DOI: 10.1016/j.steroids.2010.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 07/27/2010] [Accepted: 09/30/2010] [Indexed: 11/17/2022]
Abstract
20-Hydroxyecdysone (20E) controls molting, metamorphosis and reproduction of insects. It binds to a heterodimeric complex of ecdysone receptor (EcR) and ultraspiracle (USP), and regulates the transcription of genes containing ecdysone response elements (EcREs). However, the 20E regulation of silk fibroin genes is largely unexplored. In most lepidopteran larvae, the silk fibroin primarily consists of a large protein, heavy chain fibroin (H-fibroin) that is associated with two small proteins, L-chain fibroin and P25. In the present study, we demonstrate that 20E regulates the expression of H-fibroin gene in Corcyra cephalonica, in a dose-dependent manner during the last instar larval development. Semi-quantitative and real-time PCR studies reveal that physiological doses of 20E do not alter the normal expression, whereas higher doses cause a significant decline in the expression. Luciferase activity assays and gel shift experiments further confirm the presence of a functional EcRE in the upstream region of H-fibroin which regulates the ecdysteroid dependent transcriptional activity of fibroin gene through EcR. In vitro treatment with 20E mimicking insecticides, RH-5849 and RH-5992 decreases the expression of H-fibroin in isolated salivary glands. Insects fed with similar concentrations of these insecticides, metamorphose abnormally. Differences are also observed in the ultrastructure of the silk fibers of control and insecticide fed insects providing additional insight into the disruptive effects of these non-steroidal ecdysteroid agonists.
Collapse
Affiliation(s)
- R K Chaitanya
- School of Life Sciences, University of Hyderabad, Sir. C.R. Rao Road, Hyderabad 500046, India
| | | | | | | |
Collapse
|
32
|
Taranushenko Y, Vinokurov KS, Kludkiewicz B, Kodrík D, Sehnal F. Peptidase inhibitors from the salivary glands of the cockroach Nauphoeta cinerea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:920-930. [PMID: 19931392 DOI: 10.1016/j.ibmb.2009.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/08/2009] [Accepted: 11/11/2009] [Indexed: 05/28/2023]
Abstract
Inhibitory activity against subtilisin, proteinase K, chymotrypsin and trypsin was detected in the salivary glands and saliva of the cockroach Nauphoeta cinerea (Blattoptera: Blaberidae). Fractionation of the salivary glands extract by affinity chromatography followed by reverse-phase HPLC yielded five subtilisin-inhibiting peptides with molecular masses ranging from 5 to 14 kDa. N-terminal sequences and subsequently full-length cDNAs of inhibitors designated NcPIa and NcPIb were obtained. The NcPIa cDNA contains 216 nucleotides and encodes a pre-peptide of 72 amino-acid residues of which 19 make up the signal peptide. The cDNA of NcPIb consists of 240 nucleotides and yields a putative secretory peptide of 80 amino-acid residues. Mature NcPIa (5906.6 Da, 53 residues) and NcPIb (6713.3 Da, 60 residues) are structurally similar (65.4% amino acid overlap) single-domain Kazal-type peptidase inhibitors. NcPIa with Arg in P1 position and typical Kazal motif VCGSD interacted stoichiometrically (1:1) with subtilisin and was slightly less active against proteinase K. NcPIb with Leu in P1 and modified Kazal motif ICGSD had similar activity on subtilisin and no on proteinase K but was active on chymotrypsin.
Collapse
Affiliation(s)
- Yuliya Taranushenko
- Biology Centre ASCR, Institute of Entomology, Branisovská 31, 370 05 Ceské Budejovice, Czech Republic.
| | | | | | | | | |
Collapse
|
33
|
Kludkiewicz B, Takasu Y, Fedic R, Tamura T, Sehnal F, Zurovec M. Structure and expression of the silk adhesive protein Ser2 in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:938-946. [PMID: 19995605 DOI: 10.1016/j.ibmb.2009.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 05/28/2023]
Abstract
Sericins are soluble silk components encoded in Bombyx mori by three genes, of which Ser1 and Ser3 have been characterized. The Ser1 and Ser3 proteins were shown to appear later in the last larval instar as the major sericins of cocoon silk. These proteins are, however, virtually absent in the highly adhesive silk spun prior to cocoon spinning, when the larvae construct a loose scaffold for cocoon attachment. We show here that the silk-gland lumen of the feeding last instar larvae contains two abundant adhesive proteins of 230 kDa and 120 kDa that were identified as products of the Ser2 gene. We also describe the sequence, exon-intron structure, alternative splicing and deduced translation products of this gene in the Daizo p50 strain of B. mori. Two mRNAs of 5.7 and 3.1 kb are generated by alternative splicing of the largest exon. The predicted mature proteins contain 1740 and 882 amino acid residues. The repetitive amino acid sequence encoded by exons 9a and 9b is apparently responsible for the adhesiveness of Ser2 products. It has a similar periodic arrangement of motifs containing lysine and proline as a highly adhesive protein of the mussel Mytilus edulis.
Collapse
Affiliation(s)
- Barbara Kludkiewicz
- Biology Centre, Academy of Sciences, and the Faculty of Natural Sciences, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
34
|
Wang Y, Sanai K, Wen H, Zhao T, Nakagaki M. Characterization of unique heavy chain fibroin filaments spun underwater by the caddisfly Stenopsyche marmorata (Trichoptera; Stenopsychidae). Mol Biol Rep 2009; 37:2885-92. [PMID: 19842062 DOI: 10.1007/s11033-009-9847-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/28/2009] [Indexed: 11/28/2022]
Abstract
The silks of both Lepidoptera and its sister order Trichoptera contain a homologue of heavy chain (H-fibroin), which is assumed to determine the physical properties of the fiber, such as elasticity and toughness. The long repetitive region of the H-fibroin caddisfly Stenopsyche marmorata shows a conspicuous hierarchical structure that is composed of huge units, which are mainly constructed from four large blocks (SA, SB, SC and SD) arranged in an orderly fashion. Each block contains short, distinct motifs such as SXSXSX(SX), GPXG(X)(1-3) or triplet GGX, which also occur in lepidopteran and spider filaments. The SA, SB and SC blocks have nearly fixed amino acid numbers, while the length of the SD block varies, usually due to a variable number of GPXGXXX repeats. The multiple sandwich structure that occurs in the SB block is assumed to be unique to the caddisfly and may be related to the use of silk in an aqueous environment. The overall average of hydrophilicity in the repetitive H-fibroin region of S. marmorata is -0.609, whereas hydrophobicity prevails in most lepidopteran H-fibroins. Gly (29.51%), Pro (11.28%) and Ser (10.90%) are the three predominant amino acids of H-fibroin, and the high content of essential amino acids reflects the energy-rich food resources of the caddisfly. The H-fibroin of S. marmorata is about 400-500 kDa and expressed in both the middle and posterior silk glands, which is different from the expression pattern in Lepidoptera species.
Collapse
Affiliation(s)
- Yujun Wang
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | | | | | | | | |
Collapse
|
35
|
Shaik HA, Sehnal F. Hemolin expression in the silk glands of Galleria mellonella in response to bacterial challenge and prior to cell disintegration. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:781-787. [PMID: 19414015 DOI: 10.1016/j.jinsphys.2009.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 04/06/2009] [Accepted: 04/22/2009] [Indexed: 05/27/2023]
Abstract
Hemolin, a member of the immunoglobulin protein superfamily, functions in Lepidoptera as an opsonin in defence against potential pathogens and seems to play a role in tissue morphogenesis. We show that hemolin gene is expressed in several organs of Galleria mellonella larvae, including the nervous system and the silk glands. The expression in the silk glands of the wandering larvae and their isolated abdomens is enhanced within 6h after an injection of bacteria, lipopolysaccharides, or peptidoglycans. The magnitude of silk gland response to bacterial challenge is similar to that seen in the fat body. A profound rise of hemolin expression without bacterial inoculation occurs in the silk glands of isolated abdomens when they are induced to pupate by a topical application of 20-hydroxyecdysone (20E). The induction of pupation is associated with silk gland programming for disintegration by apoptosis and phagocytosis. Administration of a juvenile hormone agonist prevents pupation and abolishes the stimulatory 20E effect on the hemolin expression. Hemolin protein can be immunodetected in the silk glands as well as in the spun-out cocoon silk. The results suggest that silk glands are a component of the insect immune system and that hemolin may mark the apoptic cells for the elimination by hemocytes.
Collapse
Affiliation(s)
- Haq Abdul Shaik
- Biology Centre of the Academy of Sciences, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic.
| | | |
Collapse
|
36
|
Yonemura N, Mita K, Tamura T, Sehnal F. Conservation of silk genes in Trichoptera and Lepidoptera. J Mol Evol 2009; 68:641-53. [PMID: 19449053 PMCID: PMC2691926 DOI: 10.1007/s00239-009-9234-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 12/02/2022]
Abstract
Larvae of the sister orders Trichoptera and Lepidoptera are characterized by silk secretion from a pair of labial glands. In both orders the silk filament consists of heavy (H)- and light (L)-chain fibroins and in Lepidoptera it also includes a P25 glycoprotein. The L-fibroin and H-fibroin genes of Rhyacophila obliterata and Hydropsyche angustipennis caddisflies have exon/intron structuring (seven exons in L-fibroin and two in H-fibroin) similar to that in their counterparts in Lepidoptera. Fibroin cDNAs are also known in Limnephilus decipiens, representing the third caddisfly suborder. Amino acid sequences of deduced L-fibroin proteins and of the terminal H-fibroin regions are about 50% identical among the three caddisfly species but their similarity to lepidopteran fibroins is <25%. Positions of some residues are conserved, including cysteines that were shown to link the L-fibroin and H-fibroin by a disulfide bridge in Lepidoptera. The long internal part of H-fibroins is composed of short motifs arranged in species-specific repeats. They are extremely uniform in R. obliterata. Motifs (SX)n, GGX, and GPGXX occur in both Trichoptera and Lepidoptera. The trichopteran H-fibroins further contain charged amphiphilic motifs but lack the strings of alanines or alanine-glycine dipeptides that are typical lepidopteran motifs. On the other hand, sequences composed of a motif similar to ERIVAPTVITR surrounded by the (SX)4-6 strings and modifications of the GRRGWGRRG motif occur in Trichoptera and not in Lepidoptera.
Collapse
Affiliation(s)
- Naoyuki Yonemura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8634, Japan
| | | | | | | |
Collapse
|
37
|
Collin MA, Garb JE, Edgerly JS, Hayashi CY. Characterization of silk spun by the embiopteran, Antipaluria urichi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:75-82. [PMID: 18996196 DOI: 10.1016/j.ibmb.2008.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/04/2008] [Accepted: 10/06/2008] [Indexed: 05/27/2023]
Abstract
Silks are renowned for being lightweight materials with impressive mechanical properties. Though moth and spider silks have received the most study, silk production has evolved in many other arthropods. One insect group that has been little investigated is Embioptera (webspinners). Embiopterans produce silk from unique tarsal spinning structures during all life stages. We characterize the molecular and mechanical properties of Antipaluria urichi (Embioptera) silk through multiple approaches. First, we quantify the number of silk secretory structures on their forelimbs and the tensile properties of Antipaluria silk. Second, we present silk protein (fibroin) transcripts from an embiopteran forelimb protarsomere cDNA library. We describe a fibroin that shares several features with other arthropod silks, including a subrepetitive core region, a non-repetitive carboxyl-terminal sequence, and a composition rich in glycine, alanine, and serine. Despite these shared attributes, embiopteran silk has several different tensile properties compared to previously measured silks. For example, the tensile strength of Antipaluria silk is much lower than that of Bombyx mori silk. We discuss the observed mechanical properties in relation to the fibroin sequence, spinning system, and embiopteran silk use.
Collapse
Affiliation(s)
- Matthew A Collin
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
38
|
Sehnal F, Sutherland T. Silks produced by insect labial glands. Prion 2008; 2:145-53. [PMID: 19221523 PMCID: PMC2658764 DOI: 10.4161/pri.2.4.7489] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 11/20/2008] [Indexed: 11/19/2022] Open
Abstract
Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi-liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross-linking by disulfide bonds may be important in the silks spun under water. The mechanism of long-term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue-type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin beta-sheets interrupted with other structures such as alpha-helices but the silk proteins of certain sawflies have predominantly a collagen-like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement.
Collapse
|
39
|
Li XG, Wu LY, Huang MR, Shao HL, Hu XC. Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers 2008; 89:497-505. [DOI: 10.1002/bip.20905] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Sutherland TD, Young JH, Sriskantha A, Weisman S, Okada S, Haritos VS. An independently evolved Dipteran silk with features common to Lepidopteran silks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1036-43. [PMID: 17785191 DOI: 10.1016/j.ibmb.2007.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 05/17/2023]
Abstract
Male hilarine flies (Diptera: Empididae: Empidinae) present prospective mates with silk-wrapped gifts. The silk is produced by specialised cells located in the foreleg basitarsus of the fly. In this report, we describe 2.3 kbp of the silk gene from a hilarine fly (Hilara spp.) that was identified from highly expressed mRNA extracted from the prothoracic basitarsus of males. Using specific primers, we found that the silk gene is expressed in the basitarsi and not in any other part of the male fly. The silk gene from the basitarsi cDNA library matched an approximately 220 kDa protein from the silk-producing basitarsus. Although the predicted silk protein sequence was unlike any other protein sequence in available databases, the architecture and composition of the predicted protein had features in common with previously described silks. The convergent evolution of these features in the Hilarini silk and other silks emphasises their importance in the functional requirements of silk proteins.
Collapse
|
41
|
Garb JE, DiMauro T, Lewis RV, Hayashi CY. Expansion and intragenic homogenization of spider silk genes since the Triassic: evidence from Mygalomorphae (tarantulas and their kin) spidroins. Mol Biol Evol 2007; 24:2454-64. [PMID: 17728281 DOI: 10.1093/molbev/msm179] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spiders spin a diverse array of silk fibers that are predominately composed of repetitive proteins (spidroins) encoded by a gene family. Characterization of this gene family has focused on spidroins synthesized by the Araneomorphae (true spiders), whereas only a single sequence is known from the Mygalomorphae (tarantulas and their kin). To better understand the diversity and evolution of the spidroin gene family, we surveyed the silk gland transcriptomes of 4 divergent mygalomorph species. Through expressed sequence tag screening and probing of silk gland cDNA libraries, we discovered 6 novel mygalomorph spidroins and an approximately 8-kb cDNA of the previously reported Euagrus chisoseus fibroin 1. Mygalomorph spidroin cDNAs encode tandem iterations of sequence repeats, followed by a nonrepetitive carboxy-terminal domain. Though highly homogenized at the nucleotide level within a cDNA (89-100% identical), these repeats exhibit extensive variation across spidroins, consistent with intragenic repeats evolving in concert. Extreme homogeneity of intragenic repeats is also characteristic of araneomorph spidroins, suggesting that modular architecture and its maintenance through concerted evolution have persisted since the mygalomorph/araneomorph split (> or =240 MYA). Phylogenetic analyses of C-terminal sequences grouped all mygalomorph spidroins, except Aliatypus fibroin 1, in a clade. Aliatypus fibroin 1 was instead more closely related to a subset of araneomorph spidroins, including those used in prey wrapping. Our results suggest that spidroin paralogs existed prior to the divergence of mygalomorphs and araneomorphs, followed by a far greater expansion of this gene family in araneomorphs, paralleling the dramatic functional diversification of their silk gland anatomy.
Collapse
Affiliation(s)
- Jessica E Garb
- Department of Biology, University of California, Riverside, USA.
| | | | | | | |
Collapse
|
42
|
Kurihara H, Sezutsu H, Tamura T, Yamada K. Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 2007; 355:976-80. [PMID: 17335775 DOI: 10.1016/j.bbrc.2007.02.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 02/13/2007] [Indexed: 11/25/2022]
Abstract
We constructed the fibroin H-chain expression system to produce recombinant proteins in the cocoon of transgenic silkworms. Feline interferon (FeIFN) was used for production and to assess the quality of the product. Two types of FeIFN fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, were designed to be secreted into the lumen of the posterior silk glands. The expression of the FeIFN/H-chain fusion gene was regulated by the fibroin H-chain promoter domain. The transgenic silkworms introduced these constructs with the piggyBac transposon-derived vector, which produced the normal sized cocoons containing each FeIFN/H-chain fusion protein. Although the native-protein produced by transgenic silkworms have almost no antiviral activity, the proteins after the treatment with PreScission protease to eliminate fibroin H-chain derived N- and C-terminal sequences from the products, had very high antiviral activity. This H-chain expression system, using transgenic silkworms, could be an alternative method to produce an active recombinant protein and silk-based biomaterials.
Collapse
Affiliation(s)
- H Kurihara
- Toray Industries, Inc., New Frontiers Research Laboratories, 1111 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | | | | | | |
Collapse
|
43
|
Korayem AM, Hauling T, Lesch C, Fabbri M, Lindgren M, Loseva O, Schmidt O, Dushay MS, Theopold U. Evidence for an immune function of lepidopteran silk proteins. Biochem Biophys Res Commun 2007; 352:317-22. [PMID: 17126296 DOI: 10.1016/j.bbrc.2006.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
Hemolymph coagulation stops bleeding and protects against infection. Clotting factors include both proteins that are conserved during evolution as well as more divergent proteins in different species. Here we show that several silk proteins also appear in the clot of the greater wax moth Galleria mellonella. RT-PCR analysis reveals that silk proteins are expressed in immune tissues and induced upon wounding in both Galleria and Ephestia kuehniella, a second pyralid moth. Our results support the idea that silk proteins were co-opted for immunity and coagulation during evolution.
Collapse
Affiliation(s)
- Ahmed M Korayem
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yonemura N, Sehnal F, Mita K, Tamura T. Protein Composition of Silk Filaments Spun under Water by Caddisfly Larvae. Biomacromolecules 2006; 7:3370-8. [PMID: 17154465 DOI: 10.1021/bm060663u] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk fiber produced by the larvae of Trichoptera (caddisflies) and Lepidoptera (moths and butterflies) is composed of two filaments embedded in a layer of glue proteins. In an aerial environment Lepidoptera spin silk filaments assembled from heavy chain fibroin (H-fibroin), light chain fibroin (L-fibroin), and the glycoprotein P25. The silk filament of caddisflies, which is produced and persists in water, contained homologues of H-fibroin (>500 kDa) and L-fibroin (25 kDa) but not of P25. The amphiphilic nature of H-fibroin and its high content of charged amino acids probably facilitate the secretion and storage of a covalently linked L-fibroin/H-fibroin dimer in the absence of P25. Several types of short amino acid motifs were arranged in orderly fashion in the regularly reiterated repeats that made up more than 95% of the length of H-fibroin. The H-fibroins of Hydropsyche angustipennis and Limnephilus decipiens from different caddisfly suborders contained GPXGX, SXSXSXSX, and GGX motifs such as the lepidopteran and spider silks but differed from them by a lack of poly(A) and poly(GA) motifs. H-fibroins of both caddisfly species harbored a conserved repeat of 31 residues but were distinguished by a few species-specific motifs and their organization in higher order repeats. Structural differences may be related to the silk function as a catching net in H. angustipennis and a stitching fiber in L. decipiens.
Collapse
Affiliation(s)
- Naoyuki Yonemura
- Biology Centre, Academy of Sciences, Institute of Entomology, Branisovská 31, 370 05 & Ceské Budejovice, Czech Republic
| | | | | | | |
Collapse
|
45
|
Swanson BO, Blackledge TA, Summers AP, Hayashi CY. SPIDER DRAGLINE SILK: CORRELATED AND MOSAIC EVOLUTION IN HIGH-PERFORMANCE BIOLOGICAL MATERIALS. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01888.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Yonemura N, Sehnal F. The Design of Silk Fiber Composition in Moths Has Been Conserved for More Than 150 Million Years. J Mol Evol 2006; 63:42-53. [PMID: 16755355 DOI: 10.1007/s00239-005-0119-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Accepted: 08/01/2005] [Indexed: 11/26/2022]
Abstract
The silk of caterpillars is secreted in the labial glands, stored as a gel in their lumen, and converted into a solid filament during spinning. Heavy chain fibroin (H-fibroin), light chain fibroin (L-fibroin), and P25 protein constitute the filament core in a few species that have been analyzed. Identification of these proteins in Yponomeuta evonymella, a moth from a family which diverged from the rest of Lepidoptera about 150 million years ago, reveals that the mode of filament construction is highly conserved. It is proposed that association of the three proteins is suited for long storage of hydrated silk dope and its rapid conversion to filament. Interactions underlying these processes depend on conserved spacing of critical amino acid residues that are dispersed through the L-fibroin and P25 and assembled in the short ends of the H-fibroin molecule. Strength, elasticity, and other physical properties of the filament are determined by simple amino acid motifs arranged in repetitive modules that build up most of the H-fibroin. H-Fibroin synergy with L-fibroin and P25 does not interfere with motif diversification by which the filament acquires new properties. Several types of motifs in complex repeats occur in the silks used for larval cobwebs and pupal cocoons. Restriction of silk use to cocoon construction in some lepidopteran families has been accompanied by simplification of H-fibroin repeats. An extreme deviation of the silk structure occurs in the Saturniidae silkmoths, which possess modified H-fibroin and lack L-fibroin and P25.
Collapse
Affiliation(s)
- Naoyuki Yonemura
- Institute of Entomology and Faculty of Biological Sciences, Academy of Sciences, University of South Bohemia, Branisovská 31, 370 05, Ceské Budejovice, Czech Republic
| | | |
Collapse
|
47
|
Dicko C, Kenney JM, Vollrath F. β‐Silks: Enhancing and Controlling Aggregation. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:17-53. [PMID: 17190610 DOI: 10.1016/s0065-3233(06)73002-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It appears that fiber-forming proteins are not an exclusive group but that, with appropriate conditions, many proteins can potentially aggregate and form fibrils; though only certain proteins, for example, amyloids and silks, do so under normal physiological conditions. Even so, this suggests a ubiquitous aggregation mechanism in which the protein environment is at least as important as the sequence. An ideal model system in which forced and natural aggregation has been observed is silk. Silks have evolved specifically to readily form insoluble ordered structures with a wide range of structural functionality. The animal, be it silkworm or spider, will produce, store, and transport high molecular weight proteins in a complex environment to eventually allow formation of silk fibers with a variety of mechanical properties. Here we review fiber formation and its prerequisites, and discuss the mechanism by which the animal facilitates and modulates silk assembly to achieve controlled protein aggregation.
Collapse
Affiliation(s)
- Cedric Dicko
- Zoology Department, Oxford University, OX1 3PS, United Kingdom
| | | | | |
Collapse
|
48
|
Swanson BO, Blackledge TA, Summers AP, Hayashi CY. SPIDER DRAGLINE SILK: CORRELATED AND MOSAIC EVOLUTION IN HIGH-PERFORMANCE BIOLOGICAL MATERIALS. Evolution 2006. [DOI: 10.1554/06-267.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Garb JE, Hayashi CY. Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc Natl Acad Sci U S A 2005; 102:11379-84. [PMID: 16061817 PMCID: PMC1183556 DOI: 10.1073/pnas.0502473102] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Indexed: 11/18/2022] Open
Abstract
Spider silk proteins (fibroins) are renowned for their extraordinary mechanical properties and biomimetic potential. Despite extensive evolutionary, ecological, and industrial interest in these fibroins, only a fraction of the known silk types have been characterized at the molecular level. Here we report cDNA and genomic sequences of the fibroin TuSp1, which appears to be the major component of tubuliform gland silk, a fiber exclusively synthesized by female spiders for egg case construction. We obtained TuSp1 sequences from 12 spider species that represent the extremes of phylogenetic diversity within the Orbicularia (orb-weaver superfamilies, Araneoidea and Deinopoidea) and finer scale sampling within genera. TuSp1 encodes tandem arrays of an approximately 200-aa-long repeat unit and individual repeats are readily aligned, even among species that diverged >125 million years ago. Analyses of these repeats across species reveal the strong influence of concerted evolution, resulting in intragenic homogenization. However, deinopoid TuSp1 repeats also contain insertions of coding, minisatellite-like sequences, an apparent result of replication slippage and nonreciprocal recombination. Phylogenetic analyses of 37 spider fibroin sequences support the monophyly of TuSp1 within the spider fibroin gene family, consistent with a single origin of this ortholog group. The diversity of taxa and silks examined here confirms that repetitive architecture is a general feature of this gene family. Moreover, we show that TuSp1 provides a clear example of modular evolution across a range of phylogenetic levels.
Collapse
Affiliation(s)
- Jessica E Garb
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
50
|
Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc Natl Acad Sci U S A 2005. [DOI: 10.1073/pnas.0502473102 er] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|